
 1 

Spatial error constraints reduce overfitting for potential field geophysical inversion  1 

Mark Lindsay1,2,3,4, Vitaliy Ogarko3,4, Jeremie Giraud4,5, Mosayeb Khademi3,6 2 

 3 

1 CSIRO Mineral Resources, Kensington, 6151, WA, Australia 4 

2 ARC ITTC Data Analytics for Resources and Environment, Perth, Australia 5 

3 MinEx CRC, Kensington, 6151, WA, Australia 6 

4 School of Earth Sciences, The University of Western Australia, Crawley, 6009, WA, Australia 7 

5 Laboratoire Géoressources, Université de Lorraine, Vandoeuvre-l`es-Nancy, France 8 

6 University of South Australia, Adelaide, 5000, SA, Australia 9 

Correspondence to: Mark Lindsay (mark.lindsay@csiro.au) 10 

 11 

Abstract: Geophysical inversion is an important tool for characterising the structure of the Earth. The 12 

utility of geophysical inversion has led to widespread adoption by resource explorers, and used to adapt 13 

gravity, magnetic, seismic and electrical datasets into petrophysical models that can be used for targeting. 14 

However, inherent ambiguity means that an infinite number of petrophysical models exist that can 15 

explain the geophysical data, so constraints such as geological models and petrophysical data have been 16 

employed to reduce the solution space. The constraints, like the data, are subject to noise and error 17 

resulting in uncertainty propagating to the final model. This is because inversion is designed to use the 18 

algorithm and constraints to find the ‘best’ solution by optimising the lowest misfit between the data and 19 

model. If the data is uncertain, the model fit to that data is likewise uncertain, and misrepresentative. 20 

Optimising misfit also means that inversion is subject to overfitting. Overfitting is when the lowest misfit 21 

values are attained by fitting the model to data noise. Overfitting inversion can create anomalies in the 22 

near-surface that can be mistakenly identified as legitimate targets for exploration rather than possible 23 

model artefacts. This contribution describes the use of spatial error constraints calculated from 24 

geophysical data to reduce overfitting for geophysical inversion. The spatial error estimate is derived 25 

from a geostatistical model calculated using Integrated Nested Laplacian Approximation (INLA). A 26 

region in the East Kimberley, northern Western Australia, is subject to gravity inversion using Tomofast-27 

x, an open-source inversion platform. Inversion using different percentiles from the geophysical model 28 

explores whether the extrema of gravimetry values should be considered to explore the model space. 29 

Examination of inversion using and not using spatial error constraints shows that overfitting reduction 30 

can be achieved while using different percentiles as the observed field has lesser benefits.  31 

1. Introduction 32 

In geoscientific data, uncertainty can arise from various sources, impacting the accuracy and reliability 33 

of information. There are four broad categories of uncertainty that arise from scientifically-informed 34 

decision making: 1) incomplete scientific knowledge (i.e. epistemic uncertainty); 2) inherent variance 35 
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within the processes or systems under study making them difficult to measure consistently (i.e. aleatory 36 

uncertainty); 3) ambiguity and vagueness in communications between practitioners or organisations (i.e. 37 

linguistic uncertainty) and 4) how decisions are made in light of differing value for certain goals, 38 

objectives and trade-offs (i.e. value uncertainties) (Jessell et al. 2018; Quigley et al. 2019a). While all 39 

four categories are important when modelling the Earth, we focus on the aleatory and epistemic 40 

uncertainties.  41 

Models using geoscientific data are thus subject to these uncertainties, either from the data (e.g. drilling 42 

data; Pakyuz-Charrier et al. 2018; geophysical data: Rashidifard et al. 2021; petrophysical data: Giraud 43 

et al. 2017; geochemistry: Johnson et al. 2024; structural data: Allmendinger et al. 2017) and assumptions 44 

that are used to build them (e.g. geological relationships: Brisson et al. 2023; interpolation parameters: 45 

Stoch et al. 2024) or from the manner in which they are interpreted (e.g. expert knowledge and bias: 46 

Torvela & Bond 2011; Wilson et al. 2019, geophysical modelling: Reid & Thurston 2014, human 47 

attention and observation patterns: Sivarajah et al. 2014) and used for decision-making (Quigley et al. 48 

2019b). Recent efforts to understand the effects of these uncertainties have naturally led to producing 49 

model ensembles from perturbation of inputs and subsequent model construction to simulate the effects 50 

of data uncertainties (e.g. Caumon 2010; Lindsay et al. 2013; Murray et al 2016). A Bayesian inference 51 

framework is also well-suited to geoscience modelling problems, with the use of prior knowledge used 52 

to account for uncertainties in both data and model parameters and the data used as a likelihood (e.g. De 53 

La Varga et al. 2019; Olierook et al. 2021). Applications to both three-dimensional modelling and 54 

geophysical inversion have several robust and credible examples that focus on uncertainties in structural 55 

geological and petrophysical data (e.g. Giraud et al. 2019; Linde et al. 2017; Pakyuz-Charrier et al. 2018). 56 

Wellmann and Caumon (2018) provide a comprehensive review of such challenges in 3D modelling, and 57 

while not directly addressing the impacts on geophysical modelling, emphasise the considerable potential 58 

for compounding uncertainty in geophysical inversion given 3D geological models are routinely used as 59 

constraints (Guillen et al. 2008; Li & Oldenburg 1997).  60 

Geophysical inversion is a commonly used technique in mineral exploration and near-mine studies that 61 

provide a realisation of continuous sub-surface properties that are impossible to obtain via rare drill core 62 

or outcrop observation. Geophysical inversion uses geophysical data as an observed field which the 63 

misfit between a proposed petrophysical model is measured. The most commonly used inversion 64 

approaches follow a deterministic approach, which, starting from a given model, will iterate through 65 

many solutions attempting to reduce the misfit using a cost function such as Tikhonov regularisation (a 66 

form of least squares or L2 Norm, Tikhonov & Arsenin, 1978). The inversion completes once the misfit 67 

between the petrophysical model and the observed field is below an acceptable threshold. A ‘failed’ 68 

inversion is when the threshold is not reached and converge to a geophysically satisfactory solution is 69 

not attained. The subsurface properties recovered from geophysical inversion are petrophysical in nature, 70 

which emphasises the need for petrophysical constraints, which variation is related to a range of 71 

geological properties (such as mineralogy, grain characteristics and texture, Dentith et al. 2020) 72 

emphasising the need for geological constraints to aid in solving an otherwise ill-posed and ambiguous 73 

problem with an infinite number solutions constituting the model space (Tarantola 2006). It is necessary 74 

to account for the uncertainty in the geophysical data used in the inversion to reduce the search space 75 
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and identify robust solutions belonging to the subset of the model corresponding to the available data 76 

(Tarantola, 2005).  77 

Prior to introducing the proposed methods in more detail, it is useful to define some terms commonly 78 

used in this work: error, uncertainty and noise. Error is a specific deviation of the measured value away 79 

from the true value. Error is expressed as a single value, for example, when calculating the elevation of 80 

a gravity station, an error of -2 metres on a measurement of 248 metres would indicate the station is two 81 

metres lower that the true elevation of 250 metres. Uncertainty is a related yet broader concept describing 82 

the range and likelihood of errors, typically described as a distribution or range within which the true 83 

value is likely to fall. Measuring elevation may have a precision of ±5 metres, indicating the true 84 

elevation is between 245-255 metres. Noise refers to random processes that vary and distort the true 85 

value of a measurement. Noise can be attributed to instrument limitations, environmental factors, and 86 

other external factors that lead to measurement difficulties. For elevation measurements using GPS, noise 87 

can be attributed to antenna placement and quality, obstructions surrounding the location, or poor satellite 88 

positioning. For geophysics, noise can be related to environmental effects, such as weather or near-89 

surface geology that is not otherwise accounted for when processing data during quality assurance and 90 

control.  91 

 92 

1.1 Uncertain data for Geophysical Inversion 93 

Geoscientific studies address uncertain data by: 1) truncation; 2) learning from it and; 3) using it as a 94 

modelling constraint. Truncation is simply identifying outliers and anomalous values and removing 95 

‘troublesome’ data that imparts a bias to models sensitive to outliers (e.g. linear regression, principal 96 

component analysis, decision trees). Outliers may be attributed to analytical artefacts and poor sampling 97 

by conservative workflows supporting high-consequence decisions (resource evaluation, climate 98 

modelling). Learning from uncertain data takes a different view (Wellmann & Regenauer-Lieb, 2011), 99 

with the assumption that outliers or unexpected trends in data reveal latent patterns that can be attributed 100 

to some natural phenomena (e.g. presence of a subtle geophysical anomaly, or variations attributable to 101 

alteration) not explicitly recorded in the data. Such an approach is adopted by authors visualising 102 

uncertainty (references above) advocating for model uncertainty as knowledge. Thus, uncertainty can be 103 

used as an optimisation function for data collection (Pirot et al. 2019; Stamm et al. 2019) or using misfit 104 

in geophysical modelling to reveal geological objects not otherwise included in initial modelling efforts 105 

(Giraud et al. 2019; Lindsay et al. 2020).  106 

Data uncertainty can be estimated using the covariance matrix of data errors (Scales & Snieder, 1998. A 107 

covariance matrix is a square matrix summarising the degree to which two random variables change 108 

(vary) together. Such uncertainties are typically attributed to data noise. However, Gouveia & Scales 109 

(1998) also include the (in)ability of a forward model to explain the data as a form of data uncertainty. 110 

Using a covariance matrix has been employed during seismic geophysical studies, where measurements 111 

are particularly susceptible to external noise sources (ambient sources such as wind, ocean waves, 112 

weather or cultural from nearby human activity) or when datasets are merged due to a dearth of 113 

measurements (Bodin et al. 2012). Noise can be unintentionally added if the merged datasets are from 114 
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different providers using different equipment (‘batch effects’), or from different vintages, where the 115 

sensors themselves have different engineering specs and noise tolerances.  116 

Noise is part of the data the model cannot explain and affects the size, shape and uncertainty of the non-117 

uniqueness and ambiguity of the geophysical problem (known as the ‘null-space’ (Scales & Snieder, 118 

1998). Thus, the covariance matrix provides a view of how measurements in a data set vary with every 119 

other measurement. High variability indicates measurements likely to contain more noise and low 120 

variability indicates measurements that form a pattern that describes the signal, and then used to remove 121 

noise. Chasseriau and Chouteau (2003) and Alsi et al (2000) address the noise problem of a forward 122 

model explaining the data using a geostatistical approach. Following Deutch and Journel (1992) and 123 

David (1997), Chasseriau and Chouteau (2003) use directional experimental variograms with sill and 124 

nugget values calculated from surface and drillhole density observations to condition the 3D density 125 

model for gravity inversion. The authors conduct a field example from the Blake River Group in the 126 

Abitibi Region, Canada and assume a data variance value of 0.1 mGal2 for the gravity data, while also 127 

determining the directional experimental variograms to correct for regional effects. The inversion 128 

resolves various important geological features from the density model including geological bodies (the 129 

Flavarian pluton) and structure (Porcupine-Destor fault). Root-mean-square error (RMSE) from the 130 

model calculated with inversion is reported as ‘infinitesimal’ without density constraints, while 2.3% 131 

with constraints. While not explicitly stating so, the authors likely allude to an overfit and, thus, 132 

unrealistic density model if root-mean-squared-error (RMSE) values are suspiciously low. Overfitting is 133 

well-known and typical for unconstrained inversion of potential field data when the constraints are 134 

inadequate or do not suffice to prevent inversion from producing unrealistic, small-scale features fitting 135 

the data below noise or error levels. For gravity data, this may be due, in part, to the modelled gravity 136 

response decaying with the inverse-squared depth, which can be countered with depth weighting 137 

(Chasseriau & Chouteau, 2003) and a geological model with assigned petrophysical properties (e.g. 138 

Guillen at al. 2008). Overfitting may also be due to improper data weighting when, e.g., the data 139 

weighting scheme does not accurately reflect the relative reliability of different data points, which can 140 

lead inversion to fit some measurements too closely. 141 

The geostatistical approach to geophysical inversion taken by Asli et al. (2000) and Chasseriau and 142 

Chouteau (2003) addresses the lack of resolution at depth for gravity inversion while increasing noise 143 

sensitivity and precision by cokriging density and gravimetric measurements to understand their 144 

covariance. The gravimetric/gravimetric and gravimetric/petrophysical covariances are not stationary, 145 

thus Asli et al. 2000 adopt a ‘V-V’ plot, a variographic version of the standard Q-Q plot. The theoretic 146 

covariance values between the gravity and density pairs and gravity and gravity pairs are arranged by 147 

increasing order and grouped from which a mean value is calculated. The grouping process relies on a 148 

semi-automated minimisation of the dispersion between the experimental gravity variogram, and 149 

theoretical variogram. 150 

Shamsipour et al. 2010 take a similar geostatistical approach to gravity inversion using conditional 151 

simulation to identify the stable features of the inverted fields. This extends the work of Asli et al. 2000 152 

to include uncertainty assessment. They found that conditional simulation allowed the parametrisation 153 
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of an exploration target by defining a maximum density gradient value while cokriging did not. The 154 

approach of Shamsipour et al. 2010 relies on the translation of mineral exploration criteria into 155 

petrophysical contrast value and could be helpful when searching for steep gradients, possibly associated 156 

with geologic structure (Clark & Schmidt, 2001; Dentith et al., 1994). Similar to Asli et al 2000, 157 

Shamsipour et al 2010 focus on the covariance of gravity data to density parameters, and modelled 158 

gravity, with data errors relating to gravity measurements.  159 

1.2 Data inputs for inversion 160 

The observed field for inversion is sourced from the measurements taken by the geophysical survey 161 

equipment. These may be recorded by gravimeters, magnetometers or various electromagnetic sensors. 162 

Corrections are required for geophysical data to account for known yet unwanted effects, such as 163 

ellipsoidal corrections for gravity data to account for the oblate shape of the Earth, and Bouguer 164 

correction to account for the elevation of the point above sea-level, the mass of that rock and for irregular 165 

terrain changes. The corrections are performed to isolate the geophysical anomalies caused by geological 166 

structures from those caused by surface topography. A quality assurance step should follow that 167 

examines the corrected observations to identify outliers or otherwise anomalous values, which then 168 

requires a decision to either remove outliers or keep them under the assumption they are representative 169 

of nature.  170 

The corrected geophysical measurements are provided to the inversion as points or grids, with grids the 171 

format typically used. Grids are created through interpolation of the survey measurement to a regular 172 

mesh, which cell size typically serves the purposes of the modelling exercise. The chosen cell size is 173 

made considering the geometry of the geological objects one expects to resolve, topographic relief, and 174 

computational constraints (smaller cells and/or a larger model volume means more cells and will incur 175 

greater computational cost). The type of interpolation method includes geostatistical methods like 176 

kriging, Bayesian models and radial basis functions and deterministic methods like inverse distance 177 

weighting and splines (Myers 1994). Geostatistical methods evaluate spatial structure and dependence 178 

using a variogram or covariance matrix, provide uncertainty quantification, and offer many constraints 179 

to control the process. Deterministic methods are simpler, requiring little (if any) constraints and can 180 

handle higher data volumes, however do not offer uncertainty quantification or a statistical model for 181 

spatial structure and dependence. Geoscientists have traditionally used deterministic interpolation 182 

methods, however increased computing power, approximation methods for geostatistical interpolators 183 

combined with more intuitive constraint assignment and the needs for uncertainty quantification of large 184 

datasets mean that geostatistical methods being readily adopted for spatial analyses (Cressie et al. 2022; 185 

Sainsbury-Dale et al. 2024).  186 

A covariance matrix, populated with measurement errors, including geostatistical error estimates can 187 

help support the use of points or interpolated grids. This is important to include, otherwise the inversion 188 

will assume: 1) the measurements contain no error and; 2) the interpolation always predicts true values, 189 

even those at some distance from measurements and affected with ‘spatial error’. These assumptions are 190 

false. While geophysical data collection is undertaken with much care and attention to minimising noise 191 

and error via precision engineering or reducing environmental effects (Fairhead et al. 2017; Boddice et 192 
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al. 2018, Lane et al. 2019), it is unrealistic to expect all sources of noise and error can be accounted for. 193 

Likewise, it is unrealistic to expect interpolation to perfectly reproduce the true values of a natural process 194 

from noisy, sparse and clustered data typical of the geosciences (Karpatne et al. 2019).  195 

Conditioning inversion with measurement error is used in geophysics (e.g. Asli et al. 2000, Shamsipour 196 

et al. 2010; Bodin et al. 2012). This contribution considers the uncertainty inherent when using 197 

interpolated grids as the observed field and the effect on inversion. We hypothesise that a covariance 198 

matrix populated with geostatistical error estimates, or ‘spatial error’ (as used for the rest of this 199 

manuscript) associated with interpolation can support inversion by facilitating targeted misfit reduction 200 

in uncertain locations and reducing overfitting.  201 

The benefit of targeting uncertain locations prone to data noise and error is that the inversion can be 202 

optimised to focus parameter changes in these regions to find a low misfit petrophysical solution, and to 203 

restrict the inversion search space to models adequately fitting the data. The weighting can be applied in 204 

two ways. One is to allow lower misfit thresholds given the observed field is now understood to be less 205 

likely close to the true value in uncertain regions. Allowing lower thresholds for regions supported by 206 

uncertain data will also help to avoid overfitting. The second approach is to focus parameter changes in 207 

parts of the petrophysical model which are supported by uncertain regions interpolated grid. The rationale 208 

is that more parameter combinations will also be plausible with greater uncertainty in those regions. 209 

The contribution described below is reminiscent of a Bayesian framework, where the likelihood (the 210 

probability of observing the data given specific parameter values) usually includes an error term (Gelman 211 

et al. 2013). Likewise, we explore different ‘slices’ of the posterior distribution of estimated gravity 212 

values, subjecting them to inversion and comparing the results. A fully-developed Bayesian approach to 213 

inversion can achieve similar aims (e.g. magnetotellurics: Seille et al. 2021; and seismology: Sambridge 214 

et al. 2013). The approach we demonstrate is not as sophisticated as those cited above, however does 215 

avoid controversy around selection of a prior distribution within a strictly Bayesian framework (Scales 216 

& Snieder, 1997; McGrayne, 2011). Thus, we demonstrate a workflow typical of those used by 217 

exploration geophysics practitioners where a grid interpolated from a set of gravity measurements us 218 

used as the observed field to calculate misfit between the field calculated from the proposed geological 219 

model (e.g. Fullagar et al. 2000; Lelièvre et al. 2009).  The interpolation is typically executed using a 220 

bicubic, nearest neighbour or spline algorithm, thus deterministic and offering a single grid 221 

representation which ignores the possibility of alternative grid models. While these alternative models 222 

are less likely, they are nonetheless plausible given noisy and error prone measurements taken of natural 223 

phenomena. We explore the extrema of these alternatives with geophysical inversion and evaluate the 224 

value of uncertainty estimates as a critical constraint.  225 

1.3 Study area 226 

The eastern part of the Kimberley region is examined in the area around the Savanna Ni-Cu-Co mine 227 

(Figure 1). The terrane hosting the Savanna mine is the Halls Creek Orogen, which is separated into the 228 

western, central and eastern zones based on differing tectonostratigraphic characteristics (Tyler et al., 229 

1995). The siliciclastic Kimberley Basin and mafic rocks of the Hart-Carson Large Igneous Province 230 

(LIP) bound the western edge of the Halls Creek Orogen. The western zone of the Halls Creek Orogen 231 
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is characterised by the felsic to mafic rocks of the Paperbark Supersuite, Whitewater Volcanics and Ruins 232 

Dolerite, with the mafic and felsic rocks thought deposited contemporaneously around 1859 to 1853 Ma 233 

(Blake et al. 2000; Page and Hoatson, 2000). The central zone is characterised by amphibolite to granulite 234 

facies Tickalara Metamorphics and mafic to ultramafic Savanna, Panton and Sally Mally intrusions. 235 

Later intrusion of voluminous felsic to mafic magmas between 1837 and 1808 Ma formed the Sally 236 

Downs Supersuite (Tyler & Phillips, 2021) and the most common outcropping rocks in the central zone. 237 

The eastern zone is characterised by siliciclastic and volcanic rocks. The eastern edge of the Halls Creek 238 

Orogen is bounded by the sedimentary and volcanic rocks of the Ord Basin, sedimentary rocks of the 239 

Wolfe Basin, and mafic to ultramafic rocks of the Kalkarindji LIP. Three structures, either shear zone or 240 

major faults, trending south-southwest and north-northeast are interpreted to intersect the region. Large 241 

density contrasts between the sedimentary or felsic rocks and mafic and ultramafic rocks (Lindsay et al. 242 

2016), which are represented in the gravity data (Figure 2) make this region an appropriate location for 243 

using gravity data for inversion. Likewise, previous forward modelling and petrophysically-constrained 244 

geological interpretation by Lindsay et al. 2016 suggests the strong and positive gravity anomalies are 245 

consistent with a combination of near-surface mafic intrusions and an interpreted deeper, voluminous 246 

mafic body. The forward modelling of Lindsay et al. 2016 is used as a plausibility check for inversion. 247 

While the forward model is by no means conclusive nor exhaustive, it was constructed using a different 248 

method independent from this work. The same data is incorporated and includes geological knowledge, 249 

thus we believe it an appropriate control for comparison.  250 

 251 

Figure 1. Geological map of the East Kimberley region, northern Western Australia. The major 252 
tectonostratigraphic terranes relevant to this study are labelled, with interpreted major shear zones and faults 253 
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labelled with italics and indicated with dashed lines (Geological Survey of Western Australia, 2022). The solid 254 
black box indicates the region of interest. The grey line marked A-A’ indicates the position of the section 255 
shown in Figure 9. The inset map (top left) shows the position of the region of interest within Australia.  256 

 257 

2. Methods 258 

The demonstration of using geostatistical spatial error constraints with geophysical inversion requires 259 

four components: the dataset, a geostatistical method, an inversion framework and an evaluation 260 

procedure. Here, the dataset is gravity data supplied by Geoscience Australia (Sect 2.1), the geostatistical 261 

method is provided by the INLA (Integrated Nested Laplacian Approximation; Rue at al., 2009) package 262 

using R (Sect. 2.2), the inversion was conducted using the Tomofast-x inversion platform (Sect. 2.3) 263 

from which different statistical measures are used to evaluate the efficacy of the method.  264 

2.1 Data 265 

Gravity data is supplied by Geoscience Australia as geolocated points (Figure 2) (Geoscience Australia, 266 

2020). Gravity station locations are spaced at 400 to 900 m on roads and around 11 km elsewhere. The 267 

relevant attributes used for gravity modelling are spatial coordinates in GDA94 (latitude and longitude 268 

in decimal degrees) and the spherical cap Bouguer anomaly (SCBA) corrected data (Lane et al. 2019). 269 

A subset of the national compilation were created using spatial coordinates that conform to the 270 

boundaries of the region of interest (Figure 1). Grids were interpolated to 1000 m (lower resolution) and 271 

500 m (higher resolution) cell sizes.  272 

2.2 Geostatistical modelling 273 

Geostatistical modelling was undertaken using approximate Bayesian inference facilitated by the 274 

“INLA” package (Rue et al. 2009) for the “R” scientific computing language (R Core Team, 2023) in R 275 

Studio (Posit Team, 2023). INLA is a Bayesian inference method for latent Gaussian models designed 276 

to provide fast approximations of posterior distributions from complex models that may be 277 

computationally expensive or infeasible when using Markov Chain Monte Carlo (MCMC) methods. 278 

INLA is adapted for geostatistical analysis due to rapid computation and acceptable accuracy for most 279 

natural science questions (Cressie et al. 2022; Morgana, 2023; Wang & Zuo, 2021). INLA provides many 280 

of the same metrics required of geostatistical analysis for this study (accuracy and uncertainty estimates) 281 

while being able to interpolate large datasets faster than most other geostatistical packages (Cressie et al. 282 

2022). While the data set we use in this study (n = 707) is not large, using INLA in the workflow allows 283 

easy adaption to studies requiring large data sets  (e.g. n > 1M). To our knowledge, this is the first time 284 

outputs from INLA are used as inputs for potential field geophysical inversion.  285 

INLA derives the standard deviation of the predicted quantity, in this case, gravitational acceleration, 286 

from the estimated posterior distribution. First, a Laplace approximation integrates out the latent 287 

variables from the model. The Laplacian approximation produces a Gaussian approximation of the 288 

posterior distribution for the parameters of interest. INLA estimates the mean, any quantile and standard 289 

deviation from the marginal distribution for each parameter (Rue et al. 2009; Morgana, 2019, 2023). The 290 

standard deviation is used to construct the spatial error grid. The mean of the marginal distribution is 291 
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used to construct the ‘mean’ grid and can be considered equivalent to interpolated grids typically used 292 

as observed fields for inversion. The 2.5th and 97.5th quantiles from the marginal distribution are used to 293 

construct the lower limit (‘ll’) and upper limit (‘ul’) grids, respectively.  294 

2.3 Geophysical inversion 295 

Tomofast-x is an open-source geophysical inversion package designed for gravity and magnetic data and 296 

used for mineral exploration and crustal studies (Giraud et al. 2021; Ogarko et al. 2024). Tomofast-x 2.0 297 

offers parallel computing and wavelet compression of the sensitivity matrix, which aid the computational 298 

requirements of the inversion while providing several useful performance metrics used in assessing the 299 

convergence and inversion results. These include the data misfit and the evolution of the different 300 

constraint terms during the inversion. In particular, the petrophysical-bounding constraints term is used, 301 

which is enforced by the ADMM technique (alternating direction method of multipliers, a statistical 302 

petrophysical constraint, see Ogarko et al. 2021). Another metric includes the cross-gradient value, used 303 

and applied to each cell when using structural constraints (using an extension of Gallardo et al. 2003), 304 

and the likelihood of (or a mixture of) a petrophysical distribution characterising a particular lithology.  305 

The objective function to be minimized includes the following data misfit term: 306 

Φ! = ‖𝑾!(𝒅"#$" − 𝒅%&')‖((,    (1) 307 

where 𝒅"#$" and 𝒅%&' represent the calculated and observed (field) data, respectively. 𝑾! is a diagonal 308 

weighting matrix with the i-th element equal to 1/𝜎), where 𝜎) denotes the standard deviation of the i-th 309 

datum (Li & Oldenburg, 1996). We use the INLA standard deviation (as described in Sec 2.2) for 𝜎), 310 

representing the spatial data error introduced by data gridding. In the cases when data error is disregarded, 311 

we set 𝑾! = 𝑰, with 𝑰 being the identity matrix, thus weighting all data equally, irrespective of location. 312 

The model domain used for inversion was constructed using 1000 m (lower resolution) and 500 m (higher 313 

resolution) cell sizes. The domain was given 10000 m of padding to mitigate boundary effects and 314 

enhance numerical stability (Zhdanov, 2002).  315 

 316 

2.5 Performance metrics 317 

Two performance metrics are used in evaluating the results of this research: the relative residual level 318 

(RRL) and data cost. 319 

RRL: The relative residual level found by the LSQR solver (Paige and Saunders, 1982). The desired 320 

result is for the RRL to be high, meaning lower variance and thus lower uncertainty in the model 321 

prediction. The desired full-convergence is achieved when RRL values approach an upper bound  of 1.0.  322 

Data Cost: A dimensionless measure cost=||𝒅"#$" − 𝒅%&'|| / ||𝒅%&'||. The desired result is for lower values. 323 

Data cost is a normalised version of RMSE and better represents changes in misfit with each iteration as 324 

it is less sensitive to outlier values.  325 

  326 

 327 

https://doi.org/10.5194/egusphere-2024-3754
Preprint. Discussion started: 6 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 10 

1. Results 328 

We assess the results from inversion using RRL and data cost. Each of these metrics describe different 329 

aspects of inversion performance. Visualisation of the inputs and results for each inversion are then 330 

presented.  331 

 332 

3.1 Inversion inputs 333 

Inversion was conducted using different reference gravity field data sets: 334 

1) data points represented gravity field observations as obtained from Geoscience Australia; 335 

2) a grid interpolated from gravity field observations represented the mean estimated values a.k.a 336 

the ‘mean model’; 337 

3) a grid interpolated from gravity field observations representing the 2.5th quantile, or lower limit 338 

of estimated values a.k.a. the ‘lower limit model’ and; 339 

4) a grid interpolated from gravity field observations representing the 97.5th quantile of estimated 340 

values, a.k.a. the ‘upper limit’ model. 341 

Each of the grids have a cell size of 1000 m based on the closer 400 m spacing of stations located 342 

close to roads. We use 500 m cell size for detailed analysis of the relationship between spatial error 343 

and misfit (Section 3.5). 344 

Figure 3 displays the spatial and statistical distributions for the point measurement data and interpolated 345 

grids. The bi-modal shape of the point measurement distribution generally replicated in the interpolated 346 

grids. Smoothing effects in the histograms for the interpolated grids can be seen, especially in values 200 347 

< x < 600. The histogram shape of the interpolated values are quite similar with expected positive skew 348 

for the lower limit grid and negative skew (though not as obvious) for the upper limit grid when compared 349 

to the mean grid histogram. A north-northeast trending positive gravity anomaly located in the centre of 350 

the region of interest is the most obvious feature revealed by the spatially plotted data and grids. Smaller 351 

positive anomalies are located south and south-southwest of the main anomaly. Negative gravity 352 

anomalies are located in the northwest and southwest of the region, and are most obvious in the 353 

interpolated grids. The lower and upper limit grids reveal small circular anomalies which are collocated 354 

with the station observation locations. The circular anomalies exhibit higher gravitation values than the 355 

general trend in the lower limit grid, and lower values than the general trend in the upper limit grid. This 356 

effect is due to the interpolation honouring the observations, and being sampled from the tails of the 357 

geostatistical model. Thus these anomalies are not visible in the mean grid.  358 

The mean grid represents an equivalent to the grid typically input to inversion as the observed field, such 359 

as minimum curvature or bi-cubic interpolation (Swain, 1976). A comparison between the mean grid and 360 

a minimum curvature grid interpolation reveals an RMSE = 9.78 µms-2 and s = 9.46 µms-2 of the residual 361 

between the two grids. Small differences are expected given two different interpolators are used (INLA 362 

and minimum curvature). The RMSE of the residual is 0.8% of the total range of the mean grid. A small 363 

percentage shows these differences are small and inversion will not be biased to the chosen interpolator.  364 
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 365 

Figure 2. Spatial and statistical distributions of gravity point measurements and grids from the region of 366 
interest in the East Kimberley. (L-R) Shown are point observations, mean model, lower limit, upper limit and 367 
estimated spatial error. The histogram associated with each point set or grid is shown underneath. Satellite 368 
imagery © 2024 TerraMetrics. 369 

3.2 Inversion iterations 370 

The reduction in data cost from the initial model to the final inverted model determines the number of 371 

iterations required for inversion convergence. We use the ‘mean model’ for this purpose. A run of 10 372 

iterations resulted in a reduction of 80% of the RMSE, a run of 20 iterations increased this to a reduction 373 

in 85% of RMSE and 30 iterations reduced RMSE to 86%. Twenty iterations are considered an 374 

appropriate by balancing some reduction in RMSE (10 versus 20 iterations), and avoiding potential 375 

overfitting with 30 iterations with little improvement in RMSE. The charts and visualisations in the 376 

following section are obtained from the model runs of 20 iterations.  377 
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 378 

3.3 Inversion results. 379 

The results are presented in the following order. First, we present the performance metrics for models 380 

using: data points only; gridded gravity data; gridded gravity data and spatial error values input to 381 

populate the covariance function. Then visualisation comparing the inversion results for each of these 382 

model groups is presented.  383 

Figure 3 displays results from inversion using point representation of the observed gravity field. The data 384 

cost decreases from 1.0 to 1.64 x 10-4. RRL values increase from 7.82 x 10-4 to 0.98, indicating the 385 

solution has achieved full convergence.  386 

 387 

Figure 3. Data cost (left) and relative residual (right) results from inversion using point gravity measurements 388 
as the objective field.  389 

 390 

Figure 4 compares performance metrics from inversion using gridded models as objective fields. Each 391 

of the mean, lower limit and upper limit models are shown. The top row displays metrics from inversion 392 

that did not use spatial error constraints. The bottom row displays metrics from inversion that did use 393 

spatial error constraints. The data cost results show the mean grid models produce lower misfit than the 394 

lower and upper limit models. There is no meaningful difference between the performance of the lower 395 

and upper limit models. The relative residual results are also similar between inversion using and not 396 

using spatial error constraints, with RRL values just under 1.0 indicating convergence being achieved.  397 
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 398 

Figure 4. Comparison of data cost and relative residual performance metrics for each gravity model. Data 399 
cost is shown using a log scale. Models using not using spatial error constraints are on the top row, those using 400 
spatial error constraints are on the bottom row. ‘ll: lower limit; ‘ul’: upper limit. 401 

Another comparison is shown in Figure 5. Here we compare all inversion results, including that using 402 

measurement points, for each performance metrics. Note the data cost is shown with a log scale. The 403 

lowest misfit is achieved from inversions not using spatial error constraints, with the lowest data cost 404 

values from inversion using measurement points (data cost at iteration 20 = 1.6 x 10-4), followed by the 405 

mean gridded model with no spatial error constraints (data cost = 2.9 x 10-4). The mean gridded model 406 

using spatial error constraints shows data cost = 1.3 x 10-3) almost an order of magnitude higher.  407 

 408 

Figure 5. Comparison of performance metrics for different gridded and station measurement inputs using 409 
and not using a spatial error constraints. Left: Data cost; right: relative residual; ‘ll: lower limit; ‘ul’: upper 410 
limit. Note inversion using station measurements does not use spatial error constraints.   411 

 412 
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We can check whether the inversion has adequately reduced misfit over all iterations and all model 413 

inputs. Table 1 shows the reduction in RMSE misfit, a typical method used to evaluate the efficacy of an 414 

inversion (e.g. Farquharson & Oldenburg, 1998; Lindsay et al. 2014). All values are close to or > 80% 415 

indicating an adequate misfit reduction. Thus, we can be confident the inversion reduces misfit at a 416 

similar rate from one iteration to the other regardless of input and the use of a spatial error representation.  417 

Table 1. Reduction of misfit for each inversion using different inputs. ll: lower limit; ul: upper limit, ‘const.’: 418 
constrained with spatial error. Reduction is calculated by subtracting the RMSE misfit of the initial iteration 419 
from the final iteration. 420 

Input Reduction in misfit 

mean const. 85% 

ll const. 87% 

ul const. 86% 

mean 83% 

ll 85% 

ul 85% 

Stations only 79% 

 421 

Misfit reductions produced by using a spatial error constraints are larger, but similar to the other results. 422 

The misfit reduction of inversion using the point measurements is the lowest, but still large and not 423 

markedly different. Thus, we next visually examine inversion results to evaluate: 1) whether they look 424 

sensible and; 2) whether they vary from each other.  425 

 426 

3.4 Inversion Visualisation 427 

Inversion results are shown with the low and high density anomalies to aid visualisation (Figure 6). 428 

Relative density is used, which is density values relative to background density of 2670 kg/m3. The 429 

thresholds for the relative density values were chosen mainly to aid visualisation of interesting geobodies 430 

rather than by some sophisticated statistical measure. Note while the range of values for each inversion 431 

is different (Figure 6), the low threshold value for the high density values is constant for all model 432 

visualisations. Likewise for the high threshold value for the lowest density values. 433 
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  434 

Figure 6. Distribution recovered density values from each inversion: ll: lower limit; ul: upper limit, ‘const.’: 435 
constrained with spatial error. The red horizontal lines indicate the low and high thresholds for highlighting 436 
the lowest and highest density anomalies. The numbers at the base of each column are the range of relative 437 
density values for each model in kgm-3. 438 

 439 

The range of values for each model reveals some patterns. The greatest ranges are seen with the 440 

inversions of observations and the upper limit data sets. The smallest ranges are associated with the 441 

interpolated datasets using mean values. Use of spatial error constraints does not appear to influence the 442 

range of values across these datasets, unlike the results of the data cost metric (Figures 4 & 5).  443 

Figure 7 displays the results of inversion when using only the gravity observations at station locations as 444 

the observed field (Figure 2). Figure 8 displays results of inversions when interpolated grids are used as 445 

the observed field. Recall that not all voxels are shown as thresholds on the density values are used 446 

(Figure 6) to highlight certain interesting patterns from the visualisations. 447 

 448 

Figure 7. Relative density visualisation of inversion using point gravity measurements viewed from the 449 
southeast. Density values have been filtered according to the thresholds shown in Figure 6. 450 
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 451 

Figure 8. Relative density visualisations of inversion using gridded data viewed from the southeast. The top 452 
row are models not constrained by spatial error; the bottom row are models that have been constrained using 453 
spatial error. Density values have been filtered according to the thresholds shown in Figure 6. 454 

 455 

Overall, the geometry of all inversions are similar, however the most obvious differences are seen 456 

between inversions performed using data points only, the mean, lower and upper limit models. Location 457 

1 (Figure 7) shows low density bodies that exhibit smaller volumes as compared to the equivalent 458 

locations in Figure 8, in particular parts c) and f) (the upper limit models). Location A (Figure 8) is a 459 

northeast-trending low density anomaly that changes volume when compared to the lower limit models, 460 

but is similar to the upper limit models. Likewise, Location B is a high density body that would appear 461 

to change volume when compared to the lower limit models, but is similar to equivalent locations in the 462 

upper limit models. Location C in the lower limit models is a low density anomaly that is absent in the 463 

points, mean and upper limit models. Location D indicates not a single low density anomaly but an 464 

example of a number of small scattered low anomalies through the upper limit model that are absent in 465 

the mean and lower limit models. Of note are the lack of significant differences between equivalent 466 

models using and not using spatial error information (e.g. the mean interpolated values, a) and d). While 467 

minor differences can be seen (e.g. a slightly smaller high density anomaly at location A in the mean 468 

model using spatial error constraints - d) ), they are not as obvious as those between the different observed 469 

field types.  470 

Whether inversion results are geologically realistic, or simply plausible, is important to assess. Such 471 

realism and plausibility usually come in the form of independent constraints from a prior geological 472 

model (Gallardo et al. 2005), from petrophysical measurements (Fullagar et al. 2000) and sometimes 473 

both (Guillen et al. 2008). Thus, the infinite number of solutions an inversion can produce is then 474 

restricted to only those that are consistent with known geologic structure and petrophysical properties. 475 

The study presented here diverges from this practice and performs unconstrained inversion, i.e. inversion 476 

that does not use a prior geological model, nor petrophysical constraints. An unconstrained approach is 477 

admittedly not ‘best practice’ but nonetheless useful to clearly evaluate the effect of spatial error 478 

constraints on inversion without other constraints in use. So, assessment of inversion results and 479 

plausibility is achieved by comparing with previous work by Lindsay et al. (2016) who performed 480 
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forward geophysical modelling using petrophysical data collected from the region, and using both gravity 481 

and magnetic data (Figure 9).  482 

Figure 9a shows the how the data is reproduced by the petrophysical model (part b). Part c) is a section 483 

taken from inversion of the mean model constrained with spatial error. Note the section c) is to 15 km 484 

depth, so an outline of the extent has been added to part b for easier comparison. The units of in each 485 

section are not the same (absolute density values in b versus relative in c), however we can colocated 486 

high and low values to assess plausibility. The broad positive density anomaly through the centre and 487 

bottom half of section b is observed in section c. The main difference is that anomaly in section c extends 488 

further into the shallow parts of the crust at ~ 4 km. There are shallower dense bodies modelled in b (at 489 

~ 4km depth and distance = 60 km) that can account for this, and that the more extensive dense body in 490 

c could be separated if provided with an adequate structural prior model. Strong, low density regions at 491 

the edges of section b are also replicated in similar locations in section c. More geologically detailed 492 

bodies at the near surface in section b can be observed in section c with high frequency lateral changes 493 

in the density structure. The inversion results are plausible, especially given no geological and 494 

petrophysical constraints were provided.  495 

 496 

Figure 9. (a) Magnetic and gravity signal (observed) and response calculated from the petrophysical models 497 
shown in (b). (b) Combined density and magnetic susceptibility model. The profile is viewed from the 498 
southwest, with the location shown in Figure 1. Parts b) and c) adapted from Lindsay et al. (2016). 499 
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 500 

3.5 Misfit 501 

Examining the spatial relationship between spatial error and misfit can tell us whether spatial error 502 

constraints perform a useful role in reducing misfit during inversion. To do this, the spatial distribution 503 

of misfit values calculated from the final iteration of inversion is examined. Figure 10 shows the 504 

relationship between the magnitude of misfit versus the spatial error. Two models are examined in this 505 

figure: (left) inversion using the mean grid and no spatial error constraints and; (right) and inversion 506 

using the mean grid and spatial error constraints. We take the absolute misfit values for this representation 507 

to focus on magnitude. There is no clear relationship between overall misfit and spatial error when not 508 

using spatial error constraints (Figure 10 - left). A noteworthy pattern (or lack of pattern) is seen in the 509 

lowest spatial error values. There are many high misfit values in locations close to station locations (i.e. 510 

low spatial error values) when not using spatial error. If the inversion was honouring locations with 511 

observations, we would expect to see a pattern where low spatial error is associated with low misfit. This 512 

is what we see in the plot at right when spatial error is used, especially at locations with spatial error very 513 

close to zero. Overall, there is a positive correlation between misfit and spatial error at spatial error values 514 

<= 20. The expected pattern is not perfect, and some scatter is present, however a pattern is nonetheless 515 

clear. Misfit decreases at spatial error > 20, possibly where the inversion is fitting values with less 516 

constraint. It is also worth noting that at spatial error values > 70, misfit values are also high for the 517 

inversion using spatial error constraints, while for inversion not using spatial error constraints, these 518 

values have a very low misfit, almost certainly being overfit.  519 

 520 

Figure 10. Misfit versus spatial errors are shown with absolute values. Histograms are also shown with red 521 
ticks on the axes indicating individual values. Both images show misfit values taken from inversion using the 522 
mean model grid input. At left are results obtained when not using spatial error constraints; at right are 523 
results when using spatial error constraint. Note the x axis scales differ between images. 524 

 525 

The patterns of data cost and spatial error values (Figure 10) demonstrate differences that are interpreted 526 

to show a reduction of overfitting. At low values of spatial error (0 < x < 20), low misfit values are also 527 
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seen when using spatial error constraints, and locations exhibiting higher spatial error (i.e. further from 528 

data points) also exhibit higher misfit. This contrasts with the results from inversion not using spatial 529 

error constraints, where there are values of high and low misfit with almost no relationship to spatial 530 

error. This is particularly obvious at locations with spatial error <20 and >60.  531 

The positive correlation between misfit and spatial error changes at locations with spatial error 20 < x < 532 

60. Results from inversion using spatial error constraints show a decrease in spatial error 20 < x <30. At 533 

misfit > 30, inversion without spatial error constraints shows a sharp decrease in misfit values, as well 534 

as reduced variability. At spatial error > 30 for the inversion with spatial error constraints, misfit is 535 

reduced, but not to the same degree as without constraints. Overall misfit values increase at spatial error 536 

30 < x < 70, until large misfit values > 2 x > 70.  537 

An analysis of spatial error magnitude is shown in Figure 11. Most spatial error values >30 are located 538 

close to the northern boundary. ‘Boundary effects’ are a well-known phenomena in geospatial studies 539 

(Henley, 1981), and are a widely-recognised artefact in geophysical inversion (Zhdanov, 2002). While 540 

they can be mitigated or removed (Shapiro, 1970), for the most part they are easily recognised and 541 

ignored. Thus the patterns at spatial error values > 30 can safely be ignored.  542 

The most obvious difference between the using and not using spatial error constraints is seen in part c), 543 

where the lowest misfit values » 0 are collocated with station locations, and where spatial error is < 10. 544 

Part b) does not show any clear spatial relationship between the spatial error and misfit. There are some 545 

regions where low misfit values sit in 20 < x < 30 (northwestern quadrant) and the central eastern zone, 546 

however these examples are not convincing. Part c) also shows low misfit in the same northwestern 547 

quadrant, thus it may be that this region may be simpler to resolve by inversion.  548 

 549 

Figure 11. Contours of spatial error are plotted against a) the gravity anomaly; b) misfit values from inversion 550 
not using spatial error constraints and c) inversion that does use spatial error constraints. Note the dynamic 551 
range of misfit values have been scaled to show equivalently high misfit values in b) and c). Station locations 552 
are shown in part a) as red points. 553 
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  554 

At spatial error > 10 the spatial relationship between low misfit looks to become less predictable. This is 555 

shown in the more variable misfit values in Figure 10. This is despite the peak we interpret at misfit » 2 556 

and spatial error » 20. Thus, the scatter plot provides an easier interpretation of the utility spatial error 557 

constraints provides geophysical inversion for spatial values > 10. 558 

 559 

2. Discussion 560 

The combination of the scatter plot and spatial analysis gives confidence that spatial error constraints do 561 

guide inversion in a positive fashion. However, there does seem to be a limit at which spatial error 562 

constraints are effective. At spatial error > 20, overfitting does seem to occur, and misfit values decrease 563 

to those similar to those in the non-spatial error constrained inversion (» 0.2). It is not clear why this 564 

occurs, however these spatial error values can be used to guide understanding where overfitting may 565 

occur prior to the use of inversion in regions of sparse geophysical observations.  Overfitting will 566 

predominantly occur in the near-surface, so this may be of more interest to people focussed on shallow 567 

depths. The spatial error value of 20 may not be generalisable to other regions, however the process 568 

outlined here to find the peak in misfit vs spatial error relationship is generalisable to find the threshold 569 

of overfitting. Regularisation strength may affect this value, and where higher errors occur, strength can 570 

be increased providing additional constraint. The effect of regularisation on what level of spatial error 571 

constraint is effective at reducing overfitting has not been explored in this work. 572 

 573 

The effects of using spatial error on overfitting have been established by examining the overall data cost 574 

and the spatial relationship between misfit and spatial error produced via grid interpolation. The next 575 

step is to establish the impact this has on the use of geophysics for mineral exploration. From a practical 576 

perspective, one may not care that the inversion has overfitted, especially since visual inversion results 577 

are quite similar (Figure 8) and the data cost for the overfitted results are very low. For some, this 578 

argument is valid, but it depends on where and what they are interested in. 579 

To better explain, consider a simple example of a mineral explorer using the results of geophysical 580 

modelling and interpretation (including inversion, of course) to develop a strategy for deposit discovery. 581 

The presence of deeper anomalies can be used for search space reduction and ground selection. The 582 

overfitting issue does not impact this activity such that one would change location because overfitting 583 

occurred. A deeper anomaly may, for example, change geometry to some degree due to overfitting, but 584 

this will unlikely dissuade ground selection at the region or camp-scale. The smaller scale programs 585 

following ground selection, such as geochemistry, structural mapping and drilling using the results of 586 

geophysical studies can be impacted by inversion overfitting, as near-surface anomalies are typically 587 

used to determine survey areas, either as targets or as proxies for some process (e.g. faulting, volcanic 588 

activity, or alteration – e.g. Guillen at al. 2008; Lindsay et al. 2020). Remembering that overfitting is 589 

essentially trying to fit noise to obtain the lowest misfit (data cost in our case, but can be RMSE, or other 590 

metric), small near-surface anomalies are either added or removed to achieve this aim. The result of 591 
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adding noise-based anomalies is producing false-positives (Type I error), which add unnecessary expense 592 

to smaller-scale activities through unnecessary sampling. Worse is the removal of genuine anomalies and 593 

introduction of false-negatives (Type II error), leading to ignored areas and missed opportunities to make 594 

a discovery (Neyman & Pearson, 1933). 595 

The consideration of noise, overfitting and Type I and II errors leads to thinking probabilistically. The 596 

inversion result using the upper limit gravity dataset (Figure 8) shows smaller, dispersed, strongly 597 

negative and shallow-depth anomalies. These anomalies from the upper limit-guided inversion are 598 

present in spatial-error constrained and un-constrained inversion. Visual inspection show the position of 599 

these anomalies are in locations of spatial error <10, and almost directly under gravity stations (Figure 600 

12). These anomalies could be considered noise, however the assumption that credibility is inversely 601 

related to distance from a gravity station would suggest that these anomalies are not.  602 

 603 

Figure 12. Map view of inversion results using the upper limit gravity grid constrained with spatial error. 604 
Spatial error is shown, with the values <20 filtered (note colour scale). At left are the strong negative anomalies 605 
with a selection of examples annotated with arrows. (The selection of anomalies is made for visualisation and 606 
bears no particular importance). At right are the position of gravity stations and associated measurements 607 
for ease of view.  608 

 609 

Whether we consider these anomalies credible or not then comes down to how they persist through the 610 

full distribution of gravity grid models. The three examples used in this analysis, the mean, lower limit 611 

and upper limit are just three slices of an almost infinite number of realisations that can be obtained by 612 

sampling different percentiles of the interpolated model. That these small anomalies only feature in one 613 

of our three slices would suggest that they are unlikely given they are produced from a gravity realisation 614 

that sits in the tails of the probability distribution, but may not be simply noise. Of course, this analysis 615 

is underpowered in a statistical sense (i.e. a sample size too small for statistical significance), and a 616 
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comprehensive analysis would need to consider far more realisations and subject them to inversion. Such 617 

probabilistic methods have existed for some years (e.g. Gouveia & Scales, 1998; Sambridge, 1999) and 618 

approach this degree of comprehensiveness. Testing the impact of parameters, in our case, three different 619 

gravity models, resembles recent work by Martin et al. 2024. They use the Taguchi method to find 620 

appropriate petrophysical constraints for geophysical inversion, which requires selection of three levels 621 

from the property distribution to emulate a Monte-Carlo sampling process but without the same 622 

computational cost (Taguchi, 1987). Indeed, adapting the Taguchi method to the described in this 623 

contribution would streamline the process of exploring the geostatistical distribution of geophysical 624 

models (including magnetic, seismic and electrical data) used as the observed field for inversion. 625 

However, much like these results shown here, accepted solutions tend to revert to the mean when cost 626 

functions use metrics that have a Gaussian foundation. In simple terms, even if you do consider the 627 

extremes (tails) of the possible realisations, you will likely end up being offered a solution that was 628 

obtained by the mean of the geophysical field input for inversion anyway because that solution offers the 629 

lowest misfit.  630 

Most inversion schemes will follow a procedure that minimises the misfit to obtain the optimal and thus, 631 

most credible solution. Whether the extremes of the data are also investigated and considered is then up 632 

to the practitioner. For some, perhaps the status quo is acceptable and due to time and resource pressures, 633 

such an investigation is not viable. However, as the analysis presented here suggests that credible results 634 

can also be obtained from models constrained by distance from data points and while still exhibiting 635 

higher misfits. Importantly, the lowest misfit does not always mean the most credible solution. Spatial 636 

error can be obtained from any geostatistical package and does not present a barrier to the practitioner, 637 

though finding an inversion package that can use spatial error constraints is harder. The additional time 638 

investment in exploring other less likely, but credible solutions, grants the geophysical practitioner a 639 

deeper understanding of their data and models, and where and how they may be misrepresenting the 640 

properties and structure of the Earth. 641 

Machine learning, including those performing geophysical inversion, is becoming ubiquitous for 642 

geoscientific research. Interpolated geophysical grids are commonly used as features in these studies, in 643 

particular for mineral potential mapping (e.g. Carranza et al. 2008; Nykänen). The same challenges apply 644 

to these types of studies in that the algorithms are unaware of uncertainties related to spatial error. The 645 

algorithms, given no other information, assume cell values within a geospatial feature is ‘true’, and not 646 

subject to variability. Some schemes, like Fuzzy Inference Networks (Porwal et al. 2003) can give global 647 

confidence weights to a feature, however such weights apply to all cell values. A scheme such using 648 

spatial error offers a representative method to convey which locations are supported by observations and 649 

give a more thorough evaluation of the features being used in the model.  650 

 651 

3. Conclusions 652 

Characterising the Earth's structure is essential for responsible stewardship of natural resources. Much 653 

of what we require for metal supply, water and disaster mitigation comes from subsurface imaging 654 

facilitated by modelling geophysical data. Time and cost restrictions mean geophysical survey data 655 
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acquisition is inconsistent. Some areas are difficult to physically access, while others may not receive 656 

attention as they possess lower economic or scientific priority. Regardless of the reason, practitioners are 657 

subject to potential errors and unintended effects arising from clustered and sparse geophysical data 658 

distributions. Geophysical inversion relies on accurate and representative data. The inversion uses 659 

geophysical data as the observed field, representing the 'truth', with a 'misfit' calculated between the 660 

proposed or calculated Earth model. The location and magnitude of misfit drive changes to the proposed 661 

Earth model and not the geophysical data. Thus, the observed field must be as representative as possible 662 

to obtain a representative Earth model. The inversion does not know locations on or near measurement 663 

locations and far from measurement locations as the observed field input to inversion is an interpolated 664 

grid rather than the geophysical measurements themselves. Geostatistics allows interpolation of property 665 

values while providing a spatial error grid describing the errors associated with distance from 666 

measurement locations. A spatial error grid calculated using INLA is input to the Tomofast-x geophysical 667 

inversion platform with a recently implemented spatial error constraint to represent data distribution for 668 

the observed field. The East Kimberley region, northern Western Australia, is a frontier location for 669 

critical and base metal exploration and used as a case study using regional gravimetry data. The effect of 670 

using spatial error constraints is examined and found to reduce the effects of overfitting, an undesirable 671 

effect that is difficult to detect and mitigate. Interpolations selected from the extreme ends of the posterior 672 

distribution (the 2.5th and 97.5thpercentiles) are subject to inversion and examined as part of this study 673 

to contrast with the usual 'mean' (50th percentile) that is usually the only realisation used in most, non-674 

Bayesian geophysical workflows. Our analysis found inversion results plausible. Reducing the effects of 675 

overfitting minimises the chance that near-surface artefacts are produced in the calculated model when 676 

the inversion attempts to fit to noise in the observed field. Reducing near-surface artefacts is essential 677 

when using models made by inversion for mineral exploration, reducing the number of potentially false 678 

targets that need to be investigated or sampled with expensive and time-intensive drilling, ground-679 

sampling and mapping activities. The same approach to spatial error representation applies to machine 680 

learning, such as mineral potential modelling or lithological classification, when interpolated grids 681 

(geophysical, geochemical or otherwise) are supplied as features. Overfitting is a pervasive issue in 682 

geoscience, and the method described here provides a possible solution from commonly available 683 

geostatistical methods.  684 
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