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Abstract.

Machine learning (ML) is transforming atmospheric chemistry, offering powerful tools to address challenges in tropospheric

ozone research, a critical area for climate resilience and public health. As in adjacent fields, ML approaches complement

existing research by learning patterns from ever-increasing volumes of atmospheric and environmental data relevant to ozone.

We highlight the rapid progress made in the field since Phase 1 of the Tropospheric Ozone Assessment Report, focussing5

particularly on the most active areas of research, namely short-term ozone forecasting, emulation of atmospheric chemistry

and the use of remote sensing for ozone estimation. Despite these advances, many challenges in the field remain, including

the quality of data, benchmarks, and limited model generalisation and explainability. This review provides a comprehensive

synthesis of recent advancements, highlights critical challenges, and proposes actionable pathways to further advance ML

applications in ozone research. Achieving this potential will require close collaborations across atmospheric chemistry, ML10

and computational science, aimed at addressing key challenges such as the development of global benchmark datasets and

robust, explainable models.
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1 Introduction

Tropospheric ozone is a harmful atmospheric pollutant and an important greenhouse gas, contributing to both environmental

and public health issues. Long-term exposure to elevated ozone levels is linked to hundreds of thousands of premature deaths15

globally each year (Malashock et al., 2022; Malley et al., 2017; Health Effects Institute, 2024). Short-term exposure can cause

serious negative health impacts (Bell et al., 2014) including reduced lung function, particularly in individuals with pre-existing

medical conditions (EPA, 2020). Beyond its health impacts, tropospheric ozone significantly damages vegetation in natural

ecosystems and agricultural fields (Mills et al., 2018) and can act as a climate forcer in the upper troposphere. In addition,

ozone plays a critical role in tropospheric chemistry, both as a source of oxidants and as a primary oxidant itself (Monks et al.,20

2015).

Ozone is not directly emitted into the troposphere but is photochemically produced in the presence of sunlight by reactions

involving its precursor gases: carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs), and nitrogen

oxides NOX (NOX , NO+NO2). In addition, ozone is transported from the stratosphere into the troposphere. The removal

of tropospheric ozone is controlled by chemical loss and deposition to the surface (Archibald et al., 2020). The lifetime of25

ozone in the troposphere ranges from days to weeks, depending on local chemical and meteorological conditions (Lelieveld

and Dentener, 2000; Monks et al., 2015). This variability allows ozone and its precursors to be transported over long distances

from their sources (Fiore et al., 2009).

Modeling tropospheric ozone is therefore a challenging task due to the complex coupling of these chemical and physical

processes that control its local concentrations across different spatial and temporal scales, as detailed in Figure 1. Traditionally,30

concentrations of ozone and other chemical species are calculated using numerical models of the atmosphere that represent

these processes across a wide range of spatial scales, from high-resolution urban models (meter-scale) to global chemistry-

climate models with resolutions ranging from tens to hundreds of kilometers (e.g. Morgenstern et al. (2017)).

Despite the success of ozone simulations in air quality and climate research, there are still challenges to reach accurate

simulations of ozone (Young et al., 2018). For example, although ozone is the longest- and most-measured trace gas in the35

observational record, large uncertainties still exist in global model estimates of tropospheric ozone and its trends. Observations

from ground stations, ozonesondes, and satellites indicate that tropospheric ozone has generally increased in recent decades

(Ziemke et al., 2019; Young et al., 2018; Gulev et al., 2021). While global atmospheric chemistry models agree that the global

tropospheric ozone burden has increased from pre-industrial times to the present day, they vary regarding the spatial distribution

and magnitude of the increase (Skeie et al., 2020; Christiansen et al., 2022; Fiore et al., 2022). Potential sources driving this40

model bias include uncertainties in tropical emissions (Zhang et al., 2021), nonlinear NOX -VOC chemistry (Shah et al., 2023),

stratosphere-troposphere exchange (Neu et al., 2014), boundary layer mixing (Lu et al., 2019), missing chemical mechanisms

such as halogen chemistry (Wang et al., 2015), and deposition (Clifton et al., 2020).

The variation of ozone at various scales is shown in Figure 2. The figure shows the diurnal and annual cycles of ozone at four

sites from the TOAR database: Mauna Loa Observatory, a Pacific mountain station, based in Hawaii, USA; Minamitorishima,45

a Pacific island station in Japan; a regional continental background site, Borken, Germany, and an urban, roadside site, Maryle-
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Figure 1. Spatial and temporal scales of tropospheric ozone chemistry processes. The x-axis shows timescales, from rapid photochemical

reactions to long-term climate feedbacks, and the y-axis shows spatial scales, from local pollution to global atmospheric transport. Species

lifetimes and relevant data sources and models are displayed to illustrate the range and scales of phenomena and methods used to study ozone

chemistry.

bone Road, London, UK. There is little consistency between the diurnal cycles at the various sites: the remote Pacific site sees

little diurnal variation in ozone, but a strong seasonal cycle, with levels reaching a minimum in the summer. In contrast, the

continental, rural background site in Germany has a strong diurnal cycle, peaking in the late afternoon, and a strong seasonal

cycle with a summertime maximum. The long-term trends in ozone, although weak, also vary between the sites, with both50

modest increases (London Marylebone Road) and decreases (Minamitorishima) being seen. The lower panel shows variation

in ozone trends across the globe, ranging between -3 and 3 ppbv per year, across remote sites.

Machine learning (ML) approaches, which can learn and reproduce nonlinear characteristics of a system from data (Hornik

et al., 1989), may provide a valuable complement to physical models. As the quantity and quality of observational data on

ozone (Schultz et al., 2017) and on the broader Earth system (Agapiou, 2017; Reichstein et al., 2019) continue to grow, ML is55

becoming an increasingly viable tool for advancing ozone research.

Figure 3 highlights progress in the field of ML as applied to weather and climate science, which has been rapid since the

publication of the first phase of the TOAR assessment. In their review of the state of the field of weather forecasting, Bauer

et al. (2015) note many areas of progress for the field, including model throughput, the process-level detail of then current

models, and the use of data assimilation techniques to improve the fidelity of the model’s initial state. The impact of ML60

methods was not anticipated. Rasp et al. (2018) demonstrated the potential for Deep Learning techniques to augment existing
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Figure 2. Upper panel: data from the TOAR ozone database for four sites in the northern hemisphere, showing diurnal and seasonal cycles in

ozone, and the long-term ozone trend. Lower panel: Long-term ozone trends based on monthly anomalies at remote surface sites. Data from

Cooper et al. (2020) and replotted here

models in providing an alternative, complementary and physically consistent description of sub-grid scale processes, such as

cloud microphysics. The coupling of a fast, accurate, data-driven module, trained on finer scale simulations, to a larger scale

host climate model exemplified one of the potential ways that ML approaches can contribute to the improvement of climate

and weather models. Subsequent studies have shown in various ways the advantages of ML over traditional numerical models,65

particularly in terms of computational efficiency and in the ability to learn from large datasets, as demonstrated by the success

of data-driven nowcasting and weather forecasting models (Bi et al., 2023; Lam et al., 2023; Price et al., 2024).

While most ozone ML studies to date have prioritized prediction, ML also has great potential to enhance process-level un-

derstanding. Observational data, when integrated with model simulations through data assimilation techniques, have already

improved the understanding of emissions and atmospheric chemistry by reducing uncertainties (Miyazaki et al., 2020b). ML70

can complement these efforts by combining observational data with model outputs, emulating model components, or enabling

computationally cheaper simulations, thereby efficiently diagnosing sources of error in global atmospheric models and im-

proving tropospheric ozone estimates. However, ML also has limitations, such as challenges in generalization, validation, and
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Figure 3. Timeline of a selection of studies using ML in ozone research, aligned with a selection of papers using ML in wider weather and

climate modeling research. In both wider Earth system modeling research, and in ozone research there has been rapid progress over the last

five years, as noted by landmark review papers highlighted in the Figure.

interpretability. Addressing these issues may be particularly relevant for the ozone modeling community where both predictive

accuracy and physical understanding are valued.75

In this Perspective, we provide an overview of the state of ML in tropospheric ozone research, review previous applications

of ML to various problems related to ozone, and discuss persistent challenges and emerging opportunities. We detail the

bottlenecks to progress in applying ML to ozone problems, including the limitations of available training data, heterogeneity of

data sources, and computational limits. We suggest that the use of ML can provide tangible improvement over existing methods

in some aspects of ozone research and we provide possible paths towards further improvement to complement existing models80

and initiatives.

We highlight three areas where ML for ozone has been most widely applied: forecasts based on ground-based observations

are reviewed in Section 2, methods for complementing or replacing parameterizations in numerical models of atmospheric

chemistry and transport are discussed in Section 3, and ML models that are using satellite data or combined data products

are presented in section 4. Limitations specific to each section are briefly mentioned, and we find common limitations across85

domains. Section 5 highlights and further details these cross-cutting issues and limitations with the application of ML to ozone

studies, while Section 6 describes future directions for the field, highlighting emerging approaches that seek to address the

cross-cutting challenges.
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2 Applications of ML to in-situ ozone observations: short-term ground level ozone forecasting

2.1 Background90

State-of-the-art air quality forecasts, typically on the timescales of hours or days and up to a few days ahead, are based on the

output of numerical chemical transport models (Marécal et al., 2015). These models may be run at higher spatial resolution for

the area of interest (Savage et al., 2013), in order to better represent processes controlling air pollution at the local level, and

may be post-processed to more accurately represent observations (Casciaro et al., 2022). As with other air pollutants, notably

PM2.5 (Feng et al., 2015), ML is increasingly being directly applied to the task of short-term, ground-level ozone forecasting,95

and to bias-correct existing air quality forecasting systems with considerable success. The availability of large and growing

observational datasets has facilitated these advances (Schultz et al., 2017). However, forecasting ozone concentrations as time

series with ML comes with significant challenges: forecasting ozone is a spatiotemporal problem, and ozone is controlled by

processes of varying spatial and temporal scales as shown in Figure 1.

The short-term forecasting of air pollutants including ozone, i.e. predictions of expected concentrations over 1-4 days,100

is relevant for public health and scientific questions. One important task is to provide the public with accurate and timely

warnings of poor air quality, which may influence public behavior and encourage precautions, leading to reduced exposure to

poor air quality (Buonocore et al., 2021; Hahm and Yoon, 2021; Alari et al., 2021; Saberian et al., 2017). Existing ML forecast

methods are well suited to this task. Similar ML architectures and workflows have also been used to fill in missing data in

observational datasets (Betancourt et al., 2022; Wu et al., 2024).105

Many short-term forecasting studies using ML have focused on forecasting only at selected observational stations, using

observed ozone and additional chemical species, and meteorological variables where they are available from individual stations

or external datasets (Comrie, 1997; Cobourn et al., 2000; Kolehmainen et al., 2001; Eslami et al., 2020; Sayeed et al., 2021;

Leufen et al., 2023; Hickman et al., 2023). Furthermore, since it is difficult to downscale a relatively coarse chemical transport

model (CTM) at specific locations, using time series data from a particular station is an attractive way to make predictions at110

particular locations. However, approaches of this kind do not necessarily provide ozone forecasts across all locations that may

be of interest, as a gridded model product model might.

2.2 Progress and State of the Science

As with other fields, the advances in ML-based ozone forecasting have been pushed by developments on two axes - first,

increasing quantities of data and second, larger models with more appropriate inductive biases. The field has a long history115

(see Figure 3), with studies being published even during the most recent artificial intelligence (AI) "winter", beginning with a

feed-forward neural network (NN) in 1996 (Yi and Prybutok, 1996). Comrie (1997) illustrated that a neural network (NN) could

be used to forecast ozone at eight stations in the USA. This was followed by further feed-forward NN approaches, often with

datasets drawn from a single location or city (Cobourn et al., 2000; Kolehmainen et al., 2001). Neural methods were typically

evaluated in comparison with (autoregressive) regression models, often finding that NNs were better able to forecast ozone120

concentrations and extrema on test data (Nunnari et al., 1998; Schlink et al., 2003; Chaloulakou et al., 2003), although the
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improvement was often only marginal. Alongside the successes of feed-forward NN architectures, other work drew attention

to methods seen to be more interpretable, such as fuzzy logic systems and regression trees (Gardner and Dorling, 2000; Heo

and Kim, 2004). Further work leveraged methodological advances in ML architectures designed for temporal data, including

the use of recurrent neural networks (RNNs) and convolutional neural networks (CNNs) to account for lagged relationships in125

the time series data (Eslami et al., 2020; Sayeed et al., 2021; Kleinert et al., 2021). Recent work has combined architectures

to model the relationships that control ozone, including combining components such as transformers and CNNs to account

for the temporal and spatial information relevant to forecasting (Chen et al., 2022; Cheng et al., 2022; Han et al., 2023).

However, datasets have typically been limited to single countries or cities, due to the lack of a combined database of station

measurements. The introduction of the Tropospheric Ozone Assessment Report (TOAR) surface database (Schultz et al., 2017)130

and the TOAR-II database have facilitated recent studies on data drawn from multiple countries (Leufen et al., 2023; Hickman

et al., 2023). The importance of curation of large datasets for scientific progress in ML is highlighted below in the Outlook

section.

Increasingly, more complex architectures are being used to enhance the accuracy of ozone forecasts, and more data are

being included as input to the models. The inputs that are relevant to the physical drivers of ozone concentrations, such as past135

observations of ozone and covariates, and nearby covariates, reflect processes that control ozone observations, and feasibly

contribute to improved ozone forecasting and infilling. Recently, methods on the scale of the ML architectures and data used

for weather forecasting (Bi et al., 2023; Lam et al., 2023) have been transferred to ozone forecasting by leveraging very

large datasets and models. In weather studies there is work on forecasting at observation stations using these methods, and

transferring these methods to forecast ozone at ground-level stations is feasible (Manshausen et al., 2024).140

General trends have emerged from recent forecasting studies with ML. Typically, models trained on many sites perform

better than models trained to predict ozone at a single station, and larger deeper models are better able to forecast given

sufficient data. However, it is difficult to determine precisely which individual features of models are contributing most to

improved accuracy as studies typically use different test data. The establishment of a robust benchmark dataset, which could be

used across the community to evaluate the performance of different methodologies would allow rigorous comparison between145

competing methods. A dataset of this kind for weather forecasting, WeatherBench, and its successor (Rasp et al., 2020, 2024)

continue to facilitate effective inter-comparison between different ML and numerical models. A similar dataset to perform

the same function for ozone forecasting would allow the robust comparison of different methods, and may guide the field

towards more accurate models. This benchmark dataset would need to cover a range of environments, including extreme

events. Careful curation and data fusion of the TOAR surface ozone database with other relevant datasets might provide a150

robust and representative benchmark dataset, building on existing work (Betancourt et al., 2021).

2.3 Future Outlook

While forecasting ground-level ozone has seen some successes, there are still some necessary steps before we have reliable

operational ML forecasts. As in other fields, the community has seen improved performance with scaling datasets, and training

across a variety of environments with rich data (Leufen et al., 2023). While the TOAR database of surface observations provides155
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a large collection of in-situ data, the community is still missing a fused, global and gridded benchmark dataset that could be

used to robustly compare methods (Dueben et al., 2022; Rasp et al., 2024), and explore model deficiencies. Creating this

dataset should be a collaborative effort that may provide the step-change in ground level air pollution forecasting that other

benchmark datasets have precipitated in other fields (Deng et al., 2009). Part of this benchmark should focus on extreme events

and probabilistic metrics, as currently the community does not evaluate performance on extremes thoroughly, and encouraging160

probabilistic models and metrics may improve performance on extremes. While generalization is less of an issue for short-

term forecasting, building models that can generalize to undersampled regions of the world would facilitate better pollution

forecasting in countries with fewer data. Finally, work on interpretability and explainability is limited, and further study may

give more insight into the internal working of these models, and possibly insight into physical processes.

3 Applications of ML methods in atmospheric chemical modeling165

3.1 Background

Global modeling of atmospheric chemistry is a grand computational challenge due to the high dimensionality of coupled

chemical species, the nonlinearity and numerical stiffness of solving chemical mechanisms, and interactions with transport

on all scales. The inclusion of comprehensive atmospheric chemistry in Earth system models (ESMs)—which simulate the

interactions between the atmosphere, oceans, land surface, and biosphere—is a priority science frontier (National Research170

Council (U.S.)., 2012). Atmospheric chemistry in these models is typically represented by chemical transport models (CTMs),

which focus on the distribution and chemical evolution of species in the atmosphere. For some applications, chemistry-climate

models (CCMs) may further couple chemical processes with climate dynamics, allowing feedback between chemistry and

climate. Current atmospheric chemistry models integrate the coupled chemical kinetic equations for mechanism species over

model time steps using high-order implicit numerical solvers, but these solvers are computationally expensive (Sandu et al.,175

1997) and often dominate the cost of an atmospheric simulation (Eastham et al., 2018). Such costs put the inclusion of at-

mospheric chemistry in tension with other computationally intensive ESM/CCM priorities such as increased spatial resolution

or ensemble simulations. The current slowdown in the rate of increase in the speed of computer CPUs—the “end of Moore’s

law”—underscores the need for computationally efficient approaches (Theis and Wong, 2017).

Chemical solvers in atmospheric models compute the local evolution of species concentrations over a chemical time step180

that may range from minutes to hours depending on the model Brasseur and Jacob (2017). The chemical mechanisms used

in global/regional atmospheric models and ESMs typically include O(100) coupled species and is a multiscale system with

chemical lifetimes ranging from less than a second to much larger than the model time step. High-order implicit solvers can

integrate this system of stiff coupled differential equations with high accuracy, and fast implementations of these schemes are

available, but they are still extremely costly for atmospheric models. Atmospheric models may combat that cost by decreasing185

the size of the chemical mechanism, breaking down the stiffness of the problem, or using lower-order approximations. However,

these methods rarely achieve a speedup of more than a factor of two (Lin et al., 2023; Shen et al., 2020) and sometimes lead

to loss of accuracy in the model results. As a consequence, these computational barriers limit the ability for high-resolution
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simulations, prevent detailed uncertainty analyses, and complicate the coupling of atmospheric chemistry into CCMs/ESMs

for long-term climate simulations without significant compute resources.190

ML methods could be transformative in this area for both reducing the cost of an atmospheric chemistry simulation and

facilitating their incorporation into ESMs. ML methods seem well-suited to replace chemical solvers in atmospheric models

because the chemical computation is very repetitive, involving the integration of similar conditions in neighboring grid cells

and successive time steps. However, the large number of coupled species brings a ‘curse of dimensionality’ to the problem, and

ML methods have no check on error growth, unlike in standard chemical solvers where errors are dampened by the negative195

response to perturbations (Le Chatelier’s principle). Additionally, while ML models are commonly trained and deployed using

software libraries written in Python, the successful integration of ML-based algorithms and parameterizations within 3-D CTMs

remains limited. A potential barrier is the difficulty of calling Python libraries from Fortran-based models, which Fortran cannot

do so natively. However, recent advances in ML software can package ML code into static or dynamic libraries for flexible

deployment.200

There are a variety of examples using output from CTM and air quality models in tandem with satellite measurements,

ground-level monitoring observations, meteorological reanalysis data, and emissions databases to predict or improve forecasts

of ozone. These improvements can be achieved through various methods, including data fusion techniques and the creation of

reduced-order models. However, because such studies involve additional data besides model outputs, they will be discussed in

other sections (Sections 2 and 4). Here, we emphasize studies primarily employing data from atmospheric chemical models.205

3.2 Progress and State of the Science

Largely, ML methods in atmospheric chemistry modeling currently involve emulating model components to improve model

parameterizations, reduce computational bottlenecks, and create simplified, reduced-order models. Here, emulation refers to

an ML model reproducing the same calculations as a component of a complex physical or simulated system for a set of inputs.

There exists a growing number of studies forecasting ozone on short- (hourly) (Yafouz et al., 2022) and longer-term (Du et al.,210

2022; Chen et al., 2023) timescales, spanning from city- (Ojha et al., 2021) to regional-level (Ortiz et al., 2021) spatial scales.

However, few of these studies have been implemented in operational settings (i.e., within CTMs, CCMs) and offer insight

beyond that of traditional model-to-observation comparison methods.

3.2.1 ML emulation and reduced order modeling

Xing et al. (2020) used a hierarchy of ML models containing a CNN and long short-term memory (LSTM) network to predict215

ozone concentrations from CMAQ model output over 7-day forecast periods. Kuo and Fu (2023) investigated how accurately

ML models can learn the ozone-NOX -VOC chemical relationships in a chemical mechanism and found that their ML model

produced distorted NOX and VOC-limited isopleths when only trained on CMAQ model outputs. Kelp et al. (2022) trained an

NN integrator in a photochemical box model, including an encoder/decoder to decrease dimensionality, and a recursive feed-

back loop over 24-hr integration time to control error growth. They found that they could compress the 101-species dimension220

of their mechanism into 16 features without significant error penalty and avoid error growth within a selected time horizon,
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though error increases beyond this window. Yang et al. (2024) created an ML surrogate for a low-dimensional (11 species)

chemical box model that both compresses the dimensionality of the chemical mechanism and reduces the numerical stiffness

of the problem. They achieve numerical stability within a 9-day training window but acknowledge that such an approach may

be difficult for more complex and higher-dimensional chemical mechanisms. Liu et al. (2024) employed a Fourier Neural Op-225

erator with time-embedded attention to calculate chemical concentration changes as a learnable time-dependent process. They

achieved higher accuracy metrics compared to standard neural operators and U-Nets in simple box model-like simulations.

3.2.2 ML models implemented within global CTMs

While there is a growing literature on using ML to emulate and improve the representation of atmospheric processes, few have

implemented these ML models online within CTMs/ESMs to evaluate their effectiveness. Keller and Evans (2019) created230

a random forest integrator for the GEOS-Chem global 3-D CTM driven by re-analyzed meteorological data. They achieved

successful short-term simulations but found large error growth after a few weeks. Liu et al. (2022a) developed a gas-phase

NN solver for the CMAQ regional CTM over China, combining a standard implicit solver for radicals and oxidants with an

ML solver for VOCs. They achieved an order of magnitude speedup over a 1-month simulation but with error growth over

remote ocean grid cells. Shen et al. (2022) used an unsupervised ML algorithm (simulated annealing) to create submechanisms235

of the full chemical mechanism in GEOS-Chem for which they solve the coupled kinetic system only for the fast species in

the submechanism. The computational cost of the chemical integration decreased by 50% and the relative difference in ozone

was <0.5% in the troposphere and <0.1% in the stratosphere over 8-year simulations. Kelp et al. (2022) implemented the low-

dimensional “Super-Fast” chemical mechanism in GEOS-Chem using online training of the ML emulator, achieving stable

1-year simulations for ozone prediction with less than 10% bias compared to the reference and reducing computational cost240

by a factor of five. However, their ML solver had relatively lower accuracy in pristine marine regimes with lower chemical

concentrations. Xia et al. (2024) implemented a self-attention transformer chemical solver online into the WRF-Chem CTM

achieving an eight-time speedup over the conventional solver with an average NMB of 2.63% for 74 species. Their approach

shows promise for accurate predictions of chemical concentrations with low overhead when coupling the ML solver to the

CTM, but simulations were only run for 15 days and stability over longer time scales (>1 year) remains to be seen.245

Few studies have implemented ML models directly within CTMs/ESMs to evaluate their effectiveness, although the nec-

essary tools exist. While ML models are typically trained and deployed using Python libraries, integration of these models

into CTMs remains limited because CTMs are written in Fortran, which cannot natively call Python. Current solutions include

rewriting models in neural Fortran (Keller and Evans, 2019), using the C Foreign Function Interface (CFFI) to create C-style

bindings for Python scripts (Kelp et al., 2022; Zhong et al., 2023), or packaging ML models as callable static or dynamic250

libraries using TorchScript and LibTorch (Xia et al., 2024). Depending on the architecture and complexity of the coupled

ML model, all coupling methods result in a speedup over the conventional reference solver. See review by de Burgh-Day

and Leeuwenburg (2023) for greater discussion on using ML for facilitating speedups and computational cost reductions in

atmospheric science models.
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3.2.3 ML modeling processes affecting ozone chemistry255

A number of ML and data-driven advances have been made for CTM modeling that are separate from creating an ML chemical

solver. Wiser et al. (2023) and Wang et al. (2023) created automated chemical mechanism reduction approaches to reduce the

high dimensionality of the VOC precursors of ozone and secondary organic aerosol. Sturm and Wexler (2022, 2020) developed

methods to enforce mass and stoichiometric conservation rules in outputs from ML emulators.Anderson et al. (2022) used

gradient-boosted regression trees to develop a parametrization for the OH radical, a key driver of O3 formation, for CCM260

models. Similarly, Zhu et al. (2022) trained an ML model on CTM output parameters and satellite observations from OMI to

predict urban OH concentrations. Huang and Seinfeld (2022) created an NN-assisted Euler integrator to speed up the iterative

computations within an implicit solver routine.

Silva et al. (2019) developed an ML parameterization for ozone dry deposition velocities using surface observations that

outperformed those within CTMs for certain locations. Similarly, Ivatt and Evans (2020) created an XGBoost model trained265

on ozone surface observations and data from ozonesonde networks to predict and correct GEOS-Chem model biases. Liu et al.

(2022a) developed a NN model to correct surface ozone in the UKESM model, finding that temperature drives biases over

Northern Hemisphere continental areas while photolysis rates contribute to global ozone biases. To be sure, there is a growing

literature on ML approaches for bias corrections on existing air quality modeling systems (Neal et al., 2014; Borrego et al.,

2011; Silibello et al., 2015). These approaches generally learn the error between the output of a numerical model and some270

observations and then apply this error correction to the output of the numerical model. Nowack et al. (2018) used a hierarchy

of ML methods to build temperature-based ozone parameterizations for climate model sensitivity simulations. Colombi et al.

(2023) used random forests to remove the effect of weather coupled to ozone trends. Gouldsbrough et al. (2024) used a gradient-

boosted tree to downscale ozone model output from the EMEP4UK CTM. Ye et al. (2022) used a random forest model to

identify underlying causes of CTM bias in simulating daily surface ozone variability, finding that CTM underestimates in the275

dry deposition velocity and cloud optical depth on wet/cloudy days were the primary drivers over China.

Park et al. (2023) created a prototype ML discretization for a one-dimensional horizontal passive scalar advection, an op-

erator component common to all CTMs, and achieved stability and orders of magnitude computational gain relative to the

reference when coarse-grained. Sturm et al. (2023) developed a data-driven compression method for chemical tracers within

a CTM and advected the compressed representation, achieving a computational gain of 1.5× without loss of accuracy. There280

have been developments of ML emulators in box models for organic aerosol mechanisms detailing the ML models’ accuracy

with respect to interactions with ozone (Mouchel-Vallon and Hodzic, 2023; Schreck et al., 2022).

The photolysis frequencies used to inform ozone concentrations, calculated from the radiative transfer components of atmo-

spheric models, can themselves be emulated using NNs (Lagerquist et al., 2021) and have the longest relative history of ML

emulation for atmospheric modeling (Krasnopolsky et al., 2005, 2008).285
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3.3 Future Outlook and Priorities

The near-term future of integrating ML with 3-D atmospheric chemistry and climate modeling, particularly for tropospheric

ozone prediction, relies on understanding the uncertainties and limitations of ML emulation. Such knowledge is essential for

improving or approximating specific chemical parameterizations rather than attempting to replace full-scale, multiscale chem-

istry simulations. Key priorities include incorporating ML models into CTMs, CCMs, and ESMs, as well as characterizing290

their behavior over extended time scales (>1 year). While short-to-seasonal scale emulation may be suitable for forecasting

horizons, it offers limited applicability for integrating comprehensive atmospheric chemistry into climate simulations. Addi-

tional priorities should include scaling regional ML models to a global context and identifying the strengths of ML (e.g., speed

of operation, pattern recognition of high volumes of data) alongside its weaknesses (e.g., inability to approximate multiscale

dynamics, instability over time, resource-intensive training and black box nature).295

In the context of using ML for model component emulation and replacing traditional components, a major challenge is

managing coupled instabilities, where ML predictions accumulate errors and drift from the reference model over time. This

instability is also prevalent in ML-based model emulation for weather and climate applications. Consequently, ML approaches

are increasingly employed to develop end-to-end models that process raw input data (e.g., emissions, meteorological fields) and

directly predict outputs such as ozone concentrations. While end-to-end models bypass the challenges of emulating individual300

components and are less prone to short-term instabilities and operator splitting issues, they also limit the ability to track

uncertainty metrics tied to physical parameters and processes.

Another emerging area is the use of Physics-Informed Neural Networks (PINNs), which embed physical laws into an ML

model’s architecture. While ML has been used to emulate traditional numerical solvers, this approach has often sacrificed accu-

racy and stability over long-term timescales in exchange for faster computations. Traditional solvers, though computationally305

expensive, do not exhibit these error instabilities (see Le Chatelier’s principle). PINNs may offer a solution to balance speed

with accuracy and have shown success in smaller-scale systems, such as single ODEs or PDEs (Karniadakis et al., 2021).

Although their application to large groups of ODEs in atmospheric chemistry has not yet been widely explored, PINNs may

hold the potential for achieving greater accuracy than traditional solvers, possibly overcoming some of the limitations of ML

approaches in atmospheric chemistry modeling. However, PINNs may not enforce physical laws perfectly and the inherent310

black-box nature of certain ML components limits their transparency compared to physical models, which provide clearer con-

straints. Therefore, while PINNs may address some computational challenges, their contribution to advancing process-level

understanding in atmospheric chemistry remains uncertain.

At present, most ML models attempting to replace components of CTM/CCM parameterizations have used supervised

learning methods. These methods typically train using chemical data from box models or other solvers, aiming to faithfully315

reproduce outputs given initial conditions. In contrast, unsupervised learning, which identifies patterns or clusters in data

without explicit labels, remains underexplored in this field. Greater emphasis is needed on understanding the factors influencing

ML model performance, whether stemming from the ML model architecture, the quality and curation of training data, or

uncertainties inherent in the physical processes of emissions, transport, and chemistry. To be sure, the advent of transformers
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and Large Language Models (LLMs) offers a new frontier for ingesting and potentially improving AI modeling of atmospheric320

chemistry, but it will be crucial to understand the above points before pursuing even more complicated ML model architectures.

4 Applications of AI/ML methods to satellite observations

4.1 Background

Satellite measurements provide detailed information on the spatiotemporal distribution of atmospheric composition and related

parameters, such as those associated with surface air quality. Satellite measurements have greater spatial and temporal coverage325

compared to in-situ observations. Particularly in remote areas where in-situ observations are not available, they can fill the gaps

in the sparse distribution.

Over the past few decades, multiple satellites have been launched to measure total ozone columns, including the Total Ozone

Mapping Spectrometer (TOMS) (Prospero et al., 2002), Scanning Imaging Absorption Spectrometer for Atmospheric Cartog-

raphy (SCIAMACHY) (Bovensmann et al., 1999), Ozone Monitoring Instrument (OMI) (Veefkind et al., 2006), Global Ozone330

Monitoring Experiment (GOME) (Coldewey-Egbers et al., 2005), GOME-2 (Loyola et al., 2011) and the Sentinel-5P Tro-

pospheric Monitoring Instrument (TROPOMI) (Garane et al., 2019). Geostationary satellite observations, such as the Tropo-

spheric Emissions: Monitoring of Pollution (TEMPO) (Naeger, 2021) and Geostationary Environment Spectrometer (GEMS)

(Baek et al., 2023) observe detailed spatial and temporal patterns of total column ozone and other air pollutants. However, total

column measurements cannot be used to provide insight into near-surface ozone because the amount of stratospheric ozone is335

much larger than the amount of tropospheric ozone.

Tropospheric ozone information has been directly retrieved using measurements from nadir-viewing thermal infrared (TIR)

sounders, such as TES (Bowman et al., 2002) and IASI (Boynard et al., 2009), and by combining measurements from both

ultraviolet (UV) and visible (VIS) wavelengths by TEMPO (Johnson et al., 2018). In addition, the limb-nadir matching method

employs stratospheric ozone data from limb-viewing measurements, such as those from the Microwave Limb Sounder (MLS),340

to derive tropospheric columns from observed total columns (Ziemke et al., 2019). Recently, multispectral satellite approaches,

such as IAGI+GOME-2 (Cuesta et al., 2018) and TES+OMI (Colombi et al., 2021), have been implemented to derive tropo-

spheric ozone profiles with increased sensitivity to the lower troposphere.

Nevertheless, satellite observations of ozone are still limited in spatial, temporal, and vertical resolution and are not suffi-

ciently sensitive to ground surface levels. On the other hand, measurements of precursors, such as NO2 and CH2O from OMI,345

GOME-2, TROPOMI, and OMPS, have provided unprecedented information to assess the formation processes and surface con-

centrations of pollutants such as ozone and aerosols. Despite these advancements, technical challenges remain in accurately

assessing near-surface air pollutant concentrations from satellite observations of precursors. AI/ML techniques can be used to

fill the gaps in the information available from satellite observations and to improve the estimation of surface air pollutants.
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4.2 Progress and State of the Science350

AI/ML has been widely used in satellite applications, especially in remote sensing imagery (Maxwell et al., 2018) in the past

and is becoming more widely applied to atmospheric composition data. AI/ML has been applied to satellite observations in

two main categories: (1) to generate atmospheric concentration retrievals and blend multi-satellite products, and (2) to fill gaps

in observational information, including surface concentrations and emissions estimates.

4.2.1 ML models for fast retrievals and multi-satellite blending355

Ozone retrieval is the task of estimating ozone profiles from spectrometers on satellites, which measure radiance spectra from

the atmosphere. Usually carried out with numerical calculations based on physics, using ML for ozone retrieval is a burgeoning

field. The task is to take level 1 radiance data from the satellites and to produce a level 2 (L2) product, called retrievals, such

as vertical profiles and vertical columns.

AI/ML-driven retrieval algorithms have emerged as a powerful alternative to improve the processing efficiency of atmo-360

spheric composition satellite products. Physics-based retrievals, which are based on radiative transfer models (RTMs) and

solves their inverse problem, have been widely used to generate satellite L2 products of atmospheric composition concen-

trations from observed spectral radiances. They consider detailed atmospheric processes to retrieve concentrations, but are

computationally expensive. To speed up the retrieval processes, numerical inversion schemes have been replaced by ML algo-

rithms that are trained using RTM inversions. Such an approach has been applied to satellite measurements to retrieve O3 (e.g.,365

(Müller et al., 2003)), SO2 (e.g., (Li et al., 2022)), isoprene (e.g., (Wells et al., 2022)), and CO2 (e.g., (Xie et al., 2024)).

In addition, ML techniques have been used to correct for satellite product bias and blending multiple products. For exam-

ple, Oak et al. (2024) corrected the GEMS operational L2 NO2 vertical column density with a ML model to match more

mature TROPOMI observations, while preserving the GEMS data density. Similarly, Balasus et al. (2023) created a blend

of TROPOMI+GOSAT methane products obtained by training the ML model to predict differences between TROPOMI and370

GOSAT co-located observations. Shi et al. (2024) developed an ozone column harmonization method using ConvNeXt (Liu

et al., 2022b) to learn a mapping between OMI and TROPOMI, creating a reconstructed ozone column product with the long

length of OMI availability and high spatial resolution and accuracy characteristics of TROPOMI. Such bias correction and

blending approaches are powerful for providing accurate and consistent datasets for various science applications, for example,

emission inversion.375

4.2.2 Fill in gaps in observational information

ML can also be used to fill gaps in observational information, such as supplementing missing data due to clouds to provide a

continuous spatiotemporal distribution, and providing surface quantities that cannot be directly measured by satellite. Satellite

observations of ozone and its precursors, combined with additional information such as meteorological conditions, land-use,

population density, and anthropogenic emission inventories, have been used in NN or RF models to estimate spatiotemporal380

patterns of surface ozone concentrations at high spatial resolutions in different regions of the world (Di et al., 2017; Wang et al.,
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2022; Zhu et al., 2022; Kang et al., 2021; Ghahremanloo et al., 2023). They contribute to air quality monitoring and human

health impact assessment, with some studies focusing particularly on estimating health-relevant metrics using remote sensing

data.

Di et al. (2017) proposed a hybrid neural network model using satellite-based data from OMI, GEOS-Chem CTM outputs,385

ozone vertical profiles, meteorological variables, land-use terms and other atmospheric compounds to predict MDA8 ozone in

the continental United States. eXtreme Gradient Boosting (XGBoost) was used by Liu et al. (2020) to predict MDA8 ozone with

similar inputs, while Jung et al. (2024) used XGBoost with OMI and MODIS products to estimate MDA8 at 1km resolution

in Taiwan. Ghahremanloo et al. (2023) used a CNN with TROPOMI data as an input to estimate MDA8 in the United States.

Among various ML techniques, Zong et al. (2024) concluded that Deep Forest performs better than other shallower, tree-based390

regression models to estimate surface ozone from satellite ozone products. Similar surface concentration estimations based

on NN or RF models have been applied to satellite NO2 products to estimate surface NO2 concentrations with high spatial

resolution ((Kim et al., 2021), and to satellite aerosol optical depth measurements to estimate surface PM2.5 concentrations

(Huang et al., 2021; Xiao et al., 2021) which are useful for exposure estimates.

Emissions estimation using satellite observations of atmospheric composition concentration is another important ML ap-395

plication. ML techniques have been applied to improve the computational efficiency and accuracy of emissions estimation at

various scales compared to traditional approaches based on data assimilation and other approaches (Dadheech et al., 2024;

Xing et al., 2022; Tu et al., 2023; Li et al., 2024; Bruno et al., 2024).

In addition, AI-based anomaly detection methods pinpoint pollution hotspots, such as urban centers and areas of high indus-

trial activity. For instance, Joyce et al. (2023) developed a deep neural network to identify and quantify point source emissions400

of methane from hyperspectral images from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite with

30 m spatial resolution. ML models can also identify contributions from various emission sources (e.g., traffic, industry, wild-

fires) (Kang and Im, 2024; Finch et al., 2022; Kurchaba et al., 2023; Rollend et al., 2023).

ML can also be used to characterize key chemical environments and classify each area into different chemical regimes

based on satellite observations of pollutants and their precursors. For example, the abundance of the hydroxyl radical (OH) in405

urban areas initiates the removal of pollutants, making it a key species to describe the urban chemical environment. Despite

its importance, it cannot be measured at the regional scale due to its very short chemical lifetime (Duncan et al., 2024). Zhu

et al. (2022) developed a ML approach as an efficient alternative to computationally expensive CTM-based OH simulations,

using observations of tropospheric NO2 and HCHO columns from OMI as input to a ML model to predict daily near-surface

OH. Anderson et al. (2023) used a combination of ML models, CTM simulations, and various satellite observations to estimate410

tropospheric column OH in the tropics over the open oceans. They also showed that systematic biases in satellite products such

as NO2 may lead to biases in OH estimation.

These results indicate that combining satellite observations with ML approaches can provide important information for

understanding and improving air pollution, including surface ozone and its precursor emissions, which cannot be directly mea-

sured from satellite observations. Further progress in this area can be expected through careful evaluation and understanding of415
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the characteristics and quality of satellite products, selection of effective supplementary information, and further development

of appropriate ML methods.

4.3 Future Outlook and Priorities

Satellite observations are available at regional and global scales, for temporal scales ranging from hourly to decadal scales.

As with the integration of ML with CTMs, priorities in the area of ML using satellite observations need to be further focused420

on their appropriate application at various spatio-temporal scales. With increasing resolution of satellite observations, the

generalization of methods for producing satellite retrievals by ML has also become one of the priorities of the community.

Each satellite measurements have different characteristics, and data quality may vary not only spatially but also temporally.

In many areas, especially in developing countries where air pollution is severe, ground truth observations are not available,

hindering the application and validation of ML models. Careful validation of ML results is desirable, for example, taking425

into account the differences in spatial representativeness between satellite and ground-based observations. Another important

challenge is how to integrate and use the results of validation using independent observations and uncertainty information from

satellite retrievals as input for ML.

As the satellite constellation continue to evolve, data fusion of multiple instruments and multiple species using ML, in

addition to chemical reanalysis approaches using data assimilation techniques (Inness et al., 2019; Miyazaki et al., 2020a), will430

play an important role in achieving consistent analysis of long-term trends. Combining satellite data with ML offers a further

approach to investigate the linear and non-linear processes controlling air pollutant dynamics, complementing ground-based

measurements and CTM estimates.

5 Challenges and Limitations

In this section, we reflect on some common challenges and limitations of using AI in the context of ozone forecasting, modeling435

and observations (Figure 4).

5.1 The challenges of data availability and workflow

Datasets are critically important to ML/AI research, and along with model choice and training methods, i.e. workflow, central

to the success of modeling efforts and to their utility. As noted above, in the field of air pollution and atmospheric composition

research, the use of ML is hampered by the absence of benchmark datasets suitable for training different model types with440

varying sizes and complexity. Such well-defined benchmarks including datasets, training objectives, evaluation scores, and

baseline models have been instrumental for the rapid development of ML models in other fields (Dueben et al., 2022). In

particular, WeatherBench and WeatherBench2 (Rasp et al., 2020, 2024), have been a key factor driving the transformation of

ML weather forecasting between 2022 and 2024. Regarding surface ozone data, differences in the spatial coverage of ozone

or of its precursors data will affect model development and the performance of data-hungry ML models. Ultimately, a lack of445

sufficient surface observations will impact the study of air quality and downstream impacts on health or vegetation. Therefore
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Figure 4. Challenges and future directions described in Sections 5-6. The left hand side represents the categories of challenges described in

further detail in the sections listed. The right hand side lists future directions and priorities for AI/ML ozone studies. The lines connect the

challenges with considerations for future work on the right hand side.

improving data coverage over poorly monitored areas remains a priority (Schultz et al., 2017). In contrast, the breadth of

information available in datasets like TOAR, GHOST and reanalysis products like CAMS and TC is vast, but these products

provide significant challenges to the development of ML models for ozone due to heterogeneous data formats and lack of

succinct documentation that focuses on the use of such data for ML applications. It may be that AI methods can also be used450

for infilling missing data (e.g. cloud-filtered satellite data, gaps in in-situ observations) for meteorological variables (Li et al.,

2023) and ozone (Arroyo et al., 2018; Betancourt et al., 2022). Overall, there is a clear need for a harmonized benchmark

dataset(s) for ozone to further enable ML models to be developed. These should (as much as possible) follow the vision

outlined by Ebert-Uphoff et al. (2017) and the principles defined by Dueben et al. (2022).

With regards to model choice and development, it is worth noting that, in contrast to CTMs and other methods of simulation,455

ML models do not a priori require simulation, outputting and aggregating of high-resolution time series data to generate

predictions for relevant ozone metrics. Instead, ML models can be trained to directly generate forecasts of these metrics (see

section 2). In this regard, it is necessary that ozone ML benchmarks should, where appropriate, include target objectives both

for forecasting concentrations and for forecasting (a set of) aggregate ozone metrics. See Fleming et al. (2018) and Lefohn

et al. (2018) for a more detailed discussion on relevant ozone metrics.460

With regard to model training, there is a wide array of data-splitting approaches that can answer subtly related scientific

questions. As the motivating prediction challenges use both structured data and have structured prediction tasks, it is important
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to match the way data are split to the scientific task at hand. For forecasting it is common practice to divide the data temporally

such that the training data completely precedes the testing data, such as using the last few years of a longitudinal dataset for

testing. This is commonly recommended in benchmarking studies (Lam et al., 2023; Rasp et al., 2020). We emphasize that465

while these procedures likely make intuitive sense, they do not match the default setting in ML packages (Schultz et al., 2021),

such as scikit-learn (Pedregosa et al., 2011), where the default cross-validation procedure will randomly split over individual

data instances rather than over spatial blocks or temporal blocks. Without using these correct procedures, performance will be

overestimated and may not reflect real performance when deployed in practice. These challenges of data selection and splitting

become particularly relevant when looking into climate timescales. Not only can this cause out-of-distribution samples of470

model input data (for example higher temperatures), but climate change may also affect atmospheric chemical and physical

processes so that the mapping between inputs and outputs may drift. This problem is known as concept drift and some solutions

have been developed in other ML applications. However, in practice, it remains a challenge to carefully define and document

the data selection and splitting procedures and adapt them to the scientific problem at hand.

5.2 The challenge of generalization475

In addition to appropriate handling of training data, ensuring the trained model is as generally useful as possible, both in and

out of sample, remains an enduring challenge. Many ML models, particularly those trained as supervised learning problems,

act as high-dimensional statistical interpolators. Consequently, these models may not genuinely learn the physics and chemistry

of the atmospheric system but instead, learn a mapping from inputs to outputs based on the bounds of the training data. One

significant challenge faced by these ML models, whether in supervised or unsupervised settings, is concept drift. Concept drift480

refers to ML predictions becoming less accurate over time, which can arise from a non-representative training dataset (initial

conditions are narrow, do not sample enough timescales) or an ML model that lacks expressiveness, for example by being

unable to extrapolate effectively beyond the bounds of the training data. For the latter, tree-based ML models especially are

poor with respect to extremes and outliers. Here model architecture may play a role. Exploring generative AI models, such

as Generative Adversarial Networks (GANs) and transformer models, holds promise for the next generation of ML-based485

atmospheric models. These newer ML architectures can generate more internally consistent dynamics and require less training

data than classical CNNs when fine-tuned from previously well-trained models, while also demonstrating improved accuracy

and stability over time.

As is common in ML tasks, models trained on data from one geographical region may not necessarily transfer to another

region, even when the underlying task and physics remain the same. This limitation often arises from variations in spurious490

features or unobserved variables specific to each domain. For example, if a model is trained on data from one country with

specific emissions and climate, it may not be expected that this model will perform as accurately in another country with

a very different distribution of data. Many approaches in the ML literature seek to improve the performance of ML models

across domains, or under domain shifts, which are yet to be used for ozone forecasting (Sagawa et al., 2019), while recent

studies suggest that large-scale weather forecasting models may generalise to unseen conditions and perturbations (Hakim and495

Masanam, 2024). Generalisation is particularly important for the use of ML models trained in high-data domains and then
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deployed in low-data domains. In this context, it may be useful to exploit the benefits of probabilistic forecasting, using models

that report uncertainty in unfamiliar domains.

To what extent these results would apply to large-scale ML models for ozone remains to be seen. For tropospheric ozone,

the correctness of capturing atmospheric chemical processes that are not always directly observable, but which can have an500

influence on ozone concentrations, particularly on longer time scales, may be important. Examples of this include HONO,

nitrate and aldehyde formation and conversion processes, which provide for “storage of radicals” during nighttime. These

radicals can be released with sunrise in the morning hours and drastically increase ozone formation rate. While it may be

possible that sufficiently complex ML models capture enough auxiliary information to model this ozone boost correctly, such

case studies will become important and have not yet been explored.505

5.3 The challenges of extremes and probabilistic models

A relevant application for ozone forecasting and modeling is the study of extremes, including both accurate forecasting and

attribution. Extreme ozone concentrations or fluxes can have a large impact on health and vegetation, and are also referred to as

low-likelihood high-impact (LLHI) events. By definition, extreme events occur rarely and are hence challenging to accurately

represent. There has been some work on approaches to weight extremes more during model training (Steininger et al., 2021).510

The ability of models to represent extremes is also an important metric that can be used to evaluate the quality of these models.

Extremes can thus play a role for uncertainty quantification of the predictive performance of the models (e.g., important for

forecast emulators and assessing ML performance on the extremes), where one can distinguish between epistemic (systematic)

and aleatoric (statistical) performance. This connects with an increasingly recognized need to evaluate performance in more

rigorous and consistent ways: including the development of new benchmark datasets, diagnostics and metrics (see above).515

Progress on ML evaluation include causal evaluation (process-oriented approach) and eXplainable AI (xAI), for understanding

(in)consistencies of the ML algorithms with physical processes (in other words: whether accurate answers are found for the

right reasons). However, such methods are generally only applicable to relatively small-scale ML models. Dynamical tests and

counterfactual experiments provide a means to test the credibility of large ML models (Hakim and Masanam, 2024; Baño-

Medina et al., 2024).520

Forecasting of potential extreme events is particularly challenging because these events are beyond the typical ozone vari-

ability. Naturally, extreme events are rarely and infrequently represented in data, and therefore supervised ML approaches

trained with non-extreme data may fail to predict extremes well. For data-driven models this challenge is further exacerbated

by (1) the need to forecast not only the presence of threshold exceedances, but also the intensity and duration of extreme events;

and (2) ozone extreme events are often related to other anomalous mechanisms, such as heatwaves and wildfires, which are525

difficult to take into account based on limited extreme information, also due to the fact that ozone responses to these mecha-

nisms are heterogeneous. Although the extreme value theory is widely adopted, its limitations are frequently acknowledged,

including the IID (independent and identically distributed) assumption and independence between extreme and non-extreme

events. On the other hand, approaches based on probabilistic forecasting may better characterize the uncertainty and likelihood

of extreme events. One solution may be to use metrics and data scenarios to evaluate performance under different types of530
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evaluation scenarios, taking advantage of evaluation metrics in weather forecasting which have been studied extensively. For

example, if a key consideration is the ability of a forecasting model to capture extreme events, then metrics that capture rele-

vant performance explicitly on those events should be used. This allows for robust comparison of both the existing and novel

models on both traditional metrics and metrics focused on extreme event prediction to more comprehensively evaluate model

performance. Evaluation of extreme events is limited in the literature, with recent studies highlighting the lower accuracy of535

ML models when forecasting spring and summertime ozone concentrations (Leufen et al., 2023; Hickman et al., 2023).

In addition to helping with forecasting extreme events, probabilistic forecasting more generally provides a number of advan-

tages compared to the deterministic forecasting methods that are currently more common (Bodnar et al., 2024). Well calibrated

forecast uncertainty is important for delivering accurate air quality warnings and for public information. Furthermore for other

tasks where data quality is critical, such as infilling missing data for use in later analysis, well-calibrated estimates of uncer-540

tainty provide information on the quality of ML generated data and hence on further analysis. This is especially relevant as

many infilling approaches use average values, and therefore may not be applicable for extremes.

5.4 The challenge of interpretability and explainability

Interpreting and explaining ML models used to study ozone remains difficult. While these two terms are often used inter-

changeably, for this article we follow the distinction that interpretability focuses on designing and exploring models that are545

transparent and the internal data transformations are comprehensible to us, whereas explainability methods focus on post-hoc

explanations of how black-box models are working (Rudin, 2019). Models that are directly and trivially interpretable, such as

multiple linear regression, are typically not the most performant, and in the high-data regime, the most performant ML models

are typically variants on deep neural networks that are difficult to interpret or explain. There is some literature that explores

whether PINNs provide more interpretability. For example, efforts are underway to enhance the interpretability of ML models550

in atmospheric sciences by incorporating or diagnosing conservation priorities such as mass and stoichiometry (Sturm and

Wexler, 2020, 2022). Additionally, neural operators are being employed to learn the solution operators of ODEs/PDEs from

the chemical training data (Liu et al., 2024). However, while incorporating chemistry and physics constraints has been shown to

increase interpretability, there is no guarantee that these methods will improve the stability of the ML model over time (Sturm

et al., 2023). Often, there is a trade-off between interpretability and ML model accuracy, especially with more complex models555

(Sengupta et al., 2023).

While methods to interpret and explain neural networks more generally have been studied widely, mechanistic interpretabil-

ity of neural networks is a challenging task (Nanda et al., 2023), and only a limited range of XAI methods have been tested

with ML methods developed for ozone forecasting, often focused on sensitivity approaches which look at the post-hoc expla-

nations where the inputs to models are perturbed to see how predictions change (Ivanovs et al., 2021). Recent studies have560

investigated the importance of model input parameters through bootstrapping, i.e. random perturbations of individual inputs

(Kleinert et al., 2021). Input data perturbation experiments are also possible and informative for very large models as, for

example, demonstrated by Hakim and Masanam (2024) for the Pangu-Weather forecast model.
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5.5 The challenges arising from domain-specific knowledge

Modeling ozone using ML proves challenging due to the multitude of sources driving model error (emissions, chemistry, trans-565

port, deposition, representativeness) and the nonlinear response of ozone to these sources. Parameter tuning an appropriate

ozone ML model for a complex, high-dimensional parameter space is possible given large computational resources and adap-

tive learning on pre-defined metrics. However, such an approach is largely inefficient given that atmospheric chemistry data

lies on relatively low-dimensional manifolds with respect to the possible input parameter space. That is, many ozone-related

relationships are structured with individual signals often being sparse and low-rank. Here, domain knowledge from atmo-570

spheric chemistry can help identify the optimal training dataset and define meaningful loss functions and targeted timescales

(Figure 1) for the ML model problem. For example, ML models of atmospheric chemistry tend to predict well fast chemical

processes (e.g., seconds to days) but diverge over longer time scales (e.g., months to years) (Kelp et al., 2020). Knowledge

of slow chemical processes, such as the role of peroxyacetyl nitrate (PAN) decomposition for ozone formation over polluted

and/or remote areas, may help define appropriate training targets for ML models. An emphasis should be placed on emulating575

chemistry on longer timescales (> 1 year) as issues of long-range stability are more challenging than shorter-term accuracy,

and are a necessity for inclusion into CCMs and ESMs.

Alternatively, a heightened focus on domain knowledge may unintentionally limit the potential of ML models. Atmospheric

chemists typically leverage well-established relationships of the chemical system, such as NOX -limited vs. VOC-limited

regimes, which are easily uncovered by linear regression or principal component analysis. By invoking such a strong prior580

assumption, it may impose constraints that hinder an ML model’s ability to learn more complex, non-obvious interactions

within the data. This bias toward known relationships, while useful for capturing dominant signals, risks overlooking patterns

that could be hidden in the chemical state space that may promote greater accuracy and stability over longer time scales. While

these uncovered relationships may not always represent true causal mechanisms, the value of ML lies in its capacity to dis-

cover interactions that may escape human intuition. Striking a balance between leveraging domain expertise and allowing ML585

models the flexibility to explore complex dynamics is essential for advancing the predictive capability of ozone modeling.

5.6 The challenges of Open Science and Observational Data Availability

To thrive, the interdisciplinary ozone modeling and forecasting community requires open knowledge sharing, open resources

and research cooperation. Research in the domain should adhere to the FAIR principles of Findability, Accessibility, Interop-

erability and Reusability (Wilkinson et al., 2008) and the CARE principles of Collective, Authority to control, Responsibility590

and Ethics (Stephanie Russo Carroll et al., 2021). Availability of data is essential for data-driven approaches and the developed

TOAR-II surface ozone database is key here through its open data policies and its Application Programming Interface (API),

which allow for automatic extraction of data and integration into a workflow (e.g. in Jupyter Notebooks). Besides the afore-

mentioned “FAIR data”, a call for FAIR-software has been recognized and expressed more recently (Barker et al., 2022), thus

including a larger part of the research cycle than only data collection, storage and dissemination.595
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Although an open data infrastructure such as the TOAR-II database gives the impression of low barriers to data access,

this might in fact not be true for everyone. Poor internet connectivity from developing countries may limit researchers from

retrieving data and subsequently running a computationally demanding model (Blanken et al., 2022; Dwivedi et al., 2022). The

increasing resolution of satellite products and models is often considered to be an improvement, but the larger data size can

complicate the processing and analysis of data for some researchers (Jain et al., 2022). The concept of data availability may600

thus be perceived differently across regions. There are also additional barriers accessing data. Some data services require a

registration and compliance with data use policies, which could conflict with institutional policies of researchers or exacerbate

language barriers that non-native English researchers can experience. Finally, whereas advanced APIs can be ideal for techni-

cally skilled researchers and allow for reproducible workflows, they might hinder less technical researchers or policy makers

that want to explore data sets.605

In particular to developing nations, which may not have the economic ability to acquire high-resolution satellite products

outside of those freely-available, it is imperative to develop high-quality, globally generalizable solutions to ozone model-

ing. Data hosting platforms like Google Earth Engine (GEE) enable users to freely access relevant, global data relevant for

ozone modeling studies, ranging from land-use information from MODIS (Friedl, 2021) to human modification data from

VIIRS nighttime lights (Elvidge et al., 2017), Gridded Population of the World (University, 2018), and more. Recent work610

by Kazemi Garajeh et al. (2023) investigated the ability to detect spatially resolved ozone pollution trends using time-series

Sentinel-5 imagery from GEE, highlighting the quality of spatial distribution and accuracy available an open-source product

and platform. This demonstrates the necessity to co-design data services and their hosting platforms to provide efficient and

performant access to high-quality, well-documented data.

6 Future Directions615

ML advances are swiftly revolutionizing atmospheric composition research in general, and ozone thermodynamics and chem-

ical processing in particular, harnessing both Earth observations and modeling outputs to extract valuable insights from vast

datasets.

A wealth of Earth observation data from satellites, in-situ measurements, and ground-based instruments is now available,

with data volumes already well beyond tens of petabytes. This abundance of data is marking a golden age for Earth observation.620

New developments in deep learning (DL) are rapidly overcoming limitations related to spatio-temporal and multi-variable

relationships, promising significant breakthroughs (Eyring et al., 2024). However, their direct application to Earth observations

is often hindered by challenges such as data quality and coverage, model generalization across different regions, and the

complexity of associated metadata, such as relative position, orientation, and shading in satellite imagery. Future research and

advancements in ML-based observational products, including efforts to address uncertainty quantification e.g. (Haynes et al.,625

2023), will further enhance our understanding, facilitate process-based model evaluation (Nowack et al., 2020), and enable

actionable science, particularly in areas such as human health (Fleming et al., 2018) and climate impact (Gaudel et al., 2018)

assessments.
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Accurate forecasts of extrema in short-term surface O3 predictions are essential for protecting human health, while reliable

projections of long-term changes in tropospheric O3 abundances are critical for understanding climate change and avoiding its630

most severe impacts. Leveraging causal- and physics-constrained data-driven approaches can enhance trust and interpretability

in ML-based modeling efforts (Tesch et al., 2023; Beucler et al., 2024). Combining causal discovery and eXplainable Artificial

Intelligence (XAI) methods holds potential for advanced process-based evaluation (Iglesias-Suarez et al., 2024). This approach

can enable the identification of physical and chemical processes that contribute to both good and poor model performance,

providing valuable insights into the drivers of ozone, including sources and sinks. On the other hand, these methods are635

generally limited to small-scale ML models and different approaches (e.g. analysis of attention maps) need to be sought for

large-scale ML models. There is a recognized need to evaluate model performance rigorously and consistently, calling for the

development of new benchmark datasets, diagnostics, and metrics (Betancourt et al., 2021, 2022), to enable comprehensive

evaluation and validation of ML-based ozone modeling techniques. Yet, current domain-specific ML methods and tailored

solutions often lack a more universal perspective, whereas general-purpose ML-based algorithms would only need to be fine-640

tuned to address specific tasks.

Nevertheless, within the context of ML-based solutions for atmospheric composition, including ozone, and numerical mod-

eling, future work can focus on foundation models to advance more integrated approaches. Foundation models, as large-scale,

pre-trained architectures, are emerging as promising tools for atmospheric modeling. These models, built on extensive datasets

in a self-supervised manner Bommasani et al. (2021), have already demonstrated their adaptability in fields like weather fore-645

casting and climate science (Lessig et al., 2023; Nguyen et al., 2023; Bodnar et al., 2024). In the context of tropospheric

ozone modeling, foundation models could reduce computational burdens while learning from varied datasets, including obser-

vational and numerical modeling data (Mukkavilli et al., 2023). These models are capable of handling multiple air pollutants

simultaneously and can incorporate meteorological variables, supporting the development of more comprehensive, flexible and

potentially robust air quality benchmarks by supplementing and harmonizing observational data. Their flexible architecture650

enables training a single model with large-scale resources and fine-tuning it for multiple tasks, reducing the computational ex-

pense of repeated model training (Bommasani et al., 2021). For ozone forecasting, they offer a path toward improved modeling

capabilities by leveraging diverse data sources and capturing complex relationships in atmospheric composition. Recent work

has shown that foundation model architectures can simulate atmospheric dynamics and composition by emulating variables

from reanalysis products like CAMS (Inness et al., 2019), achieving promising results for multi-day air pollutants forecasting,655

including ozone (Bodnar et al., 2024). This shift would, in turn, facilitate the development of models that are not only specific

to ozone but capable of generalizing to broader air quality applications, potentially leading to more robust and versatile ML

solutions.

For CTMs, particularly, and ESMs more broadly, foundation models can serve as valuable tools to either complement or

enhance traditional approaches. Chemistry schemes and parameterizations based on ML models can bring computationally660

efficient interactive chemistry to ESMs for accurate long-term projections (Eyring et al., 2016). Additionally, end-to-end em-

ulators can complement physics-based simulations by employing large ensembles to better constrain uncertainties. While

general-purpose ML algorithms, such as foundation models, can provide a step change in data-driven approaches, they may
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not always lead to actionable science, such as contributing to more informed decision-making by, for example, accurately

attributing ozone pollution events to specific sources— and the development of effective mitigation strategies.665

The need for actionable science to address challenges like climate change and air quality has led to the development of

digital twins of the Earth (DTEs), which integrate ML models and physical simulations to provide comprehensive monitoring

and forecasting of the Earth system (Bauer et al., 2021; Bauer, 2024). DTEs enable users to explore “what-if” scenarios and

develop targeted strategies, such as mitigating ozone pollution and improving air quality, by simulating the impacts of various

interventions. This user-centric approach contrasts with traditional top-down methods and supports more effective, adaptive670

responses to environmental challenges. However, the implementation of DTEs raises critical issues regarding governance,

data accessibility, and computational demands, particularly as they rely on exascale computing to deliver real-time insights

(Hazeleger et al., 2024). As global initiatives like the European Commission’s Destination Earth and NASA’s Earth System

Digital Twin advance these frameworks, ML techniques will be essential for ensuring their efficiency and scalability, enabling

DTEs to serve as a transformative tool for improving air quality and addressing broader environmental challenges.675

To meet society’s needs facing current environmental challenges by providing actionable science and maintaining the rapid

progress in this field, collaboration among different communities is essential. The full potential of ML in atmospheric compo-

sition in particular, and Earth system science in general, can only be realized through an interdisciplinary approach, fostering

close cooperation between domain-knowledge and ML communities. Furthermore, this requires opening new collaborative

opportunities between academia and the private sector. As awareness grows within the ML community regarding the societal680

relevance of algorithms in Earth system research, major technology firms are increasingly interested in applying their expertise

to environmental-related issues. They may well pursue this through interdisciplinary research collaborations with domain-

expert scientists, whether through direct employment or academic partnerships. As these applications extend into unexplored

future climates, input from academic experts will become increasingly crucial, facilitating collaborative efforts to advance the

understanding of the Earth system.685

7 Conclusions

While modeling ozone accurately remains a challenging problem across temporal and spatial scales, ML approaches have

made progress in a number of areas. As highlighted in this Perspective, ML methods are contributing to research in short-term

forecasting, chemical mechanism emulation and remote sensing of ozone. Specifically, ML methods are providing increas-

ingly accurate short-term forecasts of ozone at observational stations, and making progress toward providing fast emulators of690

chemical mechanisms used in chemistry-climate models. In remote sensing, ML methods have shown skill in increasing the

efficiency of ozone retrieval, and in making estimates of ozone where there is little satellite coverage.

In addition to excelling at specific tasks, recent work illustrates that foundation models, trained on diverse datasets, are

capable of more general atmospheric composition modeling, including ozone. This paradigm of foundation models represents

a significant step forward for composition modeling, enabling an integrated approach across multiple scales and tasks, and695

building on the success of similar models for weather forecasting. For this work to make further progress in modeling real-
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world ozone faithfully, models should be trained with a synthesis of high-quality observational datasets. In order to facilitate

robust, rapid progress in ML for ozone modeling, appropriate high-quality benchmarks must be compiled to evaluate the skill

of different models, and enable the comparison of ML and numerical models. Furthermore, continued work to mitigate the

challenges faced by existing ML models is necessary, which will require close collaboration between domain experts and ML700

researchers to develop models tailored to the specific challenges of ozone modeling. Finally, it remains an open and important

question whether ML models can contribute to improved process-level understanding of the drivers of ozone, and generalise

to unseen air pollution and climate scenarios.

As ML continues to transform ozone research and adjacent fields, including weather and climate modeling, the ozone

modeling community needs to ensure future research builds on strong foundations. By developing robust benchmarks, building705

meaningful cross-disciplinary collaborations, and embracing state-of-the-art techniques, ML-driven ozone research has the

potential to not only advance scientific understanding but also deliver actionable benefits for climate resilience and public

health.

Appendix A: Glossary

Artificial Intelligence (AI):710

A software or model that is capable of performing tasks that typically require human intelligence.

Copernicus Atmosphere Monitoring Service (CAMS):

A service by the EU Earth observation programme to provide comprehensive data on atmospheric composition and air

quality through satellite and ground-based monitoring.

Chemistry-Climate Model (CCM):715

A type of global model focused on the interactions between atmospheric chemistry and climate.

Convolutional Neural Network (CNN):

A type of neural network designed for processing data with grid structure, often used for image processing.

Chemical Transport Model (CTM):

A type of global model designed to simulate the movement and chemical reactions of atmospheric pollutants.720

Deep Forest (DF):

A deep learning architecture based on decision trees instead of neural networks.

Deep Learning (DL):

A field of machine learning focused on the development and use of neural networks.

Decision Tree (DT):725

A hierarchical supervised learning algorithm, often used to create classification and regression models.
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Earth System Model (ESM):

A global model that simulates all aspects of the Earth system, including the interactions between the atmosphere, oceans,

land, and biosphere.

Feed-forward Neural Network (FNN):730

A basic type of neural network where data move in one direction without feedback loops, often used for data classification

and recognition.

Foundation Model (FM):

A machine learning model trained on vast amounts of data, designed to be adapted to a broad range of tasks.

Generative Adversarial Network (GAN):735

A type of machine learning technique where two neural networks compete unsupervised to produce the most accurate

result.

General Circulation Model (GCM):

A global model that simulates the Earth’s atmospheric dynamics and circulation.

Gradient Boosted Decision Tree (GBDT):740

An ensemble machine learning technique that uses the results of multiple decision trees to improve accuracy and reduce

error of the prediction.

Large Language Model (LLM):

A type of foundation model trained on very large text datasets to understand and generate natural language.

Long Short-Term Memory network (LSTM):745

A type of recurrent neural network designed to retain information over longer sequences for longer periods.

Machine Learning (ML):

A field of artificial intelligence dedicated to algorithms and models that can learn and make predictions from the input

data without being explicitly programmed to do so.

Neural Network (NN):750

A machine learning model designed to process data in a similar way as the human brain.

Physics-Informed Neural Network (PINN):

A type of neural network trained to follow known physical laws.

Random Forest (RF):

An ensemble machine learning algorithm that combines multiple decision trees during the training process to improve755

prediction accuracy and reduce overfitting.
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Recurrent Neural Networks (RNN):

A type of neural network in which data can loop back into the network retaining memory of previous inputs. It is designed

for sequential data processing where context is important, such as natural language and time series.

Transformer Model (TM):760

A type of deep learning model that converts a given input into a desired output, learning context and meaning. It is used

as a foundation model for large language models as an alternative to CNNs and RNNs architectures.

U-Net:

A type of convolutional neural network designed for image segmentation and de-noising.

eXplainable AI (xAI):765

A type of artificial intelligence that provides the information necessary to understand how a certain output was achieved.
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