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Abstract

Ground-level ozone is a significant air pollutant that detrimentally affects human health and agriculture. Global ground-level
0zone concentrations have been estimated using chemical reanalyses, geostatistical methods, and machine learning, but these
datasets have not been compared systematically. We compare six global ground-level ozone datasets (three chemical
reanalyses, two machine learning, one geostatistics) against one another and relative to observations, for the ozone season
daily maximum 8-hour average mixing ratio, for 2006 to 2016. Results show significant differences among datasets in global
average ozone, as large as 5-10 ppb, multi-year trends, and regional distributions. For example, in Europe, the two chemical
reanalyses show an increasing trend while the other datasets show no increase. Among the six datasets, the population exposed
to over 50 ppb varies from 61% to 99% in East Asia, 17% to 88% in North America, and 9% to 77% in Europe (2006—2016
average). These differences are large enough to impact assessments of health impacts and other applications. Comparing with
Tropospheric Ozone Assessment Report (TOAR) Il ground-level observations, most datasets overestimate ozone, particularly
at lower observed concentrations. In 2016, across all stations, R? ranges among the six datasets from 0.35 to 0.63, and RMSE
from 5.28 to 13.49 ppb. Agreement between modeled and observed ozone distributions is reduced at ozone concentrations
above 50 ppb. Although some datasets share some of the same input data, we found important differences among these datasets,
likely from variations in approaches, resolution, and other input data, highlighting the importance of continued research on

global ozone distributions.
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1. Introduction

Tropospheric ozone is a secondary pollutant that significantly impacts human health, plant life, and the climate system. Past
studies have shown that 0zone exposure can cause health effects ranging from mild subclinical symptoms to mortality (Balmes,
2022). The Global Burden of Disease 2021 (GBD) study estimated that ground-level ozone contributed to approximately
490,000 (95% UI: 107,000-837,000) global deaths in 2021, representing 0.72% (95% Ul: 0.16% — 1.18%) of all deaths that
year (Brauer et al., 2024). Ozone exposure is harmful not only to humans but also to plants. Ozone can enter plants through
their stomata and cause oxidative damage, which reduces the global yields of major crops such as soybean, wheat, rice, and
maize (Ainsworth, 2017; Mills et al., 2018a). Ozone is also an important greenhouse gas, ranking third behind carbon dioxide
and methane in its contribution to anthropogenic climate change (Masson-Delmotte et al., 2021). Gaudel et al. find that since
the mid-1990s, tropospheric ozone above the surface has increased across all 11 study regions in the Northern Hemisphere
that they defined and analyzed (Western North America, Eastern North America, Southeast North America, Northern South
America, Northeast China/Korea, The Persian Gulf, India, Southeast Asia, Malaysia/Indonesia, Europe, Gulf of Guinea)
(Gaudel et al., 2020). In the United States, although extreme ground-level ozone concentrations have declined, winter ground-
level ozone concentrations have increased in Southwest and Midwest regions since 1990s (Chang et al., 2024). Using one
global ozone dataset, from data fusion of ground observations and chemical model outputs, it is estimated that in 2017 21% of
the global population was exposed to ozone concentrations above 65 ppb, and 96% lived in areas where concentrations
exceeded the WHO guideline (30 ppb for annual metric) (Becker et al., 2023; Delang et al., 2021). Despite existing assessments,
substantial uncertainties remain due to observational gaps, especially in remote and developing regions. The lack of knowledge
of the ground-level ozone distribution in these regions limits our ability to accurately assess ozone impacts on human health

and crops.

The Tropospheric Ozone Assessment Report (TOAR) aggregates ozone observations from thousands of monitoring stations
worldwide, forming the most extensive ground-level ozone monitoring data compilation to date (Schultz et al., 2017). Using
the TOAR dataset, researchers have analyzed the global distribution, trends, and impacts of surface level ozone (Gaudel et al.,
2018). Currently, the second phase of the Tropospheric Ozone Assessment Report (TOAR-II) aims to include additional
ground-based stations, especially new networks in China and India. However, despite significant progress, there remain large
regions with limited ground-based monitoring, and a gap in understanding ground-level ozone variations over time and space.
To bridge gaps in regions lacking ozone monitors, various methods, including chemical reanalysis based long-term data
assimilation, machine learning, and geostatistical methods have been employed. Chemical reanalysis is an approach that
integrates observations from various sources including satellites using data assimilation and chemical transport models (CTMs)
to reconstruct historical atmospheric chemical composition and understand long-term changes and trends in air quality and
climate forcing (Miyazaki et al., 2020b). Tropospheric ozone records have been provided in recent chemical reanalyses
including the Tropospheric Chemistry Reanalysis Version 2 (TCR-2, (Miyazaki et al., 2020b)), the Copernicus Atmosphere
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Monitoring Service (CAMS, (Inness et al., 2019)), and data assimilation using the GEOS-Chem adjoint model (GEOS-Chem,
(Qu et al., 2020b)). In addition, two machine learning estimates of global ground-level ozone have been produced to date: one
using a space-time Bayesian neural network trained on TOAR observations and CMIP6 simulations (Sun et al., 2022), and
another with a cluster-enhanced ensemble learning method that utilizes various data sources (Liu et al., 2022). Finally,
geostatistical methods were applied by DeLang et al. who used Bayesian Maximum Entropy (BME) to estimate ozone through
a data fusion of TOAR observations and output from multiple CTMs (Delang et al., 2021). This approach was further enhanced
by incorporating the Regionalized Air Quality Model Performance (RAMP) framework to correct model biases (Becker et al.,
2023). These estimates of global ozone distributions and trends have supported analyses of health impacts. For example, ozone
estimates of DeLang et al. were used in both the GBD 2021 study (Murray et al., 2020), and in a study of ozone health effects
in urban areas globally (Malashock et al., 2022). However, there remains a lack of knowledge regarding the consistency of

ground-level ozone estimates, distributions, and long-term trends across these global ozone mapping products.

Inconsistencies in these datasets could significantly impact public health research, especially in assessing the risks of ozone-
related health impacts, and may impede the development of effective environmental policies and ozone management strategies
(Post et al., 2012). Although each dataset incorporates a considerable amount of observational information and model
simulations through various methodologies, each inherently incorporates biases from these input data sources during the fusion
processes. While satellite measurements of precursor species can be used to constrain surface and lower tropospheric ozone in
chemical reanalysis (Miyazaki et al., 2012), the performance of chemical reanalysis surface ozone is limited in part by the low
sensitivities of satellite 0zone measurements near the surface, as well as model simulation errors. Data fusion methods integrate
outputs from multiple models with inherent biases, potentially propagating these biases to the final estimates (Delang et al.,
2021). Furthermore, machine learning methods trained on observation data may yield inaccuracies in rural and remote areas
due to the uneven distribution of ground-level 0zone monitoring stations (Liu et al., 2022; Betancourt et al., 2022). Therefore,
conducting comparisons and evaluations of various types of ground-level ozone mapping products is essential to understand

the inconsistencies and biases in these datasets, ultimately benefiting global health studies.

This study aims to compare ground-level ozone concentrations estimated by six datasets, and to evaluate their accuracy over
the 2006-2016 period, with a particular emphasis on their capacity to represent long-term ozone trends across different regions.
The comparison and evaluation include three chemical reanalysis datasets, two machine-learning datasets, and one
geostatistical dataset. The period 2006-2016 is chosen as the period over which the six datasets all produce ozone estimates.
The ozone seasonal daily maximum 8-hour average mixing ratio (OSDMAS8) was selected as the health-relevant metric for
annual ozone evaluation (Turner et al., 2016). Our study specifically utilizes the OSDMAS8 metric because we focus on
evaluating long-term ozone exposure, an aspect not comprehensively compared previously among global ozone mapping
products. We employed a comprehensive set of indicators to assess the congruence between these datasets, globally and

regionally, including for long-term population weighted ozone outdoor exposure. Relative to the latest TOAR-I1 observational
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dataset, this study also examines the six datasets’ ability to estimate ground-level ozone concentrations across various regions
for the years 2006-2016. This research endeavors to characterize differences among ground-level ozone datasets, including
discrepancies in ozone estimates, distributions, and trends, that could hinder evaluation of ozone's effects on health and
agriculture, as well as impede the formulation of effective environmental policies. Although the primary focus of this study is

on health impacts, the results are also largely applicable to agricultural and ecosystem impacts.

2. Data

As shown in Table 1, this study compares and evaluates ground-level ozone estimates from six global 0zone mapping products
in three categories. We utilized ozone seasonal daily maximum 8-hour average mixing ratio (OSDMAB8) as the yearly ozone
metric across all datasets. OSDMAS is defined here as the maximum of the six-month running monthly mean daily maximum
8-hr ozone (DMAB8) from January of the current year wrapping to March of the following year (Delang et al., 2021). OSDMAS
is GBD’s ozone metric for quantifying health effect from long-term ozone exposure (Brauer et al., 2024), and it is the metric
used in the World Health Organization’s air quality guidelines, with values of 30 ppb for the guideline and 50 ppb for the
interim target (World-Health-Organization, 2021). All observations and model estimates are converted to OSDMAS using the

same algorithm. Details on the input data used to construct each dataset are available in the Supporting Information (SI).

2.1 Geostatistical ozone dataset

The BME dataset uses geostatistical methods to provide high-resolution global ground-level ozone estimates. First, M3Fusion
(Measurement and Multi-Model Fusion) is a statistical method developed to improve estimates of global surface ozone
distributions by integrating observational data from TOAR and outputs from multiple chemistry models. Specifically, the
method assigns weights to multiple global atmospheric chemistry models based on their regional accuracy compared to
observed ozone values (Chang et al., 2019), creating a composite of multiple global atmospheric chemistry models by weights.
The details of input data can be found in Table S1. Then BME data fusion integrates this multi-model composite with
observations in space and time, and finally BME estimates are refined from 0.5° x 0.5° to 0.1° x 0.1° (Delang et al., 2021).
The observations are from TOAR-I for 1990 to 2017, complemented by data from the Chinese National Environmental
Monitoring Center (CNEMC) for 2013 to 2017. The latest version of this dataset employs RAMP for bias correction of
M?3Fusion inputs (Becker et al., 2023). The BME ozone estimates are more accurate than the average outputs from multiple
models, achieving an R? of 0.63 at 0.1° x 0.1° resolution, as evaluated against observations through cross-validation (Delang
et al., 2021). Furthermore, incorporating RAMP into the BME process significantly improves R? by 0.15, especially in areas

far from monitoring stations, as demonstrated through checkerboard cross-validation (Becker et al., 2023).
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2.2 Machine learning ozone datasets

We utilized two machine learning global ground-level ozone datasets from the University of Cambridge, and Nanjing
University. The University of Cambridge's machine learning (UKML) dataset was developed using a space-time Bayesian
neural network, fusing various data sources including historical observations, CMIP6 multi-model simulations (AerChemMIP
historical simulations and ScenarioMIP projections), population distributions, land cover properties, and emission inventories
(Sun et al., 2022) (input data summarized in Table S3). The UKML model categorized TOAR-I monthly ozone observations
from 1990 to 2014 into urban and rural areas, and used these as labels for supervised learning. This model generates monthly
global gridded ozone estimates from 1990 to 2019, downscaled to a 0.125° x 0.125° spatial resolution. It exhibited great
performance in predicting urban and rural surface ozone concentrations, with R? values ranging from 0.89 to 0.97 and RMSE
values between 1.97 and 3.42 ppb (Sun et al., 2022).

Nanjing University's machine learning (NJML) dataset was created using a cluster-enhanced ensemble machine learning
method. This dataset integrates various data sources, including satellite observations, atmospheric reanalysis, land cover
properties, emission inventories and meteorological features (Liu et al., 2022). The main input data for NJML include
meteorological parameters from ERA5, atmospheric chemistry from the CAMS chemical reanalysis, aerosol concentrations
from MERRA-2, satellite observations from OMI/Aura, and emissions data from CEDS, spanning 2003-2019 with varying
spatial resolutions (input data summarized in Table S2). It utilizes the monthly mean of daily maximum 8 h average (DMAB8)
data from TOAR-I and CNEMC observations from 2003—-2019 as training data. The NJML dataset produces monthly global
gridded ozone estimates from 2003 to 2019 with a 0.5° x 0.5° spatial resolution. The model demonstrates robust performance
in both spatial and temporal predictions of ground-level ozone, with R? values of 0.909 and 0.925, respectively (Liu et al.,
2022).

2.3 Chemical reanalysis products

We utilized surface ozone analysis fields from three chemical reanalysis products: the Tropospheric Chemistry Reanalysis
Version 2 (TCR-2, (Miyazaki et al., 2020b)), the Copernicus Atmosphere Monitoring Service reanalysis (CAMS, (Inness et
al., 2019)), and the GEOS-Chem reanalysis (GEQOS, (Qu et al., 2020b)). Different from the machine learning and geostatistical
ozone datasets, the chemical reanalysis products utilized satellite observations of atmospheric composition to produce three-
dimensional profiles of atmospheric composition. In situ surface observations were not included in the global chemical
reanalysis data assimilation. Because of the lack of direct observational constraints, challenges remain in estimating surface
ozone in the current reanalysis products (Huijnen et al., 2020). Detailed comparisons of these reanalyses for ozone over the
entire troposphere at finer timescales have been conducted by the TOAR-11 chemical reanalysis working group (Sekiya et al.,

2024; Jones et al., 2024; Miyazaki et al., 2024), but without a focus on the ground level and long-term metric as analyzed here.
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TCR-2 was generated by assimilating multiple satellite observations into the MIROC-Chem model, that was developed as a
part of the multi-model multi-constituent data assimilation (Miyazaki et al., 2020a). The meteorological fields were nudged to
the European Centre for Medium-Range Weather Forecasts (ECMWEF) Interim Reanalysis meteorology. The data assimilation
employed is an ensemble Kalman filter technique, which was used to effectively correct the emissions and concentrations of
various chemical species (Miyazaki et al., 2020b). The assimilated data includes ozone, CO, NO,, HNO3 and SO, from satellite
instruments such as OMI, MLS, GOME-2, SCIAMACHY and MOPITT over the period from 2005 to 2021 (input satellite
data summarized in Table S6). TCR-2 provides 2-hourly global ozone profiles at a 1.1° x 1.1° spatial resolution, with the
regional mean ozone bias against global ozonesonde measurements ranging from -0.4 to 4.2 ppb in the lower troposphere (850-
500 hPa) (Miyazaki et al., 2020b).

CAMS, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European
Commission, provides the global reanalysis dataset on atmospheric composition developed by ECMWEF. The main inputs for
the CAMS ECMWF Atmospheric Composition Reanalysis 4 (EAC4) chemical reanalysis are retrievals of CO, ozone, NO;
and aerosol optical depth (AOD) from multiple satellite instruments including MLS, OMI, GOME-2, SCIAMACHY, MIPAS,
SBUV/2 and MOPITT, covering various periods ranging from 2003 (input satellite data summarized in Table S4). CAMS
employed the four-dimensional variational data assimilation (4D-Var) method to integrate the satellite measurements under
ECMWF's Integrated Forecasting System (IFS) CB05 model (Inness et al., 2019). It provides 3-hourly global profiles of ozone
and other species at a 0.75° x 0.75° spatial resolution. While CAMS generally improves over previous analyses, challenges

and biases remain, particularly at high latitudes and in accurately capturing seasonal variations (Inness et al., 2019).

The GEOS-Chem dataset is developed through 4D-Var data assimilation of NO, column densities using the GEOS-Chem
adjoint model that includes updates in stratospheric and halogen chemistry (Henze et al., 2007). The GEOS-Chem model is
driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological fields
from the NASA Global Modeling and Assimilation Office (GMAOQ). Prior anthropogenic emissions of NOy, SO,, NH3, CO,
NMVOCs (non-methane volatile organic compounds), and primary aerosols were obtained from the HTAP 2010 inventory
version 2 (Janssens-Maenhout et al., 2015) (input data summarized in Table S5). Operating at a 2° x 2.5° resolution, the
assimilation estimates global ozone more accurately than the forward model from 2006 to 2016 by deriving emissions of NO,
through inverse modelling. The GEOS-Chem dataset exhibits a small bias across all 0zone metrics, and among metrics it has
the best spatial consistency for DMA8 (R? = 0.88) (Qu et al., 2020b). However, the model has limitations in accurately

capturing regional variations and seasonal trends in 0zone concentrations.

2.4 Ground-level ozone observations

For the evaluation in this project, we utilized both urban and non-urban ground-level ozone observations for the yearly
OSDMAS8 metric from the updated TOAR-II dataset, covering 2006 to 2016 (Schrdder et al., 2021). This dataset represents
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the most extensive collection of tropospheric ozone measurements available globally. Compared to TOAR-I (Schultz et al.,
2017), TOAR-II incorporates an expanded dataset of ozone observations, notably including monitoring data from
approximately 1,400 stations across China for the years 2015 to 2016 that are included in TOAR-II (https://toar-data.fz-
juelich.de/gui/v2/dashboard/, last access: 15 November 2024). We require that at least 75% of the days in a month must have
valid DMAB8 values for that month to be included in the annual data calculations. The total number of observation sites used
in our assessment varied from a minimum of 3715 in 2006 to a maximum of 7013 in 2016. Given that three 0zone products in
this study utilize the TOAR-I dataset for training or input, evaluations using the latest TOAR-11 dataset for sites not included
in TOAR-I can provide more objective results. Figure S1 illustrates the spatial distribution of TOAR-1I monitoring stations in

2016. The version of the TOAR-I1 database employed in this analysis, as of November 2024, may not represent its final version.

2.5 Population data

We analyzed ozone population exposures for each dataset using the globally gridded population data for the year 2019 from
the Global Burden of Disease (GBD) 2019, which has a resolution of 0.1° x 0.1° (Lloyd et al., 2019). Since we use the same
gridded population data for all years of the project, we focus on differences in exposure attributable to changes in ozone levels
rather than changes in population. Therefore, population-weighted ozone over 2006 to 2016 can be biased even if the ozone
data are unbiased.

3. Methodology
3.1 Long-term exposure comparison

Before comparing concentration estimates between datasets, we converted all 0zone estimates from each dataset to OSDMAS,
ensuring only one ozone estimate value per year for each grid cell (see the original temporal resolution in Table 1). The
OSDMAS8 metric is used for long-term ozone exposure given its utility and wide acceptance in health impact studies, despite
the inherent loss of shorter temporal dynamics. Subsequently, we re-gridded all datasets to 0.1° x 0.1° resolution to facilitate
comparison at the same spatial scale. During re-gridding, we ensure that the average value of the finer grid cells matches that
of the original coarse grid cell; for example, if a grid cell has a value of 30 ppb, then after re-gridding to finer grid cells, the
average value of these grid cells will still be 30 ppb. Data over the ocean were excluded, retaining only land and populated
islands for analysis. We calculated the yearly ozone trend for each dataset using both population-weighted and area-weighted
approaches, with details of the calculation methods provided in Text S2. We also regressed population-weighted mean ozone
concentrations in different world regions of each dataset against the year to evaluate ozone long-term variations. For each grid
cell we calculated the mean and standard deviation of the six OSDMAS8 values obtained from each dataset to highlight regional
differences and similarities. We also calculated the deviation from the ensemble mean for each dataset to assess geographic

distribution variations. Furthermore, we compared ozone exposure differences in various regions for each dataset to evaluate



225

230

235

240

245

250

the potential for health impacts. Here we estimate exposure as the ambient concentration in 0.1° x 0.1° grid cells related to
population at their residences, not including other factors that affect human exposure such as time-activity patterns. Details of
these calculations are available with parameters in the SI. We use regional groupings defined by HTAP2 (Koffi et al., 2016),
as detailed in the Table S7.

3.2 Pairwise spatial similarity comparison

We employed two quantitative metrics to classify how the datasets relate with one another: the Pearson correlation coefficient
(R) and the root mean square difference (RMSD). The pairwise correlation R indicates the similarity in geographical
distribution of ozone concentrations, and the RMSD quantifies the difference in ozone estimates between datasets. A higher R
value suggests greater similarity in the spatial pattern between two datasets and a smaller RMSD indicates a less significant
discrepancy in ozone concentration estimates between two datasets. We then group the six datasets, adopting a method that
maximizes the difference between the correlation R within and outside the groups. The idea of this grouping is to distinguish
the spatial similarity between the datasets, which is based on the pairwise correlation. For each grouping combination, 4
variables are computed: the sum of pairwise correlations within groups (Ci), the sum of pairwise correlations outside the groups
(Co), the number of dataset pairs within groups (Ni), and the number of dataset pairs outside the groups (No). The objective is
to ascertain the grouping combination that maximizes the difference between Ci/N; and Co/No. More details of the calculation

can be found in Text S1.

3.3 Evaluation with ground-level observation

Previous research has adopted a 1°x1° grid-cell-averaged hourly ozone data from TOAR observations to evaluate global
chemistry model performance over North America and Europe, which is suitable for analyzing extremes and validating
seasonal and diel ozone cycles (Schnell and Prather, 2017; Schnell et al., 2015). We utilized OSDMAS8 from TOAR-II
observations covering 2006 to 2016 to evaluate the six datasets. During the evaluation process, we retained the original
resolution of the six datasets (Table 1). We adopted a grid-to-point evaluation approach, where the data from each TOAR-II
observation site was matched with a corresponding grid cell in each dataset. For grid cells with a TOAR-II observation but no
valid estimate in a dataset (NA value), we used the nearest valid estimate instead. Table S12 displays the number of missing
values in each dataset in 2016 at TOAR-I1I locations, showing that only BME, NJML and UKML have a small number of
missing estimates. This method ensures the same sample sizes for evaluation across all datasets while accommaodating their
varied resolutions and avoiding the challenge of gridding TOAR-II observations. Our grid-to-point evaluation approach
ensures a consistent sample size and captures penalties for missing data in datasets. We assessed the performance of each
dataset using the coefficient of determination (R?) between ozone estimates and observations, and root mean square error
(RMSE) as the primary metrics. We selected the 50 ppb as the threshold for high ozone concentration because it corresponds
to the long-term air quality interim target of WHO. These performance metrics should be interpreted considering the spatial
representativeness uncertainty that is caused by the grid-to-point evaluation approach.

8



255

260

265

270

275

280

285

4. Comparison between ozone mapping products
4.1 Temporal trends

Both the area-weighted and population-weighted mean trends of global OSDMAS reveal substantial differences among global
ozone mapping datasets (Fig. 1). Notably, BME and CAMS have lower ozone values than other datasets, for both metrics,
while UKML and NJML have higher ozone estimates, with differences between these datasets exceeding 5 ppb. The higher
values in GEOS-Chem and TCR-2 may be attributed to the remaining high bias in the forecast models, which is commonly
found in CTMs (Travis and Jacob, 2019). The population-weighted mean is higher than the area-weighted mean, by 5-10 ppb
across all datasets, and for UKML and BME, the disparity between population-weighted and area-weighted ozone
concentrations appears to widen over time. The faster increase in the population-weighted mean compared to the area-weighted
mean appears to be driven by rising ozone levels in highly populated regions. In Table 2, focusing on the period from 2006 to
2016, we find that NJML is the only dataset showing a downward trend in both area-weighted and population-weighted mean
0zone concentrations, with very high certainty. In contrast, TCR-2 and UKML show increasing trends in population-weighted
mean ozone during this period with very high certainty. Fig. 2 illustrates regional ozone changes per decade, weighted by
population, across different regions in each dataset over 2006 to 2016. NJML, despite its overall decreasing trend in Table 2,
does not uniformly show declines across all regions. The decrease in NJML is predominantly in North America, notably over
8 ppb per decade in the US and Canada, while Sub Saharan Africa and South America exhibit increases. BME and UKML,
with the longest duration, both display decreasing trends in North America, and Europe, and increases in Southeast Asia and
Middle East. Both datasets indicate greater decreases in North America than in Europe and more significant increases in the
Middle East than in Southeast Asia. However, BME shows a downward trend in East Asia, while UKML exhibits the reverse.
CAMS and TCR-2's trends in Fig. 2 are less distinct, except for the decrease in North America and the increase in East Asia,
mirroring those of GEOS-Chem, which exhibits the smallest decadal ozone change, likely due to not directly assimilating
ozone from satellite observations. From Table S11, we observe that some regions exhibit a clearer trend from 2006 to 2016,
with very high certainty across six datasets. In East Asia, BME and NJML observe decreasing trends, whereas the other 4
datasets display increasing trends. In North America, all datasets display a downward trend, and in Europe, BME, NJML,
UKML and TCR-2 show a decline, contrasting with increases in CAMS and GEOS-chem. Recent analyses using TOAR
observations indicate that from 2006 to 2016, most sites in North America experienced decreasing ozone, while many sites in
East Asia exhibited significant positive trends (Chang et al., 2024; Fleming et al., 2018; Chang et al., 2017). These observed
trends in North America, Europe and East Asia seem to agree best with the trends estimated by BME and UKML.

4.2 Difference maps

Fig. 3 shows the spatial maps of the 11-year (2006-2016) average of the annual multi-model means of OSDMAZS8 from the six
datasets, and the associated standard deviations. India, China, and the Middle East are estimated to have the world’s highest

average ozone concentrations, exceeding 50 ppb in the multi-model average. High ozone levels are also found in parts of
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Europe and the eastern United States. Notably, regions in southern Africa near the Atlantic Ocean emerge as primary areas of
ozone pollution, where some locations have average concentrations exceeding 60 ppb. Conversely, the Amazon Basin in South
America, Central Africa, and Canada exhibit relatively lower ozone concentrations, with some areas below WHO 30 ppb
guideline. The six datasets show greater variation (high standard deviations above 10 ppb) in South America and Africa,
particularly in rainforest regions, compared to North America and Europe, notably since these regions lack 0zone monitors.
The eastern coast of China also exhibits significant discrepancies with standard deviations above 15 ppb. Fig. 4 compares the
mean o0zone concentration for each dataset with the multi-dataset average (Fig. 3(a)), showing wide variation in the magnitude
and spatial distributions of ozone concentrations among the datasets. BME and CAMS display lower values than the average
of six datasets in most regions, consistent with Fig. 1. BME records concentrations higher than average in central South
America and central Africa near the Atlantic, while CAMS shows elevated levels in Southeast Asia and along the Middle East
coast, contrasting TCR-2's lower coastal and higher inland concentrations. NJML and UKML report above-average values,

except for NJML in southern China and UKML near the Sahara Desert and the Indian Ocean.

4.3 Pairwise spatial similarity

We calculated the correlation and RMSD between each pair of datasets for each year from 2006 to 2016. Fig. 5 displays the
average correlation and RMSD values over these 11 years as heat maps. Fig. 5(c) presents a scatter plot of the correlations and
RMSD for each dataset pair. Using the correlation heatmap (Fig. 5(a)), we categorized the six datasets by the maximum
difference method, identifying NJML as a distinct group (Group B) and the other five datasets as Group A. NJML's separation
indicates its significant divergence in ozone geographic distribution compared to others. The scatter distribution in Fig. 5(c)
reveals that most Group A data points cluster in regions of high correlation and low RMSD, suggesting broadly consistent
ozone geographic distribution and concentration estimation within this group. Nevertheless, there is still substantial
disagreement among the current reanalysis products, likely because of the differences in forecast model performance and data
assimilation configuration. Conversely, Group B has lower correlations. Interestingly, RMSD does not consistently decrease
with increasing correlation, indicating that similar geographic distribution patterns can still yield significant differences in
0zone concentration estimates. This is particularly evident with CAMS and GEOS-Chem, which exhibit the highest correlation

with a large RMSD, suggesting substantial differences in ozone estimation.

4.4 Long-term ozone exposure

Fig. 6 illustrates the distribution of population in various regions exposed to average OSDMAS8 from 2006 to 2016, as per each
dataset. Detailed plots of population exposure for each year (2006 to 2016) are shown in Figure S10. For the period 2006-
2016, a majority of the population in most datasets is exposed to concentrations above 50 ppb. Populations in regions such as
East Asia and South Asia appear to be exposed to higher ozone concentrations in all datasets compared to other regions.
Conversely, populations in the Sub-Saharan Africa and Southeast Asia regions typically experienced concentrations below 50

ppb. The different regions show different distributions of population 0zone exposure, and comparisons between datasets reveal
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considerable variations in the ozone distribution for each region. Some datasets (e.g., CAMS and TCR-2) show a wider
distribution of population across ozone concentrations compared to others (e.g., NJML). In BME and CAMS, after South Asia,
a significant fraction of the population in the East Asia region is exposed to levels above 50 ppb, while this proportion in North
America, Europe, and the Middle East is less than in the other four datasets. When focusing on exposure above 70 ppb, South
Asia dominates in BME, CAMS, and NJML, while East Asia leads in GEOS-Chem, UKML, and TCR-2. All six datasets
clearly demonstrate a higher impact of ozone pollution in Asia compared to North America and Europe, aligning with previous
findings based on TOAR observations (Chang et al., 2017). Table 3 elucidates each region's population share above different
ozone concentration levels. For BME and CAMS, the global average of the population exposed to more than 50 ppb is 42.5%
and 48.1%, respectively, indicating that more than half of the population us exposed to lower concentrations. Regional
exposure estimates vary in East Asia, where the proportion of the population exposed to more than 50 ppb ranges from 61%
in BME to over 90% in UKML, GEOS-Chem, and TCR-2. The differences are stark in Europe, with BME and CAMS showing
only 16% and 9% exposure, respectively, over 50 ppb, while NJML, UKML, and TCR-2 report over 70%. TCR-2 and UKML
project notably higher exposures in East Asia, with 41% and 31% of the population exposed to levels above 70 ppb,
respectively. In the Middle East, TCR-2's estimates are significantly higher than other datasets, indicating that 38% of the
population is exposed to average concentrations above 70 ppb. The six datasets agree that a large majority of the global
population is exposed to 0zone above the WHO guideline for OSDMAS8 (30 ppb) with percents ranging from 93% (CAMS) to
99% (NJML).

5. Evaluation against TOAR-I1 observations
5.1 Evaluation of ground-level ozone in 2016

We conducted regression and bias analyses for each dataset in comparison with TOAR-II observations for each year from
2006 to 2016. Fig. 7(a) illustrates the scatterplot from the linear regression analysis of each dataset against the 7013 TOAR-II
observations in 2016, accompanied by a density core that visualizes the data point distribution. The year 2016 is presented
here because it has the highest number of TOAR-I1I observations from 2006 to 2016, and other years can be found in Figure
S11. For 2016, BME outperforms other datasets, with the highest R? (0.63) and lowest RMSE (5.28 ppb), its density core
intersecting the y=x line. BME has an advantage in that its methods should nearly match the observed values for locations
used as inputs to the data fusion. Consequently, we conduct another validation for TOAR-I1 sites not used as input for BME
in 2016 (Figure S13). After excluding all sites located at observation points previously used as BME input, using 3911
observations for validation, BME performs well compared to another datasets, though its R? decreases significantly to 0.53. In
Fig. 7(a), all three chemical reanalysis datasets exhibit a moderate R? ranging from 0.35 to 0.41, comparable to the performance
of the machine learning datasets, which have R? values of 0.37 and 0.38. Among these five datasets, CAMS has the lowest
RMSE (7.59 ppb), which is better than other chemistry reanalysis products but relatively low R? (0.35). Its density core slightly
below the y=x line suggests CAMS estimates are marginally lower than TOAR-II observations. GEOS-Chem and TCR-2
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demonstrate adequate performance, albeit with higher RMSE values of 10.27 ppb and 13.23 ppb, respectively. Their density
cores positioned above the y=x line indicate that these models tend to produce higher estimates compared to the TOAR-II
observations. NJML, despite differing geographic distributions from other datasets (Fig. 5), shows acceptable performance
with higher R? (0.38) than CAMS and lower RMSE (8.63) than TCR-2. UKML exhibits the highest RMSE of 13.49 ppb, and
its density core region is above the y=x dashed line, indicating an overestimation. This is because the UKML algorithm
emphasizes higher ozone pollution levels in rural and remote areas compared to adjacent urban districts, which consequently

leads to an overestimation especially in population-weighted metrics (Sun et al., 2024).

Fig. 7(b) focuses only on TOAR-II sites with OSDMAS value above 50 ppb, showing that R? is reduced compared to the
comparison of all ozone measurements (Fig. 7(a)) for all six datasets, suggesting overall weaker agreement between modeled
and observed ozone distributions at higher concentrations. All six datasets show decreasing performance from BME, NJML,
and UKML to TCR-2, GEOS-Chem, and CAMS, with R? of 0.37, 0.30, 0.26, 0.25, 0.17, and 0.07, respectively. However, the
change of biases varies among datasets at higher concentrations. Specifically, overestimation is reduced in the UKML, NJML,
GEOS-Chem, and TCR-2 datasets when observations exceed 50 ppb. Conversely, we observe increased underestimation in
the BME and CAMS datasets at ozone levels above 50 ppb. Fig. 8 shows the normalized mean bias for stratified concentration
intervals in 2016, which provides insights into the average discrepancy between estimates and TOAR-II observations across
ozone concentration ranges. All six datasets overestimate TOAR-II observations below the 40% concentration interval. Only
BME underestimates above the 40% concentration level, CAMS underestimates above the 80% concentration interval, and
NJML underestimates above 90% concentration interval, aligning with the observations presented in Fig. 4. BME demonstrates
the smallest mean bias, particularly below the 50% concentration level and CAMS shows the smallest mean bias in the 50%
to 90% concentration interval. In the 90% to 100% concentration interval, NJML and GEOS-Chem have the smallest mean
bias. In summary, BME and CAMS perform better overall in terms of normalized mean bias, with other models tending to

overestimate ozone at almost all concentrations.

5.2 Evaluation of ground-level ozone in different countries

Table 4 presents the validation results for different countries or regions using TOAR-11 observations in 2016, focusing on the
countries with the highest number of sites. Here we use the R? to assess the strength of the spatial correlation and RMSE to
measure the bias across each country or region. The performance of each dataset varies by region, indicating that a dataset's
overall performance does not guarantee its effectiveness in all regions. Reasonable R? and RMSE values are seen across all 6
datasets in the United States; BME leads with the highest R? (0.71) and lowest RMSE (4.12 ppb), and TCR-2 has the lowest
R? (0.23) with highest RMSE (10.58 ppb). In Japan, BME leads with an RMSE of 4.59 ppb, followed by CAMS at 4.95 ppb,
and UKML has the highest RMSE (18.25 ppb). Although there are over 1000 monitors in Japan, all datasets show poor R?
values below 0.1. The six datasets also perform poorly in South Korea, where TCR-2 has the highest RMSE (18.53 ppb), BME
has the lowest RMSE (7.33 ppb). The performance of datasets within China exhibits significant variability, where BME and
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NJML demonstrate relatively good performance, and CAMS exhibits poor performance for R?, while for RMSE, CAMS
performs better than GEOS-Chem, TCR-2 and UKML. For other countries, which serve as a test of model performance in
areas with sparse observations, all datasets exhibit better R? and RMSE values than in South Korea, with TCR-2, NJML and
BME demonstrating particularly better performance than others. Overall, BME demonstrates strong performance in most
countries, particularly in the United States, where it achieves the highest R? and the lowest RMSE, suggesting both strong
spatial correlation with TOAR-11 observations and high accuracy. NJML exhibits mixed performance, with relatively high R?
values indicating good correlation in the United States and China, but it falls short in EU-27 and Canada with high RMSE and
low R2. UKML presents consistently high RMSE values across countries suggesting high bias. CAMS displays variable
performance with low R?values in China, indicating a lack of spatial correlation, yet its RMSE values are relatively small
across all regions when compared to other chemical reanalysis datasets. GEOS-Chem and TCR-2 exhibit reasonable spatial
correlations in Europe, the United States, China, and Canada. Notably, they outperform all other datasets in Canada, except
for BME. TCR-2 demonstrates the best R? performance in other countries with less monitoring data. However, TCR-2 also
presents high RMSE values across all regions. All six datasets exhibit lower spatial correlation compared to TOAR-II
observations in countries with high monitoring density, such as Japan and South Korea, than in countries with lower monitoring
densities. NJML, UKML, GEOS-Chem and TCR-2 show overestimates compared to the TOAR observations in every country
in the Table 4. Extending the analysis to the period from 2006 to 2016 (see tables in Table S10), the percentage of

underestimates from 6 datasets compared to TOAR observations in all countries is below 20%.

5.3 Evaluation of ground-level ozone across different years

Fig. 9 presents time series plots of R? and RMSE from the evaluation of each database against TOAR-II observations from
2006 to 2016. It is important to note that the years 2015 and 2016 include observations from China. BME consistently shows
the largest R2, indicating its robust performance near the monitor locations due to the utilization of observational data as input
and the effective exploitation of spatiotemporal autocorrelation among stations. Apart from BME, NJML outperforms other
datasets in R2 from 2010 to 2015, TCR-2 leads in 2007 and 2016, while UKML does so in 2008 and 2009. Five datasets,
excluding NJML, demonstrate a drop in R? in 2010. All datasets show an increase in R? from 2015 to 2016. BME maintains
the lowest RMSE throughout the period, indicating the most accurate predictions. CAMS also performs well in terms of RMSE.
GEOS-Chem consistently has lower RMSE than both TCR-2 and UKML. Meanwhile, NJML exhibits a decreasing RMSE
trend from 2006 to 2016. The clear differences in time series of RMSE correspond with the yearly mean trends in Fig. 1.
Datasets with lower ozone values, BME and CAMS, also exhibit lower RMSE, whereas those with higher estimates,
specifically TCR-2 and UKML, have higher RMSE.
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6. Discussion

From the comparison, we find there are large differences in ozone concentration estimates among datasets. Figure 1(b)
illustrates that BME and CAMS report lower 0zone estimates compared to UKML and NJML, with differences exceeding 5
ppb. NJML demonstrates a decreasing trend in global population-weighted and area-weighted yearly mean over the 2006-2016
period, while the five others exhibit either increasing trends or no clear trend. Divergence among datasets becomes even more
evident in the analysis of regional ozone trends (Fig. 2). The ozone concentrations decreased in Europe from 2006 to 2016
according to BME, NJML, UKML, and TCR-2, yet increase in the other chemical reanalysis datasets. Differences in regional
distributions lead to variability in exposure estimates. Among the six datasets, the population exposed to more than 50 ppb of
ozone in Europe from 2006 to 2016 spans a broad range, from as low as 9% for CAMS to over 70% for NJML, UKML, and
TCR-2. This highlights the importance of removing systematic biases from these data sets before applying them to exposure
estimates. In East Asia, exposure levels are consistently higher, with the percentage of the population affected ranging from
61% for BME to more than 90% for UKML, GEOS-Chem, and TCR-2 based on average OSDMAZ8 data over the same period.
Global average exposures also vary, with the proportion of the population exposed to more than 50 ppb ranging from 42% to
70% across the six datasets.

Despite notable disparities in estimates, we still find some regional and temporal similarities across the six datasets. In Table
S13 an overall upward trend in 0zone concentrations is evident across most datasets, particularly when examined as population-
weighted means. In Fig. 2, all datasets exhibit a downward trend in North America over 2006 to 2016. In Fig. 3(a) high ozone
concentrations are predominantly found in regions with elevated anthropogenic and industrial emissions, while forests and
sparsely populated areas have lower 0zone concentrations, consistent with findings based on observations (Mills et al., 2018b;
Fleming et al., 2018). In Fig. 3(b) the standard deviation among six datasets is high in part of South America and Africa,
especially in the rainforest areas, probably because of the lack of observational data in these areas and uncertainties in the
emissions inventories (Pfister et al., 2019). However, for most regions it is low, such as North America and South Asia,
indicating a good level of agreement on ozone estimates. The high pairwise correlation in Fig. 5(a) supports that the
geographical distributions of ground-level ozone are similar among most of datasets. The histograms of ground-level ozone
exposure among the population (Fig. 6) reveal the shared characteristic of widespread high ozone exposure in East Asia and
Southeast Asia (Fleming et al., 2018).

When evaluating datasets against TOAR-II observations, differences in performance are seen among six datasets. BME
performed well in the TOAR-II evaluation (Fig. 9), with minimal mean bias below the 50% concentration threshold (Fig. 8).
Unlike the other databases, BME tends not to overestimate over the range of concentration, with a small underestimation bias.
After removing TOAR sites that were used as inputs to BME (Fig. S13), BME's performance remains robust, with decreases
in RMSE (from 5.28 to 5.15) and R2 (from 0.63 to 0.53). NJML and UKML, both utilizing TOAR-I as a training set, showed
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overestimation in most areas (Table 4). Despite NJML's distinct spatial distribution in Fig. 5, its validation results are
comparable to other datasets. NJML exhibits a higher R2 from 2010 onward, especially at high ground-level ozone
concentrations (above 50 ppb), where prediction accuracy generally declines across all datasets. However, NJML has missing
data in some coastal regions, particularly in European coastal countries, which may contribute to its elevated RMSE in Europe
compared to other datasets in Table 4, since missing data are substituted with the nearest model grid cell. UKML's performance
after 2010 is not as good as NJML and is worse than the chemical reanalysis datasets in 2011. CAMS, GEOS-Chem and TCR-
2 primarily rely on satellite data, suggesting that they might not compare favorably with other datasets that used observations
as input or training data. Despite this, CAMS unexpectedly outperforms the machine learning datasets in RMSE over the full
year, especially for high ozone concentrations (50% to 90% range). In addition, as shown in Fig. 8, TCR-2, GEOS-Chem,
NJML, and UKML all have widespread overestimation. The performance of each dataset can impact the accuracy of trend
analysis (Fig. 1 and Fig. 2) and population exposure assessment (Fig. 6), which may lead to very different results when

compared to the WHO guideline and interim target.

There are several possible explanations for the differences among the datasets, including several factors related to the
characteristics, methodologies and input data for each dataset. BME has an unfair advantage in that it nearly matches
observations at a monitoring location. But as mentioned earlier, BME still shows superior performance after removing its
training data from the evaluation. BME’s use of temporal autocorrelation to predict ozone in years where measurements are
missing may help its good performance (Delang et al., 2021). The differing yearly ozone population-weighted mean trend in
NJML compared to other datasets may be due to its unique input data, including land cover and satellite observations (Liu et
al., 2022). The missing data near coastlines in NJML and relatively coarse resolution likely contribute to poorer performance
in EU-27. For three chemical reanalysis datasets, previous studies have shown that significant challenges remain, particularly
with respect to the representation of ozone in the lower troposphere, because of the limited sensitivity of satellite observations
to ozone in the lower layers (Huijnen et al., 2020). Because of the lack of direct observational constraints at the surface in the
chemical reanalyses, the better performance of CAMS may be attributable to the finer resolution that enables better
representation of small-scale ozone distribution features than the other reanalysis datasets, and also to the better performance
of the forecast model to predict surface ozone. Nevertheless, the assimilation of precursor measurements provides important
constraints, particularly with respect to the spatial gradient and temporal variation of ground-level ozone. The low RMSE of
GEOS-Chem compared to UKML and TCR-2 might be because it shares the same data assimilation method with CAMS (Qu
et al., 2020a). Moreover, TCR-2, GEOS-Chem, and CAMS perform well in the United States, Canada and EU27, which may
be because these regions have well-established emissions inventories for modeling (Schmedding et al., 2020) and because data
assimilation is used to estimate key precursor emissions from satellite observations in TCR-2 and GEOS-Chem. Optimizing
additional precursor emissions, such as VOCs, from satellite observations is considered to be important to better represent
surface ozone (Miyazaki et al., 2019; Sekiya et al., 2024; Miyazaki et al., 2012). The poor performance in South Korea and

Japan could be because the coarse resolution models may not accurately capture ozone gradients in a nation with a high density
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of monitors (Punger and West, 2013; Sekiya et al., 2021). This suggests a need for continued efforts to improve the mapping
resolution to capture spatial variability in these regions. Since most of the current reanalysis products still suffer from large
systematic errors in their surface ozone analysis, it might be important to apply bias corrections while maintaining the detailed
spatial and temporal variability of the original data using methods such as machine learning (Miyazaki et al., 2024) before
performing exposure estimates. While these factors may help to explain differences between the datasets, we have not
systematically tested them, and as discussed by Sekiya et al. (2024) and Jones et al. (2024), further inter-comparisons of

reanalysis products and detailed discussions for improvement are required.

Although we conducted a comprehensive comparison and evaluation, this study still has some limitations. First, the comparison
only focuses on land and inhabited islands, because of the focus on ground-level ozone impacts on health. Our estimates of
population exposure are based on ambient concentration in each grid cell, ignoring other factors that impact ozone exposure,
such as indoor 0zone concentration. Also, using OSDMAS as the metric to evaluate datasets might hide differences in model
performance at hourly temporal resolution, which would need to be analyzed in a separate study. In instances of missing model
estimates, we default to the nearest valid estimate to evaluate with TOAR-II observations. For datasets with coarse spatial

resolution, this method may increase bias by double counting.

7. Conclusions

This study evaluates the consistency and accuracy of six ground-level ozone mapping products, developed using different
methods. Substantial discrepancies among datasets are reflected in global and regional ozone trends, the spatial distribution of
ozone, population exposure estimates, and model performance. The global population-weighted average has a maximum span
of 10 ppb among the six datasets. In terms of long-term trends over 2006 to 2016 period, UKML and TCR-2 show a consistent
upward trend globally, while NJML shows a downward trend. Regionally, all datasets show a downward trend in North
America, and only BME and NJML datasets demonstrate a downward trend in East Asia; In Europe, BME, UKML, NJML
and TCR-2 report a downward trend, while the other two chemical reanalysis datasets reveal an upward trend that is not seen
in observations. These differences among datasets are sufficiently large that assessments of health impacts of ozone would
differ significantly when using different ozone datasets. Model performance evaluation based on TOAR-II observations varied,;
in 2016, R2 values ranged from 0.35 to 0.63, and RMSE values ranged from 5.28 ppb to 13.49 ppb for all stations. BME
performs well near monitoring locations with good R2 and small RMSE. All five datasets, except for BME, exhibit similar R?
values in 2016. NJML performs well after 2010 and shows robust performance under high ozone concentrations. Before 2010,
UKML performs well, but after 2010, UKML shows decreased performance. Machine learning datasets tend to overestimate.
The chemical reanalysis datasets perform comparably with the geostatistical and machine learning datasets, which is somewhat
surprising given that they were not designed to estimate ground-level ozone accurately and do not use ground-level

observations as input. CAMS performs the best among the chemical reanalysis datasets in term of RMSE, although CAMS
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has difficulty capturing TOAR-II observations in China. In regions where TOAR-II observations are sparse, all datasets show
RMSE values about 10 ppb, highlighting the difficulty in mapping ground-level ozone distributions in regions with little
observational data. Conversely, in some regions with very dense TOAR-11 observations, all datasets show R? values below 0.1,

highlighting the necessity for fine resolution mapping to accurately capture spatial variability.

Given that some of the datasets used similar input data, it is somewhat surprising to find the large discrepancies shown here,
suggesting that applications of these datasets to health burden assessments, epidemiology or similar applications for
agricultural and ecosystem impacts may differ strongly based on the dataset selected. More research will be needed before
different methods converge on similar estimates. Such research can include more widespread ground observations, improved
used of satellite observations, improved chemistry-climate modelling, and further development of different data fusion
methods. Also, it is not clear whether differences among different datasets are due mainly to the methods used or to differences
in input data. In addition, establishing a formal benchmark test based on the evaluation methods described in this study for the
yearly OSDMAS8 metric is essential. This would allow for new mapping products to be easily assessed. The general findings
here of poor agreement among datasets may also be applicable to other air quality datasets or even datasets from other Earth
system domains. According to this study, there is no clear consensus on the best 0zone mapping methods. To further improve

these ozone mapping products, researchers must update and adjust their methods and input data regularly and iteratively.

8. Code and data availability

Observational data are publicly available from the TOAR-II data portal (last accessed on 15 November 2024, toar-data.org)
(Schréder et al., 2021). The BME dataset of global ground-level ozone estimates (Becker et al., 2023) is publicly available at
zenodo.org/records/10498857. The NJML dataset is publicly available at doi.org/10.5281/zen0d0.6378092. The CAMS
reanalyses data (Inness et al., 2019) are publicly available from https://ads.atmosphere.copernicus.eu/datasets/cams-global-
reanalysis-eac4. The  TCR-2  reanalyses data  (Miyazaki, 2024) are publicly available from
https://disc.gsfc.nasa.gov/datasetss TRPSCRO32H2D 1. Other datasets of global ozone concentrations can be obtained by

contacting the creators of these datasets.
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Table 1: Overview of six global 0zone mapping products.

2 (TCR-2)(Miyazaki et al., 2020b)

Global ozone dataset Model type Resolution Period | Temporal Resolution
Bayesian Maximum Entropy Data Fusion Geostatistics 0.1° x0.1° 1990-2017 OSDMAS
(BME)(Delang et al., 2021)
Cluster-Enhanced Ensemble Learning Machine Learning 0.5° x0.5° 2003-2019 Monthly DMAS8
(NIML)(Liu et al., 2022)
Space-Time Bayesian Neural Network Machine Learning 0.125° x0.125° 1990-2019 Monthly DMAS8
Downscaler (UKML)(Sun et al., 2022)
Copernicus Atmosphere Monitoring Service Chemical Reanalysis 0.75° x0.75° 2003-2020 3-Hourly
(CAMS)(Inness et al., 2019)
GEOS-Chem (GEOS)(Qu et al., 2020b) Chemical Reanalysis 2° x2.5° 2005-2016 DMAS
Tropospheric Chemistry Reanalysis Version Chemical Reanalysis 1.125° x1.125° 2005-2020 2-Hourly
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Figure 1: Yearly trends of ground-level ozone for six datasets, shown for (a) the area weighted global mean ozone over land, and (b)
population weighted global mean ozone, where ozone is expressed as OSDMAB. Yearly trends for individual world regions are shown
in Figures S2 and S3. Mann-Kendall trend test for population weighted global mean over the full time series for each dataset: BME
0.688 ppb yr* trend with p-value < 0.0001, NJML -0.691 ppb yr* with p-value 0.0001, UKML 0.913 ppb yr! with p-value < 0.0001,
CAMS 0.569 ppb yr! with p-value 0.0011, GEOS-Chem 0.164 ppb yr-! with p-value 0.5334, TCR-2 0.4 ppb yr* with p-value 0.0343.

Table 2: Yearly trends of area-weighted, and population-weighted global mean of ground-level ozone for six datasets with 95%
confidence intervals (LowerCl and UpperCl) and p-values from 2006 to 2016.

Dataset Slope Lower CI Upper CI p-value Weighted
BME -0.12 -0.33 0.10 0.25 area
NJML -0.24 -0.32 -0.16 0.00 area

UKML 0.04 -0.02 0.11 0.16 area
CAMS -0.05 -0.29 0.18 0.62 area
GEOS -0.02 -0.14 0.10 0.71 area
TCR-2 0.06 -0.03 0.15 0.18 area
BME -0.04 -0.30 0.23 0.76 population
NJML -0.26 -0.33 -0.19 0.00 population
UKML 0.26 0.20 0.32 0.00 population
CAMS 0.06 -0.23 0.34 0.67 population
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Figure 2: Population weighted ozone (OSDMAS8) trends per decade for six datasets, calculated over the 2006-2016 period analyzed
for each dataset. The different regions are defined in Table S7. Population weighted yearly trend of six datasets over priority regions
(NAM, EUR, SAS, EAS, SEA, SAF, MDE) from 2006 to 2016 with 95% confidence intervals and p-values is shown in Table S11.
Population weighted ozone (OSDMABS) trends per decade for six datasets over the full period is shown in Figure S4.
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Figure 3: For six datasets from 2006 to 2016, (a) the 11-year ensemble mean, and (b) the average of annual standard deviations.
575 Ozone data are reported as OSDMAS8. The mean and standard deviation for each year are shown in Figures S5 and S6.
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Figure 4: The difference of OSDMAS in each grid cell between the 11-year (2006-2016) mean of each of six datasets and the ensemble
mean (Figure 3). Positive values indicate that the average estimate of the dataset is higher than the ensemble mean. Negative values
indicate that the average estimate of the dataset is lower than the ensemble mean of the six datasets. Difference maps for each year

are shown in Fig. S7.
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Figure 5: Heatmaps of similarity among the six datasets, including (a) heatmaps of average of pairwise correlation (Pearson R)
between each dataset from 2006 to 2016. (b) heatmaps of average of pairwise Root mean square difference (RMSD) between each
dataset from 2006 to 2016. Group A designates five datasets with strong similarity, while Group B is composed of one dataset with
lower similarity with the rest. (c) Scatterplot of correlation and RSMD between each pair of datasets. The datasets with greatest
similarity are in the lower left of panel ¢, and comparisons with the Group B dataset have lower correlation. Heatmaps for each
year are shown in Figure S8 and Figure S9.
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Figure 6: Population exposed to 11-year average ozone (OSDMAS8) from 2006 to 2016 in different regions. The horizontal axis
590 represents ozone concentrations, and the vertical axis represents population size. Concentrations and population for each year are
presented in Figure S10. The definitions of different regions are included in Table S7.
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Table 3: The share of population exposed to ozone above particular thresholds in each world region, for the 2006 to 2016 average
595 OSDMAS for six ozone datasets. 0% means greater than 0 but less than 0.5%, 0 means no population share greater than this ozone
concentration. Population shares for each year are shown in Table S8. The definitions of different regions are included in Table S7.

Dataset BME NJML UKML CAMS GEOS TCR-2

Region | >30 | >50 | >70 | >30 | >50 | >70 | >30 | >50 | >70 | >30 | >50 | >70 | >30 | >50 | >70 | >30 | >50 | >70
EAS | 100% | 61% | 0% | 100% | 72% | 3% | 100% | 99% | 31% | 100% | 67% | 0% | 100% | 95% | 4% | 100% | 94% | 41%
EUR 99% | 16% 0 | 100% | 76% | 0 9% | 77% | 0 9% | 9% 0 | 100% | 44% | O [ 100% | 70% | 0%
MDE | 100% | 79% 0 | 100% | 99% | 5% | 99% | 94% | 0 [ 100% | 88% | 8% | 100% | 99% | 4% | 100% | 94% | 38%
NAM | 99% | 17% | 0% | 100% | 88% | 3% | 99% | 84% | 0 | 1200% | 40% | 0 [ 100% | 55% [ © 99% | 86% | 0
SAF 9% | 3% 0 99% | 36% | 0% | 98% | 10% | 0 86% | 8% | 0% | 99% | 14% [ © 9% | 18% | 1%
SAS | 100% | 89% | 0% | 100% | 99% | 8% | 100% | 99% | 40% | 99% | 96% | 12% | 99% | 95% | 0% | 99% | 90% | 10%
SEA 84% | 0% 0 89% | 27% | 0 9% | 41% | 0 88% | 24% | 6% | 89% | 0% 0 85% | 13% | O
GLO 9% | 42% | 0% | 99% | 70% | 4% | 98% | 69% | 16% | 93% | 48% | 4% | 98% | 59% | 1% | 97% | 64% | 13%
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Figure 7: Performance evaluations of six datasets with TOAR-II observations in 2016 for OSDMAS8. The observation-prediction
evaluations are presented in scatter plots with densities estimated by a Gaussian kernel function. Determination (R?) and root mean
squared error (RMSE) are given. (a) The evaluation includes all monitor stations in the TOAR-11 network in 2016. (b) The evaluation
includes only monitor stations with observations above 50 ppb in the TOAR-1I network in 2016. The dashed line marks where
TOAR-II observations equal estimates (y=x line), and the solid black line represents the best-fit line. Performance evaluations for
each year are shown in Figure S11 and Figure S12.
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610 Figure 8: Normalized mean bias of six databases against TOAR-I1 observations (OSDMAB) at different quantiles in 2016. 0%: 13.46
ppb; 10%: 36.75 ppb; 20%: 39.80 ppb; 30%: 41.89 ppb; 40%: 43.57 ppb; 50%: 45.06 ppb; 60%: 46.82 ppb; 70%: 48.93 ppb; 80%:
52.18 ppb; 90%: 57.21 ppb; 100%: 86.25 ppb. Normalized mean bias for each year against TOAR-11 observations are shown in
Figure S14. Different quantiles of TOAR-I1 observations for other years are shown in Table S9.
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Figure 9: (a) Time series of determination (R2) between each dataset and TOAR-11 observations of OSDMAS8 from 2006 to 2016. (b)
Time series of root mean squared error (RMSE) between each dataset and TOAR-I1 from 2006 to 2016.
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625

630

Table 4: Performance evaluation of six datasets for countries (union) with the most monitors in 2016 against TOAR-11 observations
of OSDMAS. Number is the number of the TOAR-11 monitor stations in each country. Density (per km?) is the density of the TOAR-
11 monitors in each country based on land area. Estimate is the average of the grid estimates for each dataset at the TOAR-11 monitor
locations in each country. Linear regression R? and root mean squared error (RMSE) against TOAR-11 observations in each country
are presented. Country names are United States of America (USA), China (CHN), Japan (JPN), South Korea (KOR), Canada (CAN).
EU-27 includes Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,
Sweden. Others is all other countries in TOAR-11 apart from those listed. Performance evaluations for other years in these countries,
are shown in Table S10.

Dataset | Country | EU-27 USA CHN JPN KOR CAN Others
Number | 2170 1425 1405 1108 315 260 330
Density | 5.43E-4 | 1.56E-4 | 1.50E-4 | 3.04E-3 | 3.23E-3 | 2.96E-5 | 1.07E-5
TOAR 43.21 47.03 53.10 43.84 51.50 37.39 40.55
BME Estimate | 43.30 45.12 50.26 44.69 51.79 35.26 39.05
R? 0.63 0.71 0.63 0.03 0.10 0.46 0.48
RMSE 3.91 4.12 6.97 4.59 7.33 4.39 8.66
NJML Estimate | 53.53 48.44 53.39 49.40 54.62 43.79 48.63
R? 0.41 0.58 0.57 0.00 0.07 0.30 0.51
RMSE 11.49 4.55 6.86 7.42 8.01 7.57 11.59
UKML | Estimate | 53.27 52.54 66.78 61.45 65.02 46.87 49.01
R? 0.21 0.38 0.37 0.01 0.01 0.33 0.32
RMSE 11.54 7.52 16.40 18.25 15.54 10.32 13.01
CAMS Estimate | 42.17 49.67 53.85 44.91 58.93 39.54 39.84
R? 0.32 0.34 0.07 0.01 0.01 0.28 0.39
RMSE 5.75 6.65 10.62 4.95 12.46 4.63 9.40
GEOS Estimate | 49.76 50.58 60.48 56.99 65.94 45.73 44.54
R? 0.30 0.39 0.37 0.03 0.00 0.44 0.31
RMSE 8.41 6.08 11.15 13.94 16.36 9.08 10.70
TCR-2 Estimate | 51.83 55.54 66.43 58.37 67.87 45.97 48.32
R? 0.33 0.23 0.36 0.00 0.02 0.43 0.54
RMSE 10.15 10.58 15.99 16.69 18.53 9.84 11.43
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