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Abstract 

Ground-level ozone is a significant air pollutant that detrimentally affects human health and agriculture. Global ground-level 

ozone concentrations have been estimated using chemical reanalyses, geostatistical methods, and machine learning, but these 

datasets have not been compared systematically. We compare six global ground-level ozone datasets (three chemical 

reanalyses, two machine learning, one geostatistics) against one another and relative to observations, for the ozone season 20 

daily maximum 8-hour average mixing ratio, for 2006 to 2016. Results show significant differences among datasets in global 

average ozone, as large as 5-10 ppb, multi-year trends, and regional distributions. For example, in Europe, the two chemical 

reanalyses show an increasing trend while the other datasets show no increase. Among the six datasets, the population exposed 

to over 50 ppb varies from 61% to 99% in East Asia, 17% to 88% in North America, and 9% to 77% in Europe (2006–2016 

average). These differences are large enough to impact assessments of health impacts and other applications. Comparing with 25 

Tropospheric Ozone Assessment Report (TOAR) II ground-level observations, most datasets overestimate ozone, particularly 

at lower observed concentrations. In 2016, across all stations, R² ranges among the six datasets from 0.35 to 0.63, and RMSE 

from 5.28 to 13.49 ppb. Agreement between modeled and observed ozone distributions is reduced at ozone concentrations 

above 50 ppb. Although some datasets share some of the same input data, we found important differences among these datasets, 

likely from variations in approaches, resolution, and other input data, highlighting the importance of continued research on 30 

global ozone distributions. 
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1. Introduction 

Tropospheric ozone is a secondary pollutant that significantly impacts human health, plant life, and the climate system. Past 

studies have shown that ozone exposure can cause health effects ranging from mild subclinical symptoms to mortality (Balmes, 

2022). The Global Burden of Disease 2021 (GBD) study estimated that ground-level ozone contributed to approximately 35 

490,000 (95% UI: 107,000–837,000) global deaths in 2021, representing 0.72% (95% UI: 0.16% – 1.18%) of all deaths that 

year (Brauer et al., 2024). Ozone exposure is harmful not only to humans but also to plants. Ozone can enter plants through 

their stomata and cause oxidative damage, which reduces the global yields of major crops such as soybean, wheat, rice, and 

maize (Ainsworth, 2017; Mills et al., 2018a). Ozone is also an important greenhouse gas, ranking third behind carbon dioxide 

and methane in its contribution to anthropogenic climate change (Masson-Delmotte et al., 2021). Gaudel et al. find that since 40 

the mid-1990s, tropospheric ozone above the surface has increased across all 11 study regions in the Northern Hemisphere 

that they defined and analyzed (Western North America, Eastern North America, Southeast North America, Northern South 

America, Northeast China/Korea, The Persian Gulf, India, Southeast Asia, Malaysia/Indonesia, Europe, Gulf of Guinea) 

(Gaudel et al., 2020). In the United States, although extreme ground-level ozone concentrations have declined, winter ground-

level ozone concentrations have increased in Southwest and Midwest regions since 1990s (Chang et al., 2024). Using one 45 

global ozone dataset, from data fusion of ground observations and chemical model outputs, it is estimated that in 2017 21% of 

the global population was exposed to ozone concentrations above 65 ppb, and 96% lived in areas where concentrations 

exceeded the WHO guideline (30 ppb for annual metric) (Becker et al., 2023; Delang et al., 2021). Despite existing assessments, 

substantial uncertainties remain due to observational gaps, especially in remote and developing regions. The lack of knowledge 

of the ground-level ozone distribution in these regions limits our ability to accurately assess ozone impacts on human health 50 

and crops.  

 

The Tropospheric Ozone Assessment Report (TOAR) aggregates ozone observations from thousands of monitoring stations 

worldwide, forming the most extensive ground-level ozone monitoring data compilation to date (Schultz et al., 2017). Using 

the TOAR dataset, researchers have analyzed the global distribution, trends, and impacts of surface level ozone (Gaudel et al., 55 

2018). Currently, the second phase of the Tropospheric Ozone Assessment Report (TOAR-II) aims to include additional 

ground-based stations, especially new networks in China and India. However, despite significant progress, there remain large 

regions with limited ground-based monitoring, and a gap in understanding ground-level ozone variations over time and space. 

To bridge gaps in regions lacking ozone monitors, various methods, including chemical reanalysis based long-term data 

assimilation, machine learning, and geostatistical methods have been employed. Chemical reanalysis is an approach that 60 

integrates observations from various sources including satellites using data assimilation and chemical transport models (CTMs) 

to reconstruct historical atmospheric chemical composition and understand long-term changes and trends in air quality and 

climate forcing (Miyazaki et al., 2020b). Tropospheric ozone records have been provided in recent chemical reanalyses 

including the Tropospheric Chemistry Reanalysis Version 2 (TCR-2, (Miyazaki et al., 2020b)), the Copernicus Atmosphere 
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Monitoring Service (CAMS, (Inness et al., 2019)), and data assimilation using the GEOS-Chem adjoint model (GEOS-Chem, 65 

(Qu et al., 2020b)). In addition, two machine learning estimates of global ground-level ozone have been produced to date: one 

using a space-time Bayesian neural network trained on TOAR observations and CMIP6 simulations (Sun et al., 2022), and 

another with a cluster-enhanced ensemble learning method that utilizes various data sources (Liu et al., 2022). Finally, 

geostatistical methods were applied by DeLang et al. who used Bayesian Maximum Entropy (BME) to estimate ozone through 

a data fusion of TOAR observations and output from multiple CTMs (Delang et al., 2021).  This approach was further enhanced 70 

by incorporating the Regionalized Air Quality Model Performance (RAMP) framework to correct model biases (Becker et al., 

2023). These estimates of global ozone distributions and trends have supported analyses of health impacts. For example, ozone 

estimates of DeLang et al. were used in both the GBD 2021 study (Murray et al., 2020), and in a study of ozone health effects 

in urban areas globally (Malashock et al., 2022). However, there remains a lack of knowledge regarding the consistency of 

ground-level ozone estimates, distributions, and long-term trends across these global ozone mapping products. 75 

 

Inconsistencies in these datasets could significantly impact public health research, especially in assessing the risks of ozone-

related health impacts, and may impede the development of effective environmental policies and ozone management strategies 

(Post et al., 2012). Although each dataset incorporates a considerable amount of observational information and model 

simulations through various methodologies, each inherently incorporates biases from these input data sources during the fusion 80 

processes. While satellite measurements of precursor species can be used to constrain surface and lower tropospheric ozone in 

chemical reanalysis (Miyazaki et al., 2012), the performance of chemical reanalysis surface ozone is limited in part by the low 

sensitivities of satellite ozone measurements near the surface, as well as model simulation errors. Data fusion methods integrate 

outputs from multiple models with inherent biases, potentially propagating these biases to the final estimates (Delang et al., 

2021). Furthermore, machine learning methods trained on observation data may yield inaccuracies in rural and remote areas 85 

due to the uneven distribution of ground-level ozone monitoring stations (Liu et al., 2022; Betancourt et al., 2022). Therefore, 

conducting comparisons and evaluations of various types of ground-level ozone mapping products is essential to understand 

the inconsistencies and biases in these datasets, ultimately benefiting global health studies. 

 

This study aims to compare ground-level ozone concentrations estimated by six datasets, and to evaluate their accuracy over 90 

the 2006-2016 period, with a particular emphasis on their capacity to represent long-term ozone trends across different regions. 

The comparison and evaluation include three chemical reanalysis datasets, two machine-learning datasets, and one 

geostatistical dataset. The period 2006-2016 is chosen as the period over which the six datasets all produce ozone estimates. 

The ozone seasonal daily maximum 8-hour average mixing ratio (OSDMA8) was selected as the health-relevant metric for 

annual ozone evaluation (Turner et al., 2016). Our study specifically utilizes the OSDMA8 metric because we focus on 95 

evaluating long-term ozone exposure, an aspect not comprehensively compared previously among global ozone mapping 

products. We employed a comprehensive set of indicators to assess the congruence between these datasets, globally and 

regionally, including for long-term population weighted ozone outdoor exposure. Relative to the latest TOAR-II observational 
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dataset, this study also examines the six datasets’ ability to estimate ground-level ozone concentrations across various regions 

for the years 2006-2016. This research endeavors to characterize differences among ground-level ozone datasets, including 100 

discrepancies in ozone estimates, distributions, and trends, that could hinder evaluation of ozone's effects on health and 

agriculture, as well as impede the formulation of effective environmental policies. Although the primary focus of this study is 

on health impacts, the results are also largely applicable to agricultural and ecosystem impacts. 

2. Data 

As shown in Table 1, this study compares and evaluates ground-level ozone estimates from six global ozone mapping products 105 

in three categories. We utilized ozone seasonal daily maximum 8-hour average mixing ratio (OSDMA8) as the yearly ozone 

metric across all datasets. OSDMA8 is defined here as the maximum of the six-month running monthly mean daily maximum 

8-hr ozone (DMA8) from January of the current year wrapping to March of the following year (Delang et al., 2021). OSDMA8 

is GBD’s ozone metric for quantifying health effect from long-term ozone exposure (Brauer et al., 2024), and it is the metric 

used in the World Health Organization’s air quality guidelines, with values of 30 ppb for the guideline and 50 ppb for the 110 

interim target (World-Health-Organization, 2021). All observations and model estimates are converted to OSDMA8 using the 

same algorithm. Details on the input data used to construct each dataset are available in the Supporting Information (SI). 

2.1 Geostatistical ozone dataset 

The BME dataset uses geostatistical methods to provide high-resolution global ground-level ozone estimates. First, M3Fusion 

(Measurement and Multi-Model Fusion) is a statistical method developed to improve estimates of global surface ozone 115 

distributions by integrating observational data from TOAR and outputs from multiple chemistry models. Specifically, the 

method assigns weights to multiple global atmospheric chemistry models based on their regional accuracy compared to 

observed ozone values (Chang et al., 2019), creating a composite of multiple global atmospheric chemistry models by weights. 

The details of input data can be found in Table S1. Then BME data fusion integrates this multi-model composite with 

observations in space and time, and finally BME estimates are refined from 0.5° × 0.5° to 0.1° × 0.1° (Delang et al., 2021). 120 

The observations are from TOAR-I for 1990 to 2017, complemented by data from the Chinese National Environmental 

Monitoring Center (CNEMC) for 2013 to 2017. The latest version of this dataset employs RAMP for bias correction of 

M3Fusion inputs (Becker et al., 2023). The BME ozone estimates are more accurate than the average outputs from multiple 

models, achieving an R2 of 0.63 at 0.1° × 0.1° resolution,  as evaluated against observations through cross-validation (Delang 

et al., 2021). Furthermore, incorporating RAMP into the BME process significantly improves R2 by 0.15, especially in areas 125 

far from monitoring stations, as demonstrated through checkerboard cross-validation (Becker et al., 2023).  
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2.2 Machine learning ozone datasets 

We utilized two machine learning global ground-level ozone datasets from the University of Cambridge, and Nanjing 

University. The University of Cambridge's machine learning (UKML) dataset was developed using a space-time Bayesian 

neural network, fusing various data sources including  historical observations, CMIP6 multi-model simulations (AerChemMIP 130 

historical simulations and ScenarioMIP projections), population distributions, land cover properties, and emission inventories 

(Sun et al., 2022) (input data summarized in Table S3). The UKML model categorized TOAR-I monthly ozone observations 

from 1990 to 2014 into urban and rural areas, and used these as labels for supervised learning. This model generates monthly 

global gridded ozone estimates from 1990 to 2019, downscaled to a 0.125° × 0.125° spatial resolution. It exhibited great 

performance in predicting urban and rural surface ozone concentrations, with R2 values ranging from 0.89 to 0.97 and RMSE 135 

values between 1.97 and 3.42 ppb (Sun et al., 2022).  

 

Nanjing University's machine learning (NJML) dataset was created using a cluster-enhanced ensemble machine learning 

method. This dataset integrates various data sources, including satellite observations, atmospheric reanalysis, land cover 

properties, emission inventories and meteorological features (Liu et al., 2022). The main input data for NJML include 140 

meteorological parameters from ERA5, atmospheric chemistry from the CAMS chemical reanalysis, aerosol concentrations 

from MERRA-2, satellite observations from OMI/Aura, and emissions data from CEDS, spanning 2003-2019 with varying 

spatial resolutions (input data summarized in Table S2). It utilizes the monthly mean of daily maximum 8 h average (DMA8) 

data from TOAR-I and CNEMC observations from 2003–2019 as training data. The NJML dataset produces monthly global 

gridded ozone estimates from 2003 to 2019 with a 0.5° × 0.5° spatial resolution. The model demonstrates robust performance 145 

in both spatial and temporal predictions of ground-level ozone, with R2 values of 0.909 and 0.925, respectively (Liu et al., 

2022).  

2.3 Chemical reanalysis products 

We utilized surface ozone analysis fields from three chemical reanalysis products: the Tropospheric Chemistry Reanalysis 

Version 2 (TCR-2, (Miyazaki et al., 2020b)), the Copernicus Atmosphere Monitoring Service reanalysis (CAMS, (Inness et 150 

al., 2019)), and the GEOS-Chem reanalysis (GEOS, (Qu et al., 2020b)). Different from the machine learning and geostatistical 

ozone datasets, the chemical reanalysis products utilized satellite observations of atmospheric composition to produce three-

dimensional profiles of atmospheric composition. In situ surface observations were not included in the global chemical 

reanalysis data assimilation. Because of the lack of direct observational constraints, challenges remain in estimating surface 

ozone in the current reanalysis products (Huijnen et al., 2020). Detailed comparisons of these reanalyses for ozone over the 155 

entire troposphere at finer timescales have been conducted by the TOAR-II chemical reanalysis working group (Sekiya et al., 

2024; Jones et al., 2024; Miyazaki et al., 2024), but without a focus on the ground level and long-term metric as analyzed here.    
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TCR-2 was generated by assimilating multiple satellite observations into the MIROC-Chem model, that was developed as a 

part of the multi-model multi-constituent data assimilation (Miyazaki et al., 2020a). The meteorological fields were nudged to 160 

the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis meteorology. The data assimilation 

employed is an ensemble Kalman filter technique, which was used to effectively correct the emissions and concentrations of 

various chemical species (Miyazaki et al., 2020b). The assimilated data includes ozone, CO, NO2, HNO3 and SO2 from satellite 

instruments such as OMI, MLS, GOME-2, SCIAMACHY and MOPITT over the period from 2005 to 2021 (input satellite 

data summarized in Table S6). TCR-2 provides 2-hourly global ozone profiles at a 1.1° × 1.1° spatial resolution, with the 165 

regional mean ozone bias against global ozonesonde measurements ranging from -0.4 to 4.2 ppb in the lower troposphere (850-

500 hPa) (Miyazaki et al., 2020b).  

 

CAMS, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European 

Commission, provides the global reanalysis dataset on atmospheric composition developed by ECMWF. The main inputs for 170 

the CAMS ECMWF Atmospheric Composition Reanalysis 4 (EAC4) chemical reanalysis are retrievals of CO, ozone, NO2 

and aerosol optical depth (AOD) from multiple satellite instruments including MLS, OMI, GOME-2, SCIAMACHY, MIPAS, 

SBUV/2 and MOPITT, covering various periods ranging from 2003 (input satellite data summarized in Table S4). CAMS 

employed the four-dimensional variational data assimilation (4D-Var) method to integrate the satellite measurements under 

ECMWF's Integrated Forecasting System (IFS) CB05 model (Inness et al., 2019). It provides 3-hourly global profiles of ozone 175 

and other species at a 0.75° × 0.75° spatial resolution. While CAMS generally improves over previous analyses, challenges 

and biases remain, particularly at high latitudes and in accurately capturing seasonal variations (Inness et al., 2019).  

 

The GEOS-Chem dataset is developed through 4D-Var data assimilation of NO2 column densities using the GEOS-Chem 

adjoint model that includes updates in stratospheric and halogen chemistry (Henze et al., 2007). The GEOS-Chem model is 180 

driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological fields 

from the NASA Global Modeling and Assimilation Office (GMAO). Prior anthropogenic emissions of NOx, SO2, NH3, CO, 

NMVOCs (non-methane volatile organic compounds), and primary aerosols were obtained from the HTAP 2010 inventory 

version 2 (Janssens-Maenhout et al., 2015) (input data summarized in Table S5). Operating at a 2° × 2.5° resolution, the 

assimilation estimates global ozone more accurately than the forward model from 2006 to 2016 by deriving emissions of NO2 185 

through inverse modelling. The GEOS-Chem dataset exhibits a small bias across all ozone metrics, and among metrics it has 

the best spatial consistency for DMA8 (R2 = 0.88) (Qu et al., 2020b). However, the model has limitations in accurately 

capturing regional variations and seasonal trends in ozone concentrations.  

2.4 Ground-level ozone observations 

For the evaluation in this project, we utilized both urban and non-urban ground-level ozone observations for the yearly 190 

OSDMA8 metric from the updated TOAR-II dataset, covering 2006 to 2016 (Schröder et al., 2021). This dataset represents 
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the most extensive collection of tropospheric ozone measurements available globally. Compared to TOAR-I (Schultz et al., 

2017), TOAR-II incorporates an expanded dataset of ozone observations, notably including monitoring data from 

approximately 1,400 stations across China for the years 2015 to 2016 that are included in TOAR-II (https://toar-data.fz-

juelich.de/gui/v2/dashboard/, last access: 15 November 2024). We require that at least 75% of the days in a month must have 195 

valid DMA8 values for that month to be included in the annual data calculations. The total number of observation sites used 

in our assessment varied from a minimum of 3715 in 2006 to a maximum of 7013 in 2016. Given that three ozone products in 

this study utilize the TOAR-I dataset for training or input, evaluations using the latest TOAR-II dataset for sites not included 

in TOAR-I can provide more objective results. Figure S1 illustrates the spatial distribution of TOAR-II monitoring stations in 

2016. The version of the TOAR-II database employed in this analysis, as of November 2024, may not represent its final version. 200 

2.5 Population data 

We analyzed ozone population exposures for each dataset using the globally gridded population data for the year 2019 from 

the Global Burden of Disease (GBD) 2019, which has a resolution of 0.1° × 0.1° (Lloyd et al., 2019). Since we use the same 

gridded population data for all years of the project, we focus on differences in exposure attributable to changes in ozone levels 

rather than changes in population. Therefore, population-weighted ozone over 2006 to 2016 can be biased even if the ozone 205 

data are unbiased. 

3. Methodology 

3.1 Long-term exposure comparison  

Before comparing concentration estimates between datasets, we converted all ozone estimates from each dataset to OSDMA8, 

ensuring only one ozone estimate value per year for each grid cell (see the original temporal resolution in Table 1). The 210 

OSDMA8 metric is used for long-term ozone exposure given its utility and wide acceptance in health impact studies, despite 

the inherent loss of shorter temporal dynamics. Subsequently, we re-gridded all datasets to 0.1° × 0.1° resolution to facilitate 

comparison at the same spatial scale. During re-gridding, we ensure that the average value of the finer grid cells matches that 

of the original coarse grid cell; for example, if a grid cell has a value of 30 ppb, then after re-gridding to finer grid cells, the 

average value of these grid cells will still be 30 ppb. Data over the ocean were excluded, retaining only land and populated 215 

islands for analysis. We calculated the yearly ozone trend for each dataset using both population-weighted and area-weighted 

approaches, with details of the calculation methods provided in Text S2. We also regressed population-weighted mean ozone 

concentrations in different world regions of each dataset against the year to evaluate ozone long-term variations. For each grid 

cell we calculated the mean and standard deviation of the six OSDMA8 values obtained from each dataset to highlight regional 

differences and similarities. We also calculated the deviation from the ensemble mean for each dataset to assess geographic 220 

distribution variations. Furthermore, we compared ozone exposure differences in various regions for each dataset to evaluate 
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the potential for health impacts.  Here we estimate exposure as the ambient concentration in 0.1°× 0.1°grid cells related to 

population at their residences, not including other factors that affect human exposure such as time-activity patterns. Details of 

these calculations are available with parameters in the SI. We use regional groupings defined by HTAP2 (Koffi et al., 2016), 

as detailed in the Table S7.   225 

3.2 Pairwise spatial similarity comparison 

We employed two quantitative metrics to classify how the datasets relate with one another: the Pearson correlation coefficient 

(R) and the root mean square difference (RMSD). The pairwise correlation R indicates the similarity in geographical 

distribution of ozone concentrations, and the RMSD quantifies the difference in ozone estimates between datasets. A higher R 

value suggests greater similarity in the spatial pattern between two datasets and a smaller RMSD indicates a less significant 230 

discrepancy in ozone concentration estimates between two datasets. We then group the six datasets, adopting a method that 

maximizes the difference between the correlation R within and outside the groups. The idea of this grouping is to distinguish 

the spatial similarity between the datasets, which is based on the pairwise correlation. For each grouping combination, 4 

variables are computed: the sum of pairwise correlations within groups (Ci), the sum of pairwise correlations outside the groups 

(Co), the number of dataset pairs within groups (Ni), and the number of dataset pairs outside the groups (No). The objective is 235 

to ascertain the grouping combination that maximizes the difference between Ci/Ni and Co/No. More details of the calculation 

can be found in Text S1.  

3.3 Evaluation with ground-level observation 

Previous research has adopted a 1º×1º grid-cell-averaged hourly ozone data from TOAR observations to evaluate global 

chemistry model performance over North America and Europe, which is suitable for analyzing extremes and validating 240 

seasonal and diel ozone cycles (Schnell and Prather, 2017; Schnell et al., 2015). We utilized OSDMA8 from TOAR-II 

observations covering 2006 to 2016 to evaluate the six datasets. During the evaluation process, we retained the original 

resolution of the six datasets (Table 1). We adopted a grid-to-point evaluation approach, where the data from each TOAR-II 

observation site was matched with a corresponding grid cell in each dataset. For grid cells with a TOAR-II observation but no 

valid estimate in a dataset (NA value), we used the nearest valid estimate instead. Table S12 displays the number of missing 245 

values in each dataset in 2016 at TOAR-II locations, showing that only BME, NJML and UKML have a small number of 

missing estimates. This method ensures the same sample sizes for evaluation across all datasets while accommodating their 

varied resolutions and avoiding the challenge of gridding TOAR-II observations. Our grid-to-point evaluation approach 

ensures a consistent sample size and captures penalties for missing data in datasets. We assessed the performance of each 

dataset using the coefficient of determination (R2) between ozone estimates and observations, and root mean square error 250 

(RMSE) as the primary metrics. We selected the 50 ppb as the threshold for high ozone concentration because it corresponds 

to the long-term air quality interim target of WHO. These performance metrics should be interpreted considering the spatial 

representativeness uncertainty that is caused by the grid-to-point evaluation approach. 
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4. Comparison between ozone mapping products 

4.1 Temporal trends 255 

Both the area-weighted and population-weighted mean trends of global OSDMA8 reveal substantial differences among global 

ozone mapping datasets (Fig. 1). Notably, BME and CAMS have lower ozone values than other datasets, for both metrics, 

while UKML and NJML have higher ozone estimates, with differences between these datasets exceeding 5 ppb. The higher 

values in GEOS-Chem and TCR-2 may be attributed to the remaining high bias in the forecast models, which is commonly 

found in CTMs (Travis and Jacob, 2019). The population-weighted mean is higher than the area-weighted mean, by 5-10 ppb 260 

across all datasets, and for UKML and BME, the disparity between population-weighted and area-weighted ozone 

concentrations appears to widen over time. The faster increase in the population-weighted mean compared to the area-weighted 

mean appears to be driven by rising ozone levels in highly populated regions. In Table 2, focusing on the period from 2006 to 

2016, we find that NJML is the only dataset showing a downward trend in both area-weighted and population-weighted mean 

ozone concentrations, with very high certainty. In contrast, TCR-2 and UKML show increasing trends in population-weighted 265 

mean ozone during this period with very high certainty. Fig. 2 illustrates regional ozone changes per decade, weighted by 

population, across different regions in each dataset over 2006 to 2016. NJML, despite its overall decreasing trend in Table 2, 

does not uniformly show declines across all regions. The decrease in NJML is predominantly in North America, notably over 

8 ppb per decade in the US and Canada, while Sub Saharan Africa and South America exhibit increases. BME and UKML, 

with the longest duration, both display decreasing trends in North America, and Europe, and increases in Southeast Asia and 270 

Middle East. Both datasets indicate greater decreases in North America than in Europe and more significant increases in the 

Middle East than in Southeast Asia. However, BME shows a downward trend in East Asia, while UKML exhibits the reverse. 

CAMS and TCR-2's trends in Fig. 2 are less distinct, except for the decrease in North America and the increase in East Asia, 

mirroring those of GEOS-Chem, which exhibits the smallest decadal ozone change, likely due to not directly assimilating 

ozone from satellite observations. From Table S11, we observe that some regions exhibit a clearer trend from 2006 to 2016, 275 

with very high certainty across six datasets. In East Asia, BME and NJML observe decreasing trends, whereas the other 4 

datasets display increasing trends. In North America, all datasets display a downward trend, and in Europe, BME, NJML, 

UKML and TCR-2 show a decline, contrasting with increases in CAMS and GEOS-chem. Recent analyses using TOAR 

observations indicate that from 2006 to 2016, most sites in North America experienced decreasing ozone, while many sites in 

East Asia exhibited significant positive trends (Chang et al., 2024; Fleming et al., 2018; Chang et al., 2017). These observed 280 

trends in North America, Europe and East Asia seem to agree best with the trends estimated by BME and UKML.   

4.2 Difference maps 

Fig. 3 shows the spatial maps of the 11-year (2006-2016) average of the annual multi-model means of OSDMA8 from the six 

datasets, and the associated standard deviations. India, China, and the Middle East are estimated to have the world’s highest 

average ozone concentrations, exceeding 50 ppb in the multi-model average. High ozone levels are also found in parts of 285 
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Europe and the eastern United States. Notably, regions in southern Africa near the Atlantic Ocean emerge as primary areas of 

ozone pollution, where some locations have average concentrations exceeding 60 ppb. Conversely, the Amazon Basin in South 

America, Central Africa, and Canada exhibit relatively lower ozone concentrations, with some areas below WHO 30 ppb 

guideline. The six datasets show greater variation (high standard deviations above 10 ppb) in South America and Africa, 

particularly in rainforest regions, compared to North America and Europe, notably since these regions lack ozone monitors. 290 

The eastern coast of China also exhibits significant discrepancies with standard deviations above 15 ppb. Fig. 4 compares the 

mean ozone concentration for each dataset with the multi-dataset average (Fig. 3(a)), showing wide variation in the magnitude 

and spatial distributions of ozone concentrations among the datasets. BME and CAMS display lower values than the average 

of six datasets in most regions, consistent with Fig. 1. BME records concentrations higher than average in central South 

America and central Africa near the Atlantic, while CAMS shows elevated levels in Southeast Asia and along the Middle East 295 

coast, contrasting TCR-2's lower coastal and higher inland concentrations. NJML and UKML report above-average values, 

except for NJML in southern China and UKML near the Sahara Desert and the Indian Ocean.  

4.3 Pairwise spatial similarity 

We calculated the correlation and RMSD between each pair of datasets for each year from 2006 to 2016. Fig. 5 displays the 

average correlation and RMSD values over these 11 years as heat maps. Fig. 5(c) presents a scatter plot of the correlations and 300 

RMSD for each dataset pair. Using the correlation heatmap (Fig. 5(a)), we categorized the six datasets by the maximum 

difference method, identifying NJML as a distinct group (Group B) and the other five datasets as Group A. NJML's separation 

indicates its significant divergence in ozone geographic distribution compared to others. The scatter distribution in Fig. 5(c) 

reveals that most Group A data points cluster in regions of high correlation and low RMSD, suggesting broadly consistent 

ozone geographic distribution and concentration estimation within this group. Nevertheless, there is still substantial 305 

disagreement among the current reanalysis products, likely because of the differences in forecast model performance and data 

assimilation configuration. Conversely, Group B has lower correlations. Interestingly, RMSD does not consistently decrease 

with increasing correlation, indicating that similar geographic distribution patterns can still yield significant differences in 

ozone concentration estimates. This is particularly evident with CAMS and GEOS-Chem, which exhibit the highest correlation 

with a large RMSD, suggesting substantial differences in ozone estimation.  310 

4.4 Long-term ozone exposure 

Fig. 6 illustrates the distribution of population in various regions exposed to average OSDMA8 from 2006 to 2016, as per each 

dataset. Detailed plots of population exposure for each year (2006 to 2016) are shown in Figure S10.  For the period 2006-

2016, a majority of the population in most datasets is exposed to concentrations above 50 ppb. Populations in regions such as 

East Asia and South Asia appear to be exposed to higher ozone concentrations in all datasets compared to other regions. 315 

Conversely, populations in the Sub-Saharan Africa and Southeast Asia regions typically experienced concentrations below 50 

ppb. The different regions show different distributions of population ozone exposure, and comparisons between datasets reveal 
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considerable variations in the ozone distribution for each region. Some datasets (e.g., CAMS and TCR-2) show a wider 

distribution of population across ozone concentrations compared to others (e.g., NJML). In BME and CAMS, after South Asia, 

a significant fraction of the population in the East Asia region is exposed to levels above 50 ppb, while this proportion in North 320 

America, Europe, and the Middle East is less than in the other four datasets. When focusing on exposure above 70 ppb, South 

Asia dominates in BME, CAMS, and NJML, while East Asia leads in GEOS-Chem, UKML, and TCR-2. All six datasets 

clearly demonstrate a higher impact of ozone pollution in Asia compared to North America and Europe, aligning with previous 

findings based on TOAR observations (Chang et al., 2017). Table 3 elucidates each region's population share above different 

ozone concentration levels. For BME and CAMS, the global average of the population exposed to more than 50 ppb is 42.5% 325 

and 48.1%, respectively, indicating that more than half of the population us exposed to lower concentrations. Regional 

exposure estimates vary in East Asia, where the proportion of the population exposed to more than 50 ppb ranges from 61% 

in BME to over 90% in UKML, GEOS-Chem, and TCR-2. The differences are stark in Europe, with BME and CAMS showing 

only 16% and 9% exposure, respectively, over 50 ppb, while NJML, UKML, and TCR-2 report over 70%. TCR-2 and UKML 

project notably higher exposures in East Asia, with 41% and 31% of the population exposed to levels above 70 ppb, 330 

respectively. In the Middle East, TCR-2's estimates are significantly higher than other datasets, indicating that 38% of the 

population is exposed to average concentrations above 70 ppb.  The six datasets agree that a large majority of the global 

population is exposed to ozone above the WHO guideline for OSDMA8 (30 ppb) with percents ranging from 93% (CAMS) to 

99% (NJML).   

5. Evaluation against TOAR-II observations 335 

5.1 Evaluation of ground-level ozone in 2016 

We conducted regression and bias analyses for each dataset in comparison with TOAR-II observations for each year from 

2006 to 2016. Fig. 7(a) illustrates the scatterplot from the linear regression analysis of each dataset against the 7013 TOAR-II 

observations in 2016, accompanied by a density core that visualizes the data point distribution. The year 2016 is presented 

here because it has the highest number of TOAR-II observations from 2006 to 2016, and other years can be found in Figure 340 

S11. For 2016, BME outperforms other datasets, with the highest R2 (0.63) and lowest RMSE (5.28 ppb), its density core 

intersecting the y=x line. BME has an advantage in that its methods should nearly match the observed values for locations 

used as inputs to the data fusion.  Consequently, we conduct another validation for TOAR-II sites not used as input for BME 

in 2016 (Figure S13). After excluding all sites located at observation points previously used as BME input, using 3911 

observations for validation, BME performs well compared to another datasets, though its R2 decreases significantly to 0.53. In 345 

Fig. 7(a), all three chemical reanalysis datasets exhibit a moderate R2 ranging from 0.35 to 0.41, comparable to the performance 

of the machine learning datasets, which have R2 values of 0.37 and 0.38. Among these five datasets, CAMS has the lowest 

RMSE (7.59 ppb), which is better than other chemistry reanalysis products but relatively low R2 (0.35). Its density core slightly 

below the y=x line suggests CAMS estimates are marginally lower than TOAR-II observations. GEOS-Chem and TCR-2 
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demonstrate adequate performance, albeit with higher RMSE values of 10.27 ppb and 13.23 ppb, respectively. Their density 350 

cores positioned above the y=x line indicate that these models tend to produce higher estimates compared to the TOAR-II 

observations. NJML, despite differing geographic distributions from other datasets (Fig. 5), shows acceptable performance 

with higher R2 (0.38) than CAMS and lower RMSE (8.63) than TCR-2. UKML exhibits the highest RMSE of 13.49 ppb, and 

its density core region is above the y=x dashed line, indicating an overestimation. This is because the UKML algorithm 

emphasizes higher ozone pollution levels in rural and remote areas compared to adjacent urban districts, which consequently 355 

leads to an overestimation especially in population-weighted metrics (Sun et al., 2024). 

 

Fig. 7(b) focuses only on TOAR-II sites with OSDMA8 value above 50 ppb, showing that R2 is reduced compared to the 

comparison of all ozone measurements (Fig. 7(a)) for all six datasets, suggesting overall weaker agreement between modeled 

and observed ozone distributions at higher concentrations. All six datasets show decreasing performance from BME, NJML, 360 

and UKML to TCR-2, GEOS-Chem, and CAMS, with R2 of 0.37, 0.30, 0.26, 0.25, 0.17, and 0.07, respectively. However, the 

change of biases varies among datasets at higher concentrations. Specifically, overestimation is reduced in the UKML, NJML, 

GEOS-Chem, and TCR-2 datasets when observations exceed 50 ppb. Conversely, we observe increased underestimation in 

the BME and CAMS datasets at ozone levels above 50 ppb.  Fig. 8 shows the normalized mean bias for stratified concentration 

intervals in 2016, which provides insights into the average discrepancy between estimates and TOAR-II observations across 365 

ozone concentration ranges. All six datasets overestimate TOAR-II observations below the 40% concentration interval. Only 

BME underestimates above the 40% concentration level, CAMS underestimates above the 80% concentration interval, and 

NJML underestimates above 90% concentration interval, aligning with the observations presented in Fig. 4. BME demonstrates 

the smallest mean bias, particularly below the 50% concentration level and CAMS shows the smallest mean bias in the 50% 

to 90% concentration interval. In the 90% to 100% concentration interval, NJML and GEOS-Chem have the smallest mean 370 

bias. In summary, BME and CAMS perform better overall in terms of normalized mean bias, with other models tending to 

overestimate ozone at almost all concentrations.  

5.2 Evaluation of ground-level ozone in different countries 

Table 4 presents the validation results for different countries or regions using TOAR-II observations in 2016, focusing on the 

countries with the highest number of sites. Here we use the R2 to assess the strength of the spatial correlation and RMSE to 375 

measure the bias across each country or region. The performance of each dataset varies by region, indicating that a dataset's 

overall performance does not guarantee its effectiveness in all regions. Reasonable R2 and RMSE values are seen across all 6 

datasets in the United States; BME leads with the highest R2 (0.71) and lowest RMSE (4.12 ppb), and TCR-2 has the lowest 

R2 (0.23) with highest RMSE (10.58 ppb). In Japan, BME leads with an RMSE of 4.59 ppb, followed by CAMS at 4.95 ppb, 

and UKML has the highest RMSE (18.25 ppb). Although there are over 1000 monitors in Japan, all datasets show poor R2 380 

values below 0.1. The six datasets also perform poorly in South Korea, where TCR-2 has the highest RMSE (18.53 ppb), BME 

has the lowest RMSE (7.33 ppb). The performance of datasets within China exhibits significant variability, where BME and 
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NJML demonstrate relatively good performance, and CAMS exhibits poor performance for R2, while for RMSE, CAMS 

performs better than GEOS-Chem, TCR-2 and UKML. For other countries, which serve as a test of model performance in 

areas with sparse observations, all datasets exhibit better R2 and RMSE values than in South Korea, with TCR-2, NJML and 385 

BME demonstrating particularly better performance than others. Overall, BME demonstrates strong performance in most 

countries, particularly in the United States, where it achieves the highest R2 and the lowest RMSE, suggesting both strong 

spatial correlation with TOAR-II observations and high accuracy. NJML exhibits mixed performance, with relatively high R2 

values indicating good correlation in the United States and China, but it falls short in EU-27 and Canada with high RMSE and 

low R2. UKML presents consistently high RMSE values across countries suggesting high bias. CAMS displays variable 390 

performance with low R2 values in China, indicating a lack of spatial correlation, yet its RMSE values are relatively small 

across all regions when compared to other chemical reanalysis datasets. GEOS-Chem and TCR-2 exhibit reasonable spatial 

correlations in Europe, the United States, China, and Canada. Notably, they outperform all other datasets in Canada, except 

for BME. TCR-2 demonstrates the best R2 performance in other countries with less monitoring data. However, TCR-2 also 

presents high RMSE values across all regions. All six datasets exhibit lower spatial correlation compared to TOAR-II 395 

observations in countries with high monitoring density, such as Japan and South Korea, than in countries with lower monitoring 

densities. NJML, UKML, GEOS-Chem and TCR-2 show overestimates compared to the TOAR observations in every country 

in the Table 4. Extending the analysis to the period from 2006 to 2016 (see tables in Table S10), the percentage of 

underestimates from 6 datasets compared to TOAR observations in all countries is below 20%.  

5.3 Evaluation of ground-level ozone across different years 400 

Fig. 9 presents time series plots of R2 and RMSE from the evaluation of each database against TOAR-II observations from 

2006 to 2016. It is important to note that the years 2015 and 2016 include observations from China. BME consistently shows 

the largest R², indicating its robust performance near the monitor locations due to the utilization of observational data as input 

and the effective exploitation of spatiotemporal autocorrelation among stations. Apart from BME, NJML outperforms other 

datasets in R² from 2010 to 2015, TCR-2 leads in 2007 and 2016, while UKML does so in 2008 and 2009. Five datasets, 405 

excluding NJML, demonstrate a drop in R2 in 2010. All datasets show an increase in R2 from 2015 to 2016. BME maintains 

the lowest RMSE throughout the period, indicating the most accurate predictions. CAMS also performs well in terms of RMSE. 

GEOS-Chem consistently has lower RMSE than both TCR-2 and UKML. Meanwhile, NJML exhibits a decreasing RMSE 

trend from 2006 to 2016. The clear differences in time series of RMSE correspond with the yearly mean trends in Fig. 1. 

Datasets with lower ozone values, BME and CAMS, also exhibit lower RMSE, whereas those with higher estimates, 410 

specifically TCR-2 and UKML, have higher RMSE.  
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6. Discussion 

From the comparison, we find there are large differences in ozone concentration estimates among datasets. Figure 1(b) 

illustrates that BME and CAMS report lower ozone estimates compared to UKML and NJML, with differences exceeding 5 

ppb. NJML demonstrates a decreasing trend in global population-weighted and area-weighted yearly mean over the 2006-2016 415 

period, while the five others exhibit either increasing trends or no clear trend. Divergence among datasets becomes even more 

evident in the analysis of regional ozone trends (Fig. 2). The ozone concentrations decreased in Europe from 2006 to 2016 

according to BME, NJML, UKML, and TCR-2, yet increase in the other chemical reanalysis datasets. Differences in regional 

distributions lead to variability in exposure estimates. Among the six datasets, the population exposed to more than 50 ppb of 

ozone in Europe from 2006 to 2016 spans a broad range, from as low as 9% for CAMS to over 70% for NJML, UKML, and 420 

TCR-2. This highlights the importance of removing systematic biases from these data sets before applying them to exposure 

estimates. In East Asia, exposure levels are consistently higher, with the percentage of the population affected ranging from 

61% for BME to more than 90% for UKML, GEOS-Chem, and TCR-2 based on average OSDMA8 data over the same period. 

Global average exposures also vary, with the proportion of the population exposed to more than 50 ppb ranging from 42% to 

70% across the six datasets. 425 

 

Despite notable disparities in estimates, we still find some regional and temporal similarities across the six datasets. In Table 

S13 an overall upward trend in ozone concentrations is evident across most datasets, particularly when examined as population-

weighted means. In Fig. 2, all datasets exhibit a downward trend in North America over 2006 to 2016. In Fig. 3(a) high ozone 

concentrations are predominantly found in regions with elevated anthropogenic and industrial emissions, while forests and 430 

sparsely populated areas have lower ozone concentrations, consistent with findings based on observations (Mills et al., 2018b; 

Fleming et al., 2018). In Fig. 3(b) the standard deviation among six datasets is high in part of South America and Africa, 

especially in the rainforest areas, probably because of the lack of observational data in these areas and uncertainties in the 

emissions inventories (Pfister et al., 2019). However, for most regions it is low, such as North America and South Asia, 

indicating a good level of agreement on ozone estimates. The high pairwise correlation in Fig. 5(a) supports that the 435 

geographical distributions of ground-level ozone are similar among most of datasets. The histograms of ground-level ozone 

exposure among the population (Fig. 6) reveal the shared characteristic of widespread high ozone exposure in East Asia and 

Southeast Asia (Fleming et al., 2018).  

 

When evaluating datasets against TOAR-II observations, differences in performance are seen among six datasets. BME 440 

performed well in the TOAR-II evaluation (Fig. 9), with minimal mean bias below the 50% concentration threshold (Fig. 8). 

Unlike the other databases, BME tends not to overestimate over the range of concentration, with a small underestimation bias. 

After removing TOAR sites that were used as inputs to BME (Fig. S13), BME's performance remains robust, with decreases 

in RMSE (from 5.28 to 5.15) and R² (from 0.63 to 0.53).  NJML and UKML, both utilizing TOAR-I as a training set, showed 
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overestimation in most areas (Table 4). Despite NJML's distinct spatial distribution in Fig. 5, its validation results are 445 

comparable to other datasets. NJML exhibits a higher R² from 2010 onward, especially at high ground-level ozone 

concentrations (above 50 ppb), where prediction accuracy generally declines across all datasets. However, NJML has missing 

data in some coastal regions, particularly in European coastal countries, which may contribute to its elevated RMSE in Europe 

compared to other datasets in Table 4, since missing data are substituted with the nearest model grid cell. UKML's performance 

after 2010 is not as good as NJML and is worse than the chemical reanalysis datasets in 2011. CAMS, GEOS-Chem and TCR-450 

2 primarily rely on satellite data, suggesting that they might not compare favorably with other datasets that used observations 

as input or training data. Despite this, CAMS unexpectedly outperforms the machine learning datasets in RMSE over the full 

year, especially for high ozone concentrations (50% to 90% range). In addition, as shown in Fig. 8, TCR-2, GEOS-Chem, 

NJML, and UKML all have widespread overestimation. The performance of each dataset can impact the accuracy of trend 

analysis (Fig. 1 and Fig. 2) and population exposure assessment (Fig. 6), which may lead to very different results when 455 

compared to the WHO guideline and interim target. 

 

There are several possible explanations for the differences among the datasets, including several factors related to the 

characteristics, methodologies and input data for each dataset. BME has an unfair advantage in that it nearly matches 

observations at a monitoring location. But as mentioned earlier, BME still shows superior performance after removing its 460 

training data from the evaluation.  BME’s use of temporal autocorrelation to predict ozone in years where measurements are 

missing may help its good performance (Delang et al., 2021). The differing yearly ozone population-weighted mean trend in 

NJML compared to other datasets may be due to its unique input data, including land cover and satellite observations (Liu et 

al., 2022). The missing data near coastlines in NJML and relatively coarse resolution likely contribute to poorer performance 

in EU-27. For three chemical reanalysis datasets, previous studies have shown that significant challenges remain, particularly 465 

with respect to the representation of ozone in the lower troposphere, because of the limited sensitivity of satellite observations 

to ozone in the lower layers (Huijnen et al., 2020). Because of the lack of direct observational constraints at the surface in the 

chemical reanalyses, the better performance of CAMS may be attributable to the finer resolution that enables better 

representation of small-scale ozone distribution features than the other reanalysis datasets, and also to the better performance 

of the forecast model to predict surface ozone. Nevertheless, the assimilation of precursor measurements provides important 470 

constraints, particularly with respect to the spatial gradient and temporal variation of ground-level ozone. The low RMSE of 

GEOS-Chem compared to UKML and TCR-2 might be because it shares the same data assimilation method with CAMS (Qu 

et al., 2020a). Moreover, TCR-2, GEOS-Chem, and CAMS perform well in the United States, Canada and EU27, which may 

be because these regions have well-established emissions inventories for modeling (Schmedding et al., 2020) and because data 

assimilation is used to estimate key precursor emissions from satellite observations in TCR-2 and GEOS-Chem. Optimizing 475 

additional precursor emissions, such as VOCs, from satellite observations is considered to be important to better represent 

surface ozone (Miyazaki et al., 2019; Sekiya et al., 2024; Miyazaki et al., 2012). The poor performance in South Korea and 

Japan could be because the coarse resolution models may not accurately capture ozone gradients in a nation with a high density 
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of monitors (Punger and West, 2013; Sekiya et al., 2021). This suggests a need for continued efforts to improve the mapping 

resolution to capture spatial variability in these regions. Since most of the current reanalysis products still suffer from large 480 

systematic errors in their surface ozone analysis, it might be important to apply bias corrections while maintaining the detailed 

spatial and temporal variability of the original data using methods such as machine learning (Miyazaki et al., 2024) before 

performing exposure estimates. While these factors may help to explain differences between the datasets, we have not 

systematically tested them, and as discussed by Sekiya et al. (2024) and Jones et al. (2024), further inter-comparisons of 

reanalysis products and detailed discussions for improvement are required.  485 

 

Although we conducted a comprehensive comparison and evaluation, this study still has some limitations. First, the comparison 

only focuses on land and inhabited islands, because of the focus on ground-level ozone impacts on health. Our estimates of 

population exposure are based on ambient concentration in each grid cell, ignoring other factors that impact ozone exposure, 

such as indoor ozone concentration. Also, using OSDMA8 as the metric to evaluate datasets might hide differences in model 490 

performance at hourly temporal resolution, which would need to be analyzed in a separate study. In instances of missing model 

estimates, we default to the nearest valid estimate to evaluate with TOAR-II observations. For datasets with coarse spatial 

resolution, this method may increase bias by double counting.  

7. Conclusions   

This study evaluates the consistency and accuracy of six ground-level ozone mapping products, developed using different 495 

methods. Substantial discrepancies among datasets are reflected in global and regional ozone trends, the spatial distribution of 

ozone, population exposure estimates, and model performance. The global population-weighted average has a maximum span 

of 10 ppb among the six datasets. In terms of long-term trends over 2006 to 2016 period, UKML and TCR-2 show a consistent 

upward trend globally, while NJML shows a downward trend. Regionally, all datasets show a downward trend in North 

America, and only BME and NJML datasets demonstrate a downward trend in East Asia; In Europe, BME, UKML, NJML 500 

and TCR-2 report a downward trend, while the other two chemical reanalysis datasets reveal an upward trend that is not seen 

in observations. These differences among datasets are sufficiently large that assessments of health impacts of ozone would 

differ significantly when using different ozone datasets. Model performance evaluation based on TOAR-II observations varied; 

in 2016, R² values ranged from 0.35 to 0.63, and RMSE values ranged from 5.28 ppb to 13.49 ppb for all stations. BME 

performs well near monitoring locations with good R² and small RMSE. All five datasets, except for BME, exhibit similar R2 505 

values in 2016. NJML performs well after 2010 and shows robust performance under high ozone concentrations. Before 2010, 

UKML performs well, but after 2010, UKML shows decreased performance. Machine learning datasets tend to overestimate. 

The chemical reanalysis datasets perform comparably with the geostatistical and machine learning datasets, which is somewhat 

surprising given that they were not designed to estimate ground-level ozone accurately and do not use ground-level 

observations as input. CAMS performs the best among the chemical reanalysis datasets in term of RMSE, although CAMS 510 
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has difficulty capturing TOAR-II observations in China. In regions where TOAR-II observations are sparse, all datasets show 

RMSE values about 10 ppb, highlighting the difficulty in mapping ground-level ozone distributions in regions with little 

observational data. Conversely, in some regions with very dense TOAR-II observations, all datasets show R2 values below 0.1, 

highlighting the necessity for fine resolution mapping to accurately capture spatial variability. 

 515 

Given that some of the datasets used similar input data, it is somewhat surprising to find the large discrepancies shown here, 

suggesting that applications of these datasets to health burden assessments, epidemiology or similar applications for 

agricultural and ecosystem impacts may differ strongly based on the dataset selected.  More research will be needed before 

different methods converge on similar estimates. Such research can include more widespread ground observations, improved 

used of satellite observations, improved chemistry-climate modelling, and further development of different data fusion 520 

methods. Also, it is not clear whether differences among different datasets are due mainly to the methods used or to differences 

in input data. In addition, establishing a formal benchmark test based on the evaluation methods described in this study for the 

yearly OSDMA8 metric is essential. This would allow for new mapping products to be easily assessed. The general findings 

here of poor agreement among datasets may also be applicable to other air quality datasets or even datasets from other Earth 

system domains. According to this study, there is no clear consensus on the best ozone mapping methods. To further improve 525 

these ozone mapping products, researchers must update and adjust their methods and input data regularly and iteratively. 

8. Code and data availability 

Observational data are publicly available from the TOAR-II data portal (last accessed on 15 November 2024, toar-data.org) 

(Schröder et al., 2021).  The BME dataset of global ground-level ozone estimates (Becker et al., 2023) is publicly available at 

zenodo.org/records/10498857. The NJML dataset is publicly available at doi.org/10.5281/zenodo.6378092.  The CAMS 530 

reanalyses data (Inness et al., 2019) are publicly available from https://ads.atmosphere.copernicus.eu/datasets/cams-global-

reanalysis-eac4. The TCR-2 reanalyses data (Miyazaki, 2024) are publicly available from 

https://disc.gsfc.nasa.gov/datasets/TRPSCRO32H2D_1. Other datasets of global ozone concentrations can be obtained by 

contacting the creators of these datasets.   
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Table 1: Overview of six global ozone mapping products. 

Global ozone dataset Model type Resolution Period Temporal Resolution 

Bayesian Maximum Entropy Data Fusion 

(BME)(Delang et al., 2021) 

Geostatistics 0.1°×0.1° 1990-2017 OSDMA8 

Cluster-Enhanced Ensemble Learning 

(NJML)(Liu et al., 2022) 

Machine Learning 0.5°×0.5° 2003-2019 Monthly DMA8 

Space-Time Bayesian Neural Network 

Downscaler (UKML)(Sun et al., 2022) 

Machine Learning 0.125°×0.125° 1990-2019 Monthly DMA8 

Copernicus Atmosphere Monitoring Service 

(CAMS)(Inness et al., 2019) 

Chemical Reanalysis 0.75°×0.75° 2003-2020 3-Hourly 

GEOS-Chem (GEOS)(Qu et al., 2020b) Chemical Reanalysis 2°×2.5° 2005-2016 DMA8 

Tropospheric Chemistry Reanalysis Version 

2 (TCR-2)(Miyazaki et al., 2020b) 

Chemical Reanalysis 1.125°×1.125° 2005-2020 2-Hourly 
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Figure 1: Yearly trends of ground-level ozone for six datasets, shown for (a) the area weighted global mean ozone over land, and (b) 

population weighted global mean ozone, where ozone is expressed as OSDMA8. Yearly trends for individual world regions are shown 

in Figures S2 and S3. Mann-Kendall trend test for population weighted global mean over the full time series for each dataset: BME 

0.688 ppb yr-1 trend with p-value < 0.0001, NJML -0.691 ppb yr-1 with p-value 0.0001, UKML 0.913 ppb yr-1  with p-value < 0.0001, 560 
CAMS 0.569 ppb yr-1 with p-value 0.0011, GEOS-Chem 0.164 ppb yr-1 with p-value 0.5334, TCR-2 0.4 ppb yr-1  with p-value 0.0343. 

Table 2: Yearly trends of area-weighted, and population-weighted global mean of ground-level ozone for six datasets with 95% 

confidence intervals (LowerCI and UpperCI) and p-values from 2006 to 2016. 

Dataset Slope Lower CI Upper CI p-value Weighted 

BME -0.12 -0.33 0.10 0.25 area 

NJML -0.24 -0.32 -0.16 0.00 area 

UKML 0.04 -0.02 0.11 0.16 area 

CAMS -0.05 -0.29 0.18 0.62 area 

GEOS -0.02 -0.14 0.10 0.71 area 

TCR-2 0.06 -0.03 0.15 0.18 area 

BME -0.04 -0.30 0.23 0.76 population 

NJML -0.26 -0.33 -0.19 0.00 population 

UKML 0.26 0.20 0.32 0.00 population 

CAMS 0.06 -0.23 0.34 0.67 population 
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GEOS 0.05 -0.04 0.14 0.23 population 

TCR-2 0.20 0.10 0.30 0.00 population 

 

 565 

 

Figure 2: Population weighted ozone (OSDMA8) trends per decade for six datasets, calculated over the 2006-2016 period analyzed 

for each dataset.  The different regions are defined in Table S7. Population weighted yearly trend of six datasets over priority regions 

(NAM, EUR, SAS, EAS, SEA, SAF, MDE) from 2006 to 2016 with 95% confidence intervals and p-values is shown in Table S11. 

Population weighted ozone (OSDMA8) trends per decade for six datasets over the full period is shown in Figure S4. 570 
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Figure 3: For six datasets from 2006 to 2016, (a) the 11-year ensemble mean, and (b) the average of annual standard deviations.   

Ozone data are reported as OSDMA8.  The mean and standard deviation for each year are shown in Figures S5 and S6. 575 
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Figure 4: The difference of OSDMA8 in each grid cell between the 11-year (2006-2016) mean of each of six datasets and the ensemble 

mean (Figure 3). Positive values indicate that the average estimate of the dataset is higher than the ensemble mean. Negative values 

indicate that the average estimate of the dataset is lower than the ensemble mean of the six datasets. Difference maps for each year 

are shown in Fig. S7. 580 
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Figure 5: Heatmaps of similarity among the six datasets, including (a) heatmaps of average of pairwise correlation (Pearson R) 

between each dataset from 2006 to 2016. (b) heatmaps of average of pairwise Root mean square difference (RMSD) between each 

dataset from 2006 to 2016. Group A designates five datasets with strong similarity, while Group B is composed of one dataset with 

lower similarity with the rest.  (c) Scatterplot of correlation and RSMD between each pair of datasets. The datasets with greatest 585 
similarity are in the lower left of panel c, and comparisons with the Group B dataset have lower correlation.  Heatmaps for each 

year are shown in Figure S8 and Figure S9. 
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Figure 6: Population exposed to 11-year average ozone (OSDMA8) from 2006 to 2016 in different regions. The horizontal axis 

represents ozone concentrations, and the vertical axis represents population size. Concentrations and population for each year are 590 
presented in Figure S10. The definitions of different regions are included in Table S7. 
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Table 3: The share of population exposed to ozone above particular thresholds in each world region, for the 2006 to 2016 average 

OSDMA8 for six ozone datasets. 0% means greater than 0 but less than 0.5%, 0 means no population share greater than this ozone 595 
concentration. Population shares for each year are shown in Table S8. The definitions of different regions are included in Table S7.  

 

  

Dataset BME NJML UKML CAMS GEOS TCR-2 
Region >30 >50 >70 >30 >50 >70 >30 >50 >70 >30 >50 >70 >30 >50 >70 >30 >50 >70 

EAS 100% 61% 0% 100% 72% 3% 100% 99% 31% 100% 67% 0% 100% 95% 4% 100% 94% 41% 

EUR 99% 16% 0 100% 76% 0 99% 77% 0 98% 9% 0 100% 44% 0 100% 70% 0% 

MDE 100% 79% 0 100% 99% 5% 99% 94% 0 100% 88% 8% 100% 99% 4% 100% 94% 38% 

NAM 99% 17% 0% 100% 88% 3% 99% 84% 0 100% 40% 0 100% 55% 0 99% 86% 0 

SAF 93% 3% 0 99% 36% 0% 98% 10% 0 86% 8% 0% 99% 14% 0 98% 18% 1% 

SAS 100% 89% 0% 100% 99% 8% 100% 99% 40% 99% 96% 12% 99% 95% 0% 99% 90% 10% 

SEA 84% 0% 0 89% 27% 0 97% 41% 0 88% 24% 6% 89% 0% 0 85% 13% 0 

GLO 96% 42% 0% 99% 70% 4% 98% 69% 16% 93% 48% 4% 98% 59% 1% 97% 64% 13% 
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Figure 7: Performance evaluations of six datasets with TOAR-II observations in 2016 for OSDMA8. The observation-prediction 

evaluations are presented in scatter plots with densities estimated by a Gaussian kernel function. Determination (R2) and root mean 

squared error (RMSE) are given. (a) The evaluation includes all monitor stations in the TOAR-II network in 2016. (b) The evaluation 605 
includes only monitor stations with observations above 50 ppb in the TOAR-II network in 2016. The dashed line marks where 

TOAR-II observations equal estimates (y=x line), and the solid black line represents the best-fit line. Performance evaluations for 

each year are shown in Figure S11 and Figure S12. 
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Figure 8: Normalized mean bias of six databases against TOAR-II observations (OSDMA8) at different quantiles in 2016. 0%: 13.46 610 
ppb; 10%: 36.75 ppb; 20%: 39.80 ppb; 30%: 41.89 ppb; 40%: 43.57 ppb; 50%: 45.06 ppb; 60%: 46.82 ppb; 70%: 48.93 ppb; 80%: 

52.18 ppb; 90%: 57.21 ppb; 100%: 86.25 ppb. Normalized mean bias for each year against TOAR-II observations are shown in 

Figure S14. Different quantiles of TOAR-II observations for other years are shown in Table S9. 
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Figure 9: (a) Time series of determination (R2) between each dataset and TOAR-II observations of OSDMA8 from 2006 to 2016. (b) 

Time series of root mean squared error (RMSE) between each dataset and TOAR-II from 2006 to 2016. 
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Table 4: Performance evaluation of six datasets for countries (union) with the most monitors in 2016 against TOAR-II observations 

of OSDMA8. Number is the number of the TOAR-II monitor stations in each country. Density (per km2) is the density of the TOAR-

II monitors in each country based on land area. Estimate is the average of the grid estimates for each dataset at the TOAR-II monitor 

locations in each country. Linear regression R2 and root mean squared error (RMSE) against TOAR-II observations in each country 

are presented. Country names are United States of America (USA), China (CHN), Japan (JPN), South Korea (KOR), Canada (CAN). 625 
EU-27 includes Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, 

Sweden. Others is all other countries in TOAR-II apart from those listed. Performance evaluations for other years in these countries, 

are shown in Table S10. 

Dataset Country EU-27 USA CHN JPN KOR CAN Others 

Number 2170 1425 1405 1108 315 260 330 

Density 5.43E-4 1.56E-4 1.50E-4 3.04E-3 3.23E-3 2.96E-5 1.07E-5 

TOAR 43.21 47.03 53.10 43.84 51.50 37.39 40.55 

BME Estimate 43.30 45.12 50.26 44.69 51.79 35.26 39.05 

R2 0.63 0.71 0.63 0.03 0.10 0.46 0.48 

RMSE 3.91 4.12 6.97 4.59 7.33 4.39 8.66 

NJML Estimate 53.53 48.44 53.39 49.40 54.62 43.79 48.63 

R2 0.41 0.58 0.57 0.00 0.07 0.30 0.51 

RMSE 11.49 4.55 6.86 7.42 8.01 7.57 11.59 

UKML Estimate 53.27 52.54 66.78 61.45 65.02 46.87 49.01 

R2 0.21 0.38 0.37 0.01 0.01 0.33 0.32 

RMSE 11.54 7.52 16.40 18.25 15.54 10.32 13.01 

CAMS Estimate 42.17 49.67 53.85  44.91 58.93 39.54 39.84 

R2 0.32 0.34 0.07 0.01 0.01 0.28 0.39 

RMSE 5.75 6.65 10.62 4.95 12.46 4.63 9.40 

GEOS Estimate 49.76 50.58 60.48 56.99 65.94 45.73 44.54 

R2 0.30 0.39 0.37 0.03 0.00 0.44 0.31 

RMSE 8.41 6.08 11.15 13.94 16.36 9.08 10.70 

TCR-2 Estimate 51.83 55.54 66.43 58.37 67.87 45.97 48.32 

R2 0.33 0.23 0.36 0.00 0.02 0.43 0.54 

RMSE 10.15 10.58 15.99 16.69 18.53 9.84 11.43 
 630 
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