10

15

20

25

30

Intercomparison of global ground-level ozone datasets for health-
relevant metrics

Hantao Wang!, Kazuyuki Miyazaki?, Haitong Zhe Sun’®, Zhen Qu*, Xiang Liu°, Antje Inness®, Martin
Schultz’, Sabine Schroder’, Marc Serre!, J. Jason West!

"Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, 27599,
USA

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91125, USA

3Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228,
SG

“Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, 27606, USA
SDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA

S*ECMWEF, Shinfield Park, Reading, RG2 9AX, UK

"Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Jiilich, 52428, Germany

Correspondence to: J. Jason West (jasonwest@unc.edu)

Abstract

Ground-level ozone is a significant air pollutant that detrimentally affects human health and agriculture. Global ground-level
ozone concentrations have been estimated using chemical reanalyses, geostatistical methods, and machine learning, but these
datasets have not been compared systematically. We compare six global ground-level ozone datasets (three chemical

reanalyses, two machine learning, one geostatistics) against-ene-anetherandrelative to observations and against one another,

for the ozone season daily maximum 8-hour average mixing ratio, for 2006 to 2016._Comparing with global ground-level

observations, most datasets overestimate ozone, particularly at lower observed concentrations. In 2016, across all stations,

grid-to-grid R? ranges from 0.50 to 0.75 and RMSE 4.25 to 12.22 ppb. Agreement with observed distributions is reduced at

ozone concentrations above 50 ppb. Results show significant differences among datasets in global average ozone, as large as

5-10 ppb, multi-year trends, and regional distributions. For example, in Europe, the two chemical reanalyses show an
increasing trend while the-other datasets show no increase. Among the six datasets, the share of population exposed to over 50
ppb varies from 61% [28%. 94%] to 99% [62%, 100%] in East Asia, 17% [4%. 72%] to 88% [53%. 99%] in North America,
and 9% [0%. 58%] to 77%76% [22%. 96%] in Europe (2006-2016 average). These-differences-are-large-enough-to-impaet
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sharing some of the same input data, we found important differences-amengthesedatasets, likely from variations in approaches,
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resolution, and other input data, highlighting the importance of continued research on global ozone distributions._These

discrepancies are large enough to impact assessments of health impacts and other applications.

1. Introduction

Tropospheric ozone is a secondary pollutant that significantly impacts human health, plant life, and the climate system. Past
studies have shown that ozone exposure can cause health effects ranging from mild subclinical symptoms to mortality (Balmes,
2022). The Global Burden of Disease 2021 (GBD) study estimated that ground-level ozone contributed to approximately
490,000 (95% UI: 107,000-837,000) global deaths in 2021, representing 0.72% (95% UI: 0.16% — 1.18%) of all deaths that
year (Brauer et al., 2024). Ozone exposure is harmful not only to humans but also to plants. Ozone can enter plants through
their stomata and cause oxidative damage, which reduces the global yields of major crops such as soybean, wheat, rice, and
maize (Ainsworth, 2017; Mills et al., 2018a). Ozone is also an important greenhouse gas, ranking third behind carbon dioxide
and methane in its contribution to anthropogenic climate change (Masson-Delmotte et al., 2021). Gaudel et al. find that since
the mid-1990s, tropospheric ozone above the surface has increased across all 11 study regions in the Northern Hemisphere
that they defined and analyzed (Western North America, Eastern North America, Southeast North America, Northern South
America, Northeast China/Korea, Fhe-Persian Gulf, India, Southeast Asia, Malaysia/Indonesia, Europe, Gulf of Guinea)
(Gaudel et al., 2020). In the United States, although extreme ground-level ozone concentrations have declined, winter ground-
level ozone concentrations have increased in_the Southwest and Midwest regions since 1990s (Chang et al., 2024). Using one
global ozone dataset, from data fusion of ground observations and chemical model outputs, it is estimated that in 2017 21% of
the global population was exposed to ozone concentrations above 65 ppb, and 96% lived in areas where concentrations
exceeded the WHO guideline (30 ppb for annual metric) (Becker et al., 2023; Delang et al., 2021). Despite existing assessments,
substantial uncertainties remain due to observational gaps, especially in remote and developing regions. The lack of knowledge
of the ground-level ozone distribution in these regions limits our ability to accurately assess ozone impacts on human health

and crops.

The Tropospheric Ozone Assessment Report (TOAR) aggregates ozone observations from thousands of monitoring stations
worldwide, forming the most extensive ground-level ozone monitoring data compilation to date (Schultz et al., 2017). Using
the TOAR dataset, researchers have analyzed the global distribution, trends, and impacts of surface level ozone (Gaudel et al.,
2018). Currently, the second phase of the Tropospheric Ozone Assessment Report (TOAR-II) aims to include additional
ground-based stations, especially new networks in China and India. However, despite significant progress, there remain large
regions with limited ground-based monitoring, and a gap in understanding ground-level ozone variations over time and space.
To bridge gaps in regions lacking ozone monitors, various methods, including chemical reanalysis based long-term data
assimilation, machine learning, and geostatistical methods have been employed. Chemical reanalysis is an approach that

integrates observations from various sources including satellites using data assimilation and chemical transport models (CTMs)
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to reconstruct historical atmospheric chemical composition and understand long-term changes and trends in air quality and
climate forcing (Miyazaki et al., 2020b). Tropospheric ozone records have been provided in recent chemical reanalyses
including the Tropospheric Chemistry Reanalysis Version 2 (TCR-2, (Miyazaki et al., 2020b)), the Copernicus Atmosphere
Monitoring Service (CAMS, (Inness et al., 2019)), and data assimilation using the GEOS-Chem adjoint model (GEOS-Chem,
(Qu et al., 2020b)). In addition, two machine learning estimates of global ground-level ozone have been produced to date: one
using a space-time Bayesian neural network trained on TOAR observations and CMIP6 simulations (Sun et al., 2022), and
another with a cluster-enhanced ensemble learning method that utilizes various data sources (Liu et al., 2022). Finally,
geostatistical methods were applied by DeLang et al. who used Bayesian Maximum Entropy (BME) to estimate ozone through
a data fusion of TOAR observations and output from multiple CTMs (Delang et al., 2021). This approach was further enhanced
by incorporating the Regionalized Air Quality Model Performance (RAMP) framework to correct model biases (Becker et al.,
2023). These estimates of global ozone distributions and trends have supported analyses of health impacts. For example, ozone
estimates of DeLang et al. (2021) were used in both the GBD 2021 study (Murray et al., 2020), and in a study of ozone health
effects in urban areas globally (Malashock et al., 2022). However, there remains a lack of knowledge regarding the consistency

of ground-level ozone estimates, distributions, and long-term trends across these global ozone mapping products.

Inconsistencies in these datasets could significantly impact public health research, especially in assessing the risks of ozone-
related health impacts, and may impede the development of effective environmental policies and ozone management strategies
(Post et al., 2012). Although each dataset incorporates a considerable amount of observational information and model
simulations through various methodologies, each inherently incorporates biases from these input data sources during the fusion
processes. While satellite measurements of precursor species can be used to constrain surface and lower tropospheric ozone in
chemical reanalysis (Miyazaki et al., 2012), the performance of chemical reanalysis surface ozone is limited in part by the low
sensitivities of satellite ozone measurements near the surface, as well as model simulation errors. Data fusion methods integrate
outputs from multiple models with inherent biases, potentially propagating these biases to the final estimates (Delang et al.,
2021). Furthermore, machine learning methods trained on observation data may yield inaccuracies in rural and remote areas
due to the uneven distribution of ground-level ozone monitoring stations (Liu et al., 2022; Betancourt et al., 2022). Therefore,
conducting comparisons and evaluations of various types of ground-level ozone mapping products is essential to understand

the inconsistencies and biases in these datasets, ultimately benefiting global health studies.

This study aims to compare ground-level ozone concentrations estimated by six datasets, and to evaluate their accuracy over
the 2006-2016 period, with a particular emphasis on their capacity to represent long-term ozone trends across different regions.
The comparison and evaluation include three chemical reanalysis datasets, two machine-learning datasets, and one
geostatistical dataset. The period 2006-2016 is chosen as the period over which the six datasets all produce ozone estimates.
The ozone seasonal daily maximum 8-hour average mixing ratio (OSDMAS) was selected as the health-relevant metric for

annual ozone evaluation (Turner et al., 2016). Our study specifically utilizes the OSDMAS8 metric because we focus on
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evaluating long-term ozone exposure, an aspect not comprehensively compared previously among global ozone mapping
products. We employed a comprehensive set of indicators to assess the congruence between these datasets, globally and
regionally, including for long-term population weighted ozone outdoor exposure. Relative to the latest TOAR-II observational
dataset, this study also examines the six datasets’ ability to estimate ground-level ozone concentrations across various regions
for the years 2006-2016. This research endeavors to characterize differences among ground-level ozone datasets, including
discrepancies in ozone estimates, distributions, and trends, that could hinder evaluation of ozone's effects on health and
agriculture, as well as impede the formulation of effective environmental policies. Although the primary focus of this study is

on health impacts, the results are also largely applicable to agricultural and ecosystem impacts.

2. Data

As shown in Table 1, this study compares and evaluates ground-level ozone estimates from six global ozone mapping products
in three categories. We utilized ozone seasonal daily maximum 8-hour average mixing ratio (OSDMAS) as the yearly ozone
metric across all datasets. OSDMARS is defined here as the maximum of the six-month running monthly mean daily maximum
8-hr ozone (DMAR) from January of the current year wrapping to March of the following year (Delang et al., 2021). OSDMAS
is GBD’s ozone metric for quantifying health effect from long-term ozone exposure (Brauer et al., 2024), and it is the metric
used in the World Health Organization’s air quality guidelines, with values of 30 ppb for the guideline and 50 ppb for the
interim target (World-Health-Organization, 2021). All observations and model estimates are converted to OSDMAS using the

same algorithm. Details on the input data used to construct each dataset are available in the Supporting Information (SI).

2.1 Geostatistical ozone dataset

The BME dataset uses geostatistical methods to provide high-resolution global ground-level ozone estimates. First, M*>Fusion
(Measurement and Multi-Model Fusion) is a statistical method developed to improve estimates of global surface ozone
distributions by integrating observational data from TOAR and outputs from multiple chemistry models. Specifically, the
method assigns weights to multiple global atmospheric chemistry models based on their regional accuracy compared to
observed ozone values (Chang et al., 2019), creating a composite of multiple global atmospheric chemistry models by weights.
The details of input data can be found in Table S1. Then BME data fusion integrates this multi-model composite with
observations in space and time, and finally BME estimates are refined from 0.5° % 0.5° to 0.1° x 0.1° (Delang et al., 2021).
The observations are from TOAR-I for 1990 to 2017, complemented by data from the Chinese National Environmental
Monitoring Center (CNEMC) for 2013 to 2017. The latest version of this dataset employs RAMP for bias correction of
M3Fusion inputs (Becker et al., 2023). The BME ozone estimates are more accurate than the average outputs from multiple
models, achieving an R? of 0.63 at 0.1° x 0.1° resolution, as evaluated against observations through cross-validation (Delang
et al., 2021). Furthermore, incorporating RAMP into the BME process significantly improves R? by 0.15, especially in areas

far from monitoring stations, as demonstrated through checkerboard cross-validation (Becker et al., 2023).
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2.2 Machine learning ozone datasets

We utilized two machine learning global ground-level ozone datasets from the University of Cambridge, and Nanjing
University. The University of Cambridge's machine learning (UKML) dataset was developed using a space-time Bayesian
neural network, fusing various data sources including historical observations, CMIP6 multi-model simulations (AerChemMIP
historical simulations and ScenarioMIP projections), population distributions, land cover properties, and emission inventories
(Sun et al., 2022) (input data summarized in Table S3S2). The UKML model categorized TOAR-I monthly ozone observations
from 1990 to 2014 into urban and rural areas, and used these as labels for supervised learning. This model generates monthly
global gridded ozone estimates from 1990 to 2019, downscaled to a 0.125° x 0.125° spatial resolution. It exhibited great
performance in predicting urban and rural surface ozone concentrations, with R? values ranging from 0.89 to 0.97 and RMSE

values between 1.97 and 3.42 ppb (Sun et al., 2022).

Nanjing University's machine learning (NJML) dataset was created using a cluster-enhanced ensemble machine learning
method. This dataset integrates various data sources, including satellite observations, atmospheric reanalysis, land cover
properties, emission inventories and meteorological features (Liu et al., 2022). The main input data for NJML include
meteorological parameters from ERAS, atmospheric chemistry from the CAMS chemical reanalysis, aerosol concentrations
from MERRA-2, satellite observations from OMI/Aura, and emissions data from CEDS, spanning 2003-2019 with varying
spatial resolutions (input data summarized in Table S2S3). It utilizes the monthly mean of daily maximum 8 h average (DMAS)
data from TOAR-I and CNEMC observations from 2003-2019 as training data. The NJML dataset produces monthly global
gridded ozone estimates from 2003 to 2019 with a 0.5° x 0.5° spatial resolution. The model demonstrates robust performance
in both spatial and temporal predictions of ground-level ozone, with R? values of 0.909 and 0.925, respectively (Liu et al.,

2022).

2.3 Chemical reanalysis products

We utilized surface ozone analysis fields from three chemical reanalysis products: the Tropospheric Chemistry Reanalysis
Version 2 (TCR-2, (Miyazaki et al., 2020b)), the Copernicus Atmosphere Monitoring Service reanalysis (CAMS, (Inness et
al., 2019)), and the GEOS-Chem reanalysis (GEOS, (Qu et al., 2020b)). Different from the machine learning and geostatistical
ozone datasets, the chemical reanalysis products utilized satellite observations of atmospheric composition to produce three-
dimensional profiles of atmospheric composition. In situ surface observations were not included in the global chemical
reanalysis data assimilation. Because of the lack of direct observational constraints, challenges remain in estimating surface
ozone in the current reanalysis products (Huijnen et al., 2020). Detailed comparisons of these reanalyses for ozone over the
entire troposphere at finer timescales have been conducted by the TOAR-II chemical reanalysis working group (Sekiya et al.,

2024; Jones et al., 2024; Miyazaki et al., 2024), but without a focus on the ground level and long-term metric as analyzed here.
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TCR-2 was generated by assimilating multiple satellite observations into the MIROC-Chem model, that was developed as a
part of the multi-model multi-constituent data assimilation (Miyazaki et al., 2020a). The meteorological fields were nudged to
the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis meteorology. The data assimilation
employed is an ensemble Kalman filter technique, which was used to effectively correct the emissions and concentrations of
various chemical species (Miyazaki et al., 2020b). The assimilated data ineladesinclude ozone, CO, NO,, HNOj; and SO, from
satellite instruments such as OMI, MLS, GOME-2, SCTAMACHY and MOPITT over the period from 2005 to 2021 (input
satellite data summarized in Table S6S4). TCR-2 provides 2-hourly global ozone profiles at a 1.1° x 1.1° spatial resolution,
with the regional mean ozone bias against global ozonesonde measurements ranging from -0.4 to 4.2 ppb in the lower

troposphere (850-500 hPa) (Miyazaki et al., 2020b).

CAMS, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European
Commission, provides the global reanalysis dataset on atmospheric composition developed by ECMWF. The main inputs for
the CAMS ECMWF Atmospheric Composition Reanalysis 4 (EAC4) chemical reanalysis are retrievals of CO, ozone, NO,
and aerosol optical depth (AOD) from multiple satellite instruments including MLS, OMI, GOME-2, SCTAMACHY, MIPAS,
SBUV/2 and MOPITT, covering various periods ranging from 2003 (input satellite data summarized in Table $4S5). CAMS
employed the four-dimensional variational data assimilation (4D-Var) method to integrate the satellite measurements under
ECMWF's Integrated Forecasting System (IFS) CB05 model (Inness et al., 2019). It provides 3-hourly global profiles of ozone
and other species at a 0.75° x 0.75° spatial resolution. While CAMS generally improves over previous analyses, challenges

and biases remain, particularly at high latitudes and in accurately capturing seasonal variations (Inness et al., 2019).

The GEOS-Chem dataset is developed through 4D-Var data assimilation of NO, column densities using the GEOS-Chem
adjoint model that includes updates in stratospheric and halogen chemistry (Henze et al., 2007). The GEOS-Chem model is
driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological fields
from the NASA Global Modeling and Assimilation Office (GMAQO). Prior anthropogenic emissions of NO,, SO, NHs, CO,
NMVOCs (non-methane volatile organic compounds), and primary aerosols were obtained from the HTAP 2010 inventory
version 2 (Janssens-Maenhout et al., 2015) (input data summarized in Table S5S6). Operating at a 2° x 2.5° resolution, the
assimilation estimates global ozone more accurately than the forward model from 2006 to 2016 by deriving emissions of NO;
through inverse modelling. The GEOS-Chem dataset exhibits a small bias across all ozone metrics, and among metrics it has
the best spatial consistency for DMAS8 (R? = 0.88) (Qu et al., 2020b). However, the model has limitations in accurately

capturing regional variations and seasonal trends in 0zone concentrations.

2.4 Ground-level ozone observations

For the evaluation in this project, we utilized both urban and non-urban ground-level ozone observations for the yearly

OSDMAS metric from the updated TOAR-II dataset, covering 2006 to 2016 (Schroder et al., 2021). This dataset represents
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the most extensive collection of tropospheric ozone measurements available globally. Compared to TOAR-I (Schultz et al.,
2017), TOAR-II incorporates an expanded dataset of ozone observations, notably including monitoring data from
approximately 1,400 stations across China for the years 2015 to 2016 that are included in TOAR-II (https://toar-data.fz-
juelich.de/gui/v2/dashboard/, last access: 15 November 2024). We require that at least 75% of the days in a month must have
valid DMAS values for that month to be included in the annual data calculations. The total number of observation sites used
in our assessment varied from a minimum of 3715 in 2006 to a maximum of 7013 in 2016. Given that three ozone products in
this study utilize the TOAR-I dataset for training or input, evaluations using the latest TOAR-II dataset for sites not included
in TOAR-I can provide more objective results. Figure S1 illustrates the spatial distribution of TOAR-II monitoring stations in

2016. The version of the TOAR-II database employed in this analysis, as of Nevember 2024, may notrepresent-itsfinal
verstonMay 2025.

2.5 Population data

We analyzed ozone population exposures for each dataset using the globally gridded population data for the year 2019 from
the Global Burden of Disease (GBD) 2019, which has a resolution of 0.1° x 0.1° (Lloyd et al., 2019). Since we use the same
gridded population data for all years of the project, we focus on differences in exposure attributable to changes in ozone levels
rather than changes in population. Therefore, population-weighted ozone over 2006 to 2016 can be biased even if the ozone

data are unbiased.

3. Methodology
3.31 Evaluation with ground-level observation

Previous research has—adepted—acreated 1°x1° grid-cell-averaged hourly ozone data from FOAR-surface observations to
evaluate global chemistry model performance over North America and Europe, which is suitable for analyzing extremes and
validating seasonal and diel ozone cycles (Schnell and Prather, 2017; Schnell et al., 2015). We utilized OSDMAS from TOAR-
II observations covering 2006 to 2016 to evaluate the six datasets. During the evaluation process, we retained the original

resolution of the six datasets (Table 1).-We

Considering that the six datasets have different resolutions and are designed for different applications, we adopted a dual

evaluation strategy to provide a comprehensive assessment of their performance. The first method is a grid-to-grid evaluation.

Similar to the approach of Schnell et al. (2015), we re-gridded TOAR-II observations to a 0.1° x 0.1° resolution by an inverse

distance weighted method and then aggregated them to match the native resolution of each of the six datasets. In this approach,

the sample size for each evaluation varies reflecting the varying resolution of the datasets; for 2016, BME had 173,718 grid

cell pairs, NJML had 7,099, UKML had 162.419. CAMS had 4.614, GEOS-Chem had 782, and TCR-2 had 2.195. We also

adopted the grid-to-grid evaluation method for regional evaluations, as it provides better spatial representativeness over large
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areas. To quantify the uncertainty of the six datasets’ estimates, we determined the lower and upper bounds (95% confidence

interval), derived from the grid-to-grid regression analysis performed between the TOAR-II observations and each of the six

datasets at their native resolutions.

The second method is a standard grid-to-point evaluation-appreachwhere-the-datafrom-each TOARH. This approach ensures
a consistent sample size across all datasets by comparing each dataset's estimate at the grid cell containing an observation site
was-matehed-with-acorrespondinggrid-eellineach-datasetlocation. For grid cells swithcontaining a TOAR-II ebservationsite
but no valid estimate in-a-dataset-(NA value), we used the nearest valid estimate instead. Fable-S12-displays-the-numbereof

This method captures a penalty for missing values-in-each-datasetin 2016-at FOAR-H-loeations,showing that-data and coarse
resolution, only BME, NJML, and UKML hawvehad a small number of missing estimates—This-method-ensures-the samesample

TFOARH-ebservations—Our at TOAR-II locations. The grid-to-point evaluationappreachmethod was used to evaluate model
bias, as it ensures a consistent sample size and-eaptares-penaltiesfor missing-datainacross all datasets—We when performing

evaluations on different quantiles of the TOAR-II observations. For both methods. we assessed the performance of each dataset

using the coefficient of determination (R?) between ozone estimates and observations, and root mean square error (RMSE) as

the primary metrics. We selected the 50 ppb as the threshold for high ozone concentration because it corresponds to the long-

term air quality interim target of WHO.

3.2 Pairwise spatial similarity comparison

Before comparing concentration estimates between datasets, we converted all ozone estimates from each dataset to OSDMAS,

ensuring only one ozone estimate value per year for each grid cell (see the original temporal resolution in Table 1). The
OSDMAS metric is used for long-term ozone exposure given its utility and wide acceptance in health impact studies, despite
the inherent loss of shorter temporal dynamics. We employed two quantitative metrics to classify how the datasets relate with
one another: the Pearson correlation coefficient (R) and the root mean square difference (RMSD). The pairwise correlation R
indicates the similarity in geographical distribution of ozone concentrations, and the RMSD quantifies the difference in ozone
estimates between datasets. A higher R value suggests greater similarity in the spatial pattern between two datasets and a
smaller RMSD indicates a less significant discrepancy in ozone concentration estimates between two datasets. We then group
the six datasets, adopting a method that maximizes the difference between the correlation R within and outside the groups. The
idea of this grouping is to distinguish the spatial similarity between the datasets, which is based on the pairwise correlation.
For each grouping combination, 4 variables are computed: the sum of pairwise correlations within groups (C;), the sum of
pairwise correlations outside the groups (C,), the number of dataset pairs within groups (N;), and the number of dataset pairs
outside the groups (N,). The objective is to ascertain the grouping combination that maximizes the difference between Ci/N;

and C,/N,. More details of the calculation can be found in Text S1.
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3.13 Long-term exposure comparison

es=Subsequently, we re-gridded all datasets and TOAR-II observations to 0.1° x

0.1° resolution to facilitate comparison at the same spatial scale. During re-gridding, we ensure that the average value of the
finer grid cells matches that of the original coarse grid cell; for example, if a grid cell has a value of 30 ppb, then after re-
gridding to finer grid cells, the average value of these grid cells will still be 30 ppb. Data over the ocean were excluded,

retaining only land and populated islands for analysis. We calculated the yearly ozone trend using 50% quantile regression for

each dataset using both population-weighted and area-weighted approaches, with details of the calculation methods provided

in Text S2. In this study, the trend is interpreted from the slope of the quantile regression, and confidence in the trend is

determined by its p-value: p <0.01 is considered very high certainty; 0.01 <p < 0.05, high certainty; 0.05 <p < 0.1, medium

certainty; 0.1 < p < 0.33, low certainty: and p > 0.33, no evidence. We also regressed population-weighted mean ozone

concentrations in different world regions of each dataset against the year to evaluate ozone long-term variations. For each grid
cell we calculated the mean and standard deviation of the six OSDMAS values obtained from each dataset to highlight regional
differences and similaritics. We also calculated the deviation from the ensemble mean for each dataset to assess geographic

distribution variations.

Furthermore, we compared ozone exposure differences in various regions for each dataset to evaluate the potential for health
impacts. -Here we estimate exposure as the ambient concentration in 0.1° x 0.1° grid cells related to population at their
residences, not including other factors that affect human exposure such as time-activity patterns. DPetals-eftheseealeulations
are-available-with-parameters-in-the-SETo quantify the uncertainty in our exposure analysis, we established lower and upper

bounds for all population exposure and share of population estimates. The OSDMAS8 95% confidence interval (CI) for each

dataset is determined through a grid-to-grid linear regression between each dataset and the re-gridded TOAR-II observations

based on 0.1° x 0.1° grid cells. We use regional groupings defined by HTAP2 (Koffi et al., 2016), as detailed in the Table
S7.

54. Evaluation against TOAR-II observations
54.1 Evaluation of ground-level ozone in 2016

We conducted regression and bias analyses for each dataset in comparison with TOAR-II observations for each year from
2006 to 2016. Fig. 71(a) and Fig. 1(c) illustrates the scatterplot from the linear regression analysis of each dataset against the
7013 TOAR-II observations in 2016, accompanied by a density core that visualizes the data point distribution. The year 2016
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is presented here because it has the highest number of TOAR-II observations from 2006 to 2016, and other years can be found
in Figure S+1S2 and S3. For 2016, BME outperforms other datasets_in both evaluation method, with the highest R? (0.75 for

grid-to-grid, 0.63_for grid-to-point) and lowest RMSE (4.25 ppb for grid-to-grid, 5.28 ppb_for grid-to-point), its density

eerecores intersecting the y=x line. BME has an advantage in that its methods should nearly match the observed values for
locations used as inputs to the data fusion. Consequently, we conduct another validation for TOAR-II sites not used as input
for BME in 2016 (Figure S13S4). After excluding all sites located at observation points previously used as BME input, using

3911 observations for validation, BME performs well compared to another datasets, though its R? decreases significantly to

0.65 for grid-to-grid and 0.53- for grid-to-point. In Fig. Z1(a), all three chemical reanalysis datasets exhibit a moderate R?

ranging from 0.51 to 0.60 for grid-to-grid and 0.35 to 0.41_for grid-to-point, comparable to the performance of the machine

learning datasets, which have R? values of 0.50 and 0.56 for grid-to-grid, 0.37 and 0.38-_for grid-to-point. Among these five

datasets, CAMS has the lowest RMSE (76.00 ppb for grid-to-grid and 7.59 ppb_for grid to point), which is better than other

chemistry reanalysis products but relatively low R?(0.35):51 for grid-to-grid and 0.35 for grid-to-point). Its density eerecores

slightly below the y=x line suggests CAMS estimates are marginally lower than TOAR-II observations. GEOS-Chem and
TCR-2 demonstrate adequate performance, albeit with higher RMSE values of 8.47 ppb and 10.26 ppb for grid-to-grid, 10.27

ppb and 13.23 ppb _for grid-to-point, respectively. Their density cores positioned above the y=x line indicate that these models
tend to produce higher estimates compared to the TOAR-II observations. NJML;-despite-differinggeographie-distributions
from-other-datasets(Fig—5); shows acceptable performance with higher R? (0.3856 for grid-to-grid and 0.38 for grid-to-point)
than CAMS and lower RMSE (6.37 ppb for grid-to-grid and 8.63 ppb for grid-to-point) than TCR-2. UKML exhibits the

highest RMSE of 12.22 ppb for grid-to-grid and 13.49 ppb_for grid-to-point, and its density eerecores region isare above the

y=x dashed line, indicating an overestimation. This is because the UKML algorithm emphasizes higher ozone pollution levels
in rural and remote areas compared to adjacent urban districts, which consequently leads to an overestimation especially in

population-weighted metrics (Sun et al., 2024).

Fig. 71(b) and Fig. 1(d) focuses only on TOAR-II grid cells or sites with OSDMAS value above 50 ppb, showing that R? is
reduced compared to the comparison of all ozone measurements (Fig. 71(a) and Fig. 1(c)) for all six datasets, suggesting
overall weaker agreement between modeled and observed ozone distributions at higher concentrations. All six datasets show

decreasing performance from BME, NJML, and UKML to TCR-2, GEOS-Chem, and CAMS, with R? 0f 0.35, 0.33.0.29, 0.25

0.08. and 0.04 for grid-to-grid; 0.37, 0.30, 0.26, 0.25, 0.17, and 0.07_for grid-to-point, respectively. However, the change of

biases varies among datasets at higher concentrations. Specifically, overestimation is reduced in the UKML, NJML, GEOS-

Chem, and TCR-2 datasets when observations exceed 50 ppb-_in both evaluation methods. Conversely, we observe increased

underestimation in the BME and CAMS datasets at ozone levels above 50 ppb. This proportional bias is consistent with the

linear regression slope, which is less than | for all six datasets in Fig. 1. Fig. Fig—82 shows the normalized mean bias for

stratified concentration intervals in 2016, which provides insights into the average discrepancy between estimates and TOAR-

IT observations across ozone concentration ranges. All six datasets overestimate TOAR-II observations below the 40%
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concentration interval. Only BME underestimates above the 40% concentration level, CAMS underestimates above the 80%
concentration interval, and NJML underestimates above 90% concentration interval, aligning with the ebservationsdensity
kernel presented in Fig. 41. BME demonstrates the smallest mean bias, particularly below the 50% concentration level and
CAMS shows the smallest mean bias in the 50% to 90% concentration interval. In the 90% to 100% concentration interval,
NJML and GEOS-Chem have the smallest mean bias. In summary, BME and CAMS perform better overall in terms of
normalized mean bias, with other models tending to overestimate ozone at almost all concentrations. Detailed plots of

normalized mean bias for stratified concentration intervals for each year from 2006 to 2015 are shown in Figure S5.

54.2 Evaluation of ground-level ozone in different countries or regions

Fig. 3 presents the distribution of population exposure calculated from six datasets and the gridded TOAR-II observations in

three world regions with a high density of observations, for 2016. Here we calculate the population-weighted kernel density

for population exposure to OSDMAS concentrations, based on the 0.1° x 0.1° resolution for each region, only for grid cells

where the re-gridded TOAR-II data have a value. Corresponding plots for other years (2006 to 2015) are shown in Figure S6.

Overall, the datasets are widely distributed, and the estimated exposure peaks vary. In East Asia (EAS), the population is

exposed to high ozone concentrations. The concentration distribution is broad and has multiple peaks from TOAR-II

observations, indicating a complex pollution environment, with a large population exposed to concentrations frequently

exceeding 50 ppb, even 70 ppb. BME and NJML show a similar distribution as TOAR-II. Significant differences exist between
UKML, CAMS and GEOS-Chem with the TOAR-II data for EAS. In Europe (EUR), exposure is concentrated between 40
and 50 ppb, indicating a more moderate and uniform exposure. The BME and CAMS have the best fit with the TOAR-II.
NJML, UKML, GEOS-Chem, and TCR-2 show a peak at a higher ozone concentration range of 50—60 ppb. In North America

(NAM), exposure peaks sharply in the 40 to 50 ppb range, which is slightly higher and more concentrated than in Europe. The
NJML dataset agrees best with the shape of the TOAR-II distribution, and GEOS-Chem and BME capture the overall shape

of the major exposure peaks well.

Table 42 presents the validation results for different countries or regions using re-gridded TOAR-II observations at each

dataset’s native resolution in 2016, focusing on the countries with the highest number of sites. Here we use-the R? to assess

the strength of the spatial correlation and RMSE to measure the bias across each country or region. The performance of each
dataset varies by region, indicating that a dataset's overall performance does not guarantee its effectiveness in all regions.
Reasonable R? and RMSE values are seen across all 6 datasets in the United States; BME leads with the highest R? (0.7175)
and lowest RMSE (4-123.48 ppb), and TCR-2 has the lowest R? (0.2343) with highest RMSE (1+0:589.43 ppb). In Japan, BME
leads with an RMSE of 4.5929 ppb, followed by CAMS at 4.9533 ppb, and UKML has the highest RMSE (48:2517.41 ppb).
Although-there-are-over 1000-monitors-in-Japan;-all datasets showpoor R*values below-0-1-The six

The datasets also perform poorly in South Korea, where FER-2GEOS-Chem has the highest RMSE (48-5314.71 ppb); BME)
and NJML has the lowest RMSE (7-332.68 ppb)._Although Japan and South Korea have a dense network of monitors, nearly

all datasets show a weak correlation with observations, with R below 0.2. Only the GEOS-Chem dataset has the highest R?
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value of 0.37 in Japan and 0.81 in South Korea, this result should be interpreted with caution, as the evaluation includes fewer

than 30 grid-to-grid pairs. The performance of datasets within China exhibits significant variability, where BME and NJML

demonstrate relatively good performance, and CAMS exhibits poor performance for R?, while for RMSE, CAMS performs
better than GEOS-Chem, TCR-2 and UKML. For other countries, which serve as a test of model performance in areas with
sparse observations, nearly all datasets exhibit better R? and- RMSE-values than in South Korea and Japan, with TCR-2;NJML
and BMENJML demonstrating particularly better performance than others. Overall, BME demonstrates strong performance
in most countries, particularly in the United States, where it achieves the highest R? and the lowest RMSE, suggesting both
strong spatial correlation with TOAR-II observations and high accuracy. NJML exhibits mixed performance, with relatively
high R? values indicating good correlation in the United States and China, but it falls short in EU-27 and-Canada-with high
RMSE-and-lowR? UKML presents consistently high RMSE values across countries suggesting high bias. CAMS displays
variable performance with low R? values in China, indicating a lack of spatial correlation, yet its RMSE values are relatively
small across all regions when compared to other chemical reanalysis datasets. Compared to CAMS, GEOS-Chem and TCR-2
exhibit reasenablebetter spatial correlations in Europe, the United States, China, and Canada. Netably-theyeutperform-all

her d e n nad o on orBME R_2D demon o o

= PO demonstratesthe bestR* performancein-othercountries-with-lessmonitoring
data—However, TCR-2 also presents high RMSE values across all regions. All-six Five datasets except GEOS-Chem exhibit

lower spatial correlation compared to TOAR-II observations in countries with high monitoring density, such as Japan and
South Korea, than in countries with lower monitoring densities. NJML, UKML, GEOS-Chem and TCR-2 show overestimates
compared to the TOAR observations in every country in the Table 42. Extending the analysis to the period from 2006 to 2016
(see tables in Table S+0S8), the percentage of underestimates from 6 datasets compared to TOAR observations in all countries

is below 20%.

54.3 Evaluation of ground-level ozone across different years

Fig. 94 presents time series plots of R?> and RMSE from the-evalaationgrid-to-grid and grid-to-point evaluations of each
databasedataset against TOAR-II observations from 2006 to 2016. It is important to note that the years 2015 and 2016 include

observations from China. In Fig. 4(a) and Fig. 4(c) BME consistently shows the largest R?, indicating its robust performance

near the monitor locations due to the utilization of observational data as input and the effective exploitation of spatiotemporal
autocorrelation among stations. Apart from BME, for both evaluation scenarios NJML outperforms other datasets in R? from

2010 to 264552014, and TCR-2 leads in 2007 and 2016;—-while UKME-does—so—in2008-and2009—Five. In grid-to-point

evaluation, five datasets, excluding NJML, demonstrate a drop in R? in 2010-A}, and all datasets show an increase in R? from

2015 to 2016. In grid-to-grid evaluation, GEOS-Chem shows an overall better performance in R? than CAMS, TCR-2 and

UKML. For both scenarios, BME maintains the lowest RMSE throughout the period, indicating the most accurate predictions.
CAMS also performs well in terms of RMSE. From 2006 to 2013. GEOS-Chem consistently has lower RMSE than both TCR-
2 and UKML. Meanwhile, NJML exhibits a decreasing RMSE trend-from 2006 to 2016. The clear differences in time series

of RMSE correspond with the yearly mean trends in Fig. +5. Datasets with lower ozone values, BME and CAMS, also exhibit
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lower RMSE, whereas those with higher estimates, specifically TCR-2 and UKML, have higher RMSE. From 2006 to 2016,

the performance rankings derived from R? values varied significantly between the two evaluation scenarios, whereas the RMSE

based rankings were nearly consistent.

45. Comparison between ozone mapping products
45.1 Temporal trends

Both the area-weighted and population-weighted mean trends of global OSDMAS reveal substantial differences among global
ozone mapping datasets (Fig. +5). Notably, BME and CAMS have lower ozone values than other datasets, for both metrics,
while UKML and NJML have higher ozone estimates, with differences between these datasets exceeding 5 ppb. The higher
values in GEOS-Chem and TCR-2 may be attributed to the remaining high bias in the forecast models, which is commonly
found in CTMs (Travis and Jacob, 2019). The population-weighted mean is higher than the area-weighted mean, by 5-10 ppb
across all datasets, and for UKML and BME, the disparity between population-weighted and area-weighted ozone
concentrations appears to widen over time. The faster increase in the population-weighted mean compared to the area-weighted
mean appears to be driven by rising ozone levels in highly populated regions. In Table 23, focusing on the-peried-frem-2006
to 2016, we find that NJML iswas the only dataset shewingto exhibit a downward trend #with very high certainty for both
area-wetighted and population-weighted mean ozone concentrations;-with-veryhigh-eertainty. In contrast, TCR-2 and UKML

only show increasing trends in population-weighted mean ozone during this period with very high certainty. However, while

the BME dataset shows a negative slope for the area-weighted mean, this downward trend has only low certainty; for the

population-weighted mean, there is no evidence of a decreasing trend. Fig. Fie—26 illustrates regional ozone changes per

decade, weighted by population, across different regions in each dataset over 2006 to 2016. NJML, despite its overall
decreasing trend in Table 23, does not uniformly show declines across all regions. The decrease in NJML is predominantly in
North America, notably over 8 ppb per decade in the US and Canada, while Sub Saharan Africa and South America exhibit
increases. BME and UKML, with the longest duration, both display decreasing trends in North America, and Europe, and
increases in Southeast Asia and Middle East. Both datasets indicate greater decreases in North America than in Europe and
more significant increases in the Middle East than in Southeast Asia. However, BME shows a downward trend in East Asia,
while UKML exhibits the reverse. CAMS and TCR-2's trends in Fig. 26 are less distinct, except for the decrease in North
America and the increase in East Asia, mirroring those of GEOS-Chem, which exhibits the smallest decadal ozone change,
likely due to not directly assimilating ozone from satellite observations. From Table SH-S9, we observe that some regions
exhibit a clearer trend from 2006 to 2016, with very high certainty across six datasets. In East Asia, BME and NJML observe
decreasing trends, whereas the other 4 datasets display increasing trends. In North America, all datasets display a downward
trend, and in Europe, BME, NJML, UKML and TCR-2 show a decline, contrasting with increases in CAMS and GEOS-chem.
Recent analyses using TOAR observations indicate that from 2006 to 2016, most sites in North America experienced

decreasing ozone, while many sites in East Asia exhibited significant positive trends (Chang et al., 2024; Fleming et al., 2018;
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Chang et al., 2017). These observed trends in North America, Europe and East Asia seem to agree best with the trends estimated
by BME and UKML. -Detailed plots of population weighted and area weighted trends for each dataset in each region are shown
in Figures S7 and S8.

45.2 Difference maps

Fig. 37 shows the spatial maps of the 11-year (2006-2016) average of the annual multi-model means of OSDMAS from the
six datasets, and the associated standard deviations. India, China, and the Middle East are estimated to have the world’s highest
average ozone concentrations, exceeding 50 ppb in the multi-model average. High ozone levels are also found in parts of
Europe and the eastern United States. Notably, regions in southern Africa near the Atlantic Ocean emerge as primary areas of
ozone pollution, where some locations have average concentrations exceeding 60 ppb. Conversely, the Amazon Basin in South
America, Central Africa, and Canada exhibit relatively lower ozone concentrations, with some areas below the WHO 30 ppb
guideline. The six datasets show greater variation (high standard deviations above 10 ppb) in South America and Africa,
particularly in rainforest regions, compared to North America and Europe, notably since these regions lack ozone monitors.

The eastern coast of China also exhibits significant discrepancies with standard deviations above 15 ppb. Detailed plots of the

annual multi-model means of OSDMAS from the six datasets, and the associated standard deviations for each year (2006 to

2016) are shown in Figures S9 and S10. Fig. 48 compares the mean ozone concentration for each dataset with the multi-dataset

average (Fig. 37(a)), showing wide variation in the magnitude and spatial distributions of ozone concentrations among the
datasets. BME and CAMS display lower values than the average of six datasets in most regions, consistent with Fig. 1 and Fig.
5. BME records concentrations higher than average in central South America and central Africa near the Atlantic, while CAMS
shows elevated levels in Southeast Asia and along the Middle East coast, contrasting TCR-2's lower coastal and higher inland
concentrations. NJML and UKML report above-average values, except for NJML in southern China and UKML near the

Sahara Desert and the Indian Ocean. Detailed plots of difference between annual ensemble mean and each dataset estimate for

each year (2006 to 2016) are shown in Figure S11.

45.3 Pairwise spatial similarity

We calculated the correlation and RMSD between each pair of datasets for each year from 2006 to 2016. Fig. 59 displays the
average correlation and RMSD values over these 11 years as heatmaps. Fig. 59(c) presents a scatter plot of the correlations
and RMSD for each dataset pair. Using the correlation heatmap (Fig. 59(a)), we categorized the six datasets by the maximum
difference method, identifying NJML as a distinct group (Group B) and the other five datasets as Group A. NJML's separation
indicates its significant divergence in ozone geographic distribution compared to others. The scatter distribution in Fig. 59(c)
reveals that most Group A data points cluster in regions of high correlation and low RMSD, suggesting broadly consistent
ozone geographic distribution and concentration estimationcstimates within this group. Nevertheless, there is still substantial
disagreement among the-eurrent reanalysis products, likely because of the differences in forecast model performance and data

assimilation configuration. Conversely, Group B has lower correlations. Interestingly, RMSD does not consistently decrease
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with increasing correlation, indicating that similar geographic distribution patterns can still yield significant differences in
ozone concentration estimates. This is particularly evident with CAMS and GEOS-Chem, which exhibit the highest correlation

with a large RMSD, suggesting substantial differences in ozone estimation.

45.4 Long-term ozone exposure

Fig. 610 illustrates the distribution of population in various regions exposed to average OSDMAS from 2006 to 2016, as per

each dataset. DetailedplotsWe also calculated the distribution of population expesure-foreach-ear{regarding the lower and
upper bounds of OSDMAS from 2006 to 20163}-are for each dataset, as shown in Figure S+6-S12. For the period 2006-2016,

a majority of the population in most datasets is exposed to concentrations above 40-50 ppb. Populations in regions such as
East Asia and South Asia appear to be exposed to higher ozone concentrations in all datasets compared to other regions-, which

supports our findings from exposure based on TOAR-II observations in Fig. 3. Conversely, populations in the Sub-Saharan

Africa and Southeast Asia regions typically experienced concentrations below 50 ppb. The different regions show different
distributions of population ozone exposure, and comparisons between datasets reveal considerable variations in the ozone
distribution for each region. Some datasets (e.g., CAMS and TCR-2) show a wider distribution of population across ozone
concentrations compared to others (e.g., NJML). In BME and CAMS, after South Asia, a significant fraction of the population
in the East Asia region is exposed to levels above 50 ppb, while this proportion in North America, Europe, and the Middle
East is less than in the other four datasets. When focusing on exposure above 70 ppb, South Asia dominates in BME, CAMS,
and NJML, while East Asia leads in GEOS-Chem, UKML, and TCR-2. All six datasets clearly demonstrate a higher impact
of ozone pollution in Asia compared to North America and Europe, aligning with previous findings based on TOAR

observations (Chang et al., 2017).

Table 35 elucidates each region's population share above different-ezone-conecentrationtevels:30 ppb, 50 ppb and 70 ppb

thresholds from 2006 to 2016. Results are presented as the estimate with the lower and upper bound in parentheses (e.g., 42%
[24%. 66%]). Detailed table of population share for each year (2006 to 2016) are shown in Table S10. For BME and CAMS,
the global average of the population exposed to more than 50 ppb is 42-5%% [24%. 66%] and 48+%:% [18%, 76%].

respectively, indicating that more than half of the population us exposed to lower concentrations. Regional exposure estimates
vary in East Asia, where the proportion of the population exposed to more than 50 ppb ranges from 61% [28%. 94%] in BME
to ever90% 99% [62%. 100%] in UKML, 95% [58%, 100%] in GEOS-Chem, and 94% [63%. 100%] in TCR-2. The
differences are stark in Europe, with BME and CAMS showing only 16% [0%., 56%] and 9% [0%. 58%] exposure,
respectively, over 50 ppb, while NJML, UKML, and TCR-2 report evermuch higher exposures of 76% [22%., 96%], 77% [2%.
100%], 70%-% [5%., 100%]. Focusing on the highest threshold, TCR-2 and UKML project netably-higher-exposures—inFEast
Asta—withthat 41% [0%, 79%] and 31% [13%. 85%] of the population_in East Asia exposed to levels above 70 ppb,
respectively. In the Middle East, TCR-2's estimates are significantly higher than other datasets, indicating that 38% [0%. 86%

of the population is exposed to average concentrations above 70 ppb. FheDespite these regional differences, the six datasets
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agree that a large majority of the global population is exposed to ozone above the WHO guideline for OSDMAS (30 ppb) with
percents ranging from 93% [74%., 99%] (CAMS) to 99% [96%. 100%] (NJML)).

6. Discussion

When evaluating datasets against TOAR-II observations, differences in performance are seen among six datasets. BME
performed well in the TOAR-II evaluation (Fig. 1), with minimal mean bias below the 50% concentration threshold (Fig. 2).
Unlike the other databases, BME tends not to overestimate over the range of concentration, with a small underestimation bias.
After removing TOAR sites that were used as inputs to BME (Fig. S13), BME's performance remains robust in both evaluation
scenarios. NJML and UKML, both utilizing TOAR-I as a training set, showed overestimation in most areas (Table 2). NJML

exhibits a higher R? from 2010 onward, especially at high ground-level ozone concentrations (above 50 ppb), where prediction

accuracy generally declines across all datasets. However, NJML has missing data in some coastal regions, particularly in

European coastal countries, which may contribute to its elevated RMSE in Europe compared to other datasets (Table 2), since
missing data are substituted with the nearest model grid cell. UKML's performance after 2010 is not as good as NJML and is

worse than the chemical reanalysis datasets. CAMS, GEOS-Chem and TCR-2 primarily rely on satellite data, suggesting that
they might not compare favorably with other datasets that used observations as input or training data. Despite this, the three

chemical reanalysis datasets unexpectedly outperform the machine learning datasets in R? (TCR-2, GEOS-Chem) and in

RMSE (CAMS) over the full year 2016. In addition, for chemical reanalysis datasets, there is a clear trade-off between

capturing the spatial pattern and the accuracy. As shown in Fig. 2, TCR-2, GEOS-Chem all have widespread overestimation

but they often capture spatial patterns more effectively (higher R?). Conversely, CAMS exhibits low bias in RMSE but shows

worse spatial correlation in China. All six datasets show a reduced performance at higher ozone concentrations (>50 ppb),

which may complicate their accuracy for assessing long term high-pollution exposure. Furthermore, most datasets perform

better in regions with lower monitoring density (e.g.. the United States and China) than in those with higher density (e.g., Japan

and South Korea), which suggests that resolving high-resolution local ozone distributions remains challenging even with a

g2ood amount of observational data. The performance of each dataset impacts the accuracy of trend analysis (Fig. 5 and Fig. 6)

and population exposure assessment (Fig. 10), shown as uncertainty in these Figures, which may lead to different results when

compared to the WHO guideline and interim target.

From the comparison, we-find-there-arethe large differences-in-ozenedisagreements among the six datasets regarding ozone

trends, population exposure, and concentration estimates among-datasets-are a direct consequence of the systematic biases and

performance issues identified in the evaluation. Figure +5(b) illustrates that BME and CAMS report lower ozone estimates

compared to UKML and NJML, with differences exceeding 5 ppb. NJML demonstrates a very high certainty decreasing trend
in global population-weighted and area-weighted yearly mean over the 2006-2016 period;-while-the-five-others. While TCR-
2 and UKML exhibit eithervery high certainty increasing trends erne-cleartrendin global population-weighted mean which
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relates to their overestimation. Divergence among datasets becomes even more evident in the analysis of regional ozone trends

(Fig. 2)-The-ezene6). Ozone concentrations decreased in Europe from 2006 to 2016 according to BME, NJML, UKML, and
TCR-2, yet increase in the other chemical reanalysis datasets. Differences—in—regional-distributionslead-to—variabilityin

expesure-estimates- [hese uncertainties critically undermine the reliability of population exposure assessment. Among the six

datasets, the population exposed to more than 50 ppb of ozone in Europe from 2006 to 2016 spans a broad range, from as low

as 9% for CAMS to over 70% for NJML, UKML, and TCR-2.

es=In East Asia, exposure levels are consistently higher, with
the percentage of the population affected ranging from 61% for BME to more than 90% for UKML, GEOS-Chem, and TCR-
2 based on average OSDMAS data over the same period. Global average exposures also vary, with the proportion of the

population exposed to more than 50 ppb ranging from 42% to 70% across the six datasets. More importantly, the evaluation

reveals that all datasets perform poorly at high ozone levels (> 50 ppb). This highlights the importance of removing systematic
biases from these data sets before applying them to exposure estimates.

Despite notable disparities in estimates, we still find some regional and temporal similarities across the six datasets. Ia-TFable

weighted-means-In Fig. 206, all datasets exhibit a downward trend in North America over 2006 to 2016. And from the evaluation,

we find that all datasets perform well in the United States, which makes the downward trend more reliable. In Fig. 37(a) high

ozone concentrations are predominantly found in regions with elevated anthropogenic and industrial emissions, while forests
and sparsely populated areas have lower ozone concentrations, consistent with findings based on observations (Mills et al.,
2018b; Fleming et al., 2018). In Fig. 37(b) the standard deviation among six datasets is high in part of South America and
Africa, especially in the rainforest areas, probably because of the lack of observational data in these areas and uncertainties in
the emissions inventories (Pfister et al., 2019). However, for most regions it is low, such as North America and South Asia,
indicating a good level of agreement on ozone estimates. The high pairwise correlation in Fig. 59(a) supports that the
geographical distributions of ground-level ozone are similar among most of datasets. The histograms of ground-level ozone

exposure among the population (Fig. 610) reveal the shared characteristic of widespread high ozone exposure in East Asia and

Southeast Asia (Fleming et al., 2018).
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There are several possible explanations for the differences among the datasets, including several factors related to the

characteristics, methodologies and input data for each dataset. BME has an unfair advantage in that it nearly matches
observations at a monitoring location. But as mentioned earlier, BME still shows superior performance after removing its
training data from the evaluation. BME’s use of temporal autocorrelation to predict ozone in years where measurements are
missing may help its good performance (Delang et al., 2021). The differing yearly ozone population-weighted mean trend in
NJIML compared to other datasets may be due to its unique input data, including land cover and satellite observations (Liu et
al., 2022). The missing data near coastlines in NJML and relatively coarse resolution likely contribute to poorer performance
in EU-27. For three chemical reanalysis datasets, previous studies have shown that significant challenges remain, particularly
with respect to the representation of ozone in the lower troposphere, because of the limited sensitivity of satellite observations
to ozone in the lower layers (Huijnen et al., 2020). Because of the lack of direct observational constraints at the surface in the
chemical reanalyses, the better performance of CAMS may be attributable to the finer resolution that enables better
representation of small-scale ozone distribution features than the other reanalysis datasets, and also to the better performance
of the forecast model to predict surface ozone. Nevertheless, the assimilation of precursor measurements provides important
constraints, particularly with respect to the spatial gradient and temporal variation of ground-level ozone. The low RMSE of
GEOS-Chem compared to UKML and TCR-2 might be because it shares the same data assimilation method with CAMS (Qu
et al., 2020a). Moreover, TCR-2, GEOS-Chem, and CAMS perform well in the United States, Canada and EU27, which may
be because these regions have well-established emissions inventories for modeling (Schmedding et al., 2020) and because data
assimilation is used to estimate key precursor emissions from satellite observations in TCR-2 and GEOS-Chem. Optimizing
additional precursor emissions, such as VOCs, from satellite observations is considered to be important to better represent
surface ozone (Miyazaki et al., 2019; Sekiya et al., 2024; Miyazaki et al., 2012). The poor performance in South Korea and
Japan could be because the coarse resolution models may not accurately capture ozone gradients in a nation with a high density
of monitors (Punger and West, 2013; Sekiya et al., 2021). This suggests a need for continued efforts to improve the mapping

resolution to capture spatial variability in these regions. Since most of the current reanalysis products still suffer from large
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systematic errors in their surface ozone analysis, it might be important to apply bias corrections while maintaining the detailed
spatial and temporal variability of the original data using methods such as machine learning (Miyazaki et al., 2024) before
performing exposure estimates. While these factors may help to explain differences between the datasets, we have not
systematically tested them, and as discussed by Sekiya et al. (2024) and Jones et al. (2024), further inter-comparisons of

reanalysis products and detailed discussions for improvement are required.

Although we conducted a comprehensive comparison and evaluation, this study still has some limitations. First, the comparison
only focuses on land and inhabited islands, because of the focus on ground-level ozone impacts on health. Our estimates of
population exposure are based on ambient concentration in each grid cell, ignoring other factors that impact ozone exposure,
such as indoor ozone concentration. Also, using OSDMAS as the metric to evaluate datasets might hide differences in model
performance at hourly temporal resolution, which would need to be analyzed in a separate study. In instances of missing model

estimates, we default to the nearest valid estimate to evaluate with TOAR-II observations- or re-gridded grid cell. For datasets

with coarse spatial resolution, this method may increase or reduce bias by double counting.

7. Conclusions

This study evaluates the consistency and accuracy of six ground-level ozone mapping products, developed using different

methods. Substantial discrepancies among datasets are reflected in global and regional ozone trends, the spatial distribution of

ozone, population exposure estimates, and model performance. Model performance evaluation based on TOAR-II observations
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valuesranged-from5-28 ppb-to13-49-ppb-ferall-statiens: BME performs well near monitoring locations with good R? and
small RMSE. All five datasets, except for BME, exhibit similar R? values in 2016. NJML performs well after 2010 and shows
robust performance under high ozone concentrations. Before 2040 UKMEperforms—well,-but-after 2010, UKMEshows
deereased-performanee—Machine learning datasets tend to overestimate. The chemical reanalysis datasets perform comparably
with the geostatistical and machine learning datasets, which is somewhat surprising given that they were not designed to
estimate ground-level ozone accurately and do not use ground-level observations as input. CAMS performs the best among
the chemical reanalysis datasets in term of RMSE, although CAMS has difficulty capturing TOAR-II observations in China.
In regions where TOAR-II observations are sparse, all datasets show RMSE values about 10 ppb, highlighting the difficulty
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in mapping ground-level ozone distributionsmagnitude in regions with little observational data. Conversely, in some regions
with very dense TOAR-II observations, all datasets show R? values below 0.12, highlighting the necessity for fine resolution

mapping to accurately capture spatial variability. The global population-weighted average has a maximum span of 10 ppb

among the six datasets. In terms of population-weighted mean trends over 2006 to 2016 period, UKML and TCR-2 show very

high certainty upward trends globally, while NJML shows a very high certainty downward trend. Regionally, all datasets show

a downward trend in North America, and the evaluation results make this trend more reliable. Only BME and NJML datasets

demonstrate a downward trend in East Asia, and they also fit well with TOAR-II observations in population density distribution.

In Europe, BME, UKML, NJML and TCR-2 report a downward trend, while the other two chemical reanalysis datasets reveal

an upward trend that is not seen in observations. These differences among datasets are sufficiently large that assessments of

health impacts of ozone would differ significantly when using different ozone datasets.

Given that some of the datasets used similar input data, it is somewhat surprising to find the large discrepancies shown here,
suggesting that applications of these datasets to health burden assessments, epidemiology or similar applications for

agricultural and ecosystem impacts may differ strongly based on the dataset selected. The coarse-resolution datasets, GEOS-

Chem and TCR-2. perform well in grid-to-grid evaluations at their native resolutions, making them effective for studying long-

term regional ozone effects. However, because of their coarser resolutions, these two datasets cannot capture site-level

distributions and exhibit greater bias than the higher-resolution BME, CAMS, and NJML datasets. UKML, despite its relatively

fine resolution (0.125°), shows larger biases and a lower R2. The superior performance of BME and NJML should be noted

with the fact that both datasets use observational data for input or training, which gives them an inherent advantage in these

evaluations. More research will be needed before different methods converge on similar estimates. Such research can include
more widespread ground observations, improved used of satellite observations, improved chemistry-climate modelling, and
further development of different data fusion methods. Also, it is not clear whether differences among-different datasets are due
mainly to the methods used or to differences in input data. In addition, establishing a formal benchmark test based on the
evaluation methods described in this study for the yearly OSDMAS metric is essential. This would allow for new mapping
products to be easily assessed. The general findings here of poor agreement among datasets may also be applicable to other air
quality datasets or even datasets from other Earth system domains. According to this study, there is no clear consensus on the
best ozone mapping methods. To further improve these ozone mapping products, researchers must update and adjust their

methods and input data regularly and iteratively.

8. Code and data availability

Observational data are publicly available from the TOAR-II data portal (last accessed on 15 November 2024, toar-data.org)
(Schroder et al., 2021). The BME dataset of global ground-level ozone estimates (Becker et al., 2023) is publicly available at
zenodo.org/records/10498857. The NJML dataset is publicly available at doi.org/10.5281/zenodo.6378092. The CAMS
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reanalyses data (Inness et al., 2019) are publicly available from https://ads.atmosphere.copernicus.eu/datasets/cams-global-
reanalysis-eac4.  The  TCR-2  reanalyses data  (Miyazaki, 2024) are publicly available from
https://disc.gsfc.nasa.gov/datasets/ TRPSCRO32H2D 1. Other datasets of global ozone concentrations can be obtained by

contacting the creators of these datasets.
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Table 1: Overview of six global ozone mapping products.

2 (TCR-2)(Miyazaki et al., 2020b)

Global ozone dataset Model type Resolution Period Temporal Resolution
Bayesian Maximum Entropy Data Fusion Geostatistics 0.1° x0.1° 1990-2017 OSDMAS
(BME)(Delang et al., 2021)
Cluster-Enhanced Ensemble Learning Machine Learning 0.5° x0.5° 2003-2019 Monthly DMAS8
(NJML)(Liu et al., 2022)
Space-Time Bayesian Neural Network Machine Learning 0.125° x0.125° 1990-2019 Monthly DMAS8
Downscaler (UKML)(Sun et al., 2022)
Copernicus Atmosphere Monitoring Service Chemical Reanalysis 0.75° x0.75° 2003-2020 3-Hourly
(CAMS)(Inness et al., 2019)
GEOS-Chem (GEOS)(Qu et al., 2020b) Chemical Reanalysis 2° x2.5° 2005-2016 DMAS
Tropospheric Chemistry Reanalysis Version Chemical Reanalysis 1.125° x1.125° 2005-2020 2-Hourly
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Figure 71: Performance evaluations of six datasets with TOAR-II observations in 2016 for OSDMAS. The observation-prediction
evaluations are presented in-scatter-plots-with densities estimated by a Gaussian kernel function. Determination-(R*)The coefficient

of determination (R*) and root mean squared error (RMSE) are given.shown for four scenarios: (a) TheA grid-to-grid evaluation
inecludes-all-moniterstations-inat the native resolution of each dataset using re-gridded TOAR-II network-in2016-0bservations, (b)
FheA grid-to-grid evaluation-inehsdes, same as (a), but only meniterstatiensfor grid cells with observations above 50 ppb-in-the-, (¢)
A grid-to-point evaluation using all TOAR-II networkin2016sites, (d) A grid-to-point evaluation, same as (¢), but only for sites with

observations above 50 ppb. The dashed line marks where TOAR-II observations equal estimates (y=x line), and the solid black line

represents the best-fit line. Performance evaluations for each year are shown in Figure SHFigures S7 and Figure S12S8.
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Figure 82: Normalized mean bias of six databases against TOAR-II observations (OSDMAS) at different quantiles in 2016,

calculated based on the grid-to-point scenario. 0%: 13.46 ppb; 10%: 36.75 ppb; 20%: 39.80 ppb; 30%: 41.89 ppb; 40%: 43.57 ppb;

50%: 45.06 ppb; 60%: 46.82 ppb; 70%: 48.93 ppb; 80%: 52.18 ppb; 90%: 57.21 ppb; 100%: 86.25 ppb. Normalized mean bias for

each year against TOAR-II observations are shown in Figure S14S5. Different quantiles of TOAR-II observations for other years
695 are shown in Table S9S11.
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Figure 3: Population-weighted exposure distributions for OSDMAS in 2016 in three regions: East Asia (EAS), Europe (EUR),
and North America (NAM) (regions defined in Table 4S7). Each panel compares the distribution derived from the TOAR-II

observations (black line) with estimates from six datasets (colored lines), calculating the population-weighted kernel density

estimate, only for grid cells where TOAR-II measurements exist.
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Table 2: Performance evaluation of six datasets for countries (unienand the EU) with the most monitors in 2016 against TOAR-II
observations of OSDMAS based on the gird-to-grid scenario. Number is the number of the TOAR-II monitor stations in each country.

705 Density (per km?) is the density of the TOAR-II monitors in each country based on land area. Estimate is the average of the grid
estimates for each dataset at the TOAR-II monitor locations in each country. Linear regression R? and root mean squared error
(RMSE) against TOAR-II observations in each country are presented:-based on a grid-to-grid evaluation at each dataset's native
resolution against re-gridded TOAR-II observations.. The Lower and Upper Bound represent the 95% confidence interval for the
Estimate, calculated from the linear regression of each dataset against TOAR-II observations. Country names are United States of

710  America (USA), China (CHN), Japan (JPN), South Korea (KOR), Canada (CAN). EU-27 includes Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden. Others is all other countries in
TOAR-II apart from those listed. Performance evaluations for other years in these countries, are shown in Table S10S8. (*) indicates
the sample size of the comparison pair is less than 30.

Country | EU-27 USA CHN JPN KOR CAN Others
Dataset Number 2170 1425 1405 1108 315 260 330
Density | 5.43E-4 | 1.56E-4 | 1.50E-4 | 3.04E-3 | 3.23E-3 | 2.96E-5 | 1.07E-5
TOAR 43.21 47.03 53.10 43.84 51.50 37.39 40.55
Estimate | 43-3042. | 451244. | 50:2648. | 44:6943.
42 30 84 00 51.7967 | 35.2694 | 39.6562
BME R? 0.6376 0.475 0.6378 0.6312 0.1908 0.4649 048%
RMSE 39142.72 | 4423.48 | 64.97 4.5929 7333.72 | 4393.49 | 8-667.45
Lower 35.66 37.55 42.08 36.25 4491 29.18 32.87
Upper 49.17 51.05 55.59 49.76 58.42 42.69 46.37
Estimate | 53-5350. | 48:4447. | 533951. | 49:4047. 48-6347.
97 57 13 08 54.6284 | 43.7919 | 09
R? 0.4+-63 0.5874 0.5772 0.6911 0.6714 0.3938 0.5+55
NJML | RMSE 9.43 2.96 4.72 5.93 2.68 6.19 9.30
Lower 42.47 39.06 42.62 38.57 46.33 34.68 38.58
pper 48 8 4 9 S 0 60
Estimate 52:5453. | 66-78604. | 6+4560. 46-83748.
532771 | 27 81 63 65.90244 | 40 49.6162
R? 0.2428 0.3849 0.3746 0.6+18 0.6+03 0.3319 0.3228
UKML | RMSE H35412. 16:4015. | +82517. | 13.0145- | 403211. | 12.5043=
17 75282 | 05 41 54 14 o+
Lower 42.52 42.08 53.62 49.44 54.25 37.21 38.43
Upper 64.90 64.47 76.00 71.82 76.63 59.59 60.82
Estimate | 421741. | 49-6747. | 5385 45.6544= | 58:9353.
93 12 52.83 s 60 39.5403 | 39.8491
R? 0.3244 0.3447 0.6721 0.6+16 0.6+05 0.2825 0.3942
CAMS | RMSE 10-627.9 124643
5754.92 | 6:654.64 | 9 49533 |5 4-633.47 | 9-408.09
Lower 31.17 36.36 42.07 34.89 42.84 28.26 29.15
Upper 52.69 57.88 63.59 56.41 64.37 49.79 50.66
Estimate | 49-7648. | 50-5848. | 60-4858. | 56:9954. 457344, | 445443.
01 94 54 58 65.9441 | 83 25
GEOS R? 0.3672 0.3955 0.3746 0.0337* | 0.0081* | 0.4434 0.3444
&417.62 | 6:685.65 | 19 87 71 9-088.76 | 1
Lower 37.39 38.33 47.92 43.97 54.77 34.21 32.62
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Upper 58.62 59.55 69.17 65.20 76.06 55.45 53.87
Estimate | 51-8349. | 55:5453. | 66:4361. | 583753. | 67-8762. | 459743. | 483245.
60 50 24 56 46 76 47
R? 0.3355 0.2343 0.3646 0.0012 0.0201 0.4338 0.5452
TCR-2 | RMSE 10-159.3 | 10:589.4 | 159912, | +6:6912. | 185311. 14393
3 3 56 63 39 984748 | 3
Lower 37.77 41.67 49.40 41.72 50.62 31.92 33.63
Upper 61.44 65.34 73.08 65.39 74.30 55.60 57.31
715
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Figure 94: (a) Time series of determination (R2) between each dataset and TOAR-II observations of OSDMAS from 2006 to 2016-
based on grid-to-grid evaluation at the native resolution of each dataset using re-gridded TOAR-II observations. (b) Time series of
root mean squared error (RMSE) between each dataset and TOAR-II from 2006 to 2016 based on grid-to-grid evaluation. (¢) Time
series of determination (R2) between each dataset and TOAR-II observations of OSDMAS from 2006 to 2016 based on grid-to-point
evaluation using all TOAR-II sites. (d) Time series of root mean squared error (RMSE) between each dataset and TOAR-II from
2006 to 2016 based on grid-to-point evaluation.
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Figure 15: Yearly trends of ground-level ozone for six datasets, shown for (a) the area weighted global mean ozone over land, and
(b) population weighted global mean ozone, where ozone is expressed as OSDMAS. Yearly trends for individual world regions are
shown in Figures S2 and S3. Mann-Kendall trend test for population weighted global mean over the full time series for each dataset:
BME 0.688 ppb yr! trend with p-value < 0.0001, NJML -0.691 ppb yr! with p-value 0.0001, UKML 0.913 ppb yr! with p-value <
0.0001, CAMS 0.569 ppb yr'! with p-value 0.0011, GEOS-Chem 0.164 ppb yr! with p-value 0.5334, TCR-2 0.4 ppb yr'! with p-value
0.0343.

Table 23: Yearly trends of area-weighted, and population-weighted global mean of ground-level ozone for six datasets with 95%
confidence intervals (LowerCI and UpperCI) and p-values from 2006 to 2016.

Dataset Slope (ppb/yr) [Lower CL (ppb/yr){Upper CI (ppb/yr) p-value Weighted
BME -0.12 -0.33 0.10 0.25 area
NJML -0.24 -0.32 -0.16 0.00 area
UKML 0.04 -0.02 0.11 0.16 area
CAMS -0.05 -0.29 0.18 0.62 area
GEOS -0.02 -0.14 0.10 0.71 area
TCR-2 0.06 -0.03 0.15 0.18 area
BME -0.04 -0.30 0.23 0.76 population
NJML -0.26 -0.33 -0.19 0.00 population
UKML 0.26 0.20 0.32 0.00 population
CAMS 0.06 -0.23 0.34 0.67 population
GEOS 0.05 -0.04 0.14 0.23 population
TCR-2 0.20 0.10 0.30 0.00 population
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Figure 26: Population weighted ozone (OSDMAS) trends per decade for six datasets, calculated over the 2006-2016 period analyzed
for each dataset. The different regions are defined in Table S7. Population weighted yearly trend of six datasets over priority regions
(NAM, EUR, SAS, EAS, SEA, SAF, MDE) from 2006 to 2016 with 95% confidence intervals and p-values is shown in Table S11-
Population-weighted-ozone (O A8)-trends-pe ix-datasets-over-the full period-is shown-in-Fi 4:89.
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Figure 37: For six datasets from 2006 to 2016, (a) the 11-year ensemble mean, and (b) the average of annual standard deviations.
Ozone data are reported as OSDMAS. The mean and standard deviation for each year are shown in Figures S5 and Sé6.
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Figure 48: The difference of OSDMAS in each grid cell between the 11-year (2006-2016) mean of each of six datasets and the
ensemble mean (Figure 3). Positive values indicate that the average estimate of the dataset is higher than the ensemble mean.
Negative values indicate that the average estimate of the dataset is lower than the ensemble mean of the six datasets. Difference maps
for each year are shown in Fig. S7.
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Figure 59: Heatmaps of similarity among the six datasets, including (a) heatmaps of average of pairwise correlation (Pearson R)
between each dataset from 2006 to 2016. (b) heatmaps of average of pairwise Root mean square difference (RMSD) between each
dataset from 2006 to 2016. Group A designates five datasets with strong similarity, while Group B is composed of one dataset with
lower similarity with the rest. (c) Scatterplot of correlation and RSMD between each pair of datasets. The datasets with greatest
similarity are in the lower left of panel ¢, and comparisons with the Group B dataset have lower correlation.—Heatmapsfor-each
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Figure 610: Population exposed to 11-year average ozone (OSDMAS) from 2006 to 2016 in different regions. The horizontal axis

represents ozone concentrations, and the vertical axis represents population size. Concentrations-and pepulationfor-each-year-are
765  presented-in-Eigure-S10-The definitions of different regions are included in Table S7. The Lower and Upper Bound of population
exposure, which represent the 95% prediction interval for the estimate, are presented in Figure S12.
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Table 34: The share of population in percentage (%) exposed to ozone above three particular thresholds (ppb) in each world region,

for the 2006 to 2016 average OSDMAS for six ozone datasets. 0% means-greater-than-0-butless-than0.5%;0-meansneEach region

shows the share of the population share-greaterthanthis—ezeneconeentration-exposed at each threshold, calculated using the
estimate, the lower bound and the upper bound of the OSDMAS from each dataset, respectively. The bounds represent the 95%

prediction interval for the estimate, derived from the linear regression of each dataset against TOAR-II observations. Population

shares for each year are shown in Table S8S10. The definitions of different regions are included in Table S7.

2006-2016 EAS EUR MDE NAM SAF SAS SEA GLO
>30 100 [100,100] 99 [87.100] 100 [99.100] 99 [93.100] 93 [71.100] 100 [99.100] 84 [52.93] 96 [85.99]
BME >50 61 [28,94] 16 [0.56] 79 [43,92] 17 [4.72] 3[0.31] 89 [68.98] 0[0.16] 42 [24.66]
>70 0[0,5 0[0,0 0[0.6 00,1 00,0 0[0.28] 0[0.0] 0[0.8
>30 100 [100,100] | 100[100,100] | 100[100,100] | 100[100.100] 99 [96.100] 100 [100,100] 89 [76.100] 99 [96.100]
NJML >50 72 [37.98] 76 [22.96] 99 [81.100] 88 [53.99] 36 [5.78] 99 [77.100] 27 [0.63] 70 [41.90]
>70 3[2.12] 01[0.5] 5[1.58] 3[0.9] 0[0.1 8 [0.34] 0[0.0] 410.17]
>30 100 [100,100] | 100[100,100] 100 [99.100] 100 [99.100] 98 [46,100] 100 [100,100] 97 [74,100] 98 [83,100]
UKML >50 99 [62.100] 77 [2.100] 94 [42.100] 84 [3.100] 10 [0.67] 99 [64.100] 41[0.80] 69 [32.88]
>70 31[13.85] 01[0.27] 01[0.,79] 0[0.24] 0[0.2] 40[1.82] 07[0.1] 16 [3.48]
>30 100 [100,100] 98 [53.100] 100 [99.100] 100 [88.100] 86 [37.99] 100 [100,100] 88 [66.97] 93 [74.99]
CAMS >50 6719.100] 9 [0.58] 88 [33.100] 40[2.91] 8[0.41] 96 [58,100] 24 [8.71] 48 [18.76]
>70 0[0.12] 0[0.0] 8 [4.37] 0[0.3 0[0.0 12 [0.62] 6 [5.8] 4[1.20
>30 100 [100,100] | 100[100,100] | 100[100.100] | 100 [100,100] 99 [72,100] 100 [100,100] 89 [49.,98] 98 [85,100]
GEOS >50 95 [58.100] 44.10,100] 99 [60,100] 5510.,100] 14 [1.78] 95 [47,100] 0[0.56] 59 [26.87]
>70 4[0.62] 0[0.0] 410.69] 0[0.0 0[0.2 0[0.54] 0[0.0] 1[0.29]
>30 100 [99.100] 100 [96,100] 100 [100,100] 99 [99,100] 98 [67.100] 99 [99,100] 85 [38,100] 97 [83.100]
TCR-2 >50 94 [63.100] 70 [5.100] 94 [79.100] 86 [31.100] 18 [4.85] 90 [62,99] 13 [1.51] 64 [35.89]
>70 411[0,79] 0[0.21] 38 [0.86] 0[0.51] 1[0.71 10 [0.79] 07[0.1] 13 [0,46]
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