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Response to Reviewer #1

1. Re-reviewing this manuscript with the authors' responses to the first review does not provide
any more encouragement that the paper adds significant new knowledge to the atmospheric
chemistry domain. In terms of regulatory issues, it may be fine, but the extreme limitation of
their diagnostics makes the paper useless for diagnosing the problems with modeling surface
ozone. Further, calculating human impacts from 6-month OSDMAS8 ozone when you show the
incredible biases of the modeled ozone seems like going too far, e.g., the numbers in Table 3
have no uncertainties related to the obvious model bias, so how can they be published?

"The ozone seasonal daily maximum 8-hour average mixing ratio " = six-month running monthly
mean). This diagnostic totally obscures all issues of extremes and even hides the seasonal cycle,
removing most of the inter-month variability. The use of a six-month DMAS because some of the
models only did that is still a poor excuse. Not looking at the diel cycle and extreme days means
you cannot understand why the models fail to match DMAS. The CAMS and TCR-2 results
seem sensible (2-hr and 3-hr ozone) and at a more reasonably resolution to make a useful
comparison.

Response:

We thank Reviewer #1 for reviewing our manuscript a second time, and for their thoughtful
comments. We have made significant changes to the paper in response to reviews. These
revisions include:

1) We have changed the order of Sections 4 and 5 in the manuscript, and have modified
several results to include uncertainty. By reordering these sections, we discuss the
performance evaluation of the different datasets with respect to measurements first, and
then include estimates of uncertainty from the performance evaluation in results for the
inter-comparison of the different datasets.

2) As Reviewer #I suggested, we now add a grid-to-grid comparison method in addition to
the grid-to-point method used in earlier versions of the manuscript. The grid-to-grid
method follows from the methods of Schnell et al. (2015)

In this comment, Reviewer #1 recommends that the paper be rejected since our use of an
aggregate annual ozone metric obscures diurnal and seasonal cycles, and therefore the
evaluation with respect to observations is inadequate. We agree that for some air quality related
research, evaluating these short-term timescales is essential. However, the primary goal of this
paper is to intercompare global datasets specifically for their use in long-term health exposure



related studies. For this purpose, the 6-month seasonal daily maximum 8-hour average
(OSDMAS8) ozone is a standard metric, as used by the Global Burden of Disease (GBD) and in
the World Health Organization (WHO) Air Quality Guidelines. This metric is designed to capture
the long-term exposure during these peak seasons which is most relevant for assessing long-term
health impacts. In contrast, short-term exposure studies use daily or hourly metric to investigate
the health risk related to acute air pollution events. Reviewer #I also suggests that we conduct a
traditional model evaluation for only the chemical reanalyses, since they report 2- or 3-hourly
ozone. But such comparisons with observations have already been published (Jones et al., 2025,
Miyazaki et al., 2025) and this is not the point of this paper. Rather, we compare these datasets
for an annual metric OSDMAS that is used by GBD and in the WHO Air Quality Guidelines. In
doing so, we aim to compare datasets of global ground-level ozone for this health-focused
metric, that have been generated by different methods — geostatistical data fusion, machine
learning, and chemical reanalyses. Estimating how biases in these available ozone mapping
products lead to systematic differences in exposure estimates is a significant and important topic
for the community. Because these datasets have not been compared systematically, our work
makes a direct contribution to this ongoing challenge. We have carefully considered Reviewer
#1 s suggestion regarding using a short-term metric like 2-hr and 3-hr ozone for intercomparison
but addressing this would require a fundamental change to the purpose and scope of this paper,
which we believe would not be appropriate here.

Regarding Reviewer #1's comments about uncertainty, we have made substantial changes to the
paper. We have changed the order of Sections 4 and 5 to present dataset evaluation with respect
to observations first, before the dataset intercomparison. We have also used estimates of
uncertainty from the evaluation section (now Section 4) to quantify uncertainties that are now
presented in the intercomparison section (now Section 5). We thank Reviewer #1 for these
valuable comments. In this way, we expand our discussion to provide clearer interpretations of
how the uncertainties from evaluation impact on the paper's main findings. With these
interpretations, we draw more meaningful conclusions.

2. Looking at these two responses shows that there is little understanding of the problem:
"However, the goal of our work is to assess the accuracy of gridding products in estimating
measured ground concentration point values.

"That is why we have adopted this grid-to-point evaluation approach. Any gridded product, such
as that of Schnell et al, uses an interpolation of a point value that introduces its own uncertainties
and biases. To avoid these additional uncertainties, we directly compared observed point-level
ozone values to the nearest available grid estimates.

You did not "avoid" the uncertainties with the problem that Schnell dealt with, you simply
ignored them. There is nothing here that attempts to deal with the problems of creating a high-
resolution map based on the site measurements and then integrating it to get the cell average.



This problem is what Schnell's first paper spent most of its effort on. I may have missed it but I
find no serious effort to optimize the point-area comparison.

“Previous research has adopted a 1°x1° grid-cell-averaged hourly ozone data from TOAR
observations to evaluate global chemistry model performance over North America and Europe,
which is suitable for analyzing extremes and validating seasonal and diel ozone cycles (Schnell
and Prather, 2017; Schnell et al., 2015).”

“We adopted a grid-to-point evaluation approach, where the data from each TOAR-II
observation site was matched with a corresponding grid cell in each dataset. For grid cells with a
TOARC-II observation but no valid estimate in a dataset (NA value), we used the nearest valid
estimate instead.”

Minor point — Schnell gathered all the AQ station data in N.Am. and EU, not specifically the
TOAR data. Really, a "grid-to-point evaluation" is simply saying that every point in a cell should
have the same value as the mean of that cell. This is quite apparently false when you have several
nearby sites. The algorithm here (last sentence) does not really address how "far" a single station
can reach? or why? "nearest" valid estimate is not provide a scientific comfort level.

"our focus is explicitly on assessing whether global ozone mapping products can reasonably
estimate point-level concentrations at locations lacking monitoring stations.

I cannot see how you can begin to do that without models that resolve station-to-station
differences (1 km) and so you really cannot say this.

Response:

Reviewer #1 questions our use of a grid-to-point comparison of observations with gridded ozone
estimates, suggesting that we spatially average observations to a grid before comparing with the
six ozone datasets. Such grid-to-point comparison methods are widely used in our field, and the
specific dataset developed by Schnell et al. is limited to North America and Europe and so does
not match the spatial or temporal scope of our study. We thank Reviewer #I pointing out this
concern, and we agree with Reviewer #1 that these issues pose a challenge when evaluating
coarse-resolution datasets against observations. 1o address this issue, we have implemented two
evaluation methods in our revised manuscript.

1. Grid-to-Grid evaluation: We have re-gridded the TOAR-II observations onto the native
grid resolution of each dataset. In doing so we use methods similar to those of Schnell et
al. (2015), but here we gridded observations for the whole TOAR-II dataset globally and
for more years than had been done previously. This method addresses the
representativeness issue by comparing the value of re-gridded observational grid cell to
the value of dataset s grid cell for the same spatial resolution.

2. Grid-to-Point evaluation: This is the traditional method used in the original manuscript
where the value of the dataset s grid cell is compared to all observations within that cell.



This method can ensure that all evaluations are the same sample size given by the
number of observations.

We thank Reviewer #1 for their comments that led us to include the grid-to-grid methods, which
we feel strengthened the manuscript.

We have revised the methods as follows:

Line 214: Considering that the six datasets have different resolutions and are designed for
different applications, we adopted a dual evaluation strategy to provide a comprehensive
assessment of their performance. The first method is a grid-to-grid evaluation. Similar to the
approach of Schnell et al. (2015), we re-gridded TOAR-II observations to a 0.1° x 0.1° resolution
by an inverse distance weighted method and then aggregated them to match the native resolution
of each of the six datasets. In this approach, the sample size for each evaluation varies reflecting
the varying resolution of the datasets; for 2016, BME had 173,718 grid cell pairs, NJML had
7,099, UKML had 162,419, CAMS had 4,614, GEOS-Chem had 782, and TCR-2 had 2,195. We
also adopted the grid-to-grid evaluation method for regional evaluations, as it provides better
spatial representativeness over large areas. To quantify the uncertainty of the six datasets’
estimates, we determined the lower and upper bounds (95% confidence interval), derived from
the grid-to-grid regression analysis performed between the TOAR-II observations and each of
the six datasets at their native resolutions.

Line 224: The second method is a standard grid-to-point evaluation. This approach ensures a
consistent sample size across all datasets by comparing each dataset's estimate at the grid cell
containing an observation location. For grid cells containing a TOAR-II site but no valid
estimate (NA value), we used the nearest valid estimate instead. This method captures a penalty
for missing data and coarse resolution, only BME, NJML, and UKML had a small number of
missing estimates at TOAR-II locations. The grid-to-point method was used to evaluate model
bias, as it ensures a consistent sample size across all datasets when performing evaluations on
different quantiles of the TOAR-II observations.

By presenting results from both methods in section 4.1, we provide a more robust and
comprehensive assessment of dataset performance. Overall, our main conclusions and the
relative performance rankings of the datasets remain largely consistent across both evaluation
methods. As expected, the grid-to-grid approach generally results in lower RMSE and higher R?
values, as it averages out localized errors that are more prominent in the direct grid-to-point
evaluation. However, the difference of two methods does not change the fundamental takeaways
of our analysis.

We have updated the results throughout the manuscript to describe the evaluation from both the
grid-to-grid and grid-to-point methods. The following are some key passages from the
manuscript, updated to reflect the revisions:



Line 275: For 2016, BME outperforms other datasets in both evaluation method, with the highest
R? (0.75 for grid-to-grid, 0.63 for grid-to-point) and lowest RMSE (4.25 ppb for grid-to-grid,
5.28 ppb for grid-to-point), its density cores intersecting the y=x line.

Line 280: In Fig. 1(a), all three chemical reanalysis datasets exhibit a moderate R’ ranging from
0.51 to 0.60 for grid-to-grid and 0.35 to 0.41 for grid-to-point, comparable to the performance of
the machine learning datasets, which have R’ values of 0.50 and 0.56 for grid-to-grid, 0.37 and
0.38 for grid-to-point. Among these five datasets, CAMS has the lowest RMSE (6.00 ppb for
grid-to-grid and 7.59 ppb for grid to point), which is better than other chemistry reanalysis
products but relatively low R’ (0.51 for grid-to-grid and 0.35 for grid-to-point). Its density cores
slightly below the y=x line suggests CAMS estimates are marginally lower than TOAR-II
observations. GEOS-Chem and TCR-2 demonstrate adequate performance, albeit with higher
RMSE values of 8.47 ppb and 10.26 ppb for grid-to-grid, 10.27 ppb and 13.23 ppb for grid-to-
point, respectively.

Line 362: In grid-to-grid evaluation, GEOS-Chem shows an overall better performance in R’
than CAMS, TCR-2 and UKML.

Line 369: From 2006 to 2016, the performance rankings derived from R’ values varied
significantly between the two evaluation scenarios, whereas the RMSE based rankings were
nearly consistent.

Line 550: In instances of missing model estimates, we default to the nearest valid estimate to
evaluate with TOAR-II observations or re-gridded grid cell. For datasets with coarse spatial
resolution, this method may increase or reduce bias by double counting.

3. The authors have done nothing to address the primary problems with this analysis: the use of
6-month averages of MDAS to compare with models; and the fundamental methodology of how
to compare a mean grid-cell value with point measurements, especially when there are several in
a cell. The latter is clearly major unresolved problem (here at least). What happens if you have
three different sites within a cell, each with three different values — how does one compare and
derive R?? I realize that the authors may not be able to do this given the material they have, and
thus this paper belongs in an air quality management journal that deals with meeting regulations,
not in a science journal like ACP.

Response:

Please see our responses above to (#1) the overall purpose and scope of the paper, and (#2) the
evaluation method.

Reviewer #1 argues that our paper is outside of the scope of ACP. We acknowledge Reviewer
#1 s concern regarding the scope of ACP. However, we strongly believe that our paper fits well
within the journal s scope for the following reasons:



1. The datasets we evaluate and compare are of significant interest to the ACP readership,
which includes atmospheric scientists, climate modelers, and policy makers interested in
the impacts of ozone exposure on health, agriculture, and ecosystems. Therefore, our
work is directly relevant to the ACP community.

2. Our findings of significant differences among the datasets despite the fact that some
methods use some of the same inputs, which has not been shown previously, highlights
the importance of continued research on global ozone distributions. Machine learning
and other methods have not converged on a single correct global ozone distribution.
This is a direct contribution to atmospheric research community.

3. This paper was submitted as part of the TOAR-II special issue, and our work has been
presented at TOAR-II online meetings, as well as at the CMAS conference. Our work has
been received enthusiastically, with colleagues commenting both that it was conducted
thoroughly, and that such a systematic comparison of different datasets that are used
widely is overdue and important.

Response to Reviewer #2

The authors have addressed some of the reviewers’ suggestions, and there are some
improvements in the revised manuscript. However, several important issues remain and require
further revision. Failure to address the comments from the first round seriously compromises the
value of this study. Unless these critical points are properly dealt with, the contribution of the
work remains questionable.

Response:

We thank Reviewer #2 for their careful reading of the manuscript and for providing critical
feedback. We agree with the reviewer that our revised manuscript did not sufficiently address the
comments in first round. We have thoroughly revised the manuscript to address these critical
points.

1. Impact of data uncertainty on related analysis and reorganizing structure (i.e. third comment in
the 1st round): Regarding this issue, I do not agree with your response. While readers can draw
their own conclusions, it is the authors’ fundamental responsibility to provide clear and specific
interpretations based on the findings. Leaving key aspects of the analysis entirely up to the reader
undermines the completeness and clarity of the work. This approach also deviates from the stated
aims and title of the study, which emphasize evaluating uncertainty and accuracy through
comparisons between observation and datasets. One of the core values of this research should be
to account for these uncertainties and to draw meaningful conclusion — particularly about
implications for public health and agriculture. Moreover, Sections 4 and 5 lack a logical flow,
which further weakens the clarity and impact of the manuscript. Without a through and well-
reasoned interpretation of the results (i.e., the uncertainty and its impact on trend analysis and



ozone exposed population assessment), the manuscript does not fulfill its stated objectives and,
in its current form, is not suitable for acceptance in ACP.

Response:

Thank you for this valuable suggestion to improve the manuscript's flow, and we apologize for
this oversight in the first revision. Now we have reversed the order of sections 4 and 5, to present
dataset evaluation with respect to observations first, before the dataset intercomparison. To
directly address your concern, we have also used the results of the model evaluation to quantify
uncertainty in some of the results presented in the dataset intercomparison (now Section 5).
Specifically, for the exposure assessment (now in Section 5.4), we add the lower and upper
bound of population exposure to the OSDAMS level in Supplementary Figure S12. In Table 3, for
share of population exposure to different ozone thresholds, we now add the lower and upper
bound based on the evaluation results.

In addition to changing the order of Sections 4 and 5, we have also changed the text as follows:

Line 266: To quantify the uncertainty in our exposure analysis, we established lower and upper
bounds for all population exposure and share of population estimates. The OSDMAS 95%
confidence interval (CI) for each dataset is determined through a grid-to-grid linear regression
between each dataset and the re-gridded TOAR-II observations based on 0.1°% 0.1°grid cells.

Line 438: We also calculated the distribution of population regarding the lower and upper
bounds of OSDMAS from 2006 to 2016 for each dataset, as shown in Figure S12.

Line 452: Results are presented as the estimate with the lower and upper bound in parentheses
(e.g., 42% [24%, 66%)]). Detailed table of population share for each year (2006 to 2016) are
shown in Table S10.

We have also substantially expanded our discussion to provide a clearer interpretation of how
the evaluation results impact on the paper's main findings. For example, the ozone trend analysis
has been revised to include how systematic biases found in our evaluation (some datasets are
overestimate) contribute to the divergent long-term trends among datasets. With these
interpretations, we draw more meaningful conclusions.

Line 471: In addition, for chemical reanalysis datasets, there is a clear trade-off between
capturing the spatial pattern and the accuracy. As shown in Fig. 2, TCR-2, GEOS-Chem all have
widespread overestimation, but they often capture spatial patterns more effectively (higher R?).
Conversely, CAMS exhibits low bias in RMSE but shows worse spatial correlation in China. All
six datasets show a reduced performance at higher ozone concentrations (>50 ppb), which may
complicate their accuracy for assessing long term high-pollution exposure. Furthermore, most
datasets perform better in regions with lower monitoring density (e.g., the United States and
China) than in those with higher density (e.g., Japan and South Korea), which suggests that
resolving high-resolution local ozone distributions remains challenging even with a good amount



of observational data. The performance of each dataset impacts the accuracy of trend analysis
(Fig. 5 and Fig. 6) and population exposure assessment (Fig. 10), shown as uncertainty in these
Figures, which may lead to different results when compared to the WHO guideline and interim
target.

Line 490: From the comparison, the large disagreements among the six datasets regarding ozone
trends, population exposure, and concentration estimates are a direct consequence of the
systematic biases and performance issues identified in the evaluation.

Line 497: These uncertainties critically undermine the reliability of population exposure
assessment.

Line 503: More importantly, the evaluation reveals that all datasets perform poorly at high
ozone levels (> 50 ppb). This highlights the importance of removing systematic biases from these
data sets before applying them to exposure estimates.

Line 509: And from the evaluation, we find that all datasets perform well in the United States,
which makes the downward trend more reliable.

Line 570: Regionally, all datasets show a downward trend in North America, and the evaluation
results make this trend more reliable. Only BME and NJML datasets demonstrate a downward
trend in East Asia, and they also fit well with TOAR-II observations in population density
distribution.

Line 579: The coarse-resolution datasets, GEOS-Chem and TCR-2, perform well in grid-to-grid
evaluations at their native resolutions, making them effective for studying long-term regional
ozone effects. However, because of their coarser resolutions, these two datasets cannot capture
site-level distributions and exhibit greater bias than the higher-resolution BME, CAMS, and
NJML datasets. UKML, despite its relatively fine resolution (0.125°), shows larger biases and a
lower R?. The superior performance of BME and NJML should be noted with the fact that both
datasets use observational data for input or training, which gives them an inherent advantage in
these evaluations.

2. Again, regarding the fourth comment in the first round, I don’t think the authors thoroughly
evaluate the performance of the datasets. The authors missed their scientific discussion and the
implications.

Response:

We thank the reviewer for this excellent suggestion. We agree that a direct comparison of
population exposure at the observation sites provides a more thorough evaluation and
strengthens the paper's scientific discussion. We have now done this, but we are limited in doing
this to the 3 world regions with a density of observation sites. We re-gridded TOAR-II
observations to a 0.1° x 0.1° resolution by an inverse distance weighted method. The results are



now presented in Figure 3 and discussed in Section 4.2. We use these results to draw clearer
conclusions about the implications for regional exposure studies and to better identify the
uncertainty in the following exposure assessments. We also present these results for the lower
and upper bounds for the population exposure estimates, given uncertainty based on the
evaluation of each dataset in Figure S12. We think that this is a valuable addition to the paper, so
thank you for the suggestion.

The text is revised as follows:

0.081 BME D NJML D UKML D TOAR
0061 [] cams [] ceos TCR2

0.04 A

0021 J ~\/\
0.00 " a—

e
@

Population Density
(=] (=]
] 3

\
a

0.154

0.104

0.054

0.004

=

40 50
OSMDAS (ppb)

T T v T
60 70 80 90

Figure 3: Population-weighted exposure distributions for OSDMAS in 2016 in three regions:
East Asia (EAS), Europe (EUR), and North America (NAM) (regions defined in Table S7). Each
panel compares the distribution derived from the TOAR-II observations (black line) with
estimates from six datasets (colored lines), calculating the population-weighted kernel density
estimate, only for grid cells where TOAR-II measurements exist.

Line 317: Fig. 3 presents the distribution of population exposure calculated from six datasets
and the gridded TOAR-II observations in three world regions with a high density of observations,
for 2016. Here we calculate the population-weighted kernel density for population exposure to
OSDMAS concentrations, based on the 0.1° x (.1° resolution for each region, only for grid cells
where the re-gridded TOAR-II data have a value. Corresponding plots for other years (2006 to



2015) are shown in Figure S6. Overall, the datasets are widely distributed, and the estimated
exposure peaks vary. In East Asia (EAS), the population is exposed to high ozone
concentrations. The concentration distribution is broad and has multiple peaks from TOAR-II
observations, indicating a complex pollution environment, with a large population exposed to
concentrations frequently exceeding 50 ppb, even 70 ppb. BME and NJML show a similar
distribution as TOAR-II. Significant differences exist between UKML, CAMS and GEOS-Chem
with the TOAR-1I data for EAS. In Europe (EUR), exposure is concentrated between 40 and 50
ppb, indicating a more moderate and uniform exposure. The BME and CAMS have the best fit
with the TOAR-II. NJML, UKML, GEOS-Chem, and TCR-2 show a peak at a higher ozone
concentration range of 50—-60 ppb. In North America (NAM), exposure peaks sharply in the 40 to
50 ppb range, which is slightly higher and more concentrated than in Europe. The NJML dataset
agrees best with the shape of the TOAR-II distribution, and GEOS-Chem and BME capture the
overall shape of the major exposure peaks well.

Line 440: Populations in regions such as East Asia and South Asia appear to be exposed to
higher ozone concentrations in all datasets compared to other regions, which supports our
findings from exposure based on TOAR-II observations in Fig. 3.

3. The numbering of the supplementary table (Table S) is not presented in sequential order,
which can cause confusion. Ensuring correct and consistent numbering of all tables and figures is
a basic requirement that should be addressed prior to submission. Please revise the manuscript
carefully to ensure that all Tables (S) and Figures (S) are accurate and properly ordered.

Response:

We thoroughly reviewed the supplementary information, and ensure all tables and figures are
now numbered accurately and appear in sequential order in main paper.

4. Units are missing in Table 2. For clarity and scientific accuracy, please add the relevant units
to all applicable columns or data entries.

Response:

We thank the reviewer for catching this oversight. We have now added the appropriate units
(ppb/year) for the trend slope and its confidence interval. Please note that this table is now Table
3 in the revised manuscript.

5. Even in the revised version, some statements still lack objective explanations based on
consistent criteria. For example, the manuscript highlights a downward trend only for NJML (in
Line 264); however, BME also shows a concurrent downward trend in both area- and population-
weighted metrics. If the authors interpret the populated-weighted trend of BME (i.e., -0.04) as



insufficient to indicate a clear trend, then by the same standard, none of the remaining five
datasets show an increasing trend either. In this context, the statement in line 415 needs to be
revised. More importantly, the manuscript lacks a clear definition of what constitutes a “clear” or
“unclear” trend. The criteria used to make such classifications should be explicitly stated—
whether based on slope magnitude, statistical significance, or another method. Without a
consistent and objective basis for trend interpretation, the analysis risks appearing arbitrary and
subjective. Please review the manuscript carefully to ensure that all claims are supported by
clear, objective, and consistently applied analytical reasoning. In addition, the authors are
advised to carefully review all statements throughout the manuscript.

Response:

We agree that our initial manuscript lacked a clear and consistent definition for interpreting
trends, which led to the issues you identified. To fix this issue, we explicitly define our criteria for
trend and certainty in the Methods section (section 3). The interpretation is based on the
statistical significance (p-value) of the trend's slope, categorized by levels of certainty (e.g., very
high, high, low, etc.).

Line 255: We calculated the yearly ozone trend using 50% quantile regression for each dataset
using both population-weighted and area-weighted approaches, with details of the calculation
methods provided in Text S2. In this study, the trend is interpreted from the slope of the quantile

regression, and confidence in the trend is determined by its p-value: p < 0.01 is considered very
high certainty; 0.01 < p < 0.05, high certainty; 0.05 < p < 0.1, medium certainty; 0.1 <p <

0.33, low certainty, and p > .33, no evidence.

Line 266: To quantify the uncertainty in our exposure analysis, we established lower and upper
bounds for all population exposure and share of population estimates. The OSDMAS 95%
confidence interval (CI) for each dataset is determined through a grid-to-grid linear regression
between each dataset and the re-gridded TOAR-II observations based on 0.1°% 0.1°grid cells.

Using these objective criteria, we have carefully revised all trend-related statements throughout
the manuscript for consistency. For the specific example you noted, the text now clarifies that
while both NJML and BME show downward trends, they do so with different levels of statistical
confidence ('very high certainty'vs. 'low certainty’).

The text is revised as follows:

Line 382: In Table 3, focusing on 2006 to 2016, we find that NJML was the only dataset to
exhibit a downward trend with very high certainty for both area- and population-weighted mean
ozone concentrations. In contrast, TCR-2 and UKML only show increasing trends in population-
weighted mean ozone during this period with very high certainty. However, while the BME



dataset shows a negative slope for the area-weighted mean, this downward trend has only low

certainty; for the population-weighted mean, there is no evidence of a decreasing trend.

Line 477: Despite this, the three chemical reanalysis datasets unexpectedly outperform the
machine learning datasets in R? (TCR-2, GEOS-Chem) and in RMSE (CAMS) over the full year
2016.

Line 493: NJML demonstrates a very high certainty decreasing trend in global population-
weighted and area-weighted yearly mean over the 2006-2016 period. While TCR-2 and UKML
exhibit very high certainty increasing trends in global population-weighted mean which relates

to their overestimation.

6. (Sect 3.3, Line 224-225) Regarding 6th comment in the 1st round, the concern is not about
missing data. Of course, reanalysis datasets like GEOS-CHEM, CAMS, and TCR-2 have
complete spatial coverage. The issue is the lack of spatial representativeness when comparing
coarse-resolution grid cells with single (or multiple) observation sites. A single or (multiple)
monitoring station(s) may not adequately represent the entire of a coarse grid cell. The authors
need to justify how the address this potential mismatch in spatial representativeness.

Response:

We thank the reviewer #2 for pointing out this concern regarding the potential mismatch in
spatial representativeness. We agree this is a challenge when evaluating coarse-resolution
datasets against observations. To address this issue, we have implemented two evaluation
scenarios in our revised manuscript.

1. Grid-to-Grid evaluation: We have re-gridded the TOAR-II observations onto the native
grid resolution of each dataset. In doing so we use methods similar to those of Schnell et
al. (2015), but here we gridded observations for the whole TOAR-II dataset globally and
for more years than had been done previously. This method addresses the
representativeness issue by comparing the value of re-gridded observational grid cell to
the value of dataset s grid cell for the same spatial resolution.

2. Grid-to-Point evaluation: This is the traditional method used in the original manuscript
where the value of the dataset s grid cell is compared to all observations within that cell.
This method can ensure all evaluations are the same sample size given by the number of
observations.

By presenting results from both methods in section 4.1, we provide a more robust and
comprehensive assessment of dataset performance. We have revised as follows:



Line 214: Considering that the six datasets have different resolutions and are designed for
different applications, we adopted a dual evaluation strategy to provide a comprehensive
assessment of their performance. The first method is a grid-to-grid evaluation. Similar to the
approach of Schnell et al. (2015), we re-gridded TOAR-II observations to a 0.1° x 0.1° resolution
by an inverse distance weighted method and then aggregated them to match the native resolution
of each of the six datasets. In this approach, the sample size for each evaluation varies reflecting
the varying resolution of the datasets, for 2016, BME had 173,718 grid cell pairs, NJML had
7,099, UKML had 162,419, CAMS had 4,614, GEOS-Chem had 782, and TCR-2 had 2,195. We
also adopted the grid-to-grid evaluation method for regional evaluations, as it provides better
spatial representativeness over large areas. To quantify the uncertainty of the six datasets’
estimates, we determined the lower and upper bounds (95% confidence interval), derived from
the grid-to-grid regression analysis performed between the TOAR-II observations and each of
the six datasets at their native resolutions.

By presenting results from both methods in section 4.1, we provide a more robust and
comprehensive assessment of dataset performance. Overall, our main conclusions and the
relative performance rankings of the datasets remain largely consistent across both evaluation
methods. As expected, the grid-to-grid approach generally results in lower RMSE and higher R’
values, as it averages out localized errors that are more prominent in the direct grid-to-point
evaluation. However, the difference of two methods does not change the fundamental takeaways
of our analysis.

We have updated the results throughout the manuscript to describe the evaluation from both the
grid-to-grid and grid-to-point methods. The following are some key text from the manuscript,
updated to reflect the revisions:

Line 275: For 2016, BME outperforms other datasets in both evaluation method, with the highest
R? (0.75 for grid-to-grid, 0.63 for grid-to-point) and lowest RMSE (4.25 ppb for grid-to-grid,
5.28 ppb for grid-to-point), its density cores intersecting the y=x line

Line 280: In Fig. 1(a), all three chemical reanalysis datasets exhibit a moderate R’ ranging from
0.51 to 0.60 for grid-to-grid and 0.35 to 0.41 for grid-to-point, comparable to the performance of
the machine learning datasets, which have R’ values of 0.50 and 0.56 for grid-to-grid, 0.37 and
0.38 for grid-to-point. Among these five datasets, CAMS has the lowest RMSE (6.00 ppb for
grid-to-grid and 7.59 ppb for grid to point), which is better than other chemistry reanalysis
products but relatively low R’ (0.51 for grid-to-grid and 0.35 for grid-to-point). Its density cores
slightly below the y=x line suggests CAMS estimates are marginally lower than TOAR-II
observations. GEOS-Chem and TCR-2 demonstrate adequate performance, albeit with higher
RMSE values of 8.47 ppb and 10.26 ppb for grid-to-grid, 10.27 ppb and 13.23 ppb for grid-to-
point, respectively.

Line 362: In grid-to-grid evaluation, GEOS-Chem shows an overall better performance in R’
than CAMS, TCR-2 and UKML.
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Line 369: From 2006 to 2016, the performance rankings derived from R values varied
significantly between the two evaluation scenarios, whereas the RMSE based rankings were

nearly consistent.

Line 550: In instances of missing model estimates, we default to the nearest valid estimate to
evaluate with TOAR-II observations or re-gridded grid cell. For datasets with coarse spatial

resolution, this method may increase or reduce bias by double counting.

7. The amount of supplementary material is excessive and may overwhelm the reader. The
authors are encouraged to condense and streamline the supplementary information by
summarizing key findings and removing redundancies. Presenting only the most relevant and
necessary content will improve the clarity and accessibility of the supporting materials. In
particular, Figure S4 does not appear to add meaningful value.

Response:

We have revised the supplement to remove some tables and figures that do not add much
meaningful value. The specific tables and figures removed are as follows, based on their original
numbering:

Table S12. Number of NA value at all TOAR-II stations of six datasets in 2016.

Table S13. Yearly trends of area weighted, and population weighted global mean of ground-level
ozone for six datasets with 95% confidence intervals and p-values over full time period of each
dataset.

Figure S4. Population weighted ozone (OSMDAS) trends per decade for six datasets, calculated
over the full period of each dataset.

Figure §8. Heatmaps of pairwise correlation (Pearson R) between each dataset from 2006 to
2016.

Figure S9. Heatmaps of pairwise Root mean square difference (RMSD) between each dataset
from 2006 to 2016.

Figure S10. Population-weighted ozone (OSMDAS) for each year from 2006 to 2016 in different
regions. The horizontal axis represents ozone exposure concentrations, and the vertical axis
represents population size.

Figure S12. Performance evaluations of six datasets with TOAR-II observations for OSDMAS for
each year from 2006 to 2015. The evaluation only includes monitor stations above 50ppb in
TOAR-II network for each year (2006 to 2015).



