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Abstract 

This study evaluates and projects global aridity index (AI) and dryland distribution using the FAO Aridity Index based on 

Penman-Monteith potential evapotranspiration. A multimodel ensemble of 13 CMIP6 models, with a horizontal resolution of 

100 km, was selected for analysis. The ensemble was validated against WorldClim and ERA5 reanalysis datasets for the 

reference period (1970–2000), showing strong correlations in key variables and consistent geographic representation of 10 

drylands, with some regional discrepancies, notably in North-Eastern Brazil. Future projections of AI were generated for three 

socio-economic pathways (SSP2-4.5, SSP3-7.0, and SSP5-8.5) and two timeframes (2030–2060 and 2070–2100). Results 

indicate that most regions will maintain their current climate classification but face decreasing AI values, signifying drier 

conditions. Under SSP2-4.5 and SSP5-8.5, significant drying is projected for the mid-term, with continued but slower changes 

by century's end, affecting regions such as North and Central America, the Mediterranean Basin, and areas adjacent to present-15 

day deserts. In contrast, SSP3-7.0 shows limited drying or localized wetting in the mid-term, followed by extensive drying in 

the long-term. Comprehensive maps and tables detailing dryland proportions and distributions are provided to support these 

findings. 

1 Introduction 

Ongoing climate changes raise concerns about the habitability of drylands, already facing challenges related to water 20 

availability, agriculture and population. Around 27% of the world inhabitants lived in drylands in 2020, i.e. a more than 2 

billion people (Doxsey-Whitfield et al. 2015). Drylands are broadly defined as arid or semi-arid regions, i.e. regions in which 

the balance between water received and water loss is in favour of the latter. The concept of aridity refers to a long-term trend 

of limited water resources, contrarily to "drought" that refers to a temporary episode of water deficit. The IPCC defines aridity 

as: "the state of a long-term climatic feature characterised by low average precipitation or available water in a region”. Aridity 25 

generally arises from widespread persistent atmospheric subsidence or anticyclonic conditions, and from more localised 

subsidence on the lee side of mountains"(Möller, V. et al. 2022). Hyperarid and arid zones, such as the Sahara Desert, are 

mostly located at the descending side of Hadley cells. Semi-arid zones lie between the divergence zones of the two Hadley 

cells at the equator, and at the divergence zone of Hadley and Ferrel cells near the tropics of Cancer and Capricorn (Scholes 

https://doi.org/10.5194/egusphere-2024-3710
Preprint. Discussion started: 24 January 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

2020). Drylands are heterogenous and include various kinds of ecosystems, agricultural and economic activities. Their role in 30 

the global climate and biogeochemical cycles is still poorly understood (Osborne et al. 2022). On the contrary, “humid” areas 

have a water balance that tend to receive more water than they can use. These include tropical and temperature ecosystems, 

but also encompass great heterogeneity. In the recently released UNCDD report on desertification (Vincente-Serrano et al. 

2024), it has been established that the three last decades saw 77.6% of the world getting dryer and that nearly 8% of the world 

land surface transitioned to dryer aridity classes. 35 

The classification of climatic zones based on the concept of aridity inherits from a long tradition of climate classification.  

The Ancient Greeks used variables such as latitude and length of the longest day to divide the known world into torrid, 

temperate and frigid zones (Sanderson 1999). The Greek word “klima” means indeed “inclination of a sun ray” or latitude 

(Lamb et al.  2024). Maps of the world as the one drawn by Ptolemy of Alexandria were used until late in the Middle Ages 

(Ptolémée 1561). In the 19th century, botanists and plant geographer defined better climatic zones based on the effect of 40 

temperature and precipitation on the plant types and distributions. One of the most widely used classification is the one from 

the botanist Wladimir Köppen who defined climatic zones based on several criteria, i.e. temperature, length of the winter 

months (Köppen, 1936, updated by Kottek et al. 2006 and  Peel et al. 2007). In addition, many indices for climate classification 

have been introduced (Stephen 2005). For example, Lang defined a “rain factor” (Lang 1915), De Martonne an “aridity index” 

(Martonne 1926), Emeberger a “pluviometric constant” (Emberger 1930) and Ångström a “coefficient of humidity” (Ångström 45 

1936), all of them with their associated categories of climates.  

Acknowledging the important contribution of Köppen to climate classification, Thorthwaite (Thornthwaite 1943) deplored the 

complexity of his classification and advocated for a physically-based, systematic, and concise way of differentiating the 

climates. He highlighted the importance of moisture and heat, and particularly of the processes of evapotranspiration. 

Evapotranspiration is a complex processus to estimate, and in climate classifications, one uses the potential evapotranspiration 50 

i.e. the highest possible evapotranspiration given a good water supply (Xiang et al. 2020). In 1948, he introduced a  moisture 

index that he uses for calculating the potential evapotranspiration (Thornthwaite 1948). In parallel, Penman (Penman 1948) 

derived his evapotranspiration equation from the surface energy balance. Monteith (Monteith 1965) built on this work to 

establish the Penman-Monteith (PM) equation recognized as the most complete way of calculating evapotranspiration. 

However, its extensive need in terms of variables makes other and simpler equations also widely used (Pimentel et al. 2023). 55 

For example, later work by Hargreaves et Allen (2003) provided a simpler method with the aim of guiding irrigation practices 

in arid and semi-arid zones. 

The three successive editions of the World Atlas of Desertification (United Nations Environment Programme 1992; Nick 

Middleton et David Thomas 1997; Joint Research Centre (European Commission) et al. 2018) provided maps of aridity zones, 

using the Thornthwaite equation for its simplicity. In the 2024 UNCCD report, the Hargreaves question is used for calculating 60 

evapotranspiration (Vincente-Serrano et al. 2024).  Some other authors used the Penman-Monteith index on the reference 

period 1970-2000 to provide world maps, such as the FAO (FAO 2021) and Zomer et al. (2022). Spinoni et al. (2015) identified 

regions prone to desertification by comparing the 1951-1980 and 1981-2010 aridity indexes calculated with the PM potential 
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evapotranspiration. By comparing with the literature, they showed that the regions identified as at risk are areas where 

desertification or land degradation is reported. Other studies of climate zones by the end of the century are available, such as 65 

a Köppen classification until 2100 with CMIP6 was done by Beck et al. (2023). These maps are very detailed, but do not 

provide information on the changes within each climate category. Similarly, Trabucco et al. 2024 also published global maps 

of aridity index for the periods 2021-2040 and 2041-2060, using the downscaled models available in Worldclim (Fick and 

Hijmans 2017). Due to the few variables available in the future downscaled CMIP6 models gathered in Worldclim, the authors 

had to use the Hargreaves equation for calculating the reference potential evapotranspiration. In addition, these maps of future 70 

aridity areas are not available for the end of the century, and the pertinence of CMIP6 models is not evaluated. Using 

temperature-based methods like Hargreaves or Thornthwaite methods tend to overestimate the potential evapotranspiration in 

the long-term, by ignoring the effects of wind, radiation and shading (Sheffield, Wood, et Roderick 2012). The Penman-

Monteith method includes these factors and is less reliant on temperature. In general, no future estimations of the aridity index 

globally, mid-term and long-term, calculated with the Penman-Monteith reference potential evapotranspiration is available.  75 

In this study, we intend to compute the global aridity index based on Penman-Monteith equation globally for two periods: mid-

term (2030-2060) and long-term (2070-2100), using CMIP6 models. This allows us to identify the areas prone to aridification 

in the short and long term, including within areas defined as “humid”, and provide maps of aridity category areas for three 

socio-economic pathways (SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5). In a first part, the performance of the CMIP6 ensemble is 

evaluated for the reference period 1970-2000 by the comparison with two databases. The first database is the widely used 80 

Worldclim which is a combination of observations and reanalysis, and provides the 30 years average of several bioclimatic 

variables. The second one is the ERA5 reanalysis. ERA5 and Worldclim had very similar patterns of precipitation and 

temperature and were considered equally good as references. In the second part of the article, we compare the evolution of 

aridity index in each grid cell in three Socio-Economic Pathways (SSP) between the reference period 1970-2000 and the two 

study periods, 2030-2060 and 2070-2100. We compare the change in aridity index with the projected changes in temperature 85 

and precipitation, disentangling the relative role of these two factors in climate change. Finally, we examine the areas that will 

exceed the threshold separating aridity categories, and provide a map of aridity categories in each scenario. 
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2 Material and methods 

2.1 Aridity index 90 

The aridity index used in this study was first introduced by the UNESCO in 1979 to establish a world map of drylands prior 

to the United Nations Conference on Desertification (UNESCO 1979). It uses the Penman-Monteith equation to calculate the 

potential evapotranspiration, with standardized parameters adapted to an area of growing crops and noted ET0 (Allen et al. 

1998). This equation is an adaptation of the energy balance at the surface to calculate the quantity of water lost through 

evapotranspiration under optimum irrigation conditions, in mm per day. The aridity index is the average annual precipitation 95 

over 30 years, divided by the average annual potential evapotranspiration over 30 years, expressed in the World Atlas of 

Desertification (Joint Research Centre (European Commission) et al. 2018) as: 

𝐴𝐼 =  

∑
𝑃𝑖

𝐸𝑇0𝑖

30
𝑖=1

30
 

(1) 

The Penman Monteith equation for the potential evapotranspiration is: 

𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
 

(2) 

Where ET0 is the monthly potential evapotranspiration in mm, Rn is the net surface radiation in MJ/m2/day, G is the soil heat 

flux density in mJ/m2/day, T is the mean daily temperature at 2m height in °C, u2 is the wind speed at 2m height in m/s, es and 100 

ea are the saturating and actual vapour pressure in kPA. Δ is the slope of the vapour pressure curve in kPa/°C and γ is the 

psychrometric constant in kPa/°C, that depends on atmospheric pressure and temperature. This equation is an adaptation of 

the general equation of evapotranspiration from Penman-Monteith for a hypothetical surface planted with crops and used to 

homogenise the parameters related to the vegetation.   

Annual precipitation was obtained by adding mean monthly values. Similarly, annual ET0, was obtained by calculating the 105 

mean ET0 for each month over 30 years and then summed the monthly values. This was preferred over averaging the monthly 

values of all variables (temperature, wind speed, radiation….) for use in equation (2), due to the non-linearity of the Penman-

Monteith formula.  

This would be represented by:  

𝐸𝑇0 =  ∑
∑ 𝐸𝑇0𝑖,𝑗

30
𝑖=1

30

12

𝑗=1

  
(3) 

 110 
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Where “j” represents the months of the year and 30 the years on which the aridity index is calculated. 𝐸𝑇0𝑖,𝑗
 is the potential 

evaporation in mm for a given month in a given year “i”.  

The climate is then classified into 5 classes depending on their aridity index. The explicative note of the UNESCO (UNESCO 

1979) on the map of the world’s arid regions gives more detail on the vegetation present on these zones: 

 115 

Table 1 - Categories of aridity in the UNESCO classification 

AI < 0.03 Hyperarid 

Desert, no perennial vegetation. 

0.03 < AI  < 0.2 Arid 

Scattered vegetation like bushes and shrubs 

0.2 < AI < 0.5  Semi-arid 

Savannah, sometimes grazing/agriculture areas 

0.5 < AI < 0.75 Dry subhumid 

Savannah, maquis, chaparral.  

AI > 0.75 Humid 

ET0 < 400 mm Cold 

 

In this note, there is no mention of cold regions (Northern Europe, Siberia, Greenland). However, in the World Atlas of 

Desertification (Joint Research Centre (European Commission) et al. 2018) a “cold” region is defined, in which the annual 

potential evapotranspiration is inferior to 400 mm/year. In our data, grid cells with ET0 inferior to 400 mm have either an 120 

aridity index classified as humid, either the annual evapotranspiration is calculated as negative and the index is also negative. 

To avoid this last case, we decided to integrate the “cold” category, defined as grid cells in which ET0 is inferior to 400 

mm/year. In this classification, “drylands” comprise all the categories outside “humid” and “cold”. 

2.2 Variables and climate databases 

All data analysis was performed using R programming software (R Core Team 2023). Data from different models were 125 

reprojected into the same grid, and extracted using the «raster» package (Hijmans et al. 2023). 

The land-sea mask used is extracted from Iturbide et al. (2020), which also provides the polygons of the regions defined for 

the 6th Assessment Report. 

Elevation data (used to calculate atmospheric pressure) are extracted from Worldclim and used for the 3 datasets. 

2.2.1 Source of data 130 

Historical climate data are taken from the Worldclim database (Fick and Hijmans 2017) and from the ERA5 monthly 

aggregated reanalysis (Hersbach et al. 2020).  

Worldclim is composed of a combination of observations and reanalysis averaged monthly over a 30 years period (1970-2000). 

We used the coarser resolution: 340 km2. 
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ERA5 offers reanalysis of atmospheric variables monthly aggregated with a horizontal spatial resolution of 31 km. The data 135 

were downloaded for the period 1970-2000 and averaged per grid cell and by month over 30 years.  

CMIP6 models are accessible through the Lawrence Livermore National Laboratory, one of the ESGF data nodes (« LLNL 

ESGF MetaGrid »). We filtered the available models based on the following criteria:  

- The horizontal spatial resolution is 100 km; 

- The 6 necessary variables are available: air temperature at 2m height (« tas »), precipitation (« pr »), surface wind 140 

speed at 2m height (« sfcWind »), surface latent heat flux (« hfls »), surface sensible heat flux (« hfss »), relative 

humidity (« hurs »).  

- These variables are simulated for the 4 following scenarios: historical (years 1850-2014), SSP 2-4.5, SSP 3-7.0 and 

SSP 5-8.5 (years 2015-2100). 

13 models were thus selected are: 145 

- CAS-ESM2-0 (Zhang et al. 2020) ; 

- CESM2-WACC (Gettelman et al. 2019); 

- CMCC-CM2-SR5 (Cherchi et al. 2019); 

- CMCC-ESM2 (Lovato et al. 2022) 

- CNRM-CM6-1 (Voldoire et al. 2019); 150 

- EC-Earth3 (Döscher et al. 2022);  

- FGOALS-f3-L (B. He et al. 2019); 

- GFDL-ESM4 (Dunne et al. 2020); 

- INM-CM4-8 and INM-CM5-0 (Volodin et al. 2018); 

- MPI-ESM1-2 (Gutjahr et al. 2019); 155 

- MRI-ESM2-0 (Yukimoto et al. 2019); 

- NorESM2-MM (Seland et al. 2020).  

Only one member of each of them was downloaded, usually r1i1p1f1 except for the CNRM model which only provided the 

member r1i1p1f2. 

For each cell in the grid, the “CMIP6” value is the multimodel mean value of a given variable. The standard deviation was 160 

computed to estimate the spread of the models.  

2.2.2 Regions and land/ocean mask 

The land/ocean mask, the continent and the corresponding IPCC regions were obtained from Iturbide et al. (2020). Grid cells 

containing only ocean (marked by a value of 0) were excluded, but the coastal grid cells (value between 0 and 1) were kept in 

the analysis. We excluded from the analysis the continents that were only composed of a few grid cells, mainly islands, i.e. the 165 
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“Arctic”, “Indian’, “Pacific”, “Polar” and “Southern” continents.  In addition, most figures and percentages in the article 

exclude the grid cells of Antarctica, unless otherwise specified. 

2.2.3 Variables 

The potential evapotranspiration is calculated based on the variables available in each database. Table 2 summarises which 

variable is used to compute each term in the Penman-Monteith equation.  170 

Table 2 – List of variables used by data source 

Calculated variable Worldclim ERA5 CMIP6 

Annual precipitation “precip” in mm/y “mpr” in kg/m2/s 

Monthly aggregated, 

averaged over a year 

“pr” in kg/m2/s 

Monthly aggregated, averaged 

over a year 

2m temperature “tavg” in °C 

Available as the mean of 

average monthly temperature 

for 30 years (1970-2000) 

“t2m” in K 

Used to calculate 

evapotranspiration by month 

“tas” in K  

Used to calculate 

evapotranspiration by month 

2m wind speed “wind” in m/s 

Wind speed at 10 m. 

Converted to wind speed at 2m 

by multiplying by 0.748 

“si10” in m/s  

Wind speed at 10 m. 

Converted to wind speed at 

2m by multiplying by 0.748 

“sfcWind” in m/s 

Wind speed at 10 m. Converted 

to wind speed at 2m by 

multiplying by 0.748 

Net solar radiation and 

soil heat flux Rn – G 

Rn is estimated from the solar 

radiation “srad” in kJ/m2/day. 

G is neglected 

Rn – G is computed as the 

sum of the surface latent heat 

flux “mslhf” and the surface 

sensible heat flux “msshf” 

Rn – G is computed as the sum 

of the surface latent heat flux 

“hfls” and the surface sensible 

heat flux “hfss” 

Saturating vapor pressure 

es 

Calculated from 2m 

temperature 

Calculated from 2m 

temperature 

Calculated from 2m temperature 

Actual vapor pressure ea Directly available as water 

vapor pressure “vapr” in kPa 

Calculated from the dew 

point at 2m “tdew” in K 

Calculated from the relative 

humidity “hurs” in % 

2.2.4 Computation of aridity indexes and categories 

We use the evapotranspiration as defined by Penman-Monteith, that requires the mean annual temperature, actual vapor 

pressure and surface energy fluxes. 13 CMIP6 models were selected, that offered the 6 necessary variables were readily 

available for a resolution of 100 km and for the historical period as well as the 3 SSP.  175 
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We retrieved data for future periods in CMIP6 in 3 distinct SSP scenarios. The potential evapotranspiration and the aridity 

index are then calculated for these 3 scenarios in the 13 CMIP6 models. The average aridity index is computed by grid cells 

and the value of this index in the two future periods (2030-2060 and 2070-2100) are computed. Increases in aridity index, 

corresponding to wetter conditions, are represented in blue; while decreases of aridity index, corresponding to dryer conditions, 

are represented in red. Most of the values taken by the aridity index are comprised between 0 and 1, corresponding to the arid, 180 

semi-arid and dry-subhumid categories. Aridity indexes superior to 0.65 up to infinity are classified as humid, except grid cells 

with evapotranspiration lower than 400 mm/year that are classified as cold. Aridity indexes less than 0.03 to (-infinity) are 

classified as hyperarid. Figures for changes in temperature (the main driver for evapotranspiration) and precipitation compared 

to 1970-2000 are available in supplementary (Fig. S5).  

3 Evaluation of CMIP6 performances for the reference period 1970-2000 185 

3.1 Internal variability in CMIP6 

Before calculating the multimodel AI average, the aridity index and corresponding aridity category are calculated for each 

model in each period and for each grid cell. Then an aridity category is assigned to the grid cell based on the calculated value 

(Table 1). A summary of the global percentage of aridity category by model is presented in Table 3, excluding Antarctica. 

The multimodel mean is computed for each grid cell, and the aridity category is determined by this multimodel value. Hence, 190 

the multimodel mean in percent is not equal to the mean of the percentages for the 13 models.  The percentages of hyperarid, 

arid, semi-arid and dry-subhumid grid cells are merged into a category “Drylands”. In the 13 models used in this study, this 

percentage of drylands varies from 24.5% to 38%. Only 3 models have a percentage of drylands inferior to the multimodel 

average. Two of the models had a particularly high proportion of “Cold” grid cells (ET0 < 400 mm/year) compared to the 

“Humid” category: CMCC-ESM2 and FGOALS.  195 

 

Unsurprisingly, models developed by the same institution are very similar. CMCC-CM2-SR5 and CMCC-ESM2 are 2 of the 

3 “wettest” models, and INM-CM4-8 and INM-CM5-0 also have close results in terms of proportion of drylands. Some of the 

models in our subset have similarities in the code and results (Pathak et al. 2023). However, this does not always result in 

similar proportion of aridity categories. For example, EC-Earth-3 and CNRM-CM6-1-HR are supposed to be correlated, and 200 

share parts of their code. They have a similar proportion of drylands here (35.8% and 33.1%), but differ in their proportion of 

“Cold” areas (25.7% compared to 31%). Similarly, NorESM2, which is supposed to be similar to CESM2-WACCM and 

CMCC models, has the highest proportion of drylands (38.0%), while the two CMCC models have the lowest one. Given this 

variability even in models supposed to be similar, we chose not to weight the models for the multimodel mean.  

As a result, the multimodel average is strongly influenced by the wettest and coldest models, with a total proportion of drylands 205 

of 28.3%. However, the multimodel geographical repartition of aridity areas is more consistent with observations than the 

repartition in each individual model (Fig. S1). The multimodel average is also consistent with the two reference databases, as 
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demonstrated below. Internal variability will not be further investigated, and we will use the multimodel average from now 

on. 

 210 
Table 3 – Percentage of aridity categories for the 13 CMIP6 models and multimodel average percentage of aridity categories for the 

reference period 1970-2000. The multimodel average and corresponding standard deviation from now on refer to the global average, 

and not the average per grid cell. 

Model 

Hyper-

arid Arid 

Semi-

arid 

Dry 

subhumid 

Sum 

drylands Humid Cold NA 

CAS-ESM2-0 5.2 8.6 13.2 6.3 33.3 37.4 29.1 0.3 

CESM2-WACCM 5.3 10.7 14.1 5.2 35.3 35.0 29.5 0.3 

CMCC-CM2-SR5 5.1 7.4 10.1 5.4 28.0 42.2 29.5 0.3 

CMCC-ESM2 6.4 7.9 7.7 2.5 24.5 24.4 50.8 0.3 

CNRM-CM6-1 5.8 12.2 11.3 6.5 35.8 38.3 25.7 0.2 

EC-Earth3 8.4 9.5 10.8 4.4 33.1 35.7 31.0 0.2 

FGOALS-f3-L 5.9 10.9 10.0 4.9 31.7 25.1 42.9 0.2 

GFDL-ESM4 5.8 8.9 8.9 4.1 27.7 35.3 36.8 0.2 

INM-CM4-8 4.4 8.4 13.3 5.7 31.8 40.1 27.8 0.3 

INM-CM5-0 3.4 8.5 12.0 5.6 29.5 43.0 27.3 0.3 

MPI-ESM1-2 8.7 11.1 10.2 4.3 34.3 34.0 31.5 0.2 

MRI-ESM2-0 6.1 10.8 9.2 3.9 30.0 38.9 30.9 0.3 

NorESM-2-MM 5.2 10.1 17.1 5.6 38.0 33.4 28.3 0.3 

Multimodel average 5.8 9.6 11.4 5.0 31.8 35.6 32.4 0.3 

Standard Deviation 1.4 1.5 2.5 1.1 6.5 5.7 7.1 0.1 
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3.2 Comparison between Worldclim, ERA5 and multimodel CMIP6 

The Worldclim database is commonly used in disciplines such as ecology, biology or biogeochemistry, whereas climatologists 215 

rather use more detailed ensembles such as ERA5. These two databases were compared as a basis for evaluating the historical 

models of the CMIP6 ensemble. Figure 1 shows the violin plots of the main variables in CMIP6, ERA5 and Worldclim: annual 

mean precipitation, surface temperature, surface wind speed, solar radiation, actual vapor pressure, and the computed potential 

evapotranspiration. In addition, Table 4 shows the r2 of these variables between CMIP6, ERA5 and Worldclim.  

 220 

 

Figure 1 – Violin plots of the main climate variables in Worldclim, ERA5 and CMIP6. Rn-G represents the net solar radiation minus 

the soil heat flux, and represents the total heat fluxes at the surface. “ea” is the actual vapor pressure. 

 

All the variables are well correlated with each other, up to an r2 of 1 for surface temperature for the 3 pairs of databases. The 225 

actual vapor pressure in the three databases is also highly correlated (r = 1 for ERA5/Worldclim, and 0.99 for ERA5/CMIP6 
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and Worldclim/CMIP6). The annual precipitation, the wind speed and the solar radiation have a higher spread between 

databases. The shapes of the violins for precipitation are similar, despite higher values in CMIP6. The correlation coefficients 

are close to 0.9 (r = 0.88 for ERA5/Worldclim, r = 0.89 for ERA5/CMIP6 and Worldclim/CMIP6). The spread is largest for 

the wind speed, where ERA5 and CMIP6 are more correlated (r = 0.88 for ERA5/CMIP6, r = 0.77 for ERA5/Worldclim and 230 

r = 0.78 for Worldclim/CMIP6). However, the values of wind speed in CMIP6 are mostly comprised between 3 and 5 m/s, 

while the range is broader in ERA5 and Worldclim. The solar radiation (Rn-G) is also more correlated between ERA5 and 

CMIP6 than compared to Worldclim (r = 0.99 for ERA5/CMIP6, while r = 0.89 for ERA5/Worldclim and 0.91 for 

Worldclim/CMIP6). This is also reflected in the shape of the density, with Worldclim having more negative values than ERA5 

and CMIP6, no points higher than 12 MJ/m2/day, and most values being comprised between 5 and 10 MJ/m2/day. This 235 

difference is due to the different source for the two variables: in CMIP6 and ERA5, Rn – G is calculated as the sum of the flux 

of latent and sensible heat fluxes, while in Worldclim this term is derived from the total solar radiation and the latitude.  

Overall, the discrepancy in wind speed and solar radiation does not impact the strong correlation between the calculated ET0 

in the three databases: r = 0.97 for ERA5/Worldclim, 0.98 for ERA5/CMIP6, and 0.96 for Worldclim/CMIP6. The differences 

are more reflected in the median value: ET0 in CMIP6 (809,7 mm/year) is similar to that in ERA5 (809,2 mm/year), but ET0 240 

have lower values in Worldclim (median ET0 = 775,2 mm/year).  

 

Table 4- r2 for variables, pairwise comparison of databases. All p-values were <2×10-16 

 Precipitation Temperature 

Wind 

speed Rn - G 

Actual vapor 

pressure (ea) 

Potential 

evapotranspiration (ET0) 

ERA5 vs Worldclim 

r2 0.77 1.00 0.59 0.79 0.99 0.94 

ERA5 vs CMIP6 

r2 0.79 1.00 0.77 0.97 0.98 0.96 

Worldclim vs CMIP6 

r2 0.79 0.99 0.61 0.82 0.97 0.91 

 

The 30-years average of the aridity index is used to compare ERA5, Worldclim and CMIP6 datasets for the reference period 245 

1970-2000. Figure 2 presents a pie chart showing the percentage of each aridity category for the 3 datasets and for the reference 

period.  
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The pie charts highlight the similarities and differencies between CMIP6 and the two reference databases. In general, there are 

less grid cells classified as drylands in CMIP6 (28.3%) compared to ERA5 (30.4%) and Worldclim (32.3%). The proportion 250 

of humid grid cells is the highest in ERA5 (42.4%) compared to CMIP6 (40.1%) and Worldclim (37.3%). CMIP6 has the 

highest share of cold grid cells (31.6%). This share decreases to 27.1 % in ERA5 and 30.4% in Worldclim. 

Regional differences in the distribution of aridity categories are visible on Figure 3. Overall, the CMIP6 multimodel categories 

matches the patterns found in ERA5 and Worldclim. However, several deserts appear in CMIP6 as semi-arid or even dry 

subhumid areas, whereas they are clearly arid or hyperarid in Worldclim and ERA5. 255 

North America: deserts are less widespread in CMIP6 compared to the 2 others databases. For example, the Chihuahuan Desert, 

at the frontier between Mexico and the United States, is in a region that appears as semi-arid or even subhumid in CMIP6. The 

Great Basin Desert is also much smaller in CMIP6 than in ERA5 and Worldclim. CMIP6 ensemble has proven to have a wet 

bias in particular over Western US compared to observations (Almazroui et al. 2021).    

Central America:  CMIP6 is slightly dryer than ERA5 and Worldclim, with some dry subhumid and semi-arid grid cells in the 260 

Yucatan Peninsula, Cuba, Haiti and the north of Venezuela. These areas are classified as tropical savannahs in the Köppen-

Geiger classification, with a dry winter season (Kottek et al. 2006). This dryer classification can be explained by the dry bias 

identified by  Almazroui et al. (2021) in south Central America and the Caribbean. 

South America: In South America, the main differences are visible in the North of Chile (Atacama Desert) and in North Eastern 

Brazil. North Eastern Brazil is semi-arid in Worldclim and ERA5, but is completely humid in the multimodel CMIP6. 265 

Similarly, the Atacama Desert is not hyperarid in CMIP6: only an “arid” band appears. This wet bias has been observed earlier, 

for example by Reboita et al. (2024) who compared CMIP6 ensemble with reanalysis of temperature (ERA5) and precipitation 

(Climate Prediction Center Merged Analysis of Precipitation CMAP and Global Precipitation Climatology Project) in 5 

subregions of south America. They observed a systematic wet bias in North-eastern Brazil in summer, as well as in the Andean 

region. (Firpo et al. 2022) highlight the dipolar bias in precipitation in North-eastern Brazil and in the Amazonas, by comparing 270 

multimodel CMIP6 to the CRU database (Harris et al. 2014). They explain this by a default in the modelling of the maximum 

precipitation centre in South America, which is located too far east. One of the reasons could be a poor representation of cloud 

physics. This deficiency was already present in CMIP3 and 5. A bias towards warmer temperatures in south of South America 

was also found, but this does not seem to influence the distribution of aridity zones. 

Europe: The European continent is divided into humid and cold zones, which do not differ between CMIP6 and 275 

ERA5/Worldclim. 

Mediterranean Basin: CMIP6 multimodel ensemble and ERA and Worldclim differ in the Iberian Peninsula.  The center and 

the east of the peninsula are semi-arid and dry subhumid in Worldclim and ERA5, while semi-arid areas are limited to the 

south in CMIP6. The same pattern is observed in Turkey. It is mostly humid in CMIP6, but the central plateau of Anatolia is 

semi-arid or dry-subhumid in ERA5 and Worldclim, which corresponds more to the continental conditions observed.   280 

Africa: CMIP6 performs well with all zones well represented. The arid zone in south-west Africa (Namibia, South Africa) is 

less spread in CMIP6 than in ERA5 and Worldclim. This is consistent with the evaluation made by Almazroui et al. (2020), 
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who noticed a wet bias in this region when comparing CMIP6 to the observations from the Climate Research Unit (University 

of East Anglia, Harris et al. 2014). In the Arabic peninsula, ERA5 has more hyperarid zones than CMIP6 and Worldclim, but 

the entire peninsula is arid. This is consistent with reality.   285 

Asia: In Western Central Asia and in India, arid and semi-arid zones are well represented in the three datasets of the three 

databases. Iran, Turkmenistan (70% covered by the Kara-Kum cold desert), Uzbekistan and Kazakhstan are mostly arid and 

semi-arid. However, there are differences in the Tibetan Plateau.  In Worldclim, it is classified as arid or semi-arid, whereas 

some parts are classified as “Cold” in ERA5 and CMIP6. This is due to the particular way “Cold” areas are classified, based 

on an annual potential evapotranspiration inferior to 400 mm/day. A cold bias has been found in the region resulting in an 290 

underestimation of the potential evapotranspiration (Zhu et Yang 2020). In particular temperature in the winter is much colder 

than observations in a majority of models. This impacts the evapotranspiration: more “cold” grid cells in CMIP6 compared to 

ERA5. The Gobi and Taklamakan deserts in Western China are visible in the three datasets, but only ERA5 identifies hyperarid 

areas. 

Oceania: the Australian deserts appears as mostly semi-arid in CMIP6, while it is mostly arid in ERA5 and Worldclim. Only 295 

the Great Victoria Desert and its closest neighbours are arid, while the Great Sandy Desert, in North Western Australia, is only 

semi-arid. 

Individually, some of the models have a stronger signal in the areas that the CMIP6 multimodel ensemble does not classify as 

drylands. For example, CESM and NorESM distinctly show North-Eastern Brazil as semi-arid. In addition, the Gobi and 

Taklamakan deserts are identified as hyperarids in CAS-ESM2, CNRM, EC-Earth-3, MPI, and the deserts of Australia are 300 

better represented in the CNRM, EC-Earth3, FGOALS, GFDL-ESM4, and MRI models. Maps are provided in the 

Supplementary (Fig. S1). 

However, globally, the multimodel average performs better than any individual model. Table 5 shows the percent of grid cells 

classified into different aridity categories for the 13 CMIP6 models compared to Worldclim and ERA5, as well as the 

multimodel average. The percentage of difference between Worldclim and ERA5 is 13.1%. This percentage rises to 14.7 % 305 

when comparing the multimodel average to ERA5 and to 15.1% when comparing with Worldclim, which is better than any of 

the CMIP6 models taken individually. 

To conclude, the multimodel average reproduces correctly the aridity areas corresponding the observations and reanalysis of 

Worldclim and ERA5.   

 310 
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Figure 2 – Pie chart of the proportion of aridity categories for the datasets CMIP6, ERA5, and Worldclim, excluding Antarctica 
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Table 5 - Proportion of gridcells with a different aridity category for CMIP6 models and for the multimodel average, compared to 

ERA5 and Worldclim 315 

Model Gridcell different from ERA 5, in % Gridcells different from Worldclim, in % 

CAS-ESM2-0 18.1 19.7 

CESM2-WACCM 16.4 15.9 

CMCC-CM2-SR5 17.6 18.5 

CMCC-ESM2 32.1 30 

CNRM-CM6-1 17.8 21.2 

EC-Earth3 16.7 17 

FGOALS-f3-L 24.9 23.4 

GFDL-ESM4 17.8 16.3 

INM-CM4-8 19.3 19.9 

INM-CM5-0 18.5 19.9 

MPI-ESM1-2 16.7 19.7 

MRI-ESM2-0 13.4 15.4 

NorESM-2-MM 17 17.7 

Multimodel average 14.7 15.1 
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Figure 3 - Maps of aridity categories for the reference period 1970-2000 for Worldclim, ERA5 and multimodel CMIP6. The maps 

do not show the Antarctic continent (entirely “cold”), but Antarctica is included in the computation of the proportion of aridity 320 
categories. 
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4 Future evolution of the aridity index in CMIP6 

Here, we intend to diagnose the regions in which climate changes in term of aridity are the most susceptible to happen. We 

project aridity zones using 13 CMIP6 climate models for 3 of the socio-economic trajectories described in the IPCC's 6th 

Assessment Report: SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5, for 3 past periods (1850-1880, 1970-2000 and 1985-2015) and 2 325 

future periods (2030-2060 and 2070-2100). The SSP-4.5 corresponds to a “middle-of-the-road” scenario in which the 

emissions remain around current level until 2030, after which most countries acheive their net-zero targets for 2050 under the 

Paris Agreement. The SSP 3-7.0 is a “regional rivalry” scenario, in which each region acts for itself. No additional climate 

policy is taken by 2100, and emissions double compared to current levels. In this scenario, emissions include particularly high 

levels of non-CO2 greenhouse gases and the highest levels of aerosol emissions.  The SSP 5-8.5 is also a scenario without any 330 

additional climate policy and where future economic development is based on an intensive use of fossil fuels (Chen et al. 

2021).  

4.1 Evolution of the aridity index value 

Figure 4 presents the difference of aridity index between future periods (2030-2070 and 2070-2100) and the reference period 

(1970-2000) for the three studied SSP. The difference is presented in % for a better understanding, i.e. AI (2070-2100) – AI(1970-335 

2000) / AI(1970-2000). 

Polar region: The most impressive changes are located in Greenland, in the northernmost regions of North America, and in 

the polar archipelagos of Svalbard, Novaya Zemlya and Svernaya Zemlya. The changes vary greatly from cell to cell, ranging 

from -40 to + 40 %. This is probably due to the large changes in precipitation and temperature in this region, and to the 

difficulty of modelling the polar regions. The East coast of Greenland is less affected, with a decrease in the aridity index of 340 

about -20%. The temperature increases reach 4 to 5 °C in SSP2-4.5, but up to 8-10 °C in SSP5-8.5. In the latter scenario, 

Greenland experiences a temperature increase of 4 to 9°C, from south to north. In contrast, precipitation is projected to increase 

in all these areas, especially in the eastern part of Greenland (+20% in SSP2-4.5 and +40% in SSP5-8.5). 

North America: The strongest aridity changes in North America occur mainly in Alaska, with patterns reminding Greenland, 

and around the current desertic regions. In the SSP2-4.5, the whole of Mexico and most of the south of the USA experience a 345 

20% drying by 2030-2060, increasing to 30% drying in Mexico and in the South USA by 2070-2100. In particular, the 

Chihuahuan and Sonoran deserts, which straddle the southern USA and Mexico, become increasingly dryer with changes in 

aridity down to -40% in the SSP5-8.5. The changes in precipitation are relatively similar in the two SSP (-10 to -20%) but the 

temperature increase is more drastic in SSP5-8.5 compared to SSP2-4.5: +2.5 °C on average in Mexico in SSP5-8.5 compared 

to +1.5 °C in Mexico and South USA in SSP2-4.5. The rest of Northern America also warms up by an average of 3 °C.  350 
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Figure 4 - Change in % of aridity index compared to the reference period 1970-2000 for SSP2-4.5, 370 and 585 for two future 

periods: 2030-2060 and 2070-210. Hatched areas correspond to areas where at least 10 models over 13 agree on the sign of change.  

Central and South America: In all scenarios, a decrease at least equal to 20% of the aridity index is observed in Central 355 

America, on the Caribbean coast, in the central Brazil and in the southern part of Chile and Argentina, with the highest decrease 
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observed for the SSP5-8.5, period 2070-2100. The north-east part of Brazil, nowadays classified as a desert, is located in a 

region where there is almost no change in aridity index. Overall, the temperature increase in South America increases, from 1 

to 3 °C in SSP2-4.5 to more than 4°C in SSP5-8.5 In SSP3-7.0, the increase in temperature is comprised between 2 and 4 °C. 

In the three SSP, the precipitation patterns change mainly in the south of the continent (precipitation decreases in the south of 360 

Chile and increases in some parts of Patagonia). In SSP5-8.5, there is a general decrease of precipitation in Central America. 

These decreases coincide with the areas where the strongest changes of aridity index are predicted.  

Europe and Mediterranean basin: In SSP2-4.5, there is overall decrease in the aridity index of between -10 and -20%. This 

excludes the Mediterranean coast, especially Spain, Italy, Greece, South-west France, and Ukraine. The aridity index decreases 

by more than -30% in the South of Spain.  In SSP5-8.5, the same pattern with more regions with decreases below -30%: whole 365 

of Spain and Italy, Yugoslavia, Greece etc. The region of up to 20% drying extends to the North of France and most of Germany 

and Poland. Parts of Northern Norway and Sweden are affected by similarly large decreases in aridity index, as well as the 

high plateaus of western Norway, and Iceland. In most of Europe, this pattern results from an overall higher temperature, 

which reaches up to +3-4 °C in SSP2-4.5 in continental Europe and up to 5 to 6 °C in SSP5-8.5 in continental and northern 

Europe. In the Mediterranean region, the decrease of precipitation (-10 to 20% in Spain, Italy and North Africa) accentuates 370 

the drying. 

Africa: The most striking changes are predicted in the Sahara region. Since the initial aridity index is inferior to 0.03 (hyperarid 

region), very slight changes can have a high impact on the percent change. For example, a 40% wetting is observed in south-

east Sahara/oriental Sahel region. This increase could be associated with a warming of the atmosphere, resulting in increased 

rainfall intensity during the wet seasons, with flood periods alternating droughts ( He et al. 2023, Palmer et al. 2023).  375 

In the Namib and Kalahari deserts, and more generally in South Africa and Namibia, the aridity index is predicted to decrease 

from -20% in SSP2-4.5 to more than -40% in SSP5-8.5. This is associated with a -10 to -20% precipitation decrease in Maghreb 

and Kalahari. In addition, the average temperature increases by up to +3-4 °C (SSP2-4.5) and to 4-5°C (SSP5-8.5).  

The west coast of Africa also experiences drying, from – 10% change in the aridity index in SSP2-4.5 to -20% in SSP5-8.5. 

The warming is limited to 2 to 4 °C in SSP2-4.5 and 3 to 5°C in SSP5-8.5, but changes in precipitation range from a slight 380 

increase in SSP2-4.5 (no more than +10%) to a slight decrease in SSP5-8.5 (less than -10%). 

In the Arabic peninsula, the south (Yemen and Oman) is marked by an increase of aridity index, more widely spread in SSP2-

4.5 than in SSP5-8.5. A drying in the North of the peninsula with decrease of aridity index of more than 40% in 2070-2100 is 

noted in Iraq, North of Saudi Arabia, Jordan. In SSP3-7.0, there is no trend of wetting, and a drying is observed mainly in the 

centre of Saudi Arabia. 385 

Asia: The western part of Asia is already largely composed of drylands, with arid deserts such as the Karakum and Kyzyl-kum 

deserts. However, the aridity index continues to drop in the short term as well as in the long-term.  

In the Indian subcontinent, the aridity index varies between -10 and 10%. The most important changes occur in the South-

West, in the province of Kerala. An increase of aridity index between 10 and 20% at the frontier between India and Pakistan, 

as well as in Pakistan, in the region of the Thar desert that is currently classified as semi-arid or arid. The changes in the south 390 
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can be explained by the temperature increase of 1 to 2°C in SSP 245 over most of the subcontinent. In the SSP5-8.5, this 

increase reaches up to 3 to 4 °C. This is the only region in India where the precipitation intensity does not change or slightly 

decreases compared to 1970-2000. In the north-west, the temperature increases much more (2 to 3 °C in SSP2-4.5 and 4 to 5 

°C in SSP5-8.5), but precipitations also increases particularly along the border between India and Pakistan (+10-20% in both 

SSP). This increase in rainfall therefore counterbalances the increase in temperature. 395 

In the North-East of Russia, the aridity index decreases by - 20 to - 30%, while some small regions have an increasing aridity 

index. Models predict an increase of precipitation in this region by 10-20% and 20-30% in SSP2-4.5. This increase goes up to 

50% in the SSP5-8.5. Temperature will also increase by 4 to 5 °C in SSP2-4.5, 5 to 8°C in SSP3-7.0 and 7 to 9 °C in SSP5-

8.5. In SSP5-8.5, the effect of temperature on evapotranspiration dominates, and the drying occurs mainly along the coast from 

the Bering Strait to South Korea and Japan.  400 

A large band in the south of China has a decreasing index down to 20% in SSP2-4.5. This corresponds to the currently humid 

part of China that warms the most (semi-arid and arid regions, in the West which warm much more but do not experience such 

a decrease in aridity index), while little change in precipitation in any of the 3 SSP. In SSP3-7.0 and 585, this area is much 

larger.  

Some regions of south-east Asia also experience a slight drying (less than 20%).  In SSP5-8.5, the areas experiencing drying 405 

are the same, but more widespread; while in SSP3-7.0, there are a few changes in aridity across the region except in Thailand, 

Cambodia and Vietnam. Temperature increase is uniform and limited in this region: 1 to 2 °C in SSP2-4.5, 2 to 3 °C in SSP3-

7.0 and 4 to 5 °C in SSP5-8.5. Precipitation changes little in SSP2-4.5 and SSP3-7.0, with changes falling in the range -

10%/+10%. However, up to +30% increase is expected on some islands in SSP5-8.5.  

Oceania: In SSP2-4.5, a decrease of aridity index by 10 to 20% is observed over almost the entire island of Australia and New-410 

Zealand. There is little change between the periods 2030-2060 and 2070-2100, indicating that the drying will occur in a short 

term.  In SSP5-8.5, the aridity index changes only on the west coast in 2030-2060 and in New Zealand, but decreases much 

more in 2070-2100, down to -40% in the west and in the south. These areas correspond to the regions in which the annual 

precipitation decreases between -10 and -20% by 2100.  

A decrease in aridity index is projected for central Australia in SSP2-4.5 and SSP5-8.5. In SSP2-4.5, the decrease is between 415 

-10 and -20%. Precipitation changes slightly, between – 10 and + 10%, but the temperature increases by 1 to 3 °C. In SSP5-

8.5, the aridity index decrease reaches -30%, with almost no change in precipitation except for an increase of up to 40% in the 

Great Victoria Desert (a region where the aridity index does not change), while the temperature increases between 3 and 5°C.  

In SSP3-7.0, the temperature increases between 2 and 3°C by 2070-2100, while precipitation increases by up to 40% in central 

region of Australia. This results in a decrease of the aridity index on the coastal areas in of the island, but not in the central 420 

areas. The period 2030-2060 is actually dryer than the period 2070-2100, with a 10-20% decrease of precipitation intensity 

resulting in a 10-40% decrease in the aridity index on the island.  
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Is it worth noting that the SSP3-7.0 is overall different from the others two SSP. The period 2030-2060 is marked by an 

increasing aridity index in a large region of Central and Eastern Africa, India and North East Asia. This trend is reversed in 425 

the period 2070-2100, in which the aridity index decreases in most places, in particular in the Arabic peninsula, in India, in 

North-East Asia and North-West America for the period 2030-3060. The difference with the two other SSP is less visible for 

the period 2070-2100. The humidification observed for the period 2030-2060 could be explained by the introduction in this 

scenario of a larger amount of aerosols compared to the 2 others (Cross-Chapter box 1.4, in Chen et al. 2021). This scenario, 

presenting more contrasts than the others two, will lead to higher adaptation costs, since the climatic conditions can switch 430 

drastically between the mid-term and the long-term horizons. 

 

Figure 5 shows the average trend followed by the aridity index by continent and by SSP. A visualization by sub-region, as well 

as the relative evolution of temperature and precipitation by continent and by subregion, are available in Supplementary (Tables 

S2 to S10 and Figs. S10 to S17). The direction and speed of change are clearly visible: for most continents, the most rapid 435 

changes in the aridity index occur between the reference period 1970-2000 and the near future 2030-2060, and continue to 

decrease until the end of the century, but at a slower rate.  

This is particularly visible for Central and South America, the Mediterranean region and Oceania, in SSP2-4.5 and 585. In 

these regions, the changes in aridity index are driven by the conjunction of increasing average temperatures and decreasing 

average precipitation. In SSP3-7.0, the average aridity index in Oceania decreases down to -20% in the near future and 440 

increases in the far future. 

North America is the continent with the highest internal variability in aridity index, with standard deviation exceeding 100% 

of the average value. In SSP2-4.5, the aridity index slightly decreases in the short term, before increasing again in the long 

term.  In SSP5-8.5, the average aridity index does not change in the near future, but decreases in the long term. In SSP3-7.0, 

the drastic increase in aridity index (> +20%), indicating wetter conditions, is followed by a strong decrease (-15%) in the long 445 

term. This responds to the strong wetting of northern part of the continent in the period 2030-2060, followed by the drying of 

most of the continent in 2070-2100. In SSP2-4.5 and 585, both temperature and precipitation increase steadily, up to an average 

of +7.5°C in 2070-2100 for SSP5-8.5 and a 20% average increase in precipitation over the same period. This is again driven 

by the northern part of the continent, which experiences the most drastic changes.  

In Europe, the aridity index decreases steadily in the three SSP. In SSP3-7.0, the mid-term decrease is only half of the long-450 

term decrease, while in SSP2-4.5 most of the decrease happens in the first half of the century.  Both temperature and 

precipitation increase in SSP2-4.5 and SSP5-8.5, but the influence of the temperature on the potential evapotranspiration 

exceeds that of the increase in precipitation, as the aridity index decreases. The strongest decrease is observed for SSP3-7.0 in 

the period 2070-2100. In some regions, the near future will bring a wetter average climate (South and East Asia, Oriental 

Sahel), but the trend will be reversed by the end of the century. The North American case is the one with the highest 455 

discrepancy, but also with the greatest intermodal variability.  
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Figure 5  Evolution of the mean aridity index in % (up) and of the mean precipitation anomalies (%) and temperature anomalies 

(°C) (down) by continent in the Socio-economic pathways 2-4.5, 3-7.0 and 5-8.5 (Polar continent, including Greenland, Iceland and 460 
Svalbard islands, are not included) 
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4.2 Towards more drylands 

In analysing the changes in aridity index globally it can be seen that significant changes occur even in areas that are considered 465 

to be cold or humid. In addition, the change in aridity index sometimes leads to a change in aridity category.  

 

Figure 6 shows the proportion of each aridity category is represented by SSP and by period. The overall proportion of drylands 

(hyperarid, arid, semi-arid and dry subhumid areas) increases in all SSP but the majority of the land (excluding Antarctica) 

remains in the “humid” or “cold” categories. For example, Central America is classified as “humid” in the CMIP6 multimodel 470 

average for the reference period 1970-2000, but will experience drastic decreases in aridity index, especially in SSP5-8.5, 

without leading always to a change in aridity category. This is also noted in South America and Europe (Figure 4). 

 

 
Figure 6 - Evolution of percentage of aridity categories in the Socio-economic pathways 245, 370 and 585. The proportion of each 475 
aridity category represents the average of the 13 CMIP6 models, accompanied by the standard deviation.  

The most extreme projected changes in category, corresponding to the SSP5-8.5, are represented on Figure 7. The 

corresponding figures for SSP2-4.5 and SSP3-7.0 are available in Supplementary (Figure S8). 

North-America: Drylands in North America are expanding northwards and southwards. The Sonoran Desert becomes 

increasingly arid and the Chihuahuan Desert expands to the south, east and north. A dry subhumid zone appears North-East of 480 

the Great Basin Desert, in a region that used to be humid. 

https://doi.org/10.5194/egusphere-2024-3710
Preprint. Discussion started: 24 January 2025
c© Author(s) 2025. CC BY 4.0 License.



24 

 

Central-America: The dry subhumid areas in Cuba, Haiti and the Yucatan Peninsula become semi-arid. The dry 

subhumid/semi-arid area in the north of Venezuela becomes mostly semi-arid. 

South-America: The dry subhumid/semi-arid area in Argentina and Paraguay becomes mostly semi-arid and extends towards 

Brazil and Bolivia. Some other areas in Patagonia become semi-arid. Finally, a Brazilian region in the east becomes subhumid, 485 

when it was classified as humid before.  

Europe: Little changes, except that the cold to humid limit moves northwards. 

Mediterranean basin: The hyperarid areas of the Sahara moves northwards, and the semi-arid North African regions become 

arid. The semi-arid and dry subhumid areas expand in Spain, Italy, Greece and Turkey.  

Africa: The Arabic Peninsula becomes mostly hyperarid. In South Africa, the semi-arid and arid areas expand around the 490 

Namib and Kalahari deserts. In the Horn of Africa, some regions shift to a wetter category. The north-east of Somalia shifts 

from arid to semi-arid.  

Asia: Most of the category changes occur in the western part of Asia. The northern boundary of the central Asian deserts (Kara-

Kum, Kyzyl-Kum) moves northwards, but no major changes occur in the Taklamakan and Gobi deserts.  

Oceania: In Australia, the arid and semi-arid areas expand towards the north-east coast, which was previously dry subhumid 495 

or humid. 

https://doi.org/10.5194/egusphere-2024-3710
Preprint. Discussion started: 24 January 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

 

 

Figure 7 – Grid cells changing towards a dryer category compared to 1970-2000 for the SSP5-8.5, period 2070-2100 

Overall, we find that with the PM equation on our CMIP6 data, the extent of drylands during the reference period is 31.8%. 500 

This extent increased by 3%, 3.9% and 5.1% in SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5, respectively. These trends meet the results 

presented in the UNCDD report (Vincente-Serrano et al. 2024), with North-America, Latin-America and Europe being the 

continents most impacted by drying trends. In the report, the initial extent of drylands calculated is higher than in our study 

(40.6% of the land area for the reference period 1990-2020), but the projected expansion slightly lower (around 2% in SSP 2-

4.5, less than 3% in SSP 3-7.0, around 4% in SSP 5-8.5). To further compare our data with the UNCDD report, we used the 505 

Thornthwaite evapotranspiration as a temperature-based method to compute aridity projections with our data. The results are 

shown in  Table 6. We find that the extent of drylands was lower for the reference period with the Thornthwaite equation 

(27.2%), but the increase is higher in all SSP compared to the increase calculated with the PM equation: the increase is 3.8% 

in SSP 2-4.5, and 8.6% in both SSP 3-7.0 and 5-8.5.  

 510 
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These results are much lower than the changes predicted by Huang et al. (2016) with CMIP5 data, using the Penman-Monteith 

evapotranspiration. The authors calculated a 23% increase of dryland area (reaching 56% of total land area) in RCP8.5, whereas 

we only have a 5.1% in SSP 5-8.5, and 11% increase (reaching 50% of total land area) in RCP4.5, while this increase is only 

of 3% in SSP 2-4.5. These discrepancies can be attributed to the difference between the SSP and the RCP scenarios, and 515 

potentially to the better representation of rainfall patterns in CMIP6 compared to CMIP5 (Du et al. 2022).  

 

 
Table 6 - Proportion of drylands in % of total land area (multimodel average), using Penman-Monteith and Thornthwaite 

evapotranspiration, for the 3 studied SSP 520 

 

Period SSP 2-4.5 SSP 3-7.0 SSP 5-8.5 

Penman-

Monteith 

Thornthwaite Penman-

Monteith 

Thornthwaite Penman-

Monteith 

Thornthwaite 

1970-2000 31.8 ± 6.5 27,2 ± 7.7 31.8 ± 6.5 27,2 ± 7.7 31.8 ± 6.5 27,2 ± 7.7 

2030-2060 31.5 ± 6.4 29.6 ± 7.8 33.4 ± 6.8 30.3 ± 7.7 34.6 ± 7.9 30.8 ± 7.9 

2070-2100 34.8 ± 7.7 31.0 ± 5.5 35.7 ± 6.8 35.8 ± 8.7 36.9 ± 9.1 35.8 ± 10.9 
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5 Conclusion 

An ensemble of 13 CMIP6 models was evaluated to compute the aridity index. The multimodel average was evaluated against 

two databases, Worldclim and ERA5, which include observations and reanalyses. The CMIP6 multimodel average predicts a 525 

world that is slightly wetter world than observed today, in particular in the North-Eastern Brazil, where the arid area is not 

well simulated.  

The CMIP6 multimodel average was used to identify future drying and wetting trends in terms of aridity index in the future in 

most areas, in three different Socio-Economic Pathways. These scenarios represent different possible futures: in SSP2-4.5, 

climate changes are limited and therefore the patterns of change for aridity index and aridity categories are also less visible 530 

than in the SSP5-8.5, which represents the scenario with the largest increase in global temperature. The final scenario, SSP3-

7.0, lies in between but with opposite trends between the near and far futures. As a result, many areas are expected to become 

wetter in the mid-term, but drier in the long-term. This is the case in North-America, Africa and Asia where the aridity index 

is expected to increase in the mid-term, and then drastically decrease to levels comparable to the other two SSP. This would 

result in higher adaptation costs compared to the SSP2-4.5 and SSP5-8.5. In the three scenarios, the Mediterranean basin and 535 

Central America are the regions with the largest decrease in the aridity index. South-America, Europe and Oceania suffer from 

significant decreases, but limited to -20%. Overall, a decrease of the aridity index is observed for all continents in the far 

future.  Most of the changes already occur for the period 2030-2060 and remain or continue in 2070-2100. Significant changes 

of aridity index are also expected within climate zones, in particular in the humid zone, although these changes in the index 

are not affected by a change in category. The redistribution of arid areas by the end of the century is similar to today's map, 540 

with an expansion of arid zones towards the periphery of existing zones. Changes to wetter categories are only observed in the 

Horn of Africa. 

Conclusions for local ecosystems drawn on these results must consider that there is no direct translation between a change of 

aridity index and the impact on ecosystems. On the one hand, a main caveat of the Penman-Monteith method is that it assumes 

a fixed stomatal resistance. However, with increasing CO2 concentration, this resistance also increases, reducing in turn the 545 

water loss. As a result, evapotranspiration calculated with “historical” resistance value overestimate future evapotranspiration  

(Yang et al. 2019). Other ways of estimating evapotranspiration have been suggested, for example by directly using the net 

radiation that is a direct product of climate models (Greve et al. 2019) or by introducing a CO2-term in the equation (Lian et 

al. 2021), that result in reduced evapotranspiration and therefore less significant drying trends. On the other hand, the aridity 

index is a simple proxy that does not allow to discriminate between the drivers of change in a given ecosystem. For example, 550 

Denissen et al. (2022) use an “Ecosystem Limitation Index” that differentiate situations in which the primary production is 

limited either by water or energy limitation. The crossing of certain threshold can also be studied, as in Berdugo et al. (2020) 

that distinguish three phases in land degradation. Finally, seasonality is not taken into account here, while changes in the length 

of the dry and wet seasons could lead to shifts in vegetation even in humid areas (Xu et al. 2022).  
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