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Abstract

This study evaluates and projects global aridity index (Al) and dryland distribution using the FAO Aridity Index based on
Penman-Monteith potential evapotranspiration. A multimodel ensemble of 13 CMIP6 models, with a horizontal resolution of
100 km, was selected for analysis. The ensemble was validated against WorldClim and ERAS reanalysis datasets for the
reference period (1970-1999), showing strong correlations in key variables and consistent geographic representation of
drylands, with some regional discrepancies, notably in North-Eastern Brazil. Future projections of Al were generated for
three socio-economic pathways (SSP2-4.5, SSP3-7.0, and SSP5-8.5) and two timeframes (2030-2059 and 2070-2099).
Results indicate that most regions will maintain their current climate classification but face decreasing Al values, signifying
drier conditions. Under SSP2-4.5 and SSP5-8.5, significant drying is projected for the mid-term, with continued but slower
changes by century's end, affecting regions such as North and Central America, the Mediterranean Basin, and areas adjacent
to present-day deserts. In contrast, SSP3-7.0 shows limited drying or localized wetting in the mid-term, followed by
extensive drying in the long-term. Comprehensive maps and tables detailing dryland proportions and distributions are

provided to support these findings.

1 Introduction

Ongoing climate changes raise concerns about the habitability of drylands, where the population is already facing challenges
related to water availability, agriculture and population. Around 27% of the world population lived in drylands in 2020, i.e.
more than 2 billion people (Doxsey-Whitfield et al. 2015). Drylands are broadly defined as arid or semi-arid regions, i.e.
regions in which the balance between water received and water loss is in favour of the latter. The concept of aridity refers to
a long-term trend of limited water resources, in contrast to "drought™ that refers to a temporary episode of water deficit. The
IPCC defines aridity as: "the state of a long-term climatic feature characterised by low average precipitation or available
water in a region”. Aridity “generally arises from widespread persistent atmospheric subsidence or anticyclonic conditions,
and from more localised subsidence on the lee side of mountains"(M©éller, V. et al. 2022). Hyperarid and arid zones, such as
the Sahara Desert, are mostly located at the descending side of Hadley cells. Semi-arid zones lie between the divergence
zones of the two Hadley cells at the equator, and at the divergence zone of Hadley and Ferrel cells near the tropics of Cancer
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and Capricorn (Scholes 2020). Drylands are heterogenous and include various kinds of ecosystems, agricultural and
economic activities. Their role in the global climate and biogeochemical cycles is still poorly understood (Osborne et al.
2022). On the contrary, “humid” areas have a water balance that tend to receive more water than they can use. These include
tropical and temperature ecosystems, but also encompass great heterogeneity. In the recently released UNCDD report on
desertification (Vincente-Serrano et al. 2024), it has been established that the three last decades saw 77.6% of the world
getting dryer and that nearly 8% of the world land surface transitioned to dryer aridity classes.

Classification of climatic zones based on the concept of aridity have been in use since Ancient Greece. Many simple indices
for climate classification have been introduced (Stephen 2005). For example, Lang defined a “rain factor” (Lang 1915), De
Martonne an “aridity index” (Martonne 1926), Emeberger a “pluviometric constant” (Emberger 1930) and Angstrém a
“coefficient of humidity” (Angstrém 1936), all of them with their associated categories of climates. On the other hand, the
botanist Wladimir Koéppen who defined climatic zones, based on several criteria, i.e. temperature, length of the winter
months (K6ppen, 1936, updated by Kottek et al. 2006 and Peel et al. 2007). More recently, Thornthwaite (Thornthwaite
1943) advocated for a physically-based, systematic, and concise way of differentiating the climates. He highlighted the
importance of moisture and heat, and particularly of the processes of evapotranspiration. Evapotranspiration is a complex
processus to estimate, and in climate classifications, one uses the potential evapotranspiration i.e. the highest possible
evapotranspiration given a good water supply (Xiang et al. 2020). In 1948, he introduced a moisture index that he uses for
calculating the potential evapotranspiration (Thornthwaite 1948). In parallel, Penman (Penman 1948) derived his
evapotranspiration equation from the surface energy balance. Monteith (Monteith 1965) built on this work to establish the
Penman-Monteith (PM) equation recognized as the most complete way of calculating evapotranspiration. However, its
extensive need in terms of variables makes other and simpler equations also widely used (Pimentel et al. 2023). For example,
later work by Hargreaves and Allen (2003) provided a simpler method with the aim of guiding irrigation practices in arid and
semi-arid zones.

The three successive editions of the World Atlas of Desertification (United Nations Environment Programme 1992; Nick
Middleton and David Thomas 1997; Joint Research Centre (European Commission) et al. 2018) provided maps of aridity
zones, using the Thornthwaite equation for its simplicity. In the 2024 UNCCD report, the Hargreaves question is used for
calculating evapotranspiration (Vincente-Serrano et al. 2024). Some other authors used the Penman-Monteith index on the
reference period 1970-1999 to provide world maps, such as the FAO (FAO 2021) and Zomer et al. (2022). Spinoni et al.
(2015) identified regions prone to desertification by comparing the 1951-1980 and 1981-2010 aridity indexes calculated with
the PM potential evapotranspiration. By comparing with the literature, they showed that the regions identified as at risk are
areas where desertification or land degradation is reported. Other studies of climate zones by the end of the century are
available, such as a Koppen classification until 2100 with CMIP6 was done by Beck et al. (2023). These maps are very
detailed, but do not provide information on the evapotranspiration or aridity changes within each climate category. Similarly,
Trabucco et al. (2024) also published global maps of aridity index for the periods 2021-2040 and 2041-2060, using the

downscaled models available in Worldclim (Fick and Hijmans 2017). Due to the few variables available in the CMIP6
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projections gathered in Worldclim, the authors had to use the Hargreaves equation for calculating the potential
evapotranspiration. In addition, these maps of future aridity areas are not available for the end of the century, and the
pertinence of CMIP6 models is not evaluated. Using temperature-based methods like Hargreaves or Thornthwaite methods
tend to overestimate the potential evapotranspiration in the long-term, by ignoring the effects of wind, radiation and shading
(Sheffield, Wood, and Roderick 2012). The Penman-Monteith method includes these factors and is less reliant on
temperature. In general, no future estimations of the aridity index globally, mid-term and long-term, calculated with the
Penman-Monteith reference potential evapotranspiration is available.

In this study, we intend to compute the global aridity index based on Penman-Monteith equation globally for two periods:
mid-term (2030-2059) and long-term (2070-2099), using CMIP6 models. This allows us to identify the areas prone to
aridification in the short and long term, including within areas defined as “humid”, and provide maps of aridity category
areas for three socio-economic pathways (SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5). In a first part, the performance of the CMIP6
ensemble is evaluated for the reference period 1970-1999 by the comparison with two databases. The first database is the
widely used Worldclim which is a combination of observations and reanalysis, and provides the 30 years average of several
bioclimatic variables. The second one is the ERAS reanalysis. ERAS and Worldclim had very similar patterns of
precipitation and temperature and were considered equally good as references. In the second part of the article, we compare
the evolution of aridity index in each grid cell in three Socio-Economic Pathways (SSP) between the reference period 1970-
1999 and the two study periods, 2030-2059 and 2070-2099. We compare the change in aridity index with the projected
changes in temperature and precipitation, disentangling the relative role of these two factors in climate change. Finally, we
examine the areas that will exceed the threshold separating aridity categories, and provide a map of aridity categories in each

scenario.
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2 Material and methods
2.1 Aridity index

The aridity index used in this study was first introduced by the UNESCO in 1979 to establish a world map of drylands prior
to the United Nations Conference on Desertification (UNESCO 1979). It uses the Penman-Monteith equation to calculate the
potential evapotranspiration, with standardized parameters adapted to an area of growing crops and noted ETo (Allen et al.
1998). This equation is an adaptation of the energy balance at the surface to calculate the quantity of water lost through
evapotranspiration under optimum irrigation conditions, in mm per day. The aridity index is the average annual precipitation
over 30 years, divided by the average annual potential evapotranspiration over 30 years, expressed in the World Atlas of
Desertification (Joint Research Centre (European Commission) et al. 2018) as:

20 P (1)
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The Penman Monteith equation for the potential evapotranspiration is:
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Where ET) is the monthly potential evapotranspiration in mm, R, is the net surface radiation in MJ m2 day, G is the soil heat
flux density in MJ m2 day, T is the mean daily temperature at 2m height in °C, u. is the wind speed at 2m height in m s, e
and e, are the saturating and actual vapour pressure in kPA. A is the slope of the vapour pressure curve in kPa °C* and vy is
the psychrometric constant in kPa °C1, that depends on atmospheric pressure and temperature. This equation is an adaptation
of the general equation of evapotranspiration from Penman-Monteith for a hypothetical surface planted with crops and used
to homogenise the parameters related to the vegetation. The notation ETp used in Allen et al. (1998) to refer to the “reference
potential evapotranspiration” is replaced in the rest of this article by “PET”, the usual acronym for potential
evapotranspiration.

Annual precipitation was obtained by adding mean monthly values. Similarly, annual PET, was obtained by calculating the
mean PET for each month over 30 years and then summed the monthly values. This was preferred over averaging the
monthly values of all variables (temperature, wind speed, radiation....) for use in equation (2), due to the non-linearity of the
Penman-Monteith formula.

This would be represented by:

30 @)
PET = Z Zii PET,,
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Where “j” represents the months of the year and 30 the years on which the aridity index is calculated. PET; ; is the potential
evaporation in mm for a given month in a given year “i”.

The climate is then classified into 6 classes depending on their aridity index (Table 1). The thresholds used in this article
were defined in the explicative note of the UNESCO (UNESCO 1979) on the map of the world’s arid regions, based on the
bioclimatic characteristics of these areas. These thresholds are slightly different to those used in the UNCCD report on
desertification (Vincente-Serrano et al. 2024) and in the dedicated chapter of the IPCC AR6 (Mirzabaev et al., 2022),
because these two reports use respectively the Hargreaves and Thornthwaite evapotranspiration equations. The two
equations underestimate evapotranspiration in dry areas and overestimate it in humid areas. In their case, the hyperarid areas
are defined by an aridity index inferior to 0.05 (instead of 0.03 here) and humid areas with an aridity index superior to 0.65

(instead of 0.75 here), as indicated for defining the aridity categories when the Penman-Monteith equation is used.

Table 1 - Categories of aridity in the UNESCO classification

Al <0.03 Hyperarid

Desert, no perennial vegetation.

0.03<Al<0.2 Arid

Scattered vegetation like bushes and shrubs

0.2<AI<05 Semi-arid

Savannah, sometimes grazing/agriculture areas

0.5<AI<0.75 Dry subhumid

Savannah, maquis, chaparral.

Al >0.75 Humid

PET <400 mm y! Cold
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In this note, there is no mention of cold regions (Northern Europe, Siberia, Greenland). However, in the World Atlas of
Desertification (Joint Research Centre (European Commission) et al. 2018) a “cold” region is defined, in which the annual
potential evapotranspiration is inferior to 400 mm/year. In our data, grid cells with PET lower than 400 mm have either an
aridity index classified as humid, either the annual evapotranspiration is calculated as negative and the index is also negative.
To avoid this last case, we decided to integrate the “cold” category, defined as grid cells in which PET is inferior to 400

mm/year. In this classification, “drylands” comprise all the categories outside “humid” and “cold”.

2.2 Variables and climate databases

All data analysis was performed using R programming software (R Core Team 2023). Data from different models were
reprojected into the same grid, and extracted using the «raster» package (Hijmans et al. 2023).

The land-sea mask used is extracted from Iturbide et al. (2020), which also provides the polygons of the regions defined for
the 6™ Assessment Report.

Elevation data (used to calculate atmospheric pressure) are extracted from Worldclim and used for the ERA5, Worldclim and
CMIP6 datasets.

2.2.1 Source of data

Historical climate data are taken from the Worldclim database (Fick and Hijmans 2017) and from the ERA5 monthly
aggregated reanalysis (Hersbach et al. 2020).

Worldclim is composed of a combination of observations and reanalysis averaged monthly over a 30 years period (1970-
1999). We used the coarsest resolution: 340 km2. Time-series of observation are gathered from various sources (see Table 1

in Fick et Hijmans 2017) and gridded by interpolation, before being summarised.

ERAGS offers reanalysis of atmospheric variables monthly aggregated with a horizontal spatial resolution of 31 km. The data
were downloaded for the period 1970-1999 and averaged per grid cell and by month over 30 years.

CMIP6 models are accessible through the Lawrence Livermore National Laboratory, one of the ESGF data nodes (« LLNL
ESGF MetaGrid »). We filtered the available models based on the following criteria. First, the horizontal spatial resolution is
100 km. Second, the 6 necessary variables are available: air temperature at 2m height (« tas »), precipitation (« pr »), surface
wind speed at 2m height (« sfcWind »), surface latent heat flux (« hfls »), surface sensible heat flux (« hfss »), relative
humidity (« hurs »). Third, these variables are simulated for the 4 following scenarios: historical (years 1850-2014), SSP 2-
4.5, SSP 3-7.0 and SSP 5-8.5 (years 2015-2100). The 13 models were thus selected are: CAS-ESM2-0 (Zhang et al. 2020) ;
CESM2-WACC (Gettelman et al. 2019); CMCC-CM2-SR5 (Cherchi et al. 2019); CMCC-ESM2 (Lovato et al. 2022);
CNRM-CM6-1 (Voldoire et al. 2019); EC-Earth3 (Ddscher et al. 2022); FGOALS-f3-L (B. He et al. 2019); GFDL-ESM4

6
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(Dunne et al. 2020); INM-CM4-8 and INM-CM5-0 (Volodin et al. 2018); MPI-ESM1-2 (Gutjahr et al. 2019); MRI-ESM2-0
(Yukimoto et al. 2019); NorESM2-MM (Seland et al. 2020). Only one member of each of them was downloaded, usually
rlilplfl except for the CNRM model which only provided the member rlilplf2. For each cell in the grid, the “CMIP6”
value is the multimodel mean value of a given variable. The standard deviation was computed to estimate the spread of the
models.
2.2.2 Regions and land/ocean mask

The land/ocean mask, the continent and the corresponding IPCC regions were obtained from Iturbide et al. (2020). Grid cells
containing only ocean (marked by a value of 0) were excluded, but the coastal grid cells (value between 0 and 1) were kept
in the analysis. We excluded from the analysis the continents that were only composed of a few grid cells, mainly islands,
i.e. the “Arctic”, “Indian’, “Pacific”, “Polar” and “Southern” continents. In addition, most figures and percentages in the

article exclude the grid cells of Antarctica, unless otherwise specified.

2.2.3 Variables

The potential evapotranspiration is calculated based on the variables available in each database. Table 2 summarises which

variable is used to compute each term in the Penman-Monteith equation.

Table 2 — List of variables used by data source

Calculated variable | Worldclim ERAS5 CMIP6

Annual precipitation | “precip” in mm y- “mpr” in kg m?s? “pr” in kg m?s?

Available as the mean of | Monthly aggregated, averaged | Monthly aggregated, averaged
average monthly precipitation | over a year over a year
for 30 years (1970-1999)

2-m temperature “tavg” in °C “t2m” in K “tas” in K
Available as the mean of | Used to calculate | Used to calculate
average monthly temperature | evapotranspiration by month evapotranspiration by month

for 30 years (1970-1999)

2-m wind speed “wind” in m s “sil0” inm s? “sfcWind” in m s?
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Wind 10 m.
Converted to wind speed at

speed at

2m by multiplying by 0.748

Wind speed at 10 m. Converted

to wind speed at 2m by

multiplying by 0.748

Wind speed at 10 m. Converted

to wind speed at 2m by

multiplying by 0.748

Net solar radiation

and soil heat flux

“srad” in k] m2 day!

“mslhf” and “msshf”, in W m?2

“hfls” and “hfss”, in W m?

Rn-G
Rn is estimated from the solar | Rn — G is computed as the sum | Rn — G is computed as the sum
radiation  “srad”. G is | of the surface latent heat flux | of the surface latent heat flux
neglected “mslhf” and the surface sensible | “hfls” and the surface sensible

heat flux “msshf” heat flux “hfss”

Saturating vapor | Calculated from 2-m | Calculated from 2-m | Calculated from 2-m

pressure es temperature temperature temperature

Actual vapor pressure | Directly available as water | Calculated from the dew point | Calculated from the relative

€a

vapor pressure “vapr” in kPa

at 2-m “tdew” in K

humidity “hurs” in %

2.2.4 Computation of aridity indexes and categories

We use the evapotranspiration as defined by Penman-Monteith, that requires the mean annual temperature, actual vapor

pressure and surface energy fluxes. 13 CMIP6 models were selected, that offered the 6 necessary variables were readily

available for a resolution of 100 km and for the historical period as well as the 3 SSP.

We retrieved data for future periods in CMIP6 in 3 distinct SSP scenarios. The potential evapotranspiration and the aridity

index are then calculated for these 3 scenarios in the 13 CMIP6 models. The average aridity index is computed by grid cells

and the value of this index in the two future periods (2030-2059 and 2070-2099) are computed. Increases in aridity index,

corresponding to wetter conditions, are represented in blue; while decreases of aridity index, corresponding to dryer

conditions, are represented in red. Most of the values taken by the aridity index are comprised between 0 and 1. Values

between 0 and 0.65 correspond to the arid, semi-arid and dry-subhumid categories. Aridity indexes superior to 0.65 up to

infinity are classified as humid, except grid cells with evapotranspiration lower than 400 mm y- that are classified as cold.




180

185

190

195

200

205

210

Aridity indexes less than 0.03 to (-infinity) are classified as hyperarid. Figures for changes in temperature (the main driver
for evapotranspiration) and precipitation compared to 1970-1999 are available in supplementary (Fig. S5).

3 Evaluation of CMIP6 performances for the reference period 1970-1999
3.1 Model dispersion in CMIP6

Before calculating the multimodel Al average, the aridity index and corresponding aridity category are calculated for each
model in each period and for each grid cell. Then an aridity category is assigned to the grid cell based on the calculated value
(Table 1). A summary of the global percentage of aridity category by model is presented in Table 3, excluding Antarctica.
The multimodel mean is computed for each grid cell, and the aridity category is determined by this multimodel value. Hence,
the multimodel mean in percent is not equal to the mean of the percentages for the 13 models. The percentages of hyperarid,
arid, semi-arid and dry-subhumid grid cells are merged into a category “Drylands”. In the 13 models used in this study, this
percentage of drylands varies from 24.5% to 38%. Only 3 models have a percentage of drylands inferior to the multimodel
average. Two of the models had a particularly high proportion of “Cold” grid cells (PET <400 mm y') compared to the
“Humid” category: CMCC-ESM2 and FGOALS.

Unsurprisingly, models developed by the same institution are very similar. CMCC-CM2-SR5 and CMCC-ESM2 are 2 of the
3 “wettest” models, and INM-CM4-8 and INM-CM5-0 also have close results in terms of proportion of drylands. Some of
the models in our subset have similarities in the code and results (Pathak et al. 2023). However, this does not always result in
similar proportion of aridity categories. For example, EC-Earth-3 and CNRM-CM6-1-HR are supposed to be correlated, and
share parts of their code. They have a similar proportion of drylands here (35.8% and 33.1%), but differ in their proportion
of “Cold” areas (25.7% compared to 31%). Similarly, NorESM2, which is supposed to be similar to CESM2-WACCM and
CMCC models, has the highest proportion of drylands (38.0%), while the two CMCC models have the lowest one. Given
this variability even in models supposed to be similar, we chose not to weight the models for the multimodel mean.

As a result, the multimodel average is strongly influenced by the wettest and coldest models, with a total proportion of
drylands of 28.3%. However, the multimodel geographical repartition of aridity areas is more consistent with observations
than the repartition in each individual model (Fig. S1). The multimodel average is also consistent with the two reference
databases, as demonstrated below. Model dispersion will not be further investigated, and we will use the multimodel average

from now on.

Table 3 — Percentage of aridity categories for the 13 CMIP6 models and multimodel average percentage of aridity categories for
the reference period 1970-1999. The multimodel average and corresponding standard deviation from now on refer to the global
average, and not the average per grid cell. In italics: min and max values in each category.



Hyper- Semi- | Dry Sum

Model arid Arid | arid subhumid drylands Humid | Cold
CAS-ESM2-0 5.2 8.6 13.2 6.3 333 37.4 29.1
CESM2-WACCM 5.3 10.7 | 141 5.2 35.3 35.0 29.5
CMCC-CM2-SR5 51 7.4 10.1 54 28.0 42.2 29.5
CMCC-ESM2 6.4 7.9 7.7 2.5 245 24.4 50.8
CNRM-CM6-1 5.8 122 | 113 6.5 35.8 38.3 25.7
EC-Earth3 8.4 9.5 10.8 4.4 33.1 35.7 31.0
FGOALS-f3-L 5.9 10.9 | 10.0 4.9 31.7 25.1 42.9
GFDL-ESM4 5.8 8.9 8.9 4.1 21.7 35.3 36.8
INM-CM4-8 4.4 8.4 13.3 5.7 31.8 40.1 27.8
INM-CM5-0 34 8.5 12.0 5.6 29.5 43.0 27.3
MPI-ESM1-2 8.7 111 | 10.2 4.3 34.3 34.0 315
MRI-ESM2-0 6.1 108 | 9.2 39 30.0 38.9 30.9
NorESM-2-MM 5.2 101 | 171 5.6 38.0 334 28.3
Multimodel average 5.8 9.6 11.4 5.0 31.8 35.6 32.4
Standard Deviation 1.4 15 2.5 11 6.5 57 7.1

3.2 Comparison between Worldclim, ERA5 and multimodel CMIP6

The Worldclim database is commonly used in disciplines such as ecology, biology or biogeochemistry, whereas
climatologists rather use more detailed ensembles such as ERAS5. These two databases were compared as a basis for
evaluating the historical models of the CMIP6 ensemble. Figure 1 shows the violin plots of the main variables in CMIPS6,

10



215 ERAS5 and Worldclim: annual mean precipitation, surface temperature, surface wind speed, solar radiation, actual vapor
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pressure, and the computed potential evapotranspiration. Violin plots display the density curve of the variable over its range,

and allows to compare its distribution in different groups. In addition, Table 4 shows the correlation of these variables

between CMIP6, ERA5 and Worldclim, represented by r? (squared Pearson correlation coefficient).

Worldclim (%; Worldclim @
CMIP8 *—— CMIPS -q
0 2000 4000 6000 30 20 -10 0 10 20 30
Mean annual precipitation, mm Surface temperature, °C
Woridclim ‘<‘\‘/:> Worldclim %
ERA5 :@; ERA5 %
CMIP6 * CMIPS »
0 10 20

P 0 1 2 3

Rn-G, MJm “ day ea, kPa

. CMIP8B |:| ERAS I:I Worldclim

Worldclim

ERAS
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Waorldclim

ERAS

CMIP6

7

Surface wind speed, m s

A

0 1000 2000 3000 4000
PET, mm day’1

Figure 1 — Violin plots of the main climate variables in Worldclim, ERA5 and CMIP6. Rn-G represents the net solar radiation
minus the soil heat flux, and represents the total heat fluxes at the surface. “ea” is the actual vapor pressure.

All the variables are well correlated with each other, up to an r2 of 1 for surface temperature for the 3 pairs of databases. The

actual vapor pressure in the three databases is also highly correlated (r = 1 for ERA5/Worldclim, and 0.99 for ERA5/CMIP6

and Worldclim/CMIP6). The annual precipitation, the wind speed and the solar radiation have a higher spread between

databases. The shapes of the violins for precipitation are similar, despite higher values in CMIP6. The correlation
coefficients are close to 0.9 (r = 0.88 for ERAS/Worldclim, r = 0.89 for ERA5/CMIP6 and Worldclim/CMIP6). The spread
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is largest for the wind speed, where ERA5 and CMIP6 are more correlated (r = 0.88 for ERA5/CMIP6, r = 0.77 for
ERAS5/Worldclim and r = 0.78 for Worldclim/CMIP6). However, the values of wind speed in CMIP6 are mostly comprised
between 3 and 5 m/s, while the range is broader in ERA5 and Worldclim. The solar radiation (Rn-G) is also more correlated
between ERAS5 and CMIP6 than compared to Worldclim (r = 0.99 for ERA5/CMIP6, while r = 0.89 for ERAS/Worldclim
and 0.91 for Worldclim/CMIP6). This is also reflected in the shape of the density, with Worldclim having more negative
values than ERA5 and CMIP6, no points higher than 12 MJ m day, and most values being comprised between 5 and 10 MJ
m-2 day. This difference is due to the different source for the two variables: in CMIP6 and ERAS5, Rn — G is calculated as the
sum of the flux of latent and sensible heat fluxes, while in Worldclim this term is derived from the total solar radiation and
the latitude.

Overall, the discrepancy in wind speed and solar radiation does not impact the strong correlation between the calculated PET
in the three databases: r = 0.97 for ERA5/Worldclim, 0.98 for ERA5/CMIP6, and 0.96 for Worldclim/CMIP6. The
differences are more reflected in the median value: PET in CMIP6 (809,7 mm y-1) is similar to that in ERA5 (809,2 mm y1),
but PET have lower values in Worldclim (median PET = 775,2 mm y-1).

Table 4- r2 for variables, pairwise comparison of databases. All p-values were <2x10-16

Wind Actual vapor Potential
Precipitation Temperature speed Rn-G pressure (ea) | evapotranspiration (PET)
ERAS5 vs Worldclim
r2 0.77 1.00 0.59 0.79 0.99 0.94
ERAS5 vs CMIP6
r2 0.79 1.00 0.77 0.97 0.98 0.96
Worldclim vs CMIP6
r2 0.79 0.99 0.61 0.82 0.97 0.91

The 30-years average of the aridity index is used to compare ERA5, Worldclim and CMIP6 datasets for the reference period
1970-1999. Figure 2 presents a pie chart showing the percentage of each aridity category for the 3 datasets and for the
reference period.

The pie charts highlight the similarities and differences between CMIP6 and the two reference databases. In general, there
are less grid cells classified as drylands in CMIP6 (28.3%) compared to ERA5 (30.4%) and Worldclim (32.3%). The
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proportion of humid grid cells is the highest in ERA5 (42.4%) compared to CMIP6 (40.1%) and Worldclim (37.3%). CMIP6
has the highest share of cold grid cells (31.6%). This share decreases to 27.1 % in ERA5 and 30.4% in Worldclim.

Regional differences in the distribution of aridity categories are visible on Figure 3. Overall, the CMIP6 multimodel
categories matches the patterns found in ERA5 and Worldclim. However, several deserts appear in CMIP6 as semi-arid or
even dry subhumid areas, whereas they are clearly arid or hyperarid in Worldclim and ERAS5.

North America: deserts are less widespread in CMIP6 compared to the 2 others databases. For example, the Chihuahuan
Desert, at the frontier between Mexico and the United States, is in a region that appears as semi-arid or even subhumid in
CMIP6. The Great Basin Desert is also much smaller in CMIP6 than in ERA5 and Worldclim. CMIP6 ensemble has proven
to have a wet bias in particular over Western US compared to observations (Almazroui et al. 2021).

Central America: CMIP6 is slightly dryer than ERA5 and Worldclim, with some dry subhumid and semi-arid grid cells in
the Yucatan Peninsula, Cuba, Haiti and the north of Venezuela. These areas are classified as tropical savannahs in the
Kdppen-Geiger classification, with a dry winter season (Kottek et al. 2006). This dryer classification can be explained by the
dry bias identified by Almazroui et al. (2021) in south Central America and the Caribbean.

South America: In South America, the main differences are visible in the North of Chile (Atacama Desert) and in North
Eastern Brazil. North Eastern Brazil is semi-arid in Worldclim and ERA5, but is completely humid in the multimodel
CMIP6. Similarly, the Atacama Desert is not hyperarid in CMIP6: only an “arid” band appears. This wet bias has been
observed earlier, for example by Reboita et al. (2024) who compared CMIP6 ensemble with reanalysis of temperature
(ERAS5) and precipitation (Climate Prediction Center Merged Analysis of Precipitation CMAP and Global Precipitation
Climatology Project) in 5 subregions of south America. They observed a systematic wet bias in North-eastern Brazil in
summer, as well as in the Andean region. (Firpo et al. 2022) highlight the dipolar bias in precipitation in North-eastern Brazil
and in the Amazonas, by comparing multimodel CMIP6 to the CRU database (Harris et al. 2014). They explain this by a
default in the modelling of the maximum precipitation centre in South America, which is located too far east. One of the
reasons could be a poor representation of cloud physics. This deficiency was already present in CMIP3 and 5. A bias towards
warmer temperatures in south of South America was also found, but this does not seem to influence the distribution of
aridity zones.

Europe and Mediterranean Basin: The European continent is divided into humid and cold zones, which do not differ
between CMIP6 and ERA5/Worldclim. In the Mediterranean basin, the CMIP6 multimodel ensemble and ERA and
Worldclim differ in the Iberian Peninsula. The center and the east of the peninsula are semi-arid and dry subhumid in
Worldclim and ERAS5, while semi-arid areas are limited to the south in CMIP6. The same pattern is observed in Turkey. It is
mostly humid in CMIP6, but the central plateau of Anatolia is semi-arid or dry-subhumid in ERA5 and Worldclim, which
corresponds more to the continental conditions observed.

Africa: CMIP6 performs well with all zones well represented. The arid zone in south-west Africa (Namibia, South Africa) is
less spread in CMIP6 than in ERAS and Worldclim. This is consistent with the evaluation made by Almazroui et al. (2020),

who noticed a wet bias in this region when comparing CMIP6 to the observations from the Climate Research Unit
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(University of East Anglia, Harris et al. 2014). In the Arabic peninsula, ERA5 has more hyperarid zones than CMIP6 and
Worldclim, but the entire peninsula is arid.

Asia: In Western Central Asia and in India, arid and semi-arid zones are well represented in the three datasets of the three
databases. Iran, Turkmenistan (70% covered by the Kara-Kum cold desert), Uzbekistan and Kazakhstan are mostly arid and
semi-arid. However, there are differences in the Tibetan Plateau. In Worldclim, it is classified as arid or semi -arid, whereas
some parts are classified as “Cold” in ERAS and CMIP6. This is due to the particular way “Cold” areas are classified, based
on an annual potential evapotranspiration inferior to 400 mm/day. A cold bias has been found in the region resulting in an
underestimation of the potential evapotranspiration (Zhu and Yang 2020). In particular, temperature in the winter is much
colder than observations in a majority of models. This impacts the evapotranspiration: more “cold” grid cells in CMIP6
compared to ERAS. The Gobi and Taklamakan deserts in Western China are visible in the three datasets, but only ERA5
identifies hyperarid areas.

Oceania: the Australian deserts appear as mostly semi-arid in CMIP6, while it is mostly arid in ERA5 and Worldclim. Only
the Great Victoria Desert and its closest neighbours are arid, while the Great Sandy Desert, in North Western Australia, is
only semi-arid.

Individually, some of the models have a stronger signal in the areas that the CMIP6 multimodel ensemble does not classify
as drylands. For example, CESM and NorESM distinctly show North-Eastern Brazil as semi-arid. In addition, the Gobi and
Taklamakan deserts are identified as hyperarids in CAS-ESM2, CNRM, EC-Earth-3, MPI, and the deserts of Australia are
better represented in the CNRM, EC-Earth3, FGOALS, GFDL-ESM4, and MRI models. Maps are provided in the
Supplementary (Fig. S1).

However, globally, the multimodel average performs better than any individual model. Table 5 shows the percent of grid
cells classified into different aridity categories for the 13 CMIP6 models compared to Worldclim and ERA5, as well as the
multimodel average. The percentage of difference between Worldclim and ERAS is 13.1%. This percentage rises to 14.7 %
when comparing the multimodel average to ERA5 and to 15.1% when comparing with Worldclim, which is better than any
of the CMIP6 models taken individually.

To conclude, the multimodel average reproduces correctly the aridity areas corresponding the observations and reanalysis of
Worldclim and ERAS.
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Figure 2 — Pie chart of the proportion of aridity categories for the datasets CMIP6, ERAS5, and Worldclim, excluding Antarctica
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315 Table 5 - Proportion of gridcells with a different aridity category for CMIP6 models and for the multimodel average, compared to
ERAS5 and Worldclim

Model Gridcell different from ERA 5, in % Gridcells different from Worldclim, in %
CAS-ESM2-0 18.1 19.7
CESM2-WACCM 16.4 15.9
CMCC-CM2-SR5 17.6 18.5
CMCC-ESM2 32.1 30
CNRM-CM6-1 17.8 21.2
EC-Earth3 16.7 17
FGOALS-f3-L 24.9 234
GFDL-ESM4 17.8 16.3
INM-CM4-8 19.3 19.9
INM-CM5-0 185 19.9
MPI-ESM1-2 16.7 19.7
MRI-ESM2-0 134 154
NorESM-2-MM 17 17.7
Multimodel average 14.7 15.1
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320 Figure 3 - Maps of aridity categories for the reference period 1970-1999 for Worldclim, ERA5 and multimodel CMIP6. The maps
do not show the Antarctic continent (entirely “cold”), but Antarctica is included in the computation of the proportion of aridity
categories.
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4 Future evolution of the aridity index in CMIP6

Here, we intend to diagnose the regions in which climate changes in term of aridity are the most susceptible to happen. We
project aridity zones using 13 CMIP6 climate models for 3 of the socio-economic trajectories described in the IPCC's 6th
Assessment Report: SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5, for 3 past periods (1850-1880, 1970-1999 and 1985-2015) and 2
future periods (2030-2059 and 2070-2099). The SSP-4.5 corresponds to a “middle-of-the-road” scenario in which the
emissions remain around current level until 2030, after which most countries achieve their net-zero targets for 2050 under
the Paris Agreement. The SSP 3-7.0 is a “regional rivalry” scenario, in which each region acts for itself. No additional
climate policy is taken by 2100, and emissions double compared to current levels. In this scenario, emissions include
particularly high levels of non-CO; greenhouse gases and the highest levels of aerosol emissions. The SSP 5-8.5 is also a
scenario without any additional climate policy and where future economic development is based on an intensive use of fossil
fuels (Chen et al. 2021).

4.1 Evolution of the aridity index value

Figure 4 presents the difference of aridity index between future periods (2030-2070 and 2070-2099) and the reference period
(1970-1999) for the three studied SSP. The difference is presented in % for a better understanding, i.e. Al (070-2099) — Algro-
1999) / Al1970-1999)-

Polar region: The most impressive changes are located in Greenland, in the northernmost regions of North America, and in
the polar archipelagos of Svalbard, Novaya Zemlya and Svernaya Zemlya. The changes vary greatly from cell to cell,
ranging from -40 to + 40 %. This is probably due to the large changes in precipitation and temperature in this region, and to
the difficulty of modelling the polar regions. The East coast of Greenland is less affected, with a decrease in the aridity i ndex
of about -20%. The temperature increases reach 4 to 5 °C in SSP2-4.5, but up to 8-10 °C in SSP5-8.5. In the latter scenario,
Greenland experiences a temperature increase of 4 to 9°C, from south to north. In contrast, precipitation is projected to
increase in all these areas, especially in the eastern part of Greenland (+20% in SSP2-4.5 and +40% in SSP5-8.5).

North America: The strongest aridity changes in North America occur mainly in Alaska, with patterns reminding Greenland,
and around the current desertic regions. In the SSP2-4.5, the whole of Mexico and most of the south of the USA experience a
20% drying by 2030-2059, increasing to 30% drying in Mexico and in the South USA by 2070-2099. In particular, the
Chihuahuan and Sonoran deserts, which straddle the southern USA and Mexico, become increasingly dryer with changes in
aridity down to -40% in the SSP5-8.5. The changes in precipitation are relatively similar in the two SSP (-10 to -20%) but
the temperature increase is more drastic in SSP5-8.5 compared to SSP2-4.5: +2.5 °C on average in Mexico in SSP5-8.5
compared to +1.5 °C in Mexico and South USA in SSP2-4.5. The rest of Northern America also warms up by an average of
3 °C. Since a wet bias was observed in historical projections of CMIP6 compared to Worldclim and ERAS5, the drying

projected in CMIP6 is likely to be stronger in the 3 scenarios.
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Figure 4 - Change in % of aridity index compared to the reference period 1970-1999 for SSP2-4.5, 370 and 585 for two future
periods: 2030-2059 and 2070-210. Hatched areas correspond to areas where at least 10 models over 13 agree on the sign of change.

Central and South America: In all scenarios, a decrease at least equal to 20% of the aridity index is observed in Central
America, on the Caribbean coast, in the central Brazil and in the southern part of Chile and Argentina, with the highest
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decrease observed for the SSP5-8.5, period 2070-2099. The dry bias identified by Almazroui et al. (2021) for the Carribean
and Central America in historical runs of CMIP6 probably results in an overestimation of the drying in these regions. The
north-east part of Brazil, nowadays classified as a desert, is located in a region where there is almost no change in aridity
index. Overall, the temperature in South America increases, from 1 to 3 °C in SSP2-4.5 to more than 4°C in SSP5-8.5 In
SSP3-7.0, the increase in temperature is comprised between 2 and 4 °C.

In the three SSP, the precipitation patterns change mainly in the south of the continent (precipitation decreases in the south
of Chile and increases in some parts of Patagonia). In SSP5-8.5, there is a general decrease of precipitation in Central
America. These decreases coincide with the areas where the strongest changes of aridity index are predicted.

Europe and Mediterranean basin: In SSP2-4.5, there is overall decrease in the aridity index of between -10 and -20%. This
excludes the Mediterranean coast, especially Spain, Italy, Greece, South-west France, and Ukraine. The aridity index
decreases by more than -30% in the South of Spain. In SSP5-8.5, the same pattern with more regions with decreases below -
30%: whole of Spain and lItaly, Yugoslavia, Greece etc. The region of up to 20% drying extends to the North of France and
most of Germany and Poland. Parts of Northern Norway and Sweden are affected by similarly large decreases in aridity
index, as well as the high plateaus of western Norway, and Iceland. In most of Europe, this pattern results from an overall
higher temperature, which reaches up to 3 to 4 °C in SSP2-4.5 in continental Europe and up to 5to 6 °C in SSP5-8.5 in
continental and northern Europe. In the Mediterranean region, the decrease of precipitation (-10 to 20% in Spain, Italy and
North Africa) accentuates the drying. The historical multimodel ensemble for CMIP6 was in good accordance with
Worldclim and ERA, except for the Iberian Peninsula and Anatolia that were more humid in CMIP6. Otherwise, no bias is
expected for the CMIP6 projections in this region.

Africa: The most striking changes are predicted in the Sahara region. Since the initial aridity index is inferior to 0.03
(hyperarid region), very slight changes can have a high impact on the percent change. For example, a 40% wetting is
observed in south-east Sahara/oriental Sahel region. This increase could be associated with a warming of the atmosphere,
resulting in increased rainfall intensity during the wet seasons, with flood periods alternating droughts ( He et al. 2023,
Palmer et al. 2023).

In the Namib and Kalahari deserts, and more generally in South Africa and Namibia, the aridity index is predicted to
decrease from -20% in SSP2-4.5 to more than -40% in SSP5-8.5. These two regions were wetter in historical CMIP6
compared to ERA5 and Worldclim, which could result in aridity index values even lower than those projected in CMIP6. In
CMIPS, the drying is explained by a -10 to -20% precipitation decrease in Maghreb and Kalahari, in addition, the average
temperature increases by up to +3-4 °C (SSP2-4.5) and to 4-5°C (SSP5-8.5).

The west coast of Africa also experiences drying, from — 10% change in the aridity index in SSP2-4.5 to -20% in SSP5-8.5.
The warming is limited to 2 to 4 °C in SSP2-4.5 and 3 to 5°C in SSP5-8.5, but changes in precipitation range from a slight
increase in SSP2-4.5 (no more than +10%) to a slight decrease in SSP5-8.5 (less than -10%).

In the Arabic peninsula, the south (Yemen and Oman) is marked by an increase of aridity index, more widely spread in
SSP2-4.5 than in SSP5-8.5. A drying in the North of the peninsula with decrease of aridity index of more than 40% in 2070-
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2099 is noted in Iraq, North of Saudi Arabia, Jordan. In SSP3-7.0, there is no trend of wetting, and a drying is observed
mainly in the centre of Saudi Arabia.

Asia: The western part of Asia is already largely composed of drylands, with arid deserts such as the Karakum and Kyzyl -
kum deserts. However, the aridity index continues to drop in the short term as well as in the long-term.

In the Indian subcontinent, the aridity index varies between -10 and 10%. The most important changes occur in the South-
West, in the province of Kerala. An increase of aridity index between 10 and 20% at the frontier between India and Pakistan,
as well as in Pakistan, in the region of the Thar desert that is currently classified as semi-arid or arid. The changes in the
south can be explained by the temperature increase of 1 to 2°C in SSP2-4.5 over most of the subcontinent. In the SSP5-8.5,
this increase reaches up to 3 to 4 °C. This is the only region in India where the precipitation intensity does not change or
slightly decreases compared to 1970-1999. In the north-west, the temperature increases much more (2 to 3 °C in SSP2-4.5
and 4 to 5 °C in SSP5-8.5), but precipitations also increases particularly along the border between India and Pakistan (+10-
20% in both SSP). This increase in rainfall therefore counterbalances the increase in temperature.

In the North-East of Russia, the aridity index decreases by - 20 to - 30%, while some small regions have an increasing aridity
index. Models predict an increase of precipitation in this region by 10-20% and 20-30% in SSP2-4.5. This increase goes up
to 50% in the SSP5-8.5. Temperature will also increase by 4 to 5 °C in SSP2-4.5, 5to 8°C in SSP3-7.0 and 7 to 9 °C in
SSP5-8.5. In SSP5-8.5, the effect of temperature on evapotranspiration dominates, and the drying occurs mainly along the
coast from the Bering Strait to South Korea and Japan.

A large band in the south of China has a decreasing index down to 20% in SSP2-4.5. This corresponds to the currently
humid part of China that warms the most (semi-arid and arid regions, in the West which warm much more but do not
experience such a decrease in aridity index), while little change in precipitation in any of the 3 SSP. In SSP3-7.0 and 5-8.5,
this area is much larger.

Some regions of south-east Asia also experience a slight drying (less than 20%). In SSP5-8.5, the areas experiencing drying
are the same, but more widespread; while in SSP3-7.0, there are a few changes in aridity across the region except in
Thailand, Cambodia and Vietnam. Temperature increase is uniform and limited in this region: 1 to 2 °C in SSP2-4.5, 2 to 3
°Cin SSP3-7.0 and 4 to 5 °C in SSP5-8.5. Precipitation changes little in SSP2-4.5 and SSP3-7.0, with changes falling in the
range -10%/+10%. However, up to +30% increase is expected on some islands in SSP5-8.5.

No changes are projected in the Tibetan plateau, the area where most differences were observed in CMIP6 compared to
Worldclim and ERAS in the region.

Oceania: In SSP2-4.5, a decrease of aridity index by 10 to 20% is observed over almost the entire island of Australia and
New-Zealand. There is little change between the periods 2030-2059 and 2070-2099, indicating that the drying will occur in
the short term. In SSP5-8.5, the aridity index changes only on the west coast in 2030-2059 and in New Zealand, but
decreases much more in 2070-2099, down to -40% in the west and in the south. These areas correspond to the regions in

which the annual precipitation decreases between -10 and -20% by 2099.
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A decrease in aridity index is projected for central Australia in SSP2-4.5 and SSP5-8.5. In SSP2-4.5, the decrease is between
-10 and -20%. Precipitation changes slightly, between — 10 and + 10%, but the temperature increases by 1 to 3 °C. In SSP5-
8.5, the aridity index decrease reaches -30%, with almost no change in precipitation except for an increase of up to 40% in
the Great Victoria Desert (a region where the aridity index does not change), while the temperature increases between 3 and
5°C.

In SSP3-7.0, the temperature increases between 2 and 3°C by 2070-2099, while precipitation increases by up to 40% in
central region of Australia. This results in a decrease of the aridity index on the coastal areas in of the island, but not in the
central areas. The period 2030-2059 is actually dryer than the period 2070-2099, with a 10-20% decrease of precipitation
intensity resulting in a 10-40% decrease in the aridity index on the island. Most Australian deserts were wetter in historical
CMIP6 compared to ERAS and Worldclim. This wet bias might affect the final results in aridity index, lower than those
projected with CMIP6.

Is it worth noting that the SSP3-7.0 is overall different from the others two SSP. The period 2030-2059 is marked by an
increasing aridity index in a large region of Central and Eastern Africa, India and North East Asia. This trend is reversed in
the period 2070-2099, in which the aridity index decreases in most places, in particular in the Arabic peninsula, in India, in
North-East Asia and North-West America for the period 2030-3060. The difference with the two other SSP is less visible for
the period 2070-2099. The humidification observed for the period 2030-2059 could be explained by the introduction in this
scenario of a larger amount of aerosols compared to the 2 others (Cross-Chapter box 1.4, in Chen et al. 2021). Aerosols can
have both direct and indirect effects on local climate. In particular, light-absorbing particles such as sulfate aerosols increase
the clouds albedo via increasing the number of cloud droplets and the cloud lifetime. In the SSP 3-7.0, the emission of light-
absorbing aerosols and in particular sulfate aerosols, increases until 2050 and return to 2015 levels by 2099 (Lund et al.
2019). This is consistent with the wetting projected in SSP 3-7.0 in the two regions where aerosols or aerosols precursors
emission is the highest: first over tropical rainforests, and second in Asia because of rapid industrial and urban growth.
However, the uncertainty around aerosol impacts sis high. Dark aerosols that absorb the light warm the atmosphere
surrounding them, resulting in lower convection and cloud creation; or directly reducing the albedo if deposited over light
surfaces. The net result of the cooling and warming effects is delicate to estimate, in addition to properly taking into account
the distribution and properties of aerosols regionally, as shown for Asia in Ramachandran et al. (2022). Overall, a scenario
such as the SSP 3-7.0 that present more uncertainties and contrasts than the others two, will lead to higher adaptation costs,

since the climatic conditions can switch drastically between the mid-term and the long-term horizons.
Figure 5 shows the average trend followed by the aridity index by continent and by SSP. A visualization by sub-region, as

well as the relative evolution of temperature and precipitation by continent and by subregion, are available in Supplementary

(Tables S2 to S10 and Figs. S10 to S17). The direction and speed of change are clearly visible: for most continents, the most
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rapid changes in the aridity index occur between the reference period 1970-1999 and the near future 2030-2059, and
continue to decrease until the end of the century, but at a slower rate.

This is particularly visible for Central and South America, the Mediterranean region and Oceania, in SSP2-4.5 and 5-8.5. In
these regions, the changes in aridity index are driven by the conjunction of increasing average temperatures and decreasing
average precipitation. In SSP3-7.0, the average aridity index in Oceania decreases down to -20% in the near future and
increases in the far future.

North America is the continent with the highest model dispersion in aridity index, with standard deviation exceeding 100%
of the average value. In SSP2-4.5, the aridity index slightly decreases in the short term, before increasing again in the long
term. In SSP5-8.5, the average aridity index does not change in the near future, but decreases in the long term. In SSP3-7.0,
the drastic increase in aridity index (> +20%), indicating wetter conditions, is followed by a strong decrease (-15%) in the
long term. This responds to the strong wetting of northern part of the continent in the period 2030-2059, followed by the
drying of most of the continent in 2070-2099. In SSP2-4.5 and 5-8.5, both temperature and precipitation increase steadily, up
to an average of +7.5°C in 2070-2099 for SSP5-8.5 and a 20% average increase in precipitation over the same period. This is
again driven by the northern part of the continent, which experiences the most drastic changes.

In Europe, the aridity index decreases steadily in the three SSP. In SSP3-7.0, the mid-term decrease is only half of the long-
term decrease, while in SSP2-4.5 most of the decrease happens in the first half of the century. Both temperature and
precipitation increase in SSP2-4.5 and SSP5-8.5, but the influence of the temperature on the potential evapotranspiration
exceeds that of the increase in precipitation, as the aridity index decreases. The strongest decrease is observed for SSP3-7.0
in the period 2070-2099. In some regions, the near future will bring a wetter average climate (South and East Asia, Oriental
Sahel), but the trend will be reversed by the end of the century. The North American case is the one with the highest

discrepancy, but also with the greatest intermodal variability.
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Figure 5 Evolution of the mean aridity index in % (up) and of the mean precipitation anomalies (%) and temperature anomalies
(°C) (down) by continent in the Socio-economic pathways 2-4.5, 3-7.0 and 5-8.5 (Polar continent, including Greenland, Iceland and
485  Svalbard islands, are not included)

4.2 Towards more drylands

In analysing the changes in aridity index globally it can be seen that significant changes occur even in areas that are

490 considered to be cold or humid. In addition, the change in aridity index sometimes leads to a change in aridity category.

Figure 6 shows the proportion of each aridity category is represented by SSP and by period. The overall proportion of
drylands (hyperarid, arid, semi-arid and dry subhumid areas) increases in all SSP but the majority of the land (excluding
Antarctica) remains in the “humid” or “cold” categories. For example, Central America is classified as “humid” in the
495 CMIP6 multimodel average for the reference period 1970-1999, but will experience drastic decreases in aridity index,
especially in SSP5-8.5, without leading always to a change in aridity category. This is also noted in South America and

Europe (Figure 4). In general, the proportion of drylands in the historical runs for CMIP6 was lower than the proportion of
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drylands observed in ERA5 and Worldclim (28.3 compared to 30.4 and 32.3%, respectively). Therefore, the repartition of
drylands in the CMIP6 projections is likely to slightly underestimate the total proportion of drylands.
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Figure 6 - Evolution of percentage of aridity categories in the Socio-economic pathways 245, 370 and 585. The proportion of each
aridity category represents the average of the 13 CMIP6 models, accompanied by the standard deviation.

The most extreme projected changes in category, corresponding to the SSP5-8.5, are represented on Figure 7. The
corresponding figures for SSP2-4.5 and SSP3-7.0 are available in Supplementary (Figure S8).

North-America: Drylands in North America are expanding northwards and southwards. The Sonoran Desert becomes
increasingly arid and the Chihuahuan Desert expands to the south, east and north. A dry subhumid zone appears North-East
of the Great Basin Desert, in a region that used to be humid.

Central-America: The dry subhumid areas in Cuba, Haiti and the Yucatan Peninsula become semi-arid. The dry
subhumid/semi-arid area in the north of VVenezuela becomes mostly semi-arid.

South-America: The dry subhumid/semi-arid area in Argentina and Paraguay becomes mostly semi-arid and extends towards
Brazil and Bolivia. Some other areas in Patagonia become semi-arid. Finally, a Brazilian region in the east becomes
subhumid, when it was classified as humid before.

Europe: Little changes, except that the cold to humid limit moves northwards.

Mediterranean basin: The hyperarid areas of the Sahara moves northwards, and the semi-arid North African regions become

arid. The semi-arid and dry subhumid areas expand in Spain, Italy, Greece and Turkey.
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Africa: The Arabic Peninsula becomes mostly hyperarid. In South Africa, the semi-arid and arid areas expand around the
Namib and Kalahari deserts. In the Horn of Africa, some regions shift to a wetter category. The north-east of Somalia shifts
from arid to semi-arid.

Asia: Most of the category changes occur in the western part of Asia. The northern boundary of the central Asian deserts
(Kara-Kum, Kyzyl-Kum) moves northwards, but no major changes occur in the Taklamakan and Gobi deserts.

Oceania: In Australia, the arid and semi-arid areas expand towards the north-east coast, which was previously dry subhumid

or humid.

Hyperarid to Arid Cold to Humid . Semi-arid to Arid
Change of aridity category ) - : : A )
for the period 2070-2099 Arid to Semi-arid Humid to Dry subhumid . Arid to Hyperarid
and SSP585

Semi-arid to Dry subhumid Humid to Semi-arid
compared to 1970-1999 v H

. Dry subhumid to Humid . Dry subhumid to Semi-arid
Figure 7 — Grid cells changing towards a dryer category compared to 1970-1999 for the SSP5-8.5, period 2070-2099
Overall, we find that with the PM equation on our CMIP6 data, the extent of drylands during the reference period is 31.8%.
This extent increased by 3%, 3.9% and 5.1% in SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5, respectively. These trends meet the
results presented in the UNCDD report (Vincente-Serrano et al. 2024), with North-America, Latin-America and Europe

being the continents most impacted by drying trends. In the report, the initial extent of drylands calculated is higher than in
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our study (40.6% of the land area for the reference period 1990-2020), but the projected expansion slightly lower (around
2% in SSP 2-4.5, less than 3% in SSP 3-7.0, around 4% in SSP 5-8.5). To further compare our data with the UNCDD report,
we used the Thornthwaite evapotranspiration as a temperature-based method to compute aridity projections with our data.
The results are shown in Table 6. We find that the extent of drylands was lower for the reference period with the
Thornthwaite equation (27.2%), but the increase is higher in all SSP compared to the increase calculated with the PM
equation: the increase is 3.8% in SSP 2-4.5, and 8.6% in both SSP 3-7.0 and 5-8.5.

These results are much lower than the changes predicted by Huang et al. (2016) with CMIP5 data, using the Penman-
Monteith evapotranspiration. The authors calculated a 23% increase of dryland area (reaching 56% of total land area) in
RCP8.5, whereas we only have a 5.1% in SSP 5-8.5, and 11% increase (reaching 50% of total land area) in RCP4.5, while
this increase is only of 3% in SSP 2-4.5. These discrepancies can be attributed to the difference between the SSP and the
RCP scenarios, and potentially to the better representation of rainfall patterns in CMIP6 compared to CMIP5 (Du et al.
2022).

Table 6 - Proportion of drylands in % of total land area (multimodel average), using Penman-Monteith and Thornthwaite
evapotranspiration, for the 3 studied SSP

Period SSP 2-4.5 SSP 3-7.0 SSP 5-8.5
Penman- Thornthwaite | Penman- Thornthwaite | Penman- Thornthwaite
Monteith Monteith Monteith
1970-1999 | 31.8+6.5 272+7.7 31.8+6.5 272+7.7 31.8+6.5 272+7.7
2030-2059 | 31.5+6.4 29.6+7.8 33.4+6.8 30377 34679 308+7.9
2070-2099 | 34.8+7.7 31.0+55 35.7+6.8 35.8+8.7 36.9+9.1 35.8+10.9
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5 Conclusion

An ensemble of 13 CMIP6 models was evaluated to compute the aridity index. The multimodel average was evaluated
against two databases, Worldclim and ERAS, which include observations and reanalyses. The CMIP6 multimodel average
predicts a world that is slightly wetter world than observed today, in particular in the North-Eastern Brazil, where the arid
area is not well simulated.

The CMIP6 multimodel average was used to identify future drying and wetting trends in terms of aridity index in the future
in most areas, in three different Socio-Economic Pathways. These scenarios represent different possible futures: in SSP2-4.5,
climate changes are limited and therefore the patterns of change for aridity index and aridity categories are also less visible
than in the SSP5-8.5, which represents the scenario with the largest increase in global temperature. The final scenario, SSP3-
7.0, lies in between but with opposite trends between the near and far futures. As a result, many areas are expected to
become wetter in the mid-term, but drier in the long-term. This is the case in North-America, Africa and Asia where the
aridity index is expected to increase in the mid-term, and then drastically decrease to levels comparable to the other two SSP.
This would result in higher adaptation costs compared to the SSP2-4.5 and SSP5-8.5. In the three scenarios, the
Mediterranean basin and Central America are the regions with the largest decrease in the aridity index. South-America,
Europe and Oceania suffer from significant decreases, but limited to -20%. Overall, a decrease of the aridity index is
observed for all continents in the far future. Most of the changes already occur for the period 2030-2059 and remain or
continue in 2070-2099. Significant changes of aridity index are also expected within climate zones, in particular in the humid
zone, although these changes in the index are not affected by a change in category. The redistribution of arid areas by the end
of the century is similar to today's map, with an expansion of arid zones towards the periphery of existing zones. Changes to
wetter categories are only observed in the Horn of Africa.

Conclusions for local ecosystems drawn on these results must consider that there is no direct translation between a change of
aridity index and the impact on ecosystems. On the one hand, a main caveat of the Penman-Monteith method is that it
assumes a fixed stomatal resistance. However, with increasing CO, concentration, this resistance also increases, reducing in
turn the water loss. As a result, evapotranspiration calculated with “historical” resistance value overestimate future
evapotranspiration (Yang et al. 2019). Other ways of estimating evapotranspiration have been suggested, for example by
directly using the net radiation that is a direct product of climate models (Greve et al. 2019) or by introducing a CO,-term in
the equation (Lian et al. 2021), that result in reduced evapotranspiration and therefore less significant drying trends. On the
other hand, the aridity index is a simple proxy that does not allow to discriminate between the drivers of change in a given
ecosystem. For example, Denissen et al. (2022) use an “Ecosystem Limitation Index” that differentiate situations in which
the primary production is limited either by water or energy limitation. The crossing of certain threshold can also be studied,
as in Berdugo et al. (2020) that distinguish three phases in land degradation. Finally, seasonality is not taken into account
here, while changes in the length of the dry and wet seasons could lead to shifts in vegetation even in humid areas (Xu et al.
2022).
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