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Abstract. Reliable deep convective cloud (DCC) climatology relies heavily on accurate detection. Infrared-based algorithms 

play a critical role, as they are the only ones that can be applied to the 6.7 μm water vapour (WV) absorption band, and the 11 

μm infrared (IR) window band. For over 40 years, the latter have been the only daytime/nighttime channels used in satellite 

cloud imaging. The study presents the first global validation of three, commonly-used DCC detection methods, which use 

brightness temperature (Tb) in WV and IR bands. These methods are: the infrared window method (IRW; Tb11), the brightness 10 

temperature difference method (BTD; Tb6.7−Tb11), and the temperature difference method with the tropopause method 

(TROPO; Tb11−Ttropo). All methods were applied to one year (2007) of Moderate Resolution Imaging Spectroradiometer 

(MODIS) observations, and validated against collocated CloudSat-CALIPSO lidar-radar cloud classifications. Results indicate 

that even with optimal parameter configurations, DCC detection accuracy remains moderate, and below 75% (Cohen’s κ < 

0.4) for all methods. Global accuracy ranged from 56.6% (for TROPO) to 72.8% (for BTD) using an optimal threshold of −2 15 

K. Regionally, the BTD method performs best, with accuracy of 72.9% over Europe, and 67.9% over Africa. Misclassifications 

are common with clouds such as Nimbostratus and Altostratus (single-layer cloud regimes) and Cirrus and Altostratus (multi-

layer cloud regimes). Overall, the BTD method slightly outperforms the others, while TROPO is least effective. Our study 

highlighted the high sensitivity of these methods to threshold selection. Even a ±1 K change in the threshold resulted in a 10–

40% variance in DCC frequency. The latter finding is of particular importance for the construction of homogenous DCC 20 

datasets, whether as global mosaics, or as time series spanning multiple generations of satellite instruments. 

1 Introduction 

Deep convective clouds (DCCs) are formed through moist convection in the troposphere. DCC cloud top pressures may exceed 

~450–500 hPa, and clouds may reach the tropopause or even penetrate the lower stratosphere. Although the least-frequent 

cloud type on Earth (Sassen and Wang, 2008), they are the focus of scientific concerns due to their role in the hydrological 25 

cycle (Nesbitt et al., 2006), atmospheric chemistry (Wang and Prinn, 2000), and their association with severe weather events 

that include heavy precipitation, damaging wind, hail, tornadoes, or downburst phenomena (Taszarek et al., 2020). According 

to the European Environment Agency economic losses related to extreme climate events amounted to 738 billion EUR in EU 

Member States, and one third of that was caused by severe storms. 
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As the global climate warms, and more energy is being held in the atmosphere, troposphere dynamics are changing. In the 30 

mid-latitudes, the Hadley circulation is weakening and expanding poleward (Ceppi and Hartmann, 2016; Lu et al., 2007), 

causing change in the track and intensity of extratropical storms (Baatsen et al., 2015; Bender et al., 2012; Lehmann and 

Coumou, 2015). Consequently, convective processes are expected to intensify, and the frequency of DCC-related severe 

weather events may also increase (Aumann et al., 2008; Berthou et al., 2022). Identifying climate trends requires DCC time 

series that span at least three decades, and a reliable reporting method.  35 

The traditional (non-instrumental) approach to reporting is to observe the state of weather manually (visually), and to report 

DCC-related phenomena such as Cumulonimbus, hail, lightning, thunder, etc. (Taszarek et al., 2019). However, the limits of 

human perception make the method subjective and inaccurate, and limit spatial coverage. Additionally, it is only useful when 

a meteorological station is operated by a human (Eastman and Warren, 2014). Alternative techniques rely on ground- or sat-

ellite-based remote sensing. An orbital perspective is especially important for efficient mapping of DCCs, notably through the 40 

use of imagers that provide frequent, global coverage. 

Passive satellite imagers detect DCCs based on their radiative properties. In the thermal infrared window (8–14 μm), DCCs 

are among the coldest objects in the field of view. Consequently, brightness temperature (Tb) thresholds can be set to discrim-

inate between DCCs and the warmer background (Doelling et al., 2004; Gong et al., 2018; Govaerts et al., 2018; Mu et al., 

2017). However, the most important shortcoming of this method is that both DCCs and Cirrus are characterized by low Tb 45 

thresholds in the infrared window. As a result, detection can be ambiguous; for example, Cirrus anvils associated with DCCs 

can be misclassified as convective clouds. 

The Tb threshold can be also applied to the water vapour absorption band (5.5–8 μm). In these wavelengths, electromagnetic 

emissions leaving Earth are absorbed by water vapour in the atmosphere as the signal propagates upward, toward space. As a 

consequence, most radiance that is detected by a satellite originates in the upper atmosphere, including the highly-elevated 50 

tops of DCCs (Ackerman, 1996; Ai et al., 2017). However, difficulties are similar to those that arise with the thermal infrared 

window approach. Here too, Cirrus pose a challenge. 

DCCs can also be detected using shortwave radiation (~4 μm or less), a combination of shortwave and longwave bands, or 

geophysical parameters retrieved from spectral radiances. One of the most widely adopted approaches is the algorithm imple-

mented by the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer, 1999). The ISCCP character-55 

izes clouds based on their optical depth (COT; cloud optical thickness), and the atmospheric pressure at the cloud top (CTP; 

cloud top pressure) – measures are based on 10.5 μm brightness temperature, 0.65 μm reflectance, and radiative transfer mod-

elling. As COT and CTP are continuous values, thresholds are applied to divide COT-CTP distributions into discrete classes. 

DCCs are identified when COT > 23 and CTP < 440 hPa.  

A key shortcoming of the ISCCP classification, and other algorithms that exploit shortwave radiation, is that they are limited 60 

to daytime conditions. Tracking the diurnal DCC cycle requires a method that relies solely on longwave infrared observations. 

The design of such an algorithm is closely linked to the technical specification of the cloud imaging instrument. Most first-

generation imaging sensors implemented as few as three spectral bands, two of which were dedicated to the infrared domain 
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(Holmlund et al., 2021). The infrared (IR) window channel, and the water vapour (WV) absorption channel were typically 

centred at 11 μm, and 6.5 μm respectively. Advances in sensor technology have since made it possible to consider additional 65 

IR spectral channels, such as the ozone thermal absorption band at 9.7 μm (Jurkovic et al., 2015). However, the long history 

of 11 μm and 6.5 μm bands makes them indispensable for climatology, as they are the only way to derive multi-decadal DCC 

time series.  

One of the main disadvantages of IR-based approaches is the need for a threshold: the Tb (or the Tb difference) are used to 

discriminate between DCCs and non-DCCs. Historically, thresholds were set arbitrarily, rather than being derived from an 70 

empirical examination (see Sec. 2.2 for details). Notably, DCC detections were not validated, and accuracy assessments were 

not reported (e.g. a classical confusion matrix for a binary classifier). The resulting DCC climatologies were only compared 

with other (independent) datasets to check for discrepancies among sources (Sarkar et al., 2022; Sassen and Wang, 2008). 

Such cross-comparisons cannot be considered as a substitute for validation.  

The primary reason for the lack of validation was the absence of reliable ‘ground truth’. In cloud research there is no 100% 75 

accurate dataset, and any validation is in fact a relative comparison assuming that one source of observations is – for well 

justified reason – more reliable than the other dataset (i.e. the one being validated). Currently, the state-of-the-art data for 

validating cloud products originated from the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-

tions (CALIPSO) missions. CloudSat hosted a cloud profiling radar, and CALIPSO hosted a cloud profiling lidar. Rather than 

imaging the horizontal distribution of cloud, lidar and radar provide a vertically-resolved structure of the atmosphere. Due to 80 

this unique capability, clouds are classified both during the day and at night based on their horizontal extent, height, thickness, 

homogeneity, and presence of precipitation, rather than column-integrated radiances (Stephens et al., 2002; Winker et al., 

2003). An important consideration is that CloudSat and CALIPSO were configured to fly in close formation with the Aqua 

satellite (Vincent and Salcedo, 2003), enabling quasi-simultaneous observation of clouds by lidar, radar, and Aqua’s Moderate 

Resolution Spectroradiometer (MODIS) instrument (Barnes et al., 1998).  85 

The CloudSat-CALIPSO cloud typing algorithm was introduced by Wang and Sassen (2001), and its accuracy has been demon-

strated with surface-based lidar and radar observations. It was initially validated against visual (manual) cloud genera obser-

vations, performed at the lidar-radar location, and in accordance with World Meteorological Organization standards. The val-

idation study consisted of 540 cases, of which only four (according to reference data) or nine (according to the lidar-radar 

classification) were DCCs. Wang and Sassen (2001) stated that the overall accuracy of their classification was 70%, but pro-90 

vided no specific details for DCC.  

Sassen and Wang (2008) ran a post-launch assessment of the classification. The latter authors focused on one full year of 

CloudSat observations (CALIPSO was excluded). Rather than performing a typical accuracy assessment, they only compared 

zonally-averaged frequencies of individual cloud types. They found that the radar classification reported fewer DCCs than 

ISCCP or surface-based data, and more As and Ns than the remaining databases. A similar study by Sarkar et al. (2022) noted 95 

that difference between CloudSat-CALIPSO, ISCCP and surface-based visual observations was highest for DCCs. The latter 

authors hypothesized that it may be related to the fuzzy logic used in the lidar-radar classification algorithm. Further validation 
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studies of CloudSat data have considered specific geophysical parameters, notably cloud base height (Candlish et al., 2013), 

precipitation (Kodamana and Fletcher, 2021), or cloud phase (Wang et al., 2024), but not the cloud classification.  

Despite limitations, CloudSat and CALIPSO data, especially when combined into one, joint products, have been tested and 100 

adopted for validation purposes, including DCCs. Specifically, Yang et al. (2023) successfully demonstrated the potential of 

combining MODIS, CloudSat and CALIPSO data to validate IR-based DCC detection methods. However, their work only 

focused on the tropics (±25 °N), where DCCs and Nimbostratus were merged into a single category. Furthermore, their main 

objective was to establish a benchmark for their machine learning approach to DCC detection. Consequently, we still do not 

know how accurate traditional, IR-based DCC detection methods are on a global scale. Are current thresholds appropriate, and 105 

do they guarantee optimal DCC detection accuracy? How sensitive is a DCC climatology to the selected threshold?  

Given the importance of IR and WV heritage bands in long-term climatology, we perform the first, comprehensive, global-

scale validation of critical IR-based DCC detection methods that rely on state-of-the-art CloudSat-CALIPSO lidar-radar cloud 

observations. Our overall question is: how consistent are DCC climatologies that are based on different IR methods, and 

different DCC detection thresholds? 110 

It is important to remember, that any time we use the term ‘validation’ refereeing to DCC detection methods and CloudSat-

CALIPSO observations, we always mean a relative comparison between those datasets assuming lidar-radar data to be more 

accurate (active remote sensing methods, joint optical and microwave observations). 

2 Data and methods 

2.1 Database of collocated observations 115 

Our validation of IR-based DCC detection methods required us to develop a dedicated database. Data consisted of temporally 

and spatially collocated observations of clouds performed with MODIS (Aqua), CloudSat and CALIPSO instruments. The 

specific data products we used were: 

 2B-CLDCLASS-lidar, version P1_R05; data are the result of a joint analysis of lidar (CALIPSO) and radar (CloudSat) 

profiles, and provide information on cloud type. CALIPSO’s lidar sampled the atmosphere at two wavelengths (532 120 

and 1064 nm), every 333 m along the ground track, with a 90 m diameter footprint. CloudSat’s radar operated simi-

larly, but at a much longer wavelength: ~3190 nm (94 GHz), and with a noticeably larger footprint: 1.1×1.4 km. The 

two instruments were complementary: radar impulses can penetrate most cloud layers, but miss optically thin clouds, 

while the lidar signal is quickly attenuated, but is very sensitive to Cirriform. The 2B-CLDCLASS-lidar is designed 

to take advantage of both systems, merging separate lidar and radar data into a single profile. The classification 125 

algorithm is run on cloud clusters, rather than individual profiles. Hence, the first step is to identify a cluster: namely, 

a group of horizontally connected cloud layers with similar vertical extent. Next, each cluster is characterized with 

respect to its geometrical and geophysical parameters (e.g. top and base heights, phase, temperature, maximum radar 

reflectivity, the presence of precipitation). Results are passed to a combined rule-based and fuzzy logic classifier, 
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which assigns one of eight possibilities: Cumulus (Cu), Stratus (St), Stratocumulus (Sc), Altostratus (As), Altocumu-130 

lus (Ac), Nimbostratus (Ns), ‘deep convective cloud’ (Cumulonimbus, Cb) and ‘high clouds’, which includes all 

Cirriform (Cirrus, Cirrostratus, Cirrocumulus). For a more detailed description of the algorithm, see Sassen et al. 

(2008) and Wang and Sassen (2001). The data structure of the 2B-CLDCLASS lidar product supports reporting of up 

to ten cloud layers within a single profile. In our analysis, if at least one ‘deep convective cloud’ label was found 

within a profile, the whole profile was designated as ‘DCC’, and as ‘no-DCC’ if this was not the case; 135 

 MYD021KM version C061; products provide calibrated radiances registered in 20 reflective solar bands (0.4–2.2 

μm), and 16 thermal emissive bands (3.6–14.3 μm). The instrument operated as a passive imager, circling Earth twice 

each day, with a 2330 km-wide swath (Barnes et al., 1998). At nadir, the spatial resolution of MODIS imagery ranges 

from 250 m/pixel to 1 km/pixel, although atmospheric data products are released at 1 km/pixel resolution, or coarser 

(Platnick et al., 2003). In order to match MODIS with CloudSat-CALIPSO observations, we only used 1 km data, 140 

and only for the two spectral bands of interest: 6.535–6.895 µm (central wavelength 6.715 µm, MODIS band 27), 

and 10.780–11.280 µm (central wavelength 11.030 µm, MODIS band 31). From these, we were able to calculate 

brightness temperature (Tb): specifically, TbWV or Tb6.7 for the WV absorption band, and TbIR or Tb11 for the IR window 

band. Geolocation information, which was necessary to spatially match MODIS with 2B-CLDCLASS-lidar data was 

obtained for auxiliary MODIS products, namely MYD03 geolocation fields. 145 

We considered a full year (2007) of MODIS, and CloudSat-CALIPSO observations. The initial database consisted of 

175,666,879 matchups. In order to maximize data consistency, all MODIS data were parallax-corrected following the method 

reported in Wang et al. (2011). We decided to narrow the sample by rejecting observations that were too warm to feature a 

DCC. Specifically, all observations with TbIR−TbWV < −10 K were rejected. The latter procedure was implemented by Yang et 

al. (2023), although the latter authors used a stricter threshold of −5 K. This left 9,507,319 matchups, which were evaluated. 150 

Table 1 provides more details on the composition of the sample. Aqua, CloudSat and CALIPSO were three independent space-

craft, and passed over the same location sequentially: CALIPSO was 15 seconds behind CloudSat, and CloudSat was 60 

seconds behind Aqua. In Section 5 we address the potential impact of the sampling regime on the results of the validation.  

2.2 DCC detection methods 

We assess the accuracy of the following three IR-based methods: 155 

 The Infrared Window (IRW) method. In principle, this method is very simple. The only requirement is to set a Tb 

value that can discriminate between DCCs (assumed to be colder), and a warmer background (either a cloudy or 

cloud-free atmosphere). There is no universal TbIR threshold for DCC detection, and different values have been used. 

Examples include: 210 K (Aumann and Ruzmaikin, 2013), 225 K (Aumann et al., 2018), 230 K (Hendon and Wood-

berry, 1993; Tissier and Legras, 2016), 235 K (Wall et al., 2018), and up to 245 K (Kubar et al., 2007). This ambiguity 160 

in threshold selection is reflected in studies by Mapes and Houze (1993), and Hong et al. (2006), who decided to 
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adopt two values: TbIR < 235 K for the detection of ‘high clouds’ in general, and TbIR < 208/210 K exclusively for 

DCCs.  

 The Brightness Temperature Difference (BTD) method. In earlier work, Ackerman (1996) observed that in some 

regions, Tb at 6.7 µm could be greater than at 11 µm. In the tropics and mid-latitudes the TbWV−TbIR difference was 165 

explained by the presence of thick clouds, notably DCCs. In general, a difference greater than 0 K coincides with 

clouds of TbIR < 210/215 K, and the difference is highest when clouds reach the tropopause (Kolat et al., 2013). Alt-

hough Ackerman (1996) suggested that TbWV−TbIR could be used to detect thermal inversion in the polar troposphere, 

the method has been widely used to map DCCs, including the detection of overshooting tops (Bedka et al., 2010; 

Martin et al., 2008). 170 

 The TROPO method. Convective clouds cool as their tops penetrate up through the troposphere, and eventually cloud 

top temperature matches that of the tropopause. Hence, the difference between TbIR and the tropopause temperature 

(Ttropo) has been suggested as a DCC detection method. Zou et al. (2021) used Tb at 8.1 m, and suggested that a 

feature could be considered a DCC when TbIR−Ttropo ≤ 7 K. A similar value (6 K) was adopted by da Silva Neto (2016), 

who used TbIR−Ttropo simultaneously with a more conventional TbWV−TbIR approach. Aumann and Ruzmaikin (2013) 175 

set a TbIR−Ttropo threshold of 2 K, but used a climatological Ttropo value instead of an actual (meteorological) value. 

The application of the TROPO method relies on Ttropo data being available. In this study, the parameter was obtained 

from the Reanalysis Tropopause Data Repository (Hoffmann and Spang, 2022). Specifically, we refer to the first 

tropopause, as defined by the World Meteorological Organization, identified based on the ERA5 reanalysis. 

The ISCCP scheme for DCC detection only was included for comparison. In the latter scheme, the cloud type classification is 180 

based on cloud optical thickness (COT), and cloud top pressure (CTP). Like IRW, BTD and TROPO methods, the ISCCP 

requires thresholds – for COT and CTP – which are also somewhat arbitrary (Rossow and Schiffer, 1999). Hahn et al. (2001) 

demonstrated that the ISCCP classes follow the traditional classification (i.e. the one implemented by the World Metrological 

Organization), but less strictly. Under the ISCCP paradigm, DCC detection requires COT and CTP information. The latter 

were obtained from the MODIS MYD06 standard product (Platnick et al., 2003), with geometry and coverage that are identical 185 

to MYD21KM and MYD03 products. ISCCP results only refer to daytime conditions, while IRW, BTD and TROPO results 

are combined for day and night.  

2.3 Measures of accuracy 

The joint CloudSat-CALIPSO cloud classification was used as a reference. MODIS WV and IR Tb, and COT and CTP data 

were used in IRW, BTD, TROPO and ISCCP methods to detect DCC. Agreement between the reference and validated methods 190 

was assessed based on a confusion matrix and related measures.  

A confusion matrix is used to evaluate the performance of a binary classifier. It considers four possibilities: true positive, and 

true negative detection, when a method and the reference agree on the presence and absence of DCCs respectively; false 

positive detection, when a method finds DCCs, but the reference does not; and false negative detection, when a method reports 
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no DCCs but the reference does. The performance of a DCC detection algorithm can then be assessed with respect to: its 195 

overall accuracy; the probability of DCC detection (PoD); the DCC false discovery rate (FAR); and Cohen’s Kappa coefficient 

(κ; Cohen, 1960): 

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 , (1) 

 PoD = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , (2) 

 FAR = 
𝐹𝑃

𝐹𝑃+𝑇𝑃
 , (3) 200 

 κ = 
2·(𝑇𝑃·𝑇𝑁−𝐹𝑃·𝐹𝑁)

(𝑇𝑃+𝐹𝑁)·(𝐹𝑁+𝑇𝑁)+(𝑇𝑃+𝐹𝑃)·(𝐹𝑃+𝑇𝑁)
 , (4) 

where: TP, TN, FP, FN are total number (counts) of true positive, true negative, false positive, and false negative detections 

respectively.  

Values for a perfect classifier would be: accuracy and PoD equal to 100%; FAR as low as 0%; and κ approaching 1.0 (κ ap-

proaching 0.0 suggests that agreement between datasets was only achieved by chance, regardless of the actual accuracy). 205 

DCC only made up 7% of CloudSat-CALIPSO observations investigated in this study, meaning that the sample was signifi-

cantly unbalanced. It is reasonable to assume that the resulting accuracy measures are biased by the frequency of negative 

detections, which are far more likely than positive detections. To avoid this, we implemented bootstrap sampling (DiCiccio 

and Efron, 1996; Efron, 1979). First, the number of DCC in our CloudSat-CALIPSO reference dataset was determined. Then, 

the reference was randomly sampled to identify exactly the same number of non-DCC observations. As a result, the count of 210 

DCC and non-DCC detections was equal. All accuracy measures were derived from this sub-sample. The procedure was then 

repeated 1000 times, and final accuracy statistics were calculated as the mean of the 1000 iterations. 

3 Results 

Rather than assuming a specific threshold for a DCC detection method, we tested a wide range of possible values (Fig. 1). 

First, full statistics were derived for each instantaneous threshold, then we selected the threshold with the highest overall 215 

accuracy (or the highest κ value, as both measures peaked at the same location). This value was then considered as the ‘optimal’ 

threshold, indicating that it guaranteed the best possible accuracy for a method.  

All results were obtained  for land and ocean lying between 60 °N and 60 °S (the global domain), and for two smaller regions 

of interest: Europe (a mid-latitude, moist convection environment; 35 °N–60 °N, 15 °W–45 °E), and equatorial Africa (an 

intertropical convergence zone, with very intense moist convection; 5 °N–15 °N, 20 °W–35 °E). 220 

3.1 Highest achievable accuracy 

The validation of IR-only DCC detection methods obtained  with the CloudSat-CALIPSO lidar-radar dataset showed that the 

highest achievable accuracy was moderate (Fig. 1). Depending on the method, and on a global scale, it varied between 56.6% 

(TROPO with a 15 K threshold) and 72.9% (BTD with a −2 K threshold). Regionally, accuracies were between 67.7% (IRW 
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with a 231 K threshold) and 72.9% (BTD with a −2.5 K threshold) for Europe, and from 65.6% (IRW with a 217 K threshold) 225 

to 67.9% (BTD with a −1 K threshold) for Africa.  

Our results showed that IRW and BTD methods performed almost equally well when global data were examined. Differences 

in overall accuracy, detection probability, and the false alarm rate did not exceed ~5% at the global scale. However, changing 

the spatial domain to Europe doubled discrepancies; the IRW method was less accurate, while the BTD method performed just 

as efficiently as on the global scale. On the other hand, the comparison for tropical Africa found that both IRW and BTD 230 

methods were less accurate. 

Narrowing the spatial scale had the most significant impact on the performance of the TROPO approach. Using a single, global 

threshold for the temperature difference between 10.8 μm and the tropopause proved impractical – the method detected DCC 

with an overall accuracy of 56.6%, and a κ coefficient of 0.13. At the regional scale, performance noticeably improved: DCC 

detection probabilities doubled from 30% to 60%, resulting in a boost in overall accuracy of 14% in Europe, and 9% in tropical 235 

Africa.  

When IRW, BTD and TROPO methods were compared with the ISCCP daytime-only approach, the latter was found to be 

more reliable in all respects. Not only did it outperform the other methods with respect to overall accuracy (76–77% regardless 

of the spatial domain), but DCC detection probability was higher (80–85%), and, in general, the false alarm rate was lowest 

among all of the investigated methods (25–28%). 240 

3.2 Variability of thresholds 

Inconsistency between global and regional results motivated us to test whether the optimal threshold for a method depended 

on the latitude. We therefore derived accuracy measures for zones at 5 ° latitude, starting at the equator. With only one full 

year of observations, it was impossible to obtain reliable results for latitudes above 40–50 °N/S (i.e. where DCCs are relatively 

infrequent). 245 

Our experiment revealed a clear relation between latitude and the optimal threshold. For the IRW method, DCC detection 

across all latitudes was most accurate when the threshold was changed from ~218 K in the tropics to ~230 K in mid-latitudes. 

The corresponding adjustment for the BTD method was only 2 K (from −1 K in the tropics to −3 K in mid-latitudes). Similarly, 

for the TROPO method, the optimal threshold changed between low- and mid-latitudes. However, in this case, in the tropics 

(20 °S–20 °N) it was constant (25 K), but dynamically decreased (to 10–15 K) at 40 °N/S.  250 

Despite these adjustments in the threshold for different latitudes, the resulting DCC detection accuracy differed between zones. 

Variability was greatest for the TROPO method, with ~15% amplitude for the overall accuracy index (Fig. 2g), and an even 

more evident difference for the κ coefficient (from 0.15 to 0.5; Fig. 2g). Additionally, highest and lowest scores differed most 

over the northern hemisphere (30 °N and 50 °N). While this pattern was common to all methods, it was much less apparent 

(by 50%) for IRW (Fig. 2e) and BTD (Fig. 2f) methods compared to TROPO.  255 

Compared to IR-based approaches, the ISCCP DCC detection scheme performed almost equally well at all latitudes. DCC 

detection probability remained high (80–90%), and the false alarm rate was relatively low (20–30%), resulting in a constant 
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overall accuracy of ~78–80% regardless of the latitude. Like IR-based methods, the ISCCP scheme performed better in north-

ern mid-latitudes, but the improvement was small, and mostly seen in an increasing κ coefficient (the consequence of a slight 

increase in detection probability). 260 

3.3 DCC misclassification 

Accuracy below 100% necessarily indicates a certain degree of DCC misdetection by a given method. This could either be 

false negatives, when CloudSat-CALIPSO indicated a DCC but a method reported no DCC, or false positives, when reference 

data recorded no DCC, but a method reported one. In our study, false positives accounted for 8–17% of observations (mean 

13%), while false negatives constituted 8–15% (mean 17%), depending on the method, and the spatial domain (global, Europe, 265 

or tropical Africa).  

The lowest rate of false negative detections (8-10%) was found for the ISCCP method, but when only the IR method was 

considered, it was 15% at best for the BTD method, regardless of the sub-region of the study. Globally and over Europe, DCCs 

were most frequently missed by the TROPO method (35% and 19% of cases, respectively), while in Africa by the IRW method 

(23% of cases). The better performance of the BTD method was at the price of a higher rate of false positive detections: the 270 

methods classified non-DCC as DCC in 12% (Europe, global) and 17% (Africa) of cases. 

Since CloudSat-CALIPSO data label clouds at each level in the atmospheric profile, we were able to identify typical scenarios 

where a non-DCC observation was mislabelled as a DCC. We identified two underlying patterns. First, three types of clouds 

were most frequently (>90% of cases) misclassified as DCC: high clouds, As, and Ns. Second, which of these three types 

dominated depended on whether we investigated a single- or multi-layer cloud scenario (Tab. 2). 275 

IR-based methods classified As and Ns as DCC most frequently when clouds occurred as a single layer. This error accounted 

for over 35% of misclassifications for each cloud type – both globally, and for Europe. However, in tropical Africa, high clouds 

were more often mislabelled as DCC, although never as frequently as As or Ns (with the exception of the BTD method).  

The situation changed significantly in a multi-layer cloud environment. In this scenario, we only focused on the top-most 

(highest) cloud layer – the first to be detected when sensing from orbit. Our results showed that under such circumstances, IR 280 

methods falsely reported DCC when the atmospheric profile was topped with As or high (Cirrus-like) clouds. The co-occur-

rence of high clouds with other cloud types was the most challenging scenario, as this constituted up to 66% (TRW, TROPO) 

or 84% (BTD) of false positive detections. In the multilayer environment, Ns were not a problem; they accounted for 0.4% of 

erroneous cases, regardless of the method or the region.  

It is important to note that misclassified As and Ns were the coldest clouds. The initial database of CloudSat/CALIPSO-285 

MODIS matchups was screened for observations that satisfied the condition TbWV−TbIR > −10 K. Hence, all warm clouds, 

including a large share of As/Ns, were automatically excluded from further analysis. In the initial database of 175 million 

lidar-radar profiles, 50% of observations had TbIR in the range 250–282 K. After filtering (9.5 million profiles), the range 

shifted towards a noticeably colder regime, spanning 225–240 K. 
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3.4 Sensitivity to the selection of a threshold 290 

Once we had calculated the optimal threshold for each DCC detection method, we then calculated mean seasonal DCC fre-

quency for June-July-August 2005. The thresholds identified in the present study were applied to an independent dataset, 

namely geostationary Meteosat Second Generation data, which is collected every full hour. We used the ‘High Rate Level 1.5 

Image Data’ product, based on Spinning Enhanced Visible and InfraRed Imager (SEVIRI) observations in two heritage bands: 

6.25 µm and 10.8 µm (Holmlund et al., 2021). Data were accessed from the EUMETSAT archive (https://data.eumetsat.int/). 295 

The decision to use Meteosat data limited spatial coverage to a hemisphere; more specifically, to locations lying below 

SEVIRI’s zenith angle (70 °) with respect to the sub-satellite point at 0 °E (hereinafter ‘full disc’). Definitions of ‘Europe’ and 

‘tropical Africa’ remained unchanged.  

A sensitivity study provided two sets of statistics. In the first, we adopted a fixed threshold (Fig. 3 a–c), while in the second 

we used thresholds developed for each 5 ° latitude zone (Fig. 3 d–f). As the results of testing different latitudes (Sec. 3.2) only 300 

covered one year of observations, the transition in threshold values between zones was not smooth (Fig. 2 a–c), impacting the 

spatial distribution of DCC (Fig. 3 d–f). It is likely that artefacts could be eliminated with more data, and that the change in 

threshold could be continuous rather than incremental – however, both of these refinements were beyond the scope of this 

study. 

DCC detection frequencies for the two approaches differed substantially (Tab. 3), demonstrating that the threshold selection 305 

significantly impacted the resulting DCC climatology. In the most extreme cases (the IRW method for Europe, and the TROPO 

method for Africa), latitude-adjusted thresholds doubled the frequency of DCC occurrence, compared to the fixed threshold 

approach. Although overall the change was lower, DCC frequency still increased or decreased by as much as one third. There 

were only two exceptions. When the BTD method was adopted globally, and the TROPO method was applied to Europe, the 

impact of the threshold selection was minor (a relative change of ~10% in mean DCC frequency). 310 

Fig. 3 g–i shows that the tropics were most sensitive to threshold selection. Changing from a fixed, global threshold to a 

regionally-adjusted threshold reduced DCC frequency along the Intertropical Convergence Zone (ITCZ) when using IRW or 

BTD methods (by one third in relative terms), but increased DCC frequency for the TROPO method (rates at least doubled). 

The ITCZ was a dominant feature on DCC frequency maps—but only when the BTD method was used (Fig. 3b, e). ITCZ-

comparable (or even higher) DCC frequencies were noted around Antarctica (IRW, TROPO; Fig. 3g, i), and over mountainous 315 

regions of Europe (the Alps, the Carpathians). The latter finding was particularly apparent when using the TROPO method 

with a fixed global threshold (Fig. 3c), and for the IRW method with a regionally-adjusted threshold (Fig. 3d).  

To explore the sensitivity of DCC climatology to threshold selection in more detail, we calculated DCC frequency as a function 

of the threshold value (Fig. 4). The slope of the DCC frequency curve is the most important information to consider when 

testing sensitivity: a steep slope indicates a relatively large change in DCC frequency for a small change in the threshold value.  320 

We observed that for IRW (Fig. 4a) and BTD (Fig. 4b) methods the tropics (Africa) stood out as most sensitive to the choice 

of threshold. A shift of ±1–2 K in the threshold resulted in a change in DCC frequency that was two times larger than the 

https://doi.org/10.5194/egusphere-2024-3693
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

 

corresponding change over Europe, or at the global (full disc) scale. However, the same was not true for the TROPO method. 

This was due to an increase in sensitivity observed for Europe and the full disc (Fig. 4c): while the slope of the sensitivity 

curve for both of these regions remained low when using IRW and BTD methods, it became as steep as the one noted for the 325 

tropics when using TROPO method. Consequently, the TROPO method was identified as most sensitive to the threshold value 

– regardless of the region it was applied to. On the other hand, the BTD approach was least sensitive to a change (the most 

desirable result), except for the tropics. 

DCCs are very infrequent phenomena. Their frequency of occurrence is <0.1, on a scale where 0.0 means no DCC at all, and 

1.0 indicates their permanent presence. A small change in that frequency (in terms of percentage points) translates into a high 330 

relative change. Here, we define relative change as the difference between the new value and the reference value, divided by 

the reference value. For data presented in Table 4, the reference was full disc DCC frequency with a fixed threshold, while the 

new DCC value was calculated using a threshold increased (or decreased) by 1 K.  

Table 4 reveals that a change in the threshold of as little as 1 K can substantially affect the final climatological estimate of 

DCC frequency. In the case of the BTD method, a ±1 K shift led to a ~40% relative change in DCC frequency, meaning that 335 

the frequency increased or decreased by nearly half of their absolute value (~0.01 for Europe and globally). An equally signif-

icant relative change was found for full disc and Europe, while Africa was close behind (~20% of relative change, 0.01 of 

absolute value). Comparisons of the other methods revealed relative differences in DCC frequency of 4–19%, typically values 

were close to ~10%.  

5 Discussion 340 

5.1 Misclassification of DCC 

In this study, we evaluated three IR methods that are widely used to detect DCCs. We found that even when the optimal 

configuration is adopted, either globally or regionally, the final accuracy of the algorithm is only moderate (up to 73%). One 

factor that may have impacted our results is the reliability of reference data, namely the accuracy of the CloudSat-CALIPSO 

cloud classification product (2B-CLDCLASS-LIDAR).  345 

Assessments of CloudSat-CALIPSO cloud typing algorithm revealed partial disagreement in DCC frequencies between lidar-

radar and other datasets, namely satellite-based ISCCP climatology, and surface-based visual (manual) classification (Wang 

and Sassen, 2001; Sassen and Wang, 2008; Sarkar et al., 2022). Specifically As and Ns clouds tended to be reported more 

frequently in CloudSat data. Such ‘overrepresentation’ could explain why these two cloud types were also the most frequently 

considered to be DCC by the IR method, but as non-DCC by the lidar-radar reference. Possibly some As and Ns were actually 350 

DCC, and hence should be considered ‘DCC’ in CloudSat-CALIPSO reference used in this study. Such a procedure was 

implemented by Yang et al. (2023), who validated IR-based DCC detection methods in the tropics (25 °S–25 °N). The latter 

authors decided to merge Ns and DCCs into one category, and use it as a reference for DCCs. To test how such a strategy 

impacts detection accuracy, we repeated the Yang et al. (2023) study with two variants: with and without Ns in the reference. 
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The results showed (Tab. 5) that final accuracies were 4–5% higher when Ns was omitted, but did not differ significantly. We 355 

conclude that not combining Ns with DCC in our study had little impact on the final results.  

In the multi-layer scenario, cloud misclassification was frequently the result of a method classifying high clouds (Cirrus) as 

DCCs. This can be explained by the simple fact that IR-based methods rely on cloud top temperature. Cirrus tend to be as cold 

as DCCs, and they can only be distinguished by examining their vertical extent or optical thickness. These parameters, how-

ever, are unavailable when IR and WV channels are considered. On the other hand, high clouds were also mislabelled as DCC 360 

in many ISCCP observations. ISCCP data include COT, therefore it is reasonable to expect fewer misclassifications. Unfortu-

nately, ISCCP COT data are column-integrated, and Cirrus optical thickness is included in the optical thickness of underlying 

cloud layers (including Ns and As). 

Limitations inherent in all types of cloud data make it impossible to develop a reference dataset that is 100% correct. Although 

CloudSat-CALIPSO is widely considered to be the most reliable current option, it is not free from its own misclassification 365 

issues. Importantly, all of the IR-based methods we assessed in this study were validated against exactly the same (common) 

reference. Therefore, if even the reference dataset has limitations, and actual (absolute) DCC detection accuracies may differ 

from those reported, relative differences between methods were captured correctly, and we were able to indicate which of them 

performed more or less efficiently.  

5.2 Impact of matching geometry 370 

A second factor that may have influenced the results of our study is the spatial and temporal collocation of lidar, radar, and 

MODIS observations. Each instrument was installed on a different satellite, meaning that a vertical atmospheric column was 

not observed simultaneously by all three sensors. In 2007, CloudSat (the Cloud Profiling Radar instrument) preceded 

CALIPSO (the Cloud-Aerosol Lidar with Orthogonal Polarization instrument) by ~15 seconds, and followed Aqua (MODIS) 

by approximately one minute.  375 

The horizontal speed of a storm cloud is ~30–100 km h-1, and a cloud could have shifted by ~0.5–1.5 km during the minute 

that separated MODIS and CloudSat-CALIPSO passes. This distance is generally within CloudSat’s footprint (1.4 × 1.1 km), 

meaning that misclassification would only occur if CloudSat’s ground track was collocated with the cloud’s edge, and that the 

cloud moved outward relative to the ground track.  

It should also be noted that a cloud is a 3-dimensional structure, which evolves vertically, especially when it is a DCC with a 380 

strong updraft. Updraft intensity varies from a few meters per second for fair weather cumuli (Kollias et al., 2001), to 10–30 

m s-1 for tropical cyclones (Stern and Bryan, 2018), and 30–50 m s-1 for the most rapidly evolving DCCs (Apke et al., 2018; 

Musil et al., 1991). Therefore, cloud top height can increase by between 500 m (updraft ~8 m s-1) to 2 km (updraft ~30 m s-1) 

over one minute, corresponding to a decrease in cloud top temperature of 3–12 K (assuming a rate of 6 K km-1). This creates 

a situation where CloudSat-CALIPSO could have detected a DCC that was not yet detected as a DCC by MODIS: the imager 385 

observed a cloud a few kelvins before it became a DCC. 
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The aforementioned scenario would result in more false negatives, reducing the overall accuracy of IR-based methods, com-

pared to a scenario in which all sensors operated in collocated mode. The latter could be achieved if lidar, radar, and imager 

instruments were installed on the same platform, which is the case for the Earth Clouds, Aerosol and Radiation Explorer 

(EarthCARE) satellite. The satellite was launched in 2024, and is in the commissioning phase at the time of writing. 390 

EarthCARE hosts not only lidar and radar instruments, but also a 7-channel multispectral imager that covers three IR bands: 

8.8 µm, 10.8 µm, and 12.0 µm (Illingworth et al., 2015). The setup eliminates all uncertainties related to spatial and temporal 

mismatches in a DCC observation. Unfortunately, the imager does not operate in WV absorption bands, ruling out the use of 

the two-channel DCC detection method. This situation is similar to CALIPSO’s imager, the Imaging Infrared Radiometer 

(IIR), which operated in three bands (8.7 µm, 10.5 µm, 12.0 µm). However, none of these channels consider WV absorption, 395 

as the sensor was optimised for joint CALIOP-IIR retrievals of Cirrus microphysical parameters. 

Importantly, EarthCARE’s radar – unlike CloudSat’s – is a Doppler instrument. It provides data on the vertical velocity of 

hydrometeors (cloud particles, rain) with an accuracy better than 1.3 m s-1 (Wehr et al., 2023). This may improve discrimina-

tion between cloud types, and provide more accurate labelling of DCCs, not only for validation, but also for training various 

machine learning models (Afzali Gorooh et al., 2020; Kaps et al., 2024). Nonetheless, the use of imagers that include WV 400 

absorption bands makes MODIS-CloudSat-CALIPSO joint observations unique, and the most suitable for the evaluation of 

DCC detection methods. 

5.3 Implications for cloud climatology 

Given the limitations of the MODIS-CloudSat-CALIPSO cloud observing system, and based on our results, we conclude that 

the TbWV−TbIR brightness difference (BTD) method is slightly more robust among the evaluated algorithms. Accuracy was 405 

highest, as was the κ coefficient, indicating best agreement with CloudSat-CALIPSO reference data. On the other hand, the 

BTD method resulted in the lowest DCC frequency among all of the considered algorithms, which, in turn, impacted the 

method’s sensitivity to the threshold selection. Importantly, we found that the optimal global threshold was −2 K (−1 K in the 

tropics, −3 K at mid-latitudes). These values differ from a typically threshold of 0 K. Since higher thresholds lower DCC 

frequency, the adoption of a 0 K threshold may underestimate DCC frequency, compared to the CloudSat-CALIPSO dataset. 410 

The BTD method requires data from IR window and VW absorption channels, and it can be easily applied to all generations 

of meteorological geostationary satellites. It supports the development of long term (40+ years) DCC climatologies, and com-

posite DCC maps generated with data from various geostationary platforms such as the NCEP/CPC Level 3 Merged Infrared 

Brightness Temperatures product, the NASA SatCORPS Global Cloud Composite product, or the GEO-ring composites envi-

sioned for the ISCCP-Next Generation project. 415 

The WV absorption band is typically not included on imagers that are hosted on polar-orbiting platforms. Examples include: 

the Advanced Very High Resolution Radiometer (NOAA-6/19, MetOp), the Visible/Infrared Imager Radiometer Suite (SNPP, 

NOAA-20/21, JPSS-3/4), the Multichannel Visible Infrared Scanning Radiometer (Feng-Yun-1 series), the Visible and Infra-
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Red Radiometer (Feng-Yun-3A/C), and the VIS/IR Imaging Radiometer (Meteor-M series). Although these instruments have 

been used since the late 1970s or early 1980s, none feature a spectral band in the 6.5 μm WV absorption region.  420 

Detecting DCCs without the WV band requires using the single-channel IRW method, or IR window data with auxiliary 

information on the tropopause temperature (the TROPO method). In this case, and when locally-adjusted thresholds are used, 

IRW and TROPO methods produce comparable results, both in terms of overall agreement with CloudSat-CALIPSO, and the 

spatial distribution of DCCs. We found that the TROPO method performed slightly better than the IRW approach, but only 

for Europe, and only by 3–4%. This finding indicates that the inclusion of tropopause data does not necessarily lead to a 425 

significant improvement in DCC detection, at least when the analysis explores the difference between the tropopause temper-

ature and cloud Tb.  

Importantly, both TROPO and IRW methods recorded unexpectedly high DCC frequency, mostly over the southern hemi-

sphere (in winter). In these regions, DCCs were as frequent as in the ITCZ, which is not confirmed by any other dataset (Norris, 

1998; Sarkar et al., 2022). This result suggests that the evaluated IR-based algorithms perform poorly, potentially due to the 430 

misclassification of cold Ns and As, as these cloud types occur most frequently at higher latitudes (Chen et al., 2000). In turn, 

this means that IRW and TROPO methods may be of limited use during colder seasons in higher latitudes – however, this is 

the region that is best sampled by polar-orbiting spacecraft, and it is where climate change may impact DCC frequency the 

most. 

Our Meteosat-based sensitivity study demonstrated that the selection of an appropriate threshold is crucial for deriving accurate 435 

DCC frequencies. This finding is important in order to be able to construct DCC climatologies from radiance time series 

originating from various sensors (different families of sensors, or different generations within a single family). A 1 K difference 

in Tb may be a consequence of a difference in the spectral response function of different sensors, or it could be the consequence 

of the sensor’s calibration (Gunshor et al., 2004). The same DCC, observed simultaneously by two instruments, may appear 

in the final dataset as an object with different Tb. Hence, using a single threshold for both datasets will produce incoherent 440 

DCC climatologies.  

If we take the CloudSat-CALIPSO classification as a reference, our study reveals the limits of the most common IR-based 

DCC detection methods. Specifically, we identified thresholds that result in the highest achievable accuracy. However, better 

results can be possibly achieved with other methods. We also evaluated DCC statistics resulting from the ISSCP cloud typol-

ogy. DCC detections based on COT and CTP were shown to be more reliable than any of the IR-based methods. This finding 445 

demonstrates that daytime DCC detection benefits from the availability of shortwave radiances.  

More complex algorithms, such as machine learning, can be used to process IR-only data. For instance, Yang et al. (2023) 

trained their algorithm on Tb, but also used a number of derivative measures that addressed local variation (minima, maxima, 

gradients). They achieved 72% accuracy in DCC detection. Even higher accuracy (98%) was reported by Chen et al. (2023), 

who considered texture information, along with a sequence of images in three IR bands (6.25 μm, 10.7 μm, and 12.0 μm). 450 

Since DCC detection requires both daytime and nighttime data, IR observations from cloud imagers will remain a primary 

source of information. This is especially true for long-term climate studies, as the WV absorption channel, and the IR window 
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channel have been the only two heritage bands available on geostationary satellites since the early 1980s. Machine learning 

techniques that are trained on more sophisticated datasets (e.g. EarthCARE) offer the potential for more reliable and homoge-

nous DCC climatologies that go beyond the limits of classical IR-based algorithms. 455 

5 Summary and Conclusions 

Our study explored the consistency of DCC climatologies derived from three widely-used IR-based DCC detection algorithms, 

namely: (1) the IR window method (11 μm spectral channel), (2) the brightness temperature difference (BTD) between 6.7 μm 

and 11 μm, and (3) the temperature difference between the tropopause and the 11 μm channel (TROPO). These algorithms 

were applied to MODIS/Aqua radiances, and compared with the unique, state-of-the-art CloudSat-CALIPSO lidar-radar cloud 460 

classification dataset. We assumed CloudSat-CALIPSO as a reference (‘ground truth’). However, it must be acknowledged 

that in cloud research there is no universally reliable data set, and in a strict sense our study is a comparison with lidar-radar, 

which we have considered to be the most reliable of currently available. 

In total 9,507,319 observations for 2007 were analysed, marking the first global scale evaluation of these DCC detection 

methods. The two key conclusions from our study are: 465 

 IR-based methods demonstrate moderate accuracy in DCC detection (< 75%; κ < 0.45), and only when regionally or 

zonally adjusted thresholds are used. Fixed, globally-applied thresholds should be avoided. Detection ambiguity arises 

from the misclassification of DCCs as Ns and As (in single layer cloud scenarios), or Cirrus and As (in multi-layer 

cloud scenarios). We conclude that these disagreements are partially due to the method’s simplicity, but also identified 

uncertainties in the CloudSat-CALIPSO cloud classification, and imperfections in the observation system (notably, 470 

the temporal misalignment between lidar, radar, and imager observations); 

 The high sensitivity of IR-based methods to threshold selection undermines the homogeneity of resulting DCC cli-

matologies. Our analysis demonstrates that shifting the threshold by as little as ±1 K leads to a change in mean sea-

sonal DCC estimates by 0.002-0.010, what translates into a relative change by 4%-40%. This finding is of particular 

importance when combining IR data from different sensors, whether to construct global mosaics, or to produce time 475 

series of DCCs from various generations of an instrument.  

Assuming CloudSat-CALIPSO data as ground truth, we conclude that if the WV absorption and IR window channel are avail-

able, the BTD method should be prioritized over IRW and TROPO methods (e.g. for geostationary satellites). If these channels 

are not available (as with most polar-orbiting platforms) the TROPO method may provide comparable results, but at the cost 

of including auxiliary data on tropopause temperature. The IRW method should be considered as a last resort for detecting 480 

DCCs. 

As technology progresses, the launch of new cloud imagers with more spectral channels (e.g. Flexible Combined Imager, 

GeoXO Imager, METimage) enhances the accuracy of DCC detection. This improvement will be especially notable when new 

data sources are paired with new data processing technologies, such as machine learning. Nevertheless, the WV absorption 
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channel, and the IR window channel remain the most important spectral bands for long-term DCC climate studies, along with 485 

IR-based methods that utilize them. 
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Figure 2. The optimal threshold for each method as a function of latitude (a–c), together with corresponding 
latitude-resolved measures of accuracy. Kappa (κ) values were multiplied by 100 to match the 0–100% 
range.
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Tables 1 

Table 1. Cloud free (no DCC) and cloudy (DCC and other cloud present) percentages in the lidar-2 

radar profile data sample investigated in this study. Europe is defined as 35°N–60°N, 15°W–45°E, and 3 

Africa is defined as 5°N–15°N, 20°W–35°E (see Sec. 3 for details on subregions). 4 

Region 
Total number 

of observations 
Cloud-free 

Cloudy 

no DCC only DCC not only DCC 

Global n = 9,507,319 3.7% 89.2% 7.1% <0.1% 

Europe n = 289,537 2.5% 94.3% 3.2% 0.0% 

Africa n = 105,293 <0.1% 85.0% 14.9% <0.1% 

 5 

 6 
Table 2. Percentage of cloud types classified by the four methods as DCC, but not reported as DCC in 7 

CloudSat-CALIPSO observations. When more than one cloud layer occurred in a lidar-radar profile, 8 

the cloud type refers to the highest layer (i.e. the first to be observed when looking from a satellite). 9 

 10 

 Cloud type frequency (%) 

(Single layer) 
Cloud type frequency (%) 

(Multilayer) 

Method High As Ns Other High As Ns Other 

 Global 

IRW 16.6 44.4 38.8 0.2 64.6 35.2 0.1 0.1 

BTD 8.8 37.8 40.8 12.6 59.7 36.8 0.2 3.3 

TROPO 5.4 36.8 54.5 3.3 33.4 65.4 0.4 0.8 

ISCCP 1.1 24.1 70.6 4.2 60.3 37.1 0.2 2.4 

 Europe 

IRW 8.2 40.0 51.1 0.7 39.0 60.7 0.1 0.2 

BTD 5.0 37.9 48.2 8.9 45.4 52.4 0.1 2.1 

TROPO 5.7 35.8 56.4 2.1 29.6 69.9 0.2 0.3 

ISCCP 0.7 21.7 72.9 4.7 43.4 54.9 0.2 1.5 

 Africa 

IRW 17.6 52.1 30.4 0.0 65.9 33.8 0.1 0.2 

BTD 29.1 50.7 17.5 2.7 83.5 16.2 0.0 0.3 

TROPO 17.3 51.3 31.4 0.0 65.6 34.1 0.1 0.2 

ISCCP 3.2 42.3 52.9 1.6 74.7 24.9 0.0 0.4 

 11 

Table 3. Mean seasonal (June-July-August 2005) DCC frequency estimated using a fixed global 12 

threshold, and a latitude-adjusted threshold.  13 

Detection 

method 

DCC frequency with fixed  

(global) threshold 

DCC frequency with  

latitude-adjusted thresholds 

Full disc Europe Africa Full disc Europe Africa 

IRW 0.021 0.009 0.076 0.033 0.021 0.051 

BTD 0.009 0.007 0.046 0.009 0.010 0.030 

TROPO 0.017 0.026 0.026 0.028 0.023 0.054 

 14 
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Table 4. Mean seasonal (June-July-August 2005) DCC frequency calculated using a fixed global 15 

threshold (‘Reference DCC frequency’), and with thresholds increased and decreased by 1 K. Values 16 

given in parentheses denote relative change, in other words, the difference between the reference DCC 17 

frequency and the frequency after the threshold change, normalized with reference to the DCC 18 

frequency.  19 

Detection 

method 

Reference DCC 

frequency 

Simulated DCC frequency with threshold changed by: 

−1 K +1 K 

 Full disc 

IRW 0.021 0.019 (−11%) 0.023 (+8%) 

BTD 0.009 0.012 (+42%) 0.005 (−37%) 

TROPO 0.017 0.015 (−11%) 0.020 (+13%) 

ISCCP 0.027 - - - - 

 Europe 

IRW 0.009 0.007 (−19%) 0.010 (+14%) 

BTD 0.007 0.010 (+43%) 0.004 (−38%) 

TROPO 0.026 0.024 (-10%) 0.029 (+10%) 

ISCCP 0.034  - - - - 

 Africa 

IRW 0.076 0.072 (−5%) 0.079 (+4%) 

BTD 0.046 0.056 (+22%) 0.034 (−26%) 

TROPO 0.026 0.023 (−10%) 0.028 (+10%) 

ISCCP 0.075 - - - - 

 20 

 21 

Table 5. DCC detection accuracy in the tropics (±25 °N). DCC are defined as merged CloudSat-22 

CALIPSO DCC + Nimbostratus classes (as in Yang et al., 2023), and with DCC alone (as in this 23 

study). The IRW method uses a threshold of 215 K, while the BTD method adopts a threshold of 0 K.  24 

Method 
Ns+DCC as reference Only DCC as reference 

Accuracy PoD FAR κ Accuracy PoD FAR κ 

IRW  61.2% 58.2% 38.0% 0.225 64.3% 66.4% 36.3% 0.286 

BTD  59.2% 44.9% 37.1% 0.114 63.3% 53.8% 33.8% 0.264 

 25 

 26 

  27 

27

https://doi.org/10.5194/egusphere-2024-3693
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 

Figures 28 
 29 

Figure 1. Accuracy of DCC detections using the infrared window (IRW) method, the WV-IR 30 

brightness temperature difference (BTD) method, the IR-tropopause temperature difference (TROPO) 31 

method, and the ISCCP method. Accuracy measures are shown as a function of the selected threshold 32 

(horizontal axis), except for ISCCP which uses a single set of parameter globally. Kappa (κ) values 33 

were multiplied by 100 to match the 0–100% range. 34 

 35 

Figure 2. The optimal threshold for each method as a function of latitude (a–c), together with 36 

corresponding latitude-resolved measures of accuracy. Kappa (κ) values were multiplied by 100 to 37 

match the 0–100% range. 38 

 39 

Figure 3. Mean seasonal (June-July-August 2005) DCC frequency, based on hourly Meteosat/SEVIRI 40 

data, and the methods evaluated in this study. Statistics were calculated using a fixed, global threshold 41 

(a–c), and latitude-adjusted thresholds (d–f); (d–i) summarize zonally-averaged DCC frequencies.  42 

 43 

Figure 4. Mean seasonal (June-July-August 2005) DCC frequency as a function of the threshold 44 

applied to the DCC detection methods evaluated in this study.  45 
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