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Satellite-based detection of deep convective clouds: the sensitivity of
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Abstract. Reliable deep convective cloud (DCC) climatology relies heavily on accurate detection. Infrared-based algorithms
play a critical role, as they are the only ones that can be applied to the 6.7 pm water vapour (WV) absorption band, and the 11
pm infrared (IR) window band. For over 40 years, the latter have been the only daytime/nighttime channels used in satellite
cloud imaging. The study presents the first global validation of three, commonly-used DCC detection methods, which use
brightness temperature (Ty,) in WV and IR bands. These methods are: the infrared window method (IRW; Tpi1), the brightness
temperature difference method (BTD; Twe7—Tb11), and the temperature difference method with the tropopause method
(TROPO; To11—Tuopo). All methods were applied to one-year (2007) of Moderate Resolution Imaging Spectroradiometer
(MODIS) observations, and validated against collocated CloudSat-CALIPSO lidar-radar cloud classifications. Results indicate
that even with optimal parameter configurations, DCC detection accuracy remains moderate, and below 75% (Cohen’s x <
0.4) for all methods. Global accuracy ranged from 56.6% (for TROPO) to 72.8% (for BTD) using an optimal threshold of —2
K. Regionally, the BTD method performs best, with accuracy of 72.9% over Europe, and 67.9% over Africa. Misclassifications
are common with clouds such as Nimbostratus and Altostratus (single-layer cloud regimes) and Cirrus and Altostratus (multi-
layer cloud regimes). Overall, the BTD method slightly outperforms the others, while TROPO is least effective. Our study
highlighted the high sensitivity of these methods to threshold selection. Even a =1 K change in the threshold resulted in a 10—
40% variance in DCC frequency. The latter finding is of particular importance for the construction of homogenous DCC

datasets, whether as global mosaics, or as time series spanning multiple generations of satellite instruments.

1 Introduction

Deep convective clouds (DCCs) are formed through moist convection in the troposphere. DCC cloud top pressures may exceed
~450-500 hPa, and clouds may reach the tropopause or even penetrate the lower stratosphere. Although being the least-fre-
quent cloud type on Earth (Sassen and Wang, 2008), they are the focus of scientific concerns due to their role in the hydrolog-
ical cycle (Nesbitt et al., 2006), atmospheric chemistry (Wang and Prinn, 2000), and their association with severe weather
events that include heavy precipitation, damaging wind, hail, tornadoes, or downburst phenomena (Taszarek et al., 2020).
According to the European Environment Agency, economic losses related to extreme climate events amounted to 738 billion

EUR in EU Member States, and one third of that was caused by severe storms.
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With global warming, more energy is being held in the atmosphere, troposphere dynamics are changing. In the mid-Ilatitudes,
the Hadley circulation is weakening and expanding poleward (Ceppi and Hartmann, 2016; Lu et al., 2007), causing change in
the track and intensity of extratropical storms (Baatsen et al., 2015; Bender et al., 2012; Lehmann and Coumou, 2015). Con-
sequently, convective processes are expected to intensify, and the frequency of DCC-related severe weather events may also
increase (Aumann et al., 2008; Berthou et al., 2022). Identifying climate trends requires DCC time series that span at least
three decades, and a reliable reporting method.

The traditional (non-instrumental) approach to reporting is to observe the state of weather visually (by a human observer), and
to report DCC-related phenomena such as Cumulonimbus, hail, lightning, thunder, etc. (Taszarek et al., 2019). However, the
limits of human perception make the method subjective and inaccurate, and the spatial coverage is limited (Eastman and
Warren, 2014). Alternative techniques rely on ground- or satellite-based remote sensing. An orbital perspective is especially
important for efficient mapping of DCCs, notably through the use of imagers that provide frequent observations with global
coverage.

Passive satellite imagers detect DCCs based on their radiative properties. In the thermal infrared window (8—14 pm), DCCs
are among the coldest objects in the field of view. Consequently, brightness temperature (Ty) thresholds can be set to discrim-
inate between DCCs and the warmer background (Doelling et al., 2004; Gong et al., 2018; Govaerts et al., 2018; Mu et al.,
2017). However, the most important shortcoming of this method is that both DCCs and Cirrus are characterized by low Ty
thresholds in the infrared window. As a result, detection can be ambiguous; for example, Cirrus anvils associated with DCCs
can be misclassified as convective clouds.

The Ty, threshold can be also applied to the water vapour absorption band (5.5-8 um). In these wavelengths, electromagnetic
emissions leaving Earth are absorbed by water vapour in the atmosphere as the signal propagates upward, toward space. As a
consequence, most radiance that is detected by a satellite originates in the upper atmosphere, including the highly-elevated
tops of DCCs (Ackerman, 1996; Ai et al., 2017). However, difficulties are similar to those that arise with the thermal infrared
window approach. Here, Cirrus pose a threat as well.

DCCs can also be detected using shortwave radiation (~4 um or less), a combination of shortwave and longwave bands, or
geophysical parameters retrieved from multispectral radiances. One of the most widely adopted approaches is the algorithm
implemented by the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer, 1999). The ISCCP char-
acterizes clouds based on their optical depth (COT; cloud optical thickness), and the atmospheric pressure at the cloud top
(CTP; cloud top pressure) — measurements are based on 10.5 pum brightness temperature, 0.65 pum reflectance, and radiative
transfer modelling. As COT and CTP are continuous values, thresholds are applied to divide COT-CTP distributions into
discrete classes. DCCs are identified when COT > 23 and CTP < 440 hPa.

A key shortcoming of the ISCCP classification, and other algorithms that exploit shortwave radiation, is that they are limited
to daytime conditions. Tracking the diurnal DCC cycle requires a method that relies solely on longwave infrared observations.
The design of such an algorithm is closely linked to the technical specification of the cloud imaging instrument. Most first-

generation imaging sensors implemented as few as three spectral bands, two of which were dedicated to the infrared domain
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(Holmlund et al., 2021). The infrared (IR) window channel, and the water vapour (WYV) absorption channel were typically
centred at 11 pum, and 6.5 pm respectively. Advances in sensor technology have since made it possible to consider additional
IR spectral channels, such as the ozone thermal absorption band at 9.7 um (Jurkovic et al., 2015). However, the long history
of 11 pm and 6.5 um bands makes them indispensable for climatology, as they are the only way to derive multi-decadal DCC
time series.

One of the main disadvantages of IR-based approaches is the need for a threshold: the Ty, (or the Ty, difference) are used to
discriminate between DCCs and non-DCCs. Historically, thresholds were set arbitrarily, rather than being derived from an
empirical examination (see Sec. 2.2 for details). Notably, DCC detections were not validated, and accuracy assessments were
not reported (e.g. a classical confusion matrix for a binary classifier). The resulting DCC climatologies were only compared
with other (independent) datasets to check for discrepancies among sources (Sarkar et al., 2022; Sassen and Wang, 2008).
Such cross-comparisons cannot be considered as a substitute for validation.

The primary reason for the lack of validation was the absence of reliable ‘ground truth’. In cloud research there is no 100%
accurate dataset on cloud types, mostly due to the lack of a single, an unambiguous (i.e. method-independent) definition of
cloud types. For instance, visual observers define DCC by verbal description and co-occurrence of DCC-associated weather
phenomena. On the other hand, DCC in the ISCCP project is defined by the physical parameters of the cloud: a certain optical
thickness and tops above a certain height. As a consequence any validation of cloud type detection is in fact a relative com-
parison assuming that one source of observations is — for well justified reason — more reliable than the other dataset (i.e. the
one being validated). Currently, the state-of-the-art data for validating cloud products originated from the CloudSat and Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) missions. CloudSat hosted a cloud profiling radar,
and CALIPSO hosted a cloud profiling lidar. Rather than imaging the horizontal distribution of cloud, lidar and radar provide
a vertically-resolved structure of the atmosphere. Due to this unique capability, clouds are classified both during the day and
at night based on their horizontal extent, height, thickness, homogeneity, and presence of precipitation, rather than column-
integrated radiances (Stephens et al., 2002; Winker et al., 2003). An important consideration is that CloudSat and CALIPSO
were configured to fly in close formation with the Aqua satellite (Vincent and Salcedo, 2003), enabling quasi-simultaneous
observation of clouds by lidar, radar, and Aqua’s Moderate Resolution Spectroradiometer (MODIS) instrument (Barnes et al.,
1998).

The CloudSat-CALIPSO cloud typing algorithm was introduced by Wang and Sassen (2001), and its accuracy has been demon-
strated with surface-based lidar and radar observations. It was initially validated against visual (manual) cloud genera obser-
vations, performed at the lidar-radar location, and in accordance with World Meteorological Organization standards. The val-
idation study consisted of 540 cases, of which only four (according to reference data) or nine (according to the lidar-radar
classification) were DCCs. Wang and Sassen (2001) stated that the overall accuracy of their classification was 70%, but pro-
vided no specific details for DCC.

Sassen and Wang (2008) ran a post-launch assessment of the classification. The authors focused on one full year of CloudSat

observations (CALIPSO was excluded). Rather than performing a typical accuracy assessment, they only compared zonally-
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averaged frequencies of individual cloud types. They found that the radar classification reported fewer DCCs than ISCCP or
surface-based data, and more Altostratus (As) and Nimbostratus (Ns) than the remaining databases. A similar study by Sarkar
et al. (2022) noted that difference between CloudSat-CALIPSO, ISCCP and surface-based visual observations was highest for
DCCs. The latter authors hypothesized that it may be related to the fuzzy logic used in the lidar-radar classification algorithm.
Further validation studies of CloudSat data have considered specific geophysical parameters, notably cloud base height
(Candlish et al., 2013), precipitation (Kodamana and Fletcher, 2021), or cloud phase (Wang et al., 2024), but not the cloud
classification.

Despite limitations, CloudSat and CALIPSO data, especially when combined into one, joint products, have been tested and
adopted for validation purposes, including DCCs. Specifically, Yang et al. (2023) successfully demonstrated the potential of
combining MODIS, CloudSat and CALIPSO data to validate IR-based DCC detection methods. However, their work only
focused on the tropics (£25 °N), where DCCs and Nimbostratus were merged into a single category. Furthermore, their main
objective was to establish a benchmark for their machine learning approach to DCC detection. Consequently, we still do not
know how accurate traditional, IR-based DCC detection methods are on a global scale. Are current thresholds appropriate, and
do they guarantee optimal DCC detection accuracy? How sensitive is a DCC climatology to the selected threshold?

Given the importance of IR and WV heritage bands in long-term climatology, we perform the first, comprehensive, global-
scale validation of critical IR-based DCC detection methods that rely on state-of-the-art CloudSat-CALIPSO lidar-radar cloud
observations. Our overall question is: how consistent are DCC climatologies that are based on different IR methods, and
different DCC detection thresholds?

It is important to remember that when we use the term ‘validation’ referring to DCC detection methods and CloudSat-
CALIPSO observations, we always mean a relative comparison between these datasets, assuming lidar-radar data to be more

accurate (since they are active remote sensing methods, and combine optical and microwave observations).

2 Data and methods
2.1 Database of collocated observations

Our validation of IR-based DCC detection methods required us to develop a dedicated database. Data consisted of temporally
and spatially collocated observations of clouds performed with MODIS (Aqua), CloudSat and CALIPSO instruments. Aqua,
CloudSat and CALIPSO were three independent spacecraft, and passed over the same location sequentially: CALIPSO was
15 seconds behind CloudSat, and CloudSat was 60 seconds behind Aqua. In Section 4, we address the potential impact of the
sampling regime on the results of the validation. The specific data products we used were:
— 2B-CLDCLASS-lidar, version P1_RO05; data are the result of a joint analysis of lidar (CALIPSO) and radar (CloudSat)
profiles, and provide information on cloud type. CALIPSO’s lidar sampled the atmosphere at two wavelengths (532
and 1064 nm), every 333 m along the ground track, with a 90 m diameter footprint. CloudSat’s radar operated simi-

larly, but at a much longer wavelength: ~3190 nm (94 GHz), and with a noticeably larger footprint: 1.1x1.4 km. The
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two instruments were complementary: radar impulses can penetrate most cloud layers, but miss optically thin clouds,
while the lidar signal is quickly attenuated, but is very sensitive to Cirriform. The 2B-CLDCLASS-lidar is designed
to take advantage of both systems, merging separate lidar and radar data into a single profile. The classification
algorithm is run on cloud clusters, rather than individual profiles. Hence, the first step is to identify a cluster: namely,
a group of horizontally connected cloud layers with similar vertical extent. Next, each cluster is characterized with
respect to its geometrical and geophysical parameters (e.g. top and base heights, phase, temperature, maximum radar
reflectivity, the presence of precipitation). Results are passed to a combined rule-based and fuzzy logic classifier,
which assigns one of eight possibilities: Cumulus (Cu), Stratus (St), Stratocumulus (Sc), Altostratus (As), Altocumu-
lus (Ac), Nimbostratus (Ns), ‘deep convective cloud’ (Cumulonimbus, Cb) and ‘high clouds’, which includes all
Cirriform (Cirrus, Cirrostratus, Cirrocumulus). For a more detailed description of the algorithm, see Sassen et al.
(2008) and Wang and Sassen (2001). The data structure of the 2B-CLDCLASS lidar product supports reporting of up
to ten cloud layers within a single profile. In our analysis, if at least one ‘deep convective cloud’ label was found
within a profile, the whole profile was designated as ‘DCC’, and as ‘no-DCC” if this was not the case;

— MYDO021KM version C061; products provide calibrated radiances registered in 20 reflective solar bands (0.4-2.2
um), and 16 thermal emissive bands (3.6—14.3 pm). The instrument operated as a passive imager, circling Earth twice
each day, with a 2330 km-wide swath (Barnes et al., 1998). At nadir, the spatial resolution of MODIS imagery ranges
from 250 m/pixel to 1 km/pixel, although atmospheric data products are released at 1 km/pixel resolution, or coarser
(Platnick et al., 2003). In order to match MODIS with CloudSat-CALIPSO observations, we only used 1 km data,
and only for the two spectral bands of interest: 6.535-6.895 um (central wavelength 6.715 um, MODIS band 27),
and 10.780-11.280 pm (central wavelength 11.030 um, MODIS band 31). From these, we were able to calculate
brightness temperature (Ty): specifically, Towv Or Tye.7 for the WV absorption band, and Tyir 0Or Tp11 for the IR window
band. Geolocation information, which was necessary to spatially match MODIS with 2B-CLDCLASS-lidar data was
obtained for auxiliary MODIS products, namely MYDO03 geolocation fields.

We considered a full year (2007) of MODIS, and CloudSat-CALIPSO observations. The initial database consisted of
175,666,879 matchups. In order to maximize data consistency, all MODIS data were parallax-corrected following the method
reported in Wang et al. (2011). We decided to narrow the sample by rejecting observations that were too warm to feature a
DCC. Specifically, all observations with Tyir—Tewy < —10 K were rejected. The latter procedure was implemented by Yang et
al. (2023), although the latter authors used a stricter threshold of —5 K. We used a more liberal threshold in order to increase
the number of potentially non-DCC clouds in the vicinity of a DCC. This left 9,507,319 matchups, which were evaluated.

Table 1 provides more details on the composition of the sample.

2.2 DCC detection methods

We assess the accuracy of the following three IR-based methods:



165

170

175

180

185

190

—  The Infrared Window (IRW) method. In principle, this method is very simple. The only requirement is to set a Ty
value that can discriminate between DCCs (assumed to be colder), and a warmer background (either a cloudy or
cloud-free atmosphere). There is no universal Tpir threshold for DCC detection, and different values have been used.
Examples include: 210 K (Aumann and Ruzmaikin, 2013), 225 K (Aumann et al., 2018), 230 K (Hendon and Wood-
berry, 1993; Tissier and Legras, 2016), 235 K (Wall et al., 2018), and up to 245 K (Kubar et al., 2007). This ambiguity
in threshold selection is reflected in studies by Mapes and Houze (1993), and Hong et al. (2006), who decided to
adopt two values: Tyir < 235 K for the detection of ‘high clouds’ in general, and Thir < 208/210 K exclusively for
DCCs.

— The Brightness Temperature Difference (BTD) method. In earlier work, Ackerman (1996) observed that in some
regions, Tp at 6.7 um could be greater than at 11 pm. In the tropics and mid-latitudes the Tywv-Toir difference was
explained by the presence of thick clouds, notably DCCs. In general, a difference greater than 0 K coincides with
clouds of Tuir < 210/215 K, and the difference is highest when clouds reach the tropopause (Kolat et al., 2013). Alt-
hough Ackerman (1996) suggested that Towv-Toir could be used to detect thermal inversion in the polar troposphere,
the method has been widely used to map DCCs, including the detection of overshooting tops (Bedka et al., 2010;
Martin et al., 2008).

— The TROPO method. Convective clouds cool as their tops penetrate up through the troposphere, and eventually cloud
top temperature matches that of the tropopause. Hence, the difference between Tpir and the tropopause temperature
(Twopo) has been suggested as a DCC detection method. Zou et al. (2021) used Tyir at 8.1 um, and suggested that a
feature could be considered a DCC when Thir—Twopo< 7 K. A similar value (6 K) was adopted by da Silva Neto (2016),
who used Toir—Twopo Simultaneously with a more conventional Tewv—Twir @pproach. Aumann and Ruzmaikin (2013)
set a Thir—Twopo threshold of 2 K, but used a climatological Twopo Value instead of an actual (meteorological) value.
The application of the TROPO method relies on Topo data being available. In this study, the parameter was obtained
from the Reanalysis Tropopause Data Repository (Hoffmann and Spang, 2022). Specifically, we refer to the first
tropopause, as defined by the World Meteorological Organization, identified based on the ERAS reanalysis.

The ISCCP scheme for DCC detection only was included for comparison. In the ISCCP approach, the cloud type classification
is based on cloud optical thickness (COT), and cloud top pressure (CTP). Like IRW, BTD and TROPO methods, the ISCCP
requires thresholds — for COT and CTP — which are also somewhat arbitrary (Rossow and Schiffer, 1999). Hahn et al. (2001)
demonstrated that the ISCCP classes follow the traditional classification (i.e. the one implemented by the World Metrological
Organization), but less strictly. Under the ISCCP paradigm, DCC detection requires COT and CTP information. The latter
were obtained from the MODIS MY D06 standard product (Platnick et al., 2003), with geometry and coverage that are identical
to MYD21KM and MYDO03 products. ISCCP results only refer to daytime conditions, while IRW, BTD and TROPO results

are combined for day and night.
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2.3 Measures of accuracy

The joint CloudSat-CALIPSO cloud classification was used as a reference. MODIS WV and IR Ty, and COT and CTP data
were used in IRW, BTD, TROPO and ISCCP methods to detect DCC. Agreement between the reference and validated methods
was assessed based on a confusion matrix and related measures.

A confusion matrix is used to evaluate the performance of a binary classifier. It considers four possibilities: true positive, and
true negative detection, when a method and the reference agree on the presence and absence of DCCs respectively; false
positive detection, when a method finds DCCs, but the reference does not; and false negative detection, when a method reports
no DCCs but the reference does. The performance of a DCC detection algorithm can then be assessed with respect to: its
overall accuracy; the probability of DCC detection (PoD); the DCC false discovery rate (FAR); and Cohen’s Kappa coefficient
(x; Cohen, 1960):

TP+TN

Aceuracy = oy @)
PoD = —%— 2
TP+FN
FAR = —%_ (3)
FP+TP
_ 2.(TP-TN—FP-FN)
k= (TP4+FN)-(FN+TN)+(TP+FP)-(FP+TN) ' )

where: TP, TN, FP, FN are total number (counts) of true positive, true negative, false positive, and false negative detections
respectively.

Values for a perfect classifier would be: accuracy and PoD equal to 100%; FAR as low as 0%; and « approaching 1.0 (x ap-
proaching 0.0 suggests that agreement between datasets was only achieved by chance, regardless of the actual accuracy).
DCC only made up 7% of CloudSat-CALIPSO observations investigated in this study, meaning that the sample was signifi-
cantly unbalanced. It is reasonable to assume that the resulting accuracy measures are biased by the frequency of negative
detections, which are far more likely than positive detections. To avoid this, we implemented bootstrap sampling (DiCiccio
and Efron, 1996; Efron, 1979). First, the number of DCC in our CloudSat-CALIPSO reference dataset was determined. Then
the reference dataset was randomly sampled to identify exactly the same number of non-DCC observations. As a result, the
count of DCC and non-DCC detections was equal. Next, ‘instantaneous’ accuracy measures were derived from this sub-sam-
ple, and recorded. This procedure was repeated 1000 times, resulting in 1000 accuracy estimations. In the final step, all esti-
mations were averaged, returning a single value (a bootstrap estimate), which is reported in this paper. During each iteration,

the DCC sample was the same, only the non-DCC sub-sample changed.

3 Results

Rather than assuming a specific threshold for a DCC detection method, we tested a wide range of possible values (Fig. 1).

First, full statistics were derived for each instantaneous threshold, then we selected the threshold with the highest overall
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accuracy (or the highest « value, as both measures peaked at the same location). This value was then considered as the ‘optimal’
threshold, indicating that it guaranteed the best possible accuracy for a method.

All results were obtained for land and ocean lying between 60 °N and 60 °S (the global domain), and for two smaller regions
of interest: Europe (a mid-latitude, moist convection environment; 35 °N-60 °N, 15 °W-45 °E), and equatorial Africa (an

intertropical convergence zone, with very intense moist convection; 5 °N-15 °N, 20 °W-35 °E).

3.1 Highest achievable accuracy

The validation of IR-only DCC detection methods obtained with the CloudSat-CALIPSO lidar-radar dataset showed that the
highest achievable accuracy was moderate (Fig. 1). Depending on the method, and on a global scale, it varied between 56.6%
(TROPO with a 15 K threshold) and 72.9% (BTD with a —2 K threshold). Regionally, accuracies were between 67.7% (IRW
with a 231 K threshold) and 72.9% (BTD with a —2.5 K threshold) for Europe, and from 65.6% (IRW with a 217 K threshold)
t0 67.9% (BTD with a —1 K threshold) for Africa.

Our results showed that IRW and BTD methods performed almost equally well when global data were examined. Differences
in overall accuracy, detection probability, and the false alarm rate did not exceed ~5% at the global scale. However, changing
the spatial domain to Europe doubled discrepancies; the IRW method was less accurate, while the BTD method performed just
as efficiently as on the global scale. On the other hand, the comparison for tropical Africa found that both IRW and BTD
methods were less accurate.

Narrowing the spatial scale had the most significant impact on the performance of the TROPO approach. Using a single, global
threshold for the temperature difference between 10.8 um and the tropopause proved impractical — the method detected DCC
with an overall accuracy of 56.6%, and a « coefficient of 0.13. At the regional scale, performance noticeably improved: DCC
detection probabilities doubled from 30% to 60%, resulting in a boost in overall accuracy of 14% in Europe, and 9% in tropical
Africa.

When IRW, BTD and TROPO methods were compared with the ISCCP daytime-only approach, the latter was found to be
more reliable in all respects. Not only did it outperform the other methods with respect to overall accuracy (76—77% regardless
of the spatial domain), but DCC detection probability was higher (80—-85%), and, in general, the false alarm rate was lowest

among all of the investigated methods (25-28%).

3.2 Variability of thresholds

Inconsistency between global and regional results motivated us to test whether the optimal threshold for a method depended
on the latitude. We therefore derived accuracy measures for zones at 5 ° latitude, starting at the equator. Calculation of the
accuracy for 5 © zones essentially repeated the methods used for the global domain, except for input data pre-selection: they
were only limited to the 5° zone under consideration. With only one full year of observations, it was impossible to obtain

reliable results for latitudes above 40-50 °N/S (i.e. where DCCs are relatively infrequent).
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Our experiment revealed a clear relation between latitude and the optimal threshold. For the IRW method, DCC detection
across all latitudes was most accurate when the threshold was changed from ~218 K in the tropics to ~230 K in mid-latitudes.
The corresponding adjustment for the BTD method was only 2 K (from —1 K in the tropics to —3 K in mid-latitudes). Similarly,
for the TROPO method, the optimal threshold changed between low- and mid-latitudes. However, in this case, in the tropics
(20 °S—20 °N) it was constant (25 K), but dynamically decreased (to 10-15 K) at 40 °N/S.

Despite these adjustments in the threshold for different latitudes, the resulting DCC detection accuracy differed between zones.
Variability was greatest for the TROPO method, with ~15% amplitude for the overall accuracy index (Fig. 2g), and an even
more evident difference for the x coefficient (from 0.15 to 0.5; Fig. 2g). Additionally, highest and lowest scores differed most
over the northern hemisphere (30 °N and 50 °N). While this pattern was common to all methods, it was much less apparent
(by 50%) for IRW (Fig. 2e) and BTD (Fig. 2f) methods compared to TROPO.

Compared to IR-based approaches, the ISCCP DCC detection scheme performed almost equally well at all latitudes. DCC
detection probability remained high (80-90%), and the false alarm rate was relatively low (20-30%), resulting in a constant
overall accuracy of ~78-80% regardless of the latitude. Like IR-based methods, the ISCCP scheme performed better in north-
ern mid-latitudes, but the improvement was small, and mostly seen in an increasing « coefficient (the consequence of a slight

increase in detection probability).

3.3 DCC misclassification

Accuracy below 100% necessarily indicates a certain degree of DCC misdetection by a given method. This could either be
false negatives, when CloudSat-CALIPSO indicated a DCC but a method reported no DCC, or false positives, when reference
data recorded no DCC, but a method reported one. In our study, false positives accounted for 8—17% of observations (mean
13%), while false negatives constituted 8—-15% (mean 17%), depending on the method, and the spatial domain (global, Europe,
or tropical Africa).

The lowest rate of false negative detections (8-10%) was found for the ISCCP method, but when only the IR method was
considered, it was 15% at best for the BTD method, regardless of the sub-region of the study. Globally and over Europe, DCCs
were most frequently missed by the TROPO method (35% and 19% of cases, respectively), while in Africa by the IRW method
(23% of cases). The better performance of the BTD method was at the price of a higher rate of false positive detections: the
methods classified non-DCC as DCC in 12% (Europe, global) and 17% (Africa) of cases.

Since CloudSat-CALIPSO data label clouds at each level in the atmospheric profile, we were able to identify typical scenarios
where a non-DCC observation was mislabelled as a DCC. We identified two underlying patterns. First, three types of clouds
were most frequently (>90% of cases) misclassified as DCC: high clouds, As, and Ns. Second, which of these three types
dominated depended on whether we investigated a single- or multi-layer cloud scenario (Tab. 2).

IR-based methods classified As and Ns as DCC most frequently when clouds occurred as a single layer. This error accounted
for over 35% of misclassifications for each cloud type — both globally, and for Europe. However, in tropical Africa, high clouds

were more often mislabelled as DCC, although never as frequently as As or Ns (with the exception of the BTD method).
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The situation changed significantly in a multi-layer cloud environment. In this scenario, we only focused on the top-most
(highest) cloud layer — the first to be detected when sensing from orbit. Our results showed that under such circumstances, IR
methods falsely reported DCC when the atmospheric profile was topped with As or high (Cirrus-like) clouds. The co-occur-
rence of high clouds with other cloud types was the most challenging scenario, as this constituted up to 66% (TRW, TROPO)
or 84% (BTD) of false positive detections. In the multilayer environment, Ns were not a problem; they accounted for 0.4% of
erroneous cases, regardless of the method or the region.

It is important to note that the An and Ns that were misclassified were the coolest clouds of their kind. The initial database of
CloudSat/CALIPSO-MODIS matchups was screened for observations that satisfied the condition Tpwv—Teir > —10 K. Hence,
all warm clouds, including a large share of As/Ns, were automatically excluded from further analysis. In the initial database
of 175 million lidar-radar profiles, 50% of observations had Tpir in the range 250-282 K. After filtering (9.5 million profiles),

the range shifted towards a noticeably colder regime, spanning 225-240 K.

3.4 Sensitivity to the selection of a threshold

Once we had calculated the optimal threshold for each DCC detection method, we then calculated mean seasonal DCC fre-
quency for June-July-August 2005. The thresholds identified in the present study were applied to an independent dataset,
namely geostationary Meteosat Second Generation data, which is collected hourly (every full hour). We used the ‘High Rate
Level 1.5 Image Data’ product, based on Spinning Enhanced Visible and InfraRed Imager (SEVIRI) observations in two
heritage bands: 6.25 um and 10.8 pm (Holmlund et al., 2021). Data were accessed from the EUMETSAT archive
(https://data.eumetsat.int/). The geostationary perspective enables observations of approximately half of Earth’s surface — a
hemisphere which is centred at a sub-satellite point (0 °E, 0 °N in the case of Meteosat). Hereinafter we refer to that coverage
as the Meteosat ‘full disc’. For practical reasons, the analysis only considers a fraction of the full disc data, i.e. the location
within SEVIRI’s zenith angle below 70 ° (see Fig. 3). Definitions of ‘Europe’ and ‘tropical Africa’ remained unchanged.

A sensitivity study provided two sets of statistics. In the first, we adopted fixed thresholds of 226.0 K for the IRW method,
—-2.0 K for the BTD method, and 15.0 K for the TROPO method (Fig. 3 a—c). For the second set of statistics we used
thresholds developed for each 5 ° latitude zone (Fig. 3 d—f). As the results of testing different latitudes (Sec. 3.2) only covered
one year of observations, the transition in threshold values between zones was not smooth (Fig. 2 a—c), impacting the spatial
distribution of DCC (Fig. 3 d-f). It is likely that artefacts could be eliminated with more data, and that the change in threshold
could be continuous rather than incremental — however, both of these refinements were beyond the scope of this study.

DCC detection frequencies for the two approaches differed substantially from each other (Tab. 3), demonstrating that the
threshold selection significantly impacted the resulting DCC climatology. In the most extreme cases (the IRW method for
Europe, and the TROPO method for Africa), latitude-adjusted thresholds doubled the frequency of DCC occurrence, compared
to the fixed threshold approach. For the remaining situations the relative differences were lower (=30% of DCC frequency),
and in two cases did not exceed ~10% (the BTD method adopted globally, and the TROPO method applied to Europe).
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Fig. 3 g-i shows that the tropics were most sensitive to threshold selection. Changing from a fixed, global threshold to a
regionally-adjusted threshold reduced DCC frequency along the Intertropical Convergence Zone (ITCZ) when using IRW or
BTD methods (by one third in relative terms), but increased DCC frequency for the TROPO method (rates at least doubled).
The ITCZ was a dominant feature on DCC frequency maps—but only when the BTD method was used (Fig. 3b, e). ITCZ-
comparable (or even higher) DCC frequencies were noted over the Southern Ocean (IRW, TROPO; Fig. 3g, i), and over moun-
tainous regions of Europe (the Alps, the Carpathians). The latter finding was particularly apparent when using the TROPO
method with a fixed global threshold (Fig. 3c), and for the IRW method with a regionally-adjusted threshold (Fig. 3d). On the
other hand, higher frequencies of DCC over the Southern Ocean may not be due to the presence of actual DCCs, but rather an
effect of the misclassification of cold clouds as DCC.

To explore the sensitivity of DCC climatology to threshold selection in more detail, we calculated DCC frequency as a function
of the threshold value (Fig. 4). The slope of the DCC frequency curve is the most important information to consider when
testing sensitivity: a steep slope indicates a relatively large change in DCC frequency for a small change in the threshold value.
We observed that for IRW (Fig. 4a) and BTD (Fig. 4b) methods the tropics (Africa) stood out as most sensitive to the choice
of threshold. A shift of £1-2 K in the threshold resulted in a change in DCC frequency that was two times larger than the
corresponding change over Europe, or at the global (full disc) scale. However, the same was not true for the TROPO method.
This was due to an increase in sensitivity observed for Europe and the full disc (Fig. 4c): while the slope of the sensitivity
curve for both of these regions remained low when using IRW and BTD methods, it became as steep as the one noted for the
tropics when using TROPO method. Consequently, the TROPO method was identified as most sensitive to the threshold value
— regardless of the region it was applied to. On the other hand, the BTD approach was least sensitive to a change (the most
desirable result), except for the tropics.

DCCs are very infrequent phenomena. Their frequency of occurrence is <0.1, on a scale where 0.0 means no DCC at all, and
1.0 indicates their permanent presence. A small change in that frequency (in terms of percentage points) translates into a high
relative change. Here, we define relative change as the difference between the new value and the reference value, divided by
the reference value. For data presented in Table 4, the reference was full disc DCC frequency with a fixed threshold, while the
new DCC value was calculated using a threshold increased (or decreased) by 1 K.

Table 4 reveals that a change in the threshold of as little as 1 K can substantially affect the final climatological estimate of
DCC frequency. In the case of the BTD method, a =1 K shift led to a ~40% relative change in DCC frequency, meaning that
the frequency increased or decreased by nearly half of their absolute value (~0.01 for Europe and globally). An equally signif-
icant relative change was found for full disc and Europe, while Africa was close behind (~20% of relative change, 0.01 of
absolute value). Comparisons of the other methods revealed relative differences in DCC frequency of 4-19%, typically values

were close to ~10%.
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4 Discussion

4.1 Misclassification of DCC

In this study, we evaluated three IR methods that are widely used to detect DCCs. We found that even when the optimal
configuration is adopted, either globally or regionally, the final accuracy of the algorithm is only moderate (up to 73%). One
factor that may have impacted our results is the reliability of reference data, namely the accuracy of the CloudSat-CALIPSO
cloud classification product (2B-CLDCLASS-LIDAR).

Assessments of CloudSat-CALIPSO cloud typing algorithm revealed partial disagreement in DCC frequencies between lidar-
radar and other datasets, namely satellite-based ISCCP climatology, and surface-based visual (manual) classification (Wang
and Sassen, 2001; Sassen and Wang, 2008; Sarkar et al., 2022). Specifically As and Ns clouds tended to be reported more
frequently in CloudSat data, than in the mentioned datasets. Such ‘overrepresentation’ could explain why these two cloud
types were also the most frequently considered to be DCC by the IR method, but as non-DCC by the lidar-radar reference.
Possibly some As and Ns were actually DCC, and hence should be considered ‘DCC’ in CloudSat-CALIPSO reference used
in this study. Such a procedure was implemented by Yang et al. (2023), who validated IR-based DCC detection methods in
the tropics (25 °S—25 °N). The latter authors decided to merge Ns and DCCs into one category, and use it as a reference for
DCCs. To test how such a strategy impacts detection accuracy, we repeated the Yang et al. (2023) study with two variants:
with and without Ns in the reference. The results showed (Tab. 5) that final accuracies were 4-5% higher when Ns was omitted,
but did not differ significantly. We conclude that not combining Ns with DCC in our study had little impact on the final results.
In the multi-layer scenario, cloud misclassification was frequently the result of a method classifying high clouds (Cirrus) as
DCCs. This can be explained by the simple fact that IR-based methods rely on cloud top temperature. Cirrus tend to be as cold
as DCCs, and they can only be distinguished by examining their vertical extent or optical thickness. These parameters, how-
ever, are unavailable when IR and WV channels are considered. On the other hand, high clouds were also mislabelled as DCC
in many ISCCP observations. ISCCP data include COT, therefore it is reasonable to expect fewer misclassifications. Unfortu-
nately, ISCCP COT data are column-integrated, and Cirrus optical thickness is included in the optical thickness of underlying
cloud layers (including Ns and As).

Misclassification errors were dominated by false positive detections (commission errors). Regardless of the IR-based method,
this situation was found for 12-14% of all observations under the single layer scenario, and 4-8% of observations under the
multilayer scenario (Tab. 6). On the other hand, false negative detections (omission errors) only accounted for 2-5% of obser-
vations, and only occurred under the single layer scenario. This means that the IR-based DCC detection algorithms investigated
in this study are unlikely to miss a DCC cloud. It is much more likely that they will identify a cloud as DCC when it is not
one. Consequently, they may lead to an overestimation of DCCs extent or frequency.

Based on our results, we conclude that the main reason for DCC misclassification with the investigated IR-based methods is
the scarcity of multispectral information. Brightness temperature is only known for one or two IR bands, and this is insufficient

to correctly separate between the cold tops of DCCs and all other clouds that have similar thermal characteristics (e.g. Cirrus
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or some elevated Ns). Expanding the range of spectral information, even indirectly (via products like COT, or cloud top pres-
sure/ height) may improve detection performance, as demonstrated by the ISCCP climatology.

It is also important to realize that limitations inherent in all types of cloud data make it impossible to develop a reference
dataset that is 100% correct. Although CloudSat-CALIPSO is widely considered to be the most reliable current option, it is
not free from its own misclassification issues. Importantly, all of the IR-based methods we assessed in this study were validated
against exactly the same (common) reference. Therefore, if even the reference dataset has limitations, and actual (absolute)
DCC detection accuracies may differ from those reported, relative differences between methods were captured correctly, and

we were able to indicate which of them performed more or less efficiently.

4.2 Impact of matching geometry

A second factor that may have influenced the results of our study is the spatial and temporal collocation of lidar, radar, and
MODIS observations. Each instrument was installed on a different satellite, meaning that a vertical atmospheric column was
not observed simultaneously by all three sensors. In 2007, CloudSat (the Cloud Profiling Radar instrument) preceded
CALIPSO (the Cloud-Aerosol Lidar with Orthogonal Polarization instrument) by ~15 seconds, and followed Aqua (MODIS)
by approximately one minute.

The horizontal speed of a storm cloud is ~30-100 km h%, and a cloud could have shifted by ~0.5-1.5 km during the minute
that separated MODIS and CloudSat-CALIPSO passes. This distance is generally within CloudSat’s footprint (1.4 x 1.1 km),
meaning that misclassification would only occur if CloudSat’s ground track was collocated with the cloud’s edge, and that the
cloud moved outward relative to the ground track.

It should also be noted that a cloud is a 3-dimensional structure, which evolves vertically, especially when it is a DCC with a
strong updraft. Updraft intensity varies from a few meters per second for fair weather cumuli (Kollias et al., 2001), to 10-30
m s for tropical cyclones (Stern and Bryan, 2018), and 30-50 m s for the most rapidly evolving DCCs (Apke et al., 2018;
Musil et al., 1991). Therefore, cloud top height can increase by between 500 m (updraft ~8 m s*) to 2 km (updraft ~30 m s?)
over one minute, corresponding to a decrease in cloud top temperature of 3-12 K (assuming a rate of 6 K km). This creates
a situation where CloudSat-CALIPSO could have detected a DCC that was not yet detected as a DCC by MODIS: the imager
observed a cloud a few kelvins before it became a DCC.

The aforementioned scenario would result in more false negatives, reducing the overall accuracy of IR-based methods, com-
pared to a scenario in which all sensors operated in collocated mode. The latter could be achieved if lidar, radar, and imager
instruments were installed on the same platform, which is the case for the Earth Clouds, Aerosol and Radiation Explorer
(EarthCARE) satellite. The satellite was launched in 2024, and is in the commissioning phase at the time of writing.
EarthCARE hosts not only lidar and radar instruments, but also a 7-channel multispectral imager that covers three IR bands:
8.8 um, 10.8 um, and 12.0 um (lllingworth et al., 2015). The setup eliminates all uncertainties related to spatial and temporal
mismatches in a DCC observation. Unfortunately, the imager does not operate in WV absorption bands, ruling out the use of

the two-channel DCC detection method. This situation is similar to CALIPSO’s imager, the Imaging Infrared Radiometer
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(IIR), which operated in three bands (8.7 um, 10.5 um, 12.0 um). However, none of these channels consider WV absorption,
as the sensor was optimised for joint CALIOP-IIR retrievals of Cirrus microphysical parameters.

Importantly, EarthCARE’s radar — unlike CloudSat’s — is a Doppler instrument. It provides data on the vertical velocity of
hydrometeors (cloud particles, rain) with an accuracy better than 1.3 m s (Wehr et al., 2023). This may improve discrimina-
tion between cloud types, and provide more accurate labelling of DCCs, not only for validation, but also for training various
machine learning models (Afzali Gorooh et al., 2020; Kaps et al., 2024). Nonetheless, the use of imagers that include WV
absorption bands makes MODIS-CloudSat-CALIPSO joint observations unique, and the most suitable for the evaluation of
DCC detection methods.

4.3 Implications for cloud climatology

Given the limitations of the MODIS-CloudSat-CALIPSO cloud observing system, and based on our results, we conclude that
the Towv—Toir brightness difference (BTD) method is slightly more robust among the evaluated algorithms. Accuracy was
highest, as was the «x coefficient, indicating best agreement with CloudSat-CALIPSO reference data. On the other hand, the
BTD method resulted in the lowest DCC frequency among all of the considered algorithms, which, in turn, impacted the
method’s sensitivity to the threshold selection. Importantly, we found that the optimal global threshold was —2 K (-1 K in the
tropics, —3 K at mid-Iatitudes). These values differ from a typically threshold of 0 K. Since higher thresholds lower DCC
frequency, the adoption of a 0 K threshold may underestimate DCC frequency, compared to the CloudSat-CALIPSO dataset.
The BTD method requires data from IR window and VW absorption channels, and it can be easily applied to all generations
of meteorological geostationary satellites. It supports the development of long term (40+ years) DCC climatologies, and com-
posite DCC maps generated with data from various geostationary platforms such as the NCEP/CPC Level 3 Merged Infrared
Brightness Temperatures product, the NASA SatCORPS Global Cloud Composite product, or the GEO-ring composites envi-
sioned for the ISCCP-Next Generation project.

The WV absorption band is typically not included on imagers that are hosted on polar-orbiting platforms. Examples include:
the Advanced Very High Resolution Radiometer (NOAA-6/19, MetOp), the Visible/Infrared Imager Radiometer Suite (SNPP,
NOAA-20/21, JPSS-3/4), the Multichannel Visible Infrared Scanning Radiometer (Feng-Yun-1 series), the Visible and Infra-
Red Radiometer (Feng-Yun-3A/C), and the VIS/IR Imaging Radiometer (Meteor-M series). Although these instruments have
been used since the late 1970s or early 1980s, none feature a spectral band in the 6.5 pm WV absorption region.

Detecting DCCs without the WV band requires using the single-channel IRW method, or IR window data with auxiliary
information on the tropopause temperature (the TROPO method). In this case, and when locally-adjusted thresholds are used,
IRW and TROPO methods produce comparable results, both in terms of overall agreement with CloudSat-CALIPSO, and the
spatial distribution of DCCs. We found that the TROPO method performed slightly better than the IRW approach, but only
for Europe, and only by 3-4%. This finding indicates that the inclusion of tropopause data does not necessarily lead to a
significant improvement in DCC detection, at least when the analysis explores the difference between the tropopause temper-

ature and cloud Ty,
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Importantly, both TROPO and IRW methods recorded unexpectedly high DCC frequency, mostly over the southern hemi-
sphere (in winter). According to these methods, DCCs in these regions were as frequent as in the ITCZ, which is not confirmed
by other datasets (e.g. Norris, 1998; Sarkar et al., 2022). We conclude that TROPO and IRW approaches performed poorly in
higher latitudes, overestimating the frequency of DCCs. This may have been due to a misclassification of cold-top Ns or As
as DCC, as these cloud types occur most frequently at higher latitudes (Chen et al., 2000). As a consequence, IRW and TROPO
methods may be of limited use during colder seasons in higher latitudes — however, this is the region that is best-sampled by
polar-orbiting spacecraft, and it is where climate change may impact DCC frequency the most.

Our Meteosat-based sensitivity study demonstrated that the selection of an appropriate threshold is crucial for deriving accurate
DCC frequencies. This finding is important in order to be able to construct DCC climatologies from radiance time series
originating from various sensors (different families of sensors, or different generations within a single family). A 1 K difference
in T, may be a consequence of a difference in the spectral response function of different sensors, or it could be the consequence
of the sensor’s calibration (Gunshor et al., 2004). The same DCC, observed simultaneously by two instruments, may appear
in the final dataset as an object with different Ty. Hence, using a single threshold for both datasets will produce incoherent
DCC climatologies.

If we take the CloudSat-CALIPSO classification as a reference, our study reveals the limits of the most common IR-based
DCC detection methods. Specifically, we identified thresholds that result in the highest achievable accuracy. However, better
results can be possibly achieved with other methods. We also evaluated DCC statistics resulting from the ISSCP cloud typol-
ogy. DCC detections based on COT and CTP were shown to be more reliable than any of the IR-based methods. This finding
demonstrates that daytime DCC detection benefits from the availability of shortwave radiances.

More complex algorithms, such as machine learning, can be used to process IR-only data. For instance, Yang et al. (2023)
trained their algorithm on Ty, but also used a number of derivative measures that addressed local variation (minima, maxima,
gradients). They achieved 72% accuracy in DCC detection. Even higher accuracy (98%) was reported by Chen et al. (2023),
who considered texture information, along with a sequence of images in three IR bands (6.25 um, 10.7 pm, and 12.0 um).
Since DCC detection requires both daytime and nighttime data, IR observations from cloud imagers will remain a primary
source of information. This is especially true for long-term climate studies, as the WV absorption channel, and the IR window
channel have been the only two heritage bands available on geostationary satellites since the early 1980s. Machine learning
techniques that are trained on more sophisticated datasets (e.g. EarthCARE) offer the potential for more reliable and homoge-

nous DCC climatologies that go beyond the limits of classical IR-based algorithms.

5 Summary and Conclusions

Our study explored the consistency of DCC climatologies derived from three widely-used IR-based DCC detection algorithms,
namely: (1) the IR window method (11 pum spectral channel), (2) the brightness temperature difference (BTD) between 6.7 um
and 11 pum, and (3) the temperature difference between the tropopause and the 11 pm channel (TROPO). These algorithms
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were applied to MODIS/Aqua radiances, and compared with the unique, state-of-the-art CloudSat-CALIPSO lidar-radar cloud
classification dataset. We assumed CloudSat-CALIPSO as a reference (‘ground truth’). However, it must be acknowledged
that in cloud research there is no universally reliable data set, and in a strict sense our study is a comparison with lidar-radar,
which we have considered to be the most reliable of currently available.

In total 9,507,319 observations for 2007 were analysed, marking the first global scale evaluation of these DCC detection
methods. The two key conclusions from our study are:

— IR-based methods demonstrate moderate accuracy in DCC detection (< 75%; x < 0.45), and only when regionally or
zonally adjusted thresholds are used. Fixed, globally-applied thresholds should be avoided. Detection ambiguity arises
from the misclassification of DCCs as Ns and As (in single layer cloud scenarios), or Cirrus and As (in multi-layer
cloud scenarios). We conclude that these disagreements are partially due to the method’s simplicity, but also identified
uncertainties in the CloudSat-CALIPSO cloud classification, and imperfections in the observation system (notably,
the temporal misalignment between lidar, radar, and imager observations);

— The high sensitivity of IR-based methods to threshold selection undermines the homogeneity of resulting DCC cli-
matologies. Our analysis demonstrates that shifting the threshold by as little as +£1 K leads to a change in mean sea-
sonal DCC estimates by 0.002-0.010, what translates into a relative change by 4%-40%. This finding is of particular
importance when combining IR data from different sensors, whether to construct global mosaics, or to produce time
series of DCCs from various generations of an instrument.

Assuming CloudSat-CALIPSO data as ground truth, we conclude that if the WV absorption and IR window channel are avail-
able, the BTD method should be prioritized over IRW and TROPO methods (e.g. for geostationary satellites). If these channels
are not available (as with most polar-orbiting platforms) the TROPO method may provide comparable results, but at the cost
of including auxiliary data on tropopause temperature. The IRW method should be considered as a last resort for detecting
DCCs.

As technology progresses, the launch of new cloud imagers with more spectral channels (e.g. Flexible Combined Imager,
GeoXO Imager, METimage) enhances the accuracy of DCC detection. This improvement will be especially notable when new
data sources are paired with new data processing technologies, such as machine learning. Nevertheless, the WV absorption
channel, and the IR window channel remain the most important spectral bands for long-term DCC climate studies, along with

IR-based methods that utilize them.
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Figure 1. Accuracy of DCC detections using the infrared window (IRW) method, the WV-IR brightness
temperature difference (BTD) method, the IR-tropopause temperature difference (TROPO) method, and the
ISCCP method. Accuracy measures are shown as a function of the selected threshold (horizontal axis),
except for ISCCP which uses a single set of parameter globally. Kappa (k) values were multiplied by 100 to
match the 0-100% range.
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Figure 2. The optimal threshold for each method as a function of latitude (a—c), together with corresponding
latitude-resolved measures of accuracy. Kappa (k) values were multiplied by 100 to match the 0-100%
range.
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Figure 3. Mean seasonal (June-July-August 2005) DCC frequency, based on hourly Meteosat/SEVIRI data,
and the methods evaluated in this study. Statistics were calculated using a fixed, global threshold (a—c), and
latitude-adjusted thresholds (d—f); (d—i) summarize zonally-averaged DCC frequencies. The frequencies are
given in the range <0,1>, where '0.0' indicates a DCC-free sky and '1.0" indicates DCC occurring
consistently across the sky.
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Tables

Table 1. Cloud free (no DCC) and cloudy (DCC and other cloud present) percentages in the lidar-

radar profile data sample investigated in this study. Europe is defined as 35°N-60°N, 15°W—-45°E, and
Africa is defined as 5°N-15°N, 20°W-35°E (see Sec. 3 for details on subregions).

. Total number Cloudy
Region . Cloud-free
of observations no DCC only DCC not only DCC
Global n=9,507,319 3.7% 89.2% 7.1% <0.1%
Europe n = 289,537 2.5% 94.3% 3.2% 0.0%
Africa n = 105,293 <0.1% 85.0% 14.9% <0.1%

Table 2. Percentage of cloud types classified by the four methods as DCC, but not reported as DCC in
CloudSat-CALIPSO observations. When more than one cloud layer occurred in a lidar-radar profile,
the cloud type refers to the highest layer (i.e. the first to be observed when looking from a satellite).

Cloud type frequency (%o) Cloud type frequency (%)
(Single layer) (Multilayer)

Method High As Ns Other | High As Ns Other
Global

IRW 16.6 44.4 38.8 0.2 64.6 35.2 0.1 0.1

BTD 8.8 37.8 40.8 12.6 59.7 36.8 0.2 3.3

TROPO 5.4 36.8 54.5 3.3 334 65.4 0.4 0.8

ISCCP 1.1 24.1 70.6 4.2 60.3 37.1 0.2 2.4
Europe

IRW 8.2 40.0 51.1 0.7 39.0 60.7 0.1 0.2

BTD 5.0 37.9 48.2 8.9 45.4 524 0.1 2.1

TROPO 5.7 35.8 56.4 2.1 29.6 69.9 0.2 0.3

ISCCP 0.7 21.7 72.9 4.7 43.4 54.9 0.2 15
Africa

IRW 17.6 52.1 30.4 0.0 65.9 33.8 0.1 0.2

BTD 29.1 50.7 17.5 2.7 83.5 16.2 0.0 0.3

TROPO 17.3 51.3 31.4 0.0 65.6 34.1 0.1 0.2

ISCCP 3.2 42.3 52.9 1.6 74.7 24.9 0.0 0.4

Table 3. Mean seasonal (June-July-August 2005) DCC frequency estimated using a fixed global
threshold, and a latitude-adjusted threshold. The frequencies are given in the range <0,1>, where 0.0’
indicates a DCC-free sky and ‘1.0’ indicates DCC occurring consistently across the sky.

DCC frequency with fixed DCC frequency with
Detection (global) threshold latitude-adjusted thresholds
method
Full disc Europe Africa Full disc Europe Africa
IRW 0.021 0.009 0.076 0.033 0.021 0.051
BTD 0.009 0.007 0.046 0.009 0.010 0.030
TROPO 0.017 0.026 0.026 0.028 0.023 0.054
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Table 4. Mean seasonal (June-July-August 2005) DCC frequency calculated using a fixed global

threshold (‘Reference DCC frequency’), and with thresholds increased and decreased by 1 K. Values
given in parentheses denote relative change, in other words, the difference between the reference DCC
frequency and the frequency after the threshold change, normalized with reference to the DCC
frequency. The frequencies are given in the range <0,1>, where 0.0’ indicates a DCC-free sky and
‘1.0’ indicates DCC occurring consistently across the sky.

Detection
method

IRW
BTD
TROPO
ISCCP

IRW
BTD
TROPO
ISCCP

IRW
BTD
TROPO
ISCCP

Reference DCC Simulated DCC frequency with threshold changed by:
frequency 1K +1 K
Full disc
0.021 0.019 (—11%) 0.023 (+8%)
0.009 0.012 (+42%) 0.005 (-37%)
0.017 0.015 (—11%) 0.020 (+13%)
0.027 - - - -
Europe
0.009 0.007 (—19%) 0.010 (+14%)
0.007 0.010 (+43%) 0.004 (—38%)
0.026 0.024 (-10%) 0.029 (+10%)
0.034 - - - -
Africa
0.076 0.072 (—5%) 0.079 (+4%)
0.046 0.056 (+22%) 0.034 (—26%)
0.026 0.023 (—10%) 0.028 (+10%)
0.075 - - - -

Table 5. DCC detection accuracy in the tropics (+25 °N). DCC are defined as merged CloudSat-
CALIPSO DCC + Nimbostratus classes (as in Yang et al., 2023), and with DCC alone (as in this
study). The IRW method uses a threshold of 215 K, while the BTD method adopts a threshold of 0 K.

Method Ns+DCC as reference Only DCC as reference
Accuracy PoD FAR K Accuracy PoD FAR K
IRW 61.2% 58.2% | 38.0% 0.225 64.3% 66.4% | 36.3% 0.286
BTD 59.2% 449% | 37.1% 0.114 63.3% 53.8% | 33.8% 0.264

Table 6. Percentage of observations (%; n=9,507,319) when either an error of omission (false negative
DCC) or commission (false positive DCC) was detected. Results are given for three cloud co-
occurrence scenarios: no clouds (0 layers; 4% of cases), clouds only in one layer (32% of cases), and
multilayer clouds (2+ layers; 63% of cases). The number of layers is according to CloudSat-CALIPSO

observations.

Commission error Omission error Errors

Method
0 layers 1layer | 2+ layers | O layers 1layer | 2+ layers | (total)
IRW 0.03 12.12 8.38 0.00 2.04 0.00 22.57
BTD 0.77 14.13 8.29 0.00 1.62 0.00 24.81
TROPO 0.15 11.41 3.71 0.00 4.46 0.00 19.73
ISCCP 0.00 7.24 4.43 0.00 4,27 0.00 15.94
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Figures

Figure 1. Accuracy of DCC detections using the infrared window (IRW) method, the WV-IR
brightness temperature difference (BTD) method, the IR-tropopause temperature difference (TROPO)
method, and the ISCCP method. Accuracy measures are shown as a function of the selected threshold
(horizontal axis), except for ISCCP which uses a single set of parameter globally. Kappa (k) values
were multiplied by 100 to match the 0-100% range.

Figure 2. The optimal threshold for each method as a function of latitude (a—c), together with
corresponding latitude-resolved measures of accuracy. Kappa (k) values were multiplied by 100 to
match the 0—-100% range.

Figure 3. Mean seasonal (June-July-August 2005) DCC frequency, based on hourly Meteosat/SEVIRI
data, and the methods evaluated in this study. Statistics were calculated using a fixed, global threshold
(a—c), and latitude-adjusted thresholds (d—f); (d—i) summarize zonally-averaged DCC frequencies. The
frequencies are given in the range <0,1>, where 0.0’ indicates a DCC-free sky and ‘1.0’ indicates
DCC occurring consistently across the sky.

Figure 4. Mean seasonal (June-July-August 2005) DCC frequency as a function of the threshold
applied to the DCC detection methods evaluated in this study. The frequencies are given in the range
<0,1>, where ‘0.0’ indicates a DCC-free sky and ‘1.0’ indicates DCC occurring consistently across the
sky.
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