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Abstract: The charge state of atmospheric new particles is controlled by both their initial charge state upon formation and
subsequent interaction with atmospheric ions. By measuring the charge state of growing particles, the fraction of ion-induced
nucleation (Fyn) within total new particle formation (NPF) can be inferred, which is critical for understanding NPF mechanisms.
However, existing theoretical approaches for predicting particle charge states suffer from inaccuracies due to simplifying
assumptions, hence their ability to infer Fyn is sometimes limited. Here we develop a numerical model to explicitly simulate
the charging dynamics of new particles. Our simulations demonstrate that both particle growth rate and ion concentration
substantially influence the particle charge state, while ion-ion recombination becomes important when the charged particle
concentrations are high. Leveraging a large set of simulations, we constructed two regression models using residual neural
networks. The first model (ResFWD) predicts the charge state of growing particles with known Fyn values, while the second
model (ResBWD) operates in reverse to estimate Finv based on the charge fraction of particles at prescribed sizes. Good
agreement between the regression models and benchmark simulations demonstrates the potential of our approach for analysing
ion-induced nucleation events. Sensitivity analysis further reveals that ResFWD and the benchmark simulations exhibit similar
sensitivity to input noises, but the robustness of ResBWD requires that the information of initial particle charge state is retained
at the prescribed sizes. Our study provides insights on charging dynamics of atmospheric new particles and introduces a new

method for assessing ion-induced nucleation rates.
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1 Introduction

In the low atmosphere, ions are continuously produced by galactic cosmic rays and radioisotope decay at the earth surface
(Stozhkov, 2003; Eisenbud and Gesell, 1997). Due the high abundance of N, and O» in the atmosphere, the initially formed
ions (primary ions) typically include N, OF , NO*, 07, and O5. These primary ions subsequently go through ion-molecule
reactions to form a large set of organic and inorganic secondary ions, e.g., NH4", NO3, HSO4 and CsH304 (Yin et al., 2023),
Once formed, ions can be lost by condensing on the aerosol particles, deposition to surfaces, and ion-ion recombination, leading
to an typical ion concentration of 100-5000 cm™ globally (Hirsikko et al., 2011). The ions contribute to atmospheric electricity
and play an important role in the formation of aerosol particle (Golubenko et al., 2020; Kerminen et al., 2018; Yu et al., 2012).

New particle formation (NPF) is the conversion of gas molecules to nascent nanoparticles and is estimated to contribute
about half of the cloud condensation nuclei on a global scale (Gordon et al., 2017; Zhao et al., 2024). Atmospheric ions can
participate in NPF events during both the nucleation stage (i.e., the process in which the stable clusters are formed from gas
phase precursors) and the growth stage (in which the clusters further grow due to vapor condensation and coagulation). During
nucleation, ions can induce NPF at lower vapor concentrations than neutrals by stabilizing the embryonic clusters through the
presence of the charge (Kirkby et al., 2016; Yu et al., 2020). Measurements even suggest that ion-induced nucleation (IIN)
might be the main mechanism for NPF in the higher troposphere and the stratosphere (Yu et al., 2008; Lee et al., 2003; Zhao
et al., 2024). Atmospheric ions also play a role in particle growth by altering the charge state of the particles and affect their
growth in several ways. Firstly, charged particles tend to have higher condensational growth rates (GR) due to enhanced ion
and neutral vapor condensation, which are caused by Coulombic, charge-dipole and charge-induced dipole interactions
between the particles and the condensing species (Svensmark et al., 2017; Nadykto and Yu, 2003). Second, particle charging
promotes coagulation between charged particle of opposite polarities and oppress coagulation between particles of the same
polarity (Mahfouz and Donahue, 2021). Third, the coagulation sink (CoagS) for charged particles can be different from that
of the neutral particles, which makes charged particles less likely to grow larger.

An accurate estimation of IIN rates is a prerequisite to assess the role of ions in NPF. However, 1IN rates are often
challenging to measure directly because the IIN pathway must be distinguished from particle formation through neutral
pathways that proceed simultaneously. Additionally, the constant interaction with atmospheric ions alter the particle charge
state and makes it difficult to determine whether a given particle is charged upon formation or during growth. Therefore, the
IIN rates is often deduced by comparing the charge fraction of nucleated particles to the so-called steady state particle charge
distribution, using a model that relates these two quantities given other measurables (e.g., the particle growth rate, the ion
concentration) (Iida et al., 2006). Towards this end, Kerminen et al. (2007) developed an analytical equation to calculate the
charge fraction of particles at a given size. By fitting the theoretical values with measured particle charge fraction at several
sizes (Laakso et al., 2007), the IIN fraction can be obtained. This equation was further extended to deal with situations with
different positive and negative ions concentrations (Gagné et al., 2012). However, as shown by comparison with numerical

simulations (Leppa et al., 2011; Leppé et al., 2009), the accuracy of the theoretical approach is sometimes limited by its
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underlying assumptions, e.g., the particle population is monodisperse and the charged fraction of the particles is substantially
below unity.

Machine learning (ML) is increasingly applied in atmospheric sciences due to its capability to deal with complex and
non-linear processes. In the study of atmospheric NPF, ML has been applied to identify NPF and non-NPF days (Su et al.,
2022; Joutsensaari et al., 2018), to speed up configurational sampling of embryonic clusters (Kubecka et al., 2023), and to
train force fields used in molecular dynamics simulations of NPF (Jiang et al., 2022). Conceivably, ML can also be applied to
calculate the charge fraction of atmospheric new particle in lieu of the theoretical equations, with potentially higher accuracy
and less restrictive assumptions. An even more ambitious goal is to directly calculate Finv with measurable particle charge
fractions using a trained ML model, hence circumventing the data fitting procedure.

In this work, we present an initial exploration of machine learning (ML) models to infer particle charge fractions and ion-
induced nucleation (IIN) rates during NPF events. To achieve this goal, we couple dynamic charging simulations with a
sectional model (Li et al., 2023) to simulate NPF under typical atmospheric conditions. The data generated from these
benchmark simulations are then utilized to train and validate ML models. Both the accuracy and sensitivity of the ML models

to input noises are discussed and compared with benchmark simulations.

2 Methods
2.1 The sectional model

We applied a two-dimensional sectional model (Fig. 1) to simulate the evolution of the particle size distribution and
particle charge fraction during the NPF events. We refer to this model as CDMS-ion (cluster dynamics multicomponent section
model-with ions) for brevity. CDMS-ion divides the particles into mass sections, and the particles within a mass section are
further divided into subsections according to their charge states. All particles in the same mass section are assumed to have the
same chemical composition (internally mixed). The simulated processes include particle charging, coagulation, growth or
shrinkage due to vapor condensation-evaporation and losses to pre-existing particles (i.e., coagulation sink (CoagS)). Particle
nucleation is not explicitly simulated; rather, prescribed nucleation rates at 1 nm are specified in the model as an input.
Although particles may absorb ambient water vapor, we do not include particle hygroscopic growth in this study. Subject to
the influence of a strong Kelvin effect and a complex chemical composition, the hygroscopic growth factor of atmospheric
new particles has high uncertainties. Despite this neglect, water uptake may lead to increased particle growth rates in
simulations compared to dry particles. The effect of higher particle growth rates on particle charging dynamics is examined
thoroughly in the following.

The processes under consideration were simulated using an operator splitting approach, where the differential equations
for distinct processes were solved sequentially within each time step, Asp. In our previous work, which did not include particle
charging(Li et al., 2023), these equations were solved simultaneously. However, incorporating an additional dimension—the

particle charge state—significantly increases computational costs. Therefore, in this study, we employed the operator splitting
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method to enhance simulation efficiency. To determine an optimal /gp, we conducted a convergence study, gradually reducing
hsiep and observing its effect on simulation outcomes. We found that values lower than 20 seconds had a negligible impact on
100  our results. For all simulations, we utilized 126 mass sections with a geometric factor of 1.1, covering a particle size range

from 1.17 to 100.50 nm. A uniform particle density of 1.4 g cm™ was assumed.
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Figure 1. (a) [llustration of the CDMS-ion model. (b) The evolution of the particle size distribution in a simulated NPF event.
The structures of (¢c) ResFWD and (d) ResBWD.

105 2.2 Simulation of particle charging

The interaction between particles and atmospheric ions was simulated with a dynamic particle charging module. Neutral
particles collide with ions to generate charged particle, and charged particles increase/decrease its charge by colliding with

ions of the same/opposite polarity. This dynamic process is described by the following equation,

dndp,k
dt

= Ba, k-1,4Na,k-1N+ = Ba, k4N kN+ + Bay, jer1,-Nay ks 1N= = Bay, k-May 1 N- (1
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where Na, k is the concentration of particles with a diameter of d,, and k charges, ,de'k_i is the collision rate constant between
these particles and positive/negative ions, and N, is the concentrations of positive or negative ions. Since we are interested in
particles formed during NPF events with sizes smaller than 100 nm, we set the maximum particle charge to be +£5. The
concentrations of particle with more charges are negligible under atmospherically relevant conditions (Wiedensohler, 1988).
To solve Eq. (1), the collision rate constant ,de,k,i (cm? s™) needs to be calculated accurately. In this study, we used the
rate coefficients developed by Lopez-Yglesias and Flagan (2013) (see the SI of this work), who considered both three body
trapping and image potential in their calculations. The collision rate constant was calculated with the following expression:
Q d
de,k,i — 102q=03q.i(k)(10g10(7p))q 2)
where ﬁdp,ki is in unit of m%/s, d,, is in unit of meters, B, ; (k) are dimensionless fit coefficients, g is number of charges on

the particle, and Q = 23 is the maximum of q.

2.3 Vapor condensation-evaporation

Particle growth due condensation-evaporation of sulfuric acid and oxygenated organic molecules (OOMs) was simulated

according to the following equation:
am
— = Zimi(Bin; — Ey) 3)
where m,, is the particle mass, m; is the molecular mass of the species 7, B; is the collision constant of species i with the particle,
n; is the gas phase concentration of species i, E; is the evaporation rate of species i from the particle.
To calculate B; in Eq. (3), we first calculated the collision rate coefficients with Egs. (12) and (14) in Gopalakrishnan and

Hogan (2011) and subsequently multiply these coefficients with an enhancement factor to account for charge-dipole

interactions between the particles and vapor molecules. The expression for the enhancement factor is given by Nadykto and
Yu (2003) :

LE(dp+dy) 2
LE (dp+dy)L(—5 o) +0.5ag0 E? (dp+dy)
EF =1+ b @)
3kpT
o . . . 11
where [ is dipole moment of the vapor, k;, is Boltzmann’s constant, T is the ambient temperature, E (r) = (E— - E—) 4;:0T2
g ¢p 0

the electrical field of the charged particle, 4 and ¢, are relative permittivity of air and the particle, respectively, &, is the

vacuum permittivity, e, is the elementary charge, g is the number of charges of the particle, d,, and d,, are the diameters of

A . . . . .
ere__ s the Langevin function, and « is the polarizability of

the particle and the vapor molecule, respectively, L(z) = e
the molecules. In the calculation of enhancement factors involving sulfuric acid molecules, we set the dipole moment and
polarizability to 2.84 Debye and 6.2 A3, respectively (Nadykto and Yu, 2003). For collisions involving OOMs molecules, due
to the lack of information on the average dipole moment and polarizability, we calculated the enhancement factor of EFyg s

with an empirical relation developed by Kirkby et al. (2016):
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EFpous = —34— + 1 (5)

fooms,sa
where foomssa = 4 is a fitting parameter.

Within each simulation interval (20 s), we calculated the mass change of particles due to condensation/evaporation in
each subsection using the approach described in Zaveri et al. (2008); Jacobson (2005). At the end of an interval, the particles
are distributed into different mass bins using the Linear Discrete Method (Simmel and Wurzler, 2006). To implement this
method, both the particle number and mass are tracked in each section. The particle charge state was preserved during particle

growth.

2.4 Particle coagulation

We considered the effect of Coulombic interactions on particle coagulation. The coagulation rate coefficients were
calculated with the equations developed by Gopalakrishnan and co-workers (Ouyang et al., 2012; Gopalakrishnan and Hogan,
2012, 2011; Chahl and Gopalakrishnan, 2019), who derived the rate coefficients using Langevin dynamics simulations. The

expressions for the collision rate coefficients are given by:

3
_ Hfr(dp1+dp2) nrm?
:B(dplr q1, de' QZ) = smnc (6)
_ 4nKknp?+25.836Knp3+(8m)1/2x11.211Knp*
H = exp (1) 1+3.502Knp+7.211Knp?+11.211Knp> 7
2(kpTmy)1/2

Kn, = 2&Tmr) “nc (8)

fr(dp1+dp2)77FM

where H is the dimensionless collision rate constant, Kny, is the diffusive Knudsen number, T is the ambient temperature, d,),
and d,,; are the diameters of two colliding particles, g; and g, are the number of elementary charges on the particles, m, is
the reduced mass of the colliding particles (defined as m, = my m,/(m; + m,)), f, is the reduced friction factor (defined as
fr =fifo/(fi +12) ), nc is the continuum limit enhancement factor due to the presence of charge, and 1gy, is the free
molecular limit enhancement factor (Gopalakrishnan and Hogan, 2012) , u is a function of the electrostatic energy to thermal
energy ratio and the diffusive Knudsen number. Expressions for 1., gy and p are found in Eq. (6) of Gopalakrishnan and
Hogan (2012) and section S2 of Chahl and Gopalakrishnan (2019).

The explicit simulation of particle charge state significantly increases the computational cost of coagulation simulation
as the number of coagulation pairs is proportional to the number of subsections squared. To speed up the simulation, we used
the coagulation algorithm developed by Matsui, which is a simplified version of Jacobson’s semi-implicit approach (Matsui,
2013; Matsui, 2017; Jacobson, 1994). In this algorithm, after a coagulation time step At, the mass concentration Mf_,tm of
particles with k charges in the i mass section is given by:

t t
M; i+ feorrPik

t+At _
Mi™ = 1+L¢
ik

©)
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where P; , and L; , are the mass production and loss rates of particles due to coagulation at time ¢, respectively, fqo.r iS a
correction factor to ensure mass conservation. The expressions for P; j,, L; , and f,,, are givenin Sect. S1 in the supplementary
information (SI). Overall, this coagulation algorithm is non-iterative for any time step, conserves total particle mass but leads

to slight inaccuracies in particle number distribution (Matsui and Mahowald, 2017; Matsui, 2017).

2.5 Coagulation sink

In addition to newly formed particles, the atmospheric ions also condition the charge distribution of the pre-existing
atmospheric particles and affect the magnitude of the coagulation sink (CoagS). To account for this influence of charge on
CoagS, we calculated CoagS with the assumption that the pre-existing particles are at steady state charge distribution due to
interaction with atmospheric ions. This assumption is supported by field observations conducted by Li et al. (2022), which
show good agreement between the particle size distributions measured by the SMPS with and without a neutralizer.
Additionally, background particles (larger in size) have a shorter characteristic charging time (see Fig. 2 below) and longer
residence time in the atmosphere compared with newly formed particles, which further justifies the steady state assumption.

The coagulation sink Coangp_k for particles with a diameter of d, and k charges was calculated with the following

equation,

dNpre
!
ddy,

Coagsdp,k = 22':—6f de,k,d;,,k’ f(dy k") ddé (10)

where de’k’d{mk/ is the collision rate coefficient of particles with a diameter of d,, and k charges with background particles

with a diameter of d;, and k' charges, f(d,, k") is the steady state fraction of particles with k' charges among all particles

L dNpre . . . NP . . o .
with size d,,, ﬁ is the is number-based particle size distribution of pre-existing particles. f(dy, k') can vary with time since
D

the properties of atmospheric ions constantly change (Chen and Jiang, 2018). In this work, however, we assume that f(d,, k")
is independent of time for the pre-existing particles since the variation of ion properties is relatively small. To be consistent

with the particle charging simulations (Sect. 2.2), the values of f (d’ , k’) were calculated with the rate coefficients given by

Loépez-Yglesias and Flagan (2013) by solving Eq. (1). As to %, we assume that the background particles are lognormally
P

distributed with a geometric mean diameter of 100 nm and a geometric standard deviation of 1.4.

2.6 Simulation setup and key metrics

We set up our simulations to mimic typical NPF events. Specifically, we assume that new particle formation lasts for 3
hours with a constant nucleation rate J. The newly formed particles enter the smallest section (particle size is about 1 nm) and
start to grow due the condensation of sulfuric acid (SA) and oxygenated organic molecules (OOMs). The SA and OOMs
concentrations are assumed to be constant in the simulation. SA is assumed to be non-evaporative and the OOMs are classified

into 6 bins by saturation vapor concentration C* (log;oC*= -9, -7, -5, -3, -1,0 C* in unit of g m>). Simultaneous to
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condensational growth, the particles coagulate with other particles or lose to pre-existing particles. All simulations were
conducted at 298.15 K and 1 atm. A typical PSD obtained from such simulations is shown in Fig. 1b.
Several factors influence the charge state of the new particles, including the atmospheric ion properties (e.g., mobility),

the ion concentrations (Njon), the particle growth rate (GR), and the coagulation sink (CoagS), the total nucleation rate (J) and

IIN rates
IIN rates+neutral NPF rates

the fraction of ion induced nucleation (Fin, which is equal to and ranges from 0 to 1). The atmospheric

ion properties used in this work is listed in Table 1. We set positive and negative ions to have the same mass and mobility. The
properties of positive and negative ions can be different (e.g., in a neutralizer), but in the atmosphere the positive and negative
ions often exhibit similar mobilities (Li et al., 2022; Gautam et al., 2017). A few studies have also shown that both the ion
mobility and ion composition are influenced by humidity (Oberreit et al., 2015; Liu et al., 2020; Luts et al., 2011). The
clustering of water with ions may decrease the ion mobility and reduce the ion-particle collision rates. However, such effect is
difficult to quantify based on existing research, hence in the simulation we did not consider ion hydration. The value of the
other factors (Nion, GR, CoagS and J) spanned ranges of typical NPF events in the atmospheric boundary layer (also shown in
Table 1)(Chu et al., 2019; Kerminen et al., 2018). The ion concentration Ni,, and the nucleation rate J were directly specified
as simulation parameters, while GR and CoagS were controlled indirectly in the simulation by scaling the SA and OOMs
concentrations while maintaining their relative concentration. The reported GR values in the following was obtained by first
simulating particle growth (Sect. S2 in the SI) and subsequently fitting the particle size as a function of time with a linear
function. Therefore, the GR values reported in this study are a measure of particle growth rates due to neutral vapor
condensation. We note that although GR defined in this way neglects the effect of coagulation on particle growth, it can be
retrieved from the evolution of particle size distribution (Li and McMurry, 2018; Stolzenburg et al., 2005). To control CoagS,
we scaled the concentration of the pre-existing aerosols while maintaining their distribution (lognormal distribution with a
geometric mean diameter of 100 nm and a geometric standard deviation of 1.4).

To analyse the simulation results, we mainly focus on the charge ratio r., which is defined as the ratio of the simulated
fraction of singly charged particles to the steady state value. This metric indicates to what extent the particle charge distribution
deviates from the steady state: r.<l indicates that the particles are undercharged and rc>1 indicates that the particles are
overcharged. The second and third metrics are the maximum number of particles during a simulation (Nmax) and the particle
mode diameter (dm). Comparisons of these two metrics between simulations with and without particle charging shows the effect
of charging on particle survival and growth.

Table 1. Simulation parameters™.

Symbol Meaning Value or range
T Ion mobility 1.8x 107 m? V'is!
M, Ion mass 150 Da
GR Growth rate 1-15 nm/h
J The nucleation rate at 1 nm 0.1-1000 # cm™
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245

Coag$S Coagulation sink 0.001-0.02 s™!
(defined with respect to sulfuric acid

molecules)

Nion Ion concentration 50-5000 cm™

* All parameters except GR are explicitly held constant in a simulation. GR is determined from vapor condensation rates

(vapor concentrations are held constant) and barely changes with particle size, hence GR can also be regarded as a constant.

2.7 Analytical equation for particle charge state

Kerminen et al. (2007) derived a theoretical equation to calculate the charge state of a monodisperse nucleation mode:

exp[—K(d, — do)], (11)

1, 1+(rco—1DKdg
Teq, =1——+—"—"
P Kd, Kdp,

where Ted, and 1 are the charging state at size d,, and d, (i.e., the initial particle size), respectively. K is expressed as:

aNjon
k= GR (12)

where « is the association rate between ions and particles of opposite polarity. In this work, we use a constant value of
1.8 X 107® cm™ 57! for @, which is the collision rate constant between ions and particles 1 nm in diameter (calculated with
Eq. (2)). According to Eq. (11), the particle charge state is governed by both the initial charge state r. o and the parameter K,
which is directly proportional to ion concentration and inversely proportional to particle growth rate. We note thatr.q is a
different concept from Fin: the former is the ratio of the particle charge fraction to the equilibrium charge fraction at the initial
particle size, while the latter refers to the ratio of particle concentration fluxes past a threshold size. These two ratios can be

significantly different (Leppd et al., 2013).

2.8 Regression Models with Neural Network

In this study, we used a residual neural network (ResNet)-based architecture to construct regression models. ResNet
addresses the problem of vanishing gradients through residual connections and can accelerate network convergence (He et al.,
2016). Initially introduced to enhance image recognition performance, ResNet has demonstrated broad applicability across
various fields, including emulation of atmospheric chemistry solvers (Kelp et al., 2018; Liu et al., 2021).

Our first application of ResNet was to determine the charge state of new particles, assuming that J, GR, Njon, CoagS and
Fin are already known (Fig. 1c). The network consists of six fully connected layers with 64, 128, 256, 128, 64, and 1 node,
respectively, with residual connections introduced between each layer. The input layer has 5 nodes corresponding to the
log10(J), GR, log10(Nicn), CoagS and Fx, and the output layer has 1 node corresponding to logio(r.) at a specific size. Log10
values of Nioy, J, and r. were used because their significant variation across approximately two orders of magnitude. Each fully

connected layer is followed by a ReLU activation function, with shortcut connections mapping the input of each layer directly
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to its output. The trained model is referred to as ResFWD (FWD denotes ‘forward’) and serves as an alternative of the Eq.
(11).

In our second application of ResNet, we aimed to predict FIIN based on r. values at multiple sizes (2.2 nm, 3 nm, 4 nm,
5 nm, 6 nm, 7 nm, 8 nm), alongside log10(J), GR, log10(Nion), and CoagS (Fig. 1d). This model's input layer consists of 11
nodes, which is more complex compared with ResFWD. Consequently, we expanded the number of fully connected layers to
eight, with node counts of 64, 128, 256, 512, 256, 128, 64, and 1, respectively. Batch normalization layers were incorporated
to accelerate training and enhance the model’s generalization ability, while other configurations remained consistent with the
first model. The resulting trained model is termed ResBWD (BWD denotes ‘backward’).

The dataset used to train ResFWD consists of ~ 4 million CDMS-ion simulations, but this dataset was reduced in the
training of ResBWD by removing sets of simulations (each set corresponds to a specific combination of J, GR, Nion and CoagS)
in which the information of Fin is almost lost before the particles reach 2.2 nm due to interaction with atmospheric ions
(discussed in Sect. 3.3). In training all ResNet models, 80% of the data were used for the model training and 20% were used
for model validation. The max-min normalization method was used for data pre-processing of all input and output features.
The models were trained with PyTorch with mean squared error (MSE) as the loss function. The optimizer was Adam, with a

learning rate set to 0.001. The batch size was set to 2048, and the training was conducted over at least 50 epochs.

3 Results and discussion
3.1 Evolution of particle charge state

In this section, we discuss some general characteristics of particle interaction with atmospheric ions, including the time
scale for particles to reach steady state charge distribution (Sect. 3.1.1), how particle charge state evolves after formation (Sect.
3.1.2 and 3.1.3) and the influence of charging on particle number concentration and growth, which is included in the SI (Sect.
S5).

3.1.1 Characteristic time to reach steady state charge distribution

To estimate the time scale for particles to achieve steady-state charge distribution under different ion concentrations, we
numerically solved Eq. (1) to simulate the charge state evolution of monodisperse particles in the size range of 1-120 nm. The
ion properties are listed in Table 1 and the simulation was conducted at a temperature of 298.15 K at atmospheric pressure.
Below we discuss two extreme cases: initially neutral and initially fully charged particles (50% positively charged, 50%
negatively charged). These cases correspond to the maximum timescale to reach the steady state from two different directions,
while other scenarios in between would have shorter timescales. We define a characteristic time g for particle charging (or
discharging) as the time it takes for the singly charged fraction of initially neutral particles to reach (1 - 1/e) of the steady-state

value, or for the singly charged fraction of initially charged particles to reach (1 + 1/e) of the steady-state value. We neglect
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multiply charged particles in this calculation, as their fraction is low for ultrafine particles (Wiedensohler, 1988). An analytical

analysis of T is presented in Sect. S3 in the SI.

(a) Initially neutral particle (b) Initially charged particle
10° 10°

Particle diameter (nm)
8—\

Particle diameter (nm)
o

-
o
o
=
o
o

102 10° 10% 102 10° 10*
Ton concentration (cm3) Ton concentration (cm)

Figure 2. Contour plots of the characteristic time (in seconds) for particles to reach the steady state distribution the as a function
of particle diameter and ion concentration. (a) The particles are initially neutral. (b) The particles are initially singly charged
(50% positive, 50% negative).

Figures 2a an 2b show contour plots of 74, at NPF-relevant particle sizes (1-100 nm) at atmospherically relevant ion
concentrations (50-10* cm™, note that throughout this work the ion concentration Nio, refers to the sum of positive and negative
ion concentration) for initially neutral and initially charged particles, respectively. Apparently, 74, is dependent on both the

particle size and the ion concentration. Theoretical analysis (Sect. S3 in the SI) shows that 7, can be expressed as:
2

2Bo+B1Nion ith (0) =0
Tss = 242mn (2%) £ r o) = ! (13)
Charonen O =3

where f;(0) is the initial fraction of singly charged particles (of one polarity). Apparently, for particles of all sizes, T
decreases as ion concentration increases because Ty is inversely proportional to the ion concentration. Additionally, at a fixed
ion concentration, T stays relatively constant or decreases with increasing particle size. This trend is caused by the variation
of the collision rate constants (283, + f1) as particle size increases, to which 74 is also inversely proportional (Eq. (13)).
Further comparison between Fig. 2a and Fig. 2b reveals that Ty is smaller for initially neutral particles than initially fully

charged particles. As demonstrated in the SI, the characteristic time depends on | f1(0) — f1’55|, i.e., the distance between the
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initial and steady state charge fraction. This distance is larger for initially charged particle and results in an extra term 2In (ﬁ)

2Bo
in Eq. (13).

An uncertainty regarding 7 stems from the collision rate coefficients used in its calculation. Pfeifer et al. (2023) showed
that experimental and theoretical collision rate coefficients between ions and singly charged particles can differ by one to two
orders of magnitude (Pfeifer et al., 2023; Lopez-Yglesias and Flagan, 2013; Gopalakrishnan and Hogan, 2012; Gatti and
Kortshagen, 2008). The rate coefficients used in this study (i.e., Lopez-Yglesias and Flagan (2013)) is on the higher end of
these rates. If the rate expressions developed by Gatti and Kortshagen (2008) or Gopalakrishnan and Hogan (2012) had been
utilized, we would anticipate a longer characteristic charging time. Additionally, we neglected the van der Waals potential
between colliding entities, as its interplay with the Coulomb potential in influencing collision rates remains unclear.

The time scale 7, as illustrated in Fig. 2, ranges from tens of seconds to several hours, overlapping with the time scale
for new particles to grow to a few or tens of nanometers in NPF events. Thus, during NPF and subsequent growth events, the

newly formed particles cannot be assumed to be at the steady-state charge distribution without verification.

3.1.2 Neutral NPF

We next examine how the charge distribution of particles evolves when newly formed particles are electrically neutral.
To understand the effect of ion concentration (Nion), the coagulation sink (CoagS), particle growth rate (GR), and nucleation
rate (J) on particle charge distribution during NPF events, we calculated the ratio (r.) of the simulated fraction of singly charged
particles to the steady-state value under different NPF conditions. Results at representative conditions are shown in Fig. 3.
Some data points are omitted due to the exclusion of exceedingly low particle number concentrations (<1 cm™), which occur
when both J and particle survival probability (primarily determined by GR/Coag (Kulmala et al., 2017)) are both low, resulting
in very few particles surviving to sizes of interest. Additionally, in Fig. 3 we do not distinguish between positive and negative
particles since they have the same charge fraction (we have assumed that positive and negative ions have the same

concentration and properties and hence the simulation is ‘symmetric’ with respect to particle polarity).
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Figure 3. Ratio of simulated singly charged fraction to the steady-state value (r.) as a function of d,, at different simulation

320

conditions. Different color corresponds to different size ranges. (a) J=100 cm™ s}, CoagS = 0.01s!, GR=4 nm h! (b) J=1 cm"

3571, CoagS =0.001 s, GR=4 nm h™! (¢) J=100 cm™ s}, CoagS= 0.005s"!, Nien= 200 cm™ (d) J= 100 cm™ s, CoagS = 0.005
5L, Nien=1000 cm™3; (€) J=100 cm? s, GR = 10 nm h™!, Njoy= 250 cm3, (f) J= 100 cm s!, GR=4 nm h™!, Njos= 250 cm™, (g)
CoagS=0.005 s, GR= 10 nm h!, Njos = 250 cm™, (h) CoagS= 0.005s™!, GR= 4 nm/h, Nion = 250 cm™. The red, black, blue,
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and yellow curves represent four different particle size ranges (shown in the figure legend), with steady-state singly charged
fractions of 0.0168, 0.0483, 0.0931 and 0.1975, respectively. These values are evaluated at the median of each size range, i.e.,
3.5 nm, 7 nm, 11 nm and 20 nm. The absolute charge fraction of the particles can be obtained by multiplying r. by the
corresponding steady-state charge fraction.

Figures 3a and 3b illustrate the variation of r. as a function of Ni.n, for selected particle sizes at two conditions typical of
polluted (J=100 cm= s, CoagS = 0.01s™!, GR= 4 nm/h) and clean environments (J= 1 cm s™!, CoagS = 0.001 s’!, GR=4 nm/h).
Both figures demonstrate that during NPF events, r. depends on both the particle size and the ion concentration. At a fixed
particle size, r. increases with Nion, Which is expected as higher Nion reduces the characteristic charging time (Fig. 2) and
promotes the particle charge distribution to reach the steady state. Moreover, larger particles have r. closer to 1, indicating that
as particle grow, their charge fraction gradually approaches the steady state value.

Figures 3c and 3d show how GR affects r. at low (Nioz= 200 cm™) and high (Nio» = 1000 cm™) ion concentrations,

respectively. As GR increases, r. for a given particle size decreases, which is due to the decreased charge conditioning time by
. . . . . . d _ . .
atmospheric ions (the time for particles to reach size d, is approximately ﬁ). Similar to Figs. 3a and 3b, smaller particles have

lower r. due to their shorter interaction time with ions and longer characteristic charging time (Fig. 2a). Furthermore, r. is
larger at higher ion concentrations, corroborating the trend shown in Figs. 3a and 3b.

The effect of CoagS on r. is shown in Figs. 3e and 3f for two particle growth rates. At a higher growth rate (10 nm/h, Fig.
3e), 1. remains largely unchanged as Coags$ varies from 0.001 to 0.02 s™. At a lower growth rate (4 nm/h, Fig. 3f), CoagS has
a more pronounced effect on r., although changes at a given particle size is still smaller than 0.1. Compared with the impact
of Nion and GR on r, the influence of CoagS on r. is minor or even negligible.

Finally, Figs. 3g and 3h show the influence of nucleation rate J on r. at two particle growth rates. Similar CoagS, J has
an almost negligible effect on the 7. at both fast (GR=10 nm h™!, Fig. 3g) and slow (GR=4 nm h"!, Fig. 3h) particle growth
conditions. However, as J increases, there is a slightly decreasing trend of r. in Fig. 3h. This small but noticeable trend is
caused by the increased coagulation between new particles, which elevates the particle growth rate and decreases the time for
the particles to reach a certain size.

Overall, Figure 3 indicates that the charge distribution of new particles deviates from the steady-state distribution during
new particle formation (NPF) events. Among the four factors considered—ion concentration, particle growth rate, coagulation
sink, and nucleation rate—the first two exert a strong influence on r., while the latter two have a minor impact.

The interaction between aerosol particles and atmospheric ions can be leveraged to measure the particle size distribution
(PSD). In this approach, atmospheric ions serve as acrosol neutralizers in the scanning mobility particle sizer (Li et al., 2022;
Chen and Jiang, 2018), reducing both the cost and safety risks associated with the instrument. However, a prerequisite for this
method is that aerosol particles must reach a steady-state charge distribution at the time of measurement. Our analysis
demonstrates that during NPF events, freshly formed neutral particles require tens of minutes to hours to achieve this steady-

state distribution through interaction with atmospheric ions. To establish a characteristic size d, above which the PSD can be
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measured without a neutralizer, we formulated a regression equation for dy, as a function of GR, Nion, J, and CoagS, defining
dy as the size at which the singly charged fraction of new particles reaches 63% (i.c., (1 - 1/e)) of the steady-state value. The

functional form of this regression, along with comparisons to simulations, is detailed in Sect. S4 of the SI.

360 3.1.3 Initially charged particles
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Figure 4. r. as a function of particle diameter at different IIN conditions: (a) GR =4 nm h'!, CoagS = 0.005 s, J = 100 cm™*

sL, (b) Nion =250 cm™, CoagS = 0.005 s, J = 100 cm™ s, (¢) Nion =250 cm>, GR=4nmh"', J=100 cm3s", (d) Nipn=

365 250 cm™, CoagS =0.005s"', GR =4 nm h''. The nucleation rate J is the sum of the formation rates of the positive and negative

particles. The units for Nion, GR, Coag$, and J in the figure legends are cm,nm h*!, s andcm™ s7!, respectively. For reference,

the steady-state singly charged fractions of particles are also plotted as a function of size (dash-dot lines, right y axis). The
absolute singly charged fraction of the particles can be obtained by multiplying r. by the steady-state charge fraction.

To understand the evolution of initially charged particles, we examine a limiting case where all particles are formed via

370 ion-induced nucleation (i.e., Fin=1). We simplify our discussion by assuming equal IIN rates for both polarities. Figure 4

illustrates the behavior of the charge fraction ratio r. as a function of particle size under selected new particle formation (NPF)
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conditions. The evolution of r. can be categorized into three stages, as depicted by the red curve in Figure 4a. In stage 1, r.
rapidly decreases until it reaches unity. In stage 2, r. drops further to a minimum value rcmin. In stage 3, r. rebounds towards 1.
This behavior can be attributed to two main effects: the collisions between particles and atmospheric ions (termed the 'ion
effect'), which drives the charge distribution towards r. = 1, and the coagulation of oppositely charged particles, also known
as ion-ion recombination, (termed the 'coagulation effect'), which reduces the r. value. During stage 1, newly formed particles
experience both the ion and coagulation effects, leading to a rapid decrease in charge fraction towards the steady-state value
of r. = 1. In stage 2, as particles grow, the coagulation effect becomes dominant due to the increased concentration of charged
particles from nucleation, resulting in a further reduction of r. to below 1. In comparison, r. remain above 1 if coagulation
between particles are turned off in the simulation (Fig. S3). In stage 3, the coagulation effect diminishes for two reasons: (1)
the IIN terminates and the generation of charged particles stops; (2) the charged particles already formed are overall more
neutralized as they grow. Because of the diminished coagulation effect, the ion effect drives r. towards 1.

Variation of different simulation parameters alter the r. curves to different extents. Figure 4a indicates that higher Nion
increases remin and restores 7. to the steady state values faster than lower Nion. This phenomenon occurs because as Niqn increases,
the ion effect becomes greater and the coagulation between oppositely charged particles become comparatively less important.
Figure 4b shows that the increase of GR causes 1 min to move to the right, but does not significantly change the value of r¢ min.
This relationship between GR and rcmin means that GR does not strongly impact the coagulation effect. Figure 4c shows that
Coags increases Iemin to a smaller extent. Higher CoagS corresponds to larger consumption of the particles and lower particle
concentration, hence depressing the coagulation effect. Lastly, Fig. 4d indicates that the larger the J values, the smaller rcmin
becomes. As J increases, the coagulation effect becomes appreciably stronger because it is proportional to the particle number
concentration squared. The minima 7. min also appear at smaller sizes as the higher particle concentration cause the coagulation
between the charged particle to proceed at a faster rate.

In addition to charge state, the interactions between particles and atmospheric ions can also influence particle number
concentration and size during NPF events. To quantify such effects, we compared the particle number concentration and mode
diameters in simulations with and without considering particle charging (Sect. S5 in the SI). This comparison suggests that
particle charging has almost a negligible influence on the mode diameter. However, although the particle number
concentrations also remain largely unaffected during neutral NPF, it can experience a considerable decrease during IIN due

the strong coagulation between oppositely charged particles.
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3.2 Prediction of particle charge fraction with ResNet
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Figure 5. (a)-(d) Comparison between the simulated rc (rcsim) , the ResFWD-predicted r. (rm) and the r. calculated with Eq.
(11) (rc.anal) at particle diameters of 2.2 nm, 3nm, 5 nm and 8§ nm. The numbers in the subscript of r. denote the particle size.
The R? and MSE obtained from testing the ResFWD model against r.sim are shown in the panels. (€)-(i) Sensitivity of 1.2 to -

10%-10% variations of model input. The color bar indicates the degree of variation quantified by S, , = w . The
c2.2

colored dots are calculated with ResFWD, while grey dots are obtained by changing the CDMS-ion input by either 10% or -
10%.

Using simulated results as training data, we developed several ResNet-based regression models, collectively referred to
as ResFWD. Each of these models can predict r. value for a specific particle size. Figures 5a—5d compare the r. values
calculated with ResFWD, the analytical expression (i.e., Eq. (11)) and CDMS-ion for F;n<0.2 and J<10 cms!. The scope of
Fin are J are limited to small values because Eq. (11) was developed cope with situation with low fraction of charged
particles(Kerminen et al., 2007). The r. values calculated with ResFWD (r.mr) align closely with those simulated by CDMS-
ion (resim), demonstrating the neural network's ability to capture the nonlinear relationship between r. and the key parameters
including Fyn, GR, Nion, J, and CoagS. In contrast, the values calculated with Eq. (11) (rc, anal) deviate significantly from rcsim,
and this discrepancy grows larger with particle size. This suggests that as the particles grow, the simulation conditions deviate
farther away from the underlying assumption of Eq. (11). As shown in Figure S7 in the SI, rcana tends to be larger than rcsim
in the entire range of Fiv and J. Such overestimation of r. by the analytical equation may arise from its inability to account for
the strong coagulation between charged particles, especially when a large fraction of the particle population are charged.

Another cause for the overestimation could be that Eq. (11) was developed based on the charge state of the smallest particles
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rather than Fyn (the former is the ratio of charged particle concentration to the total particle concentration in the smallest size
bin, while the latter is a ratio of fluxes). A comparison of these two values is shown in Fig. S9 in the SI.

Figure Se-i present sensitivity analysis of 1.2 in response to variations of different model inputs. This analysis is crucial
for (1) assessing whether ResFWD overfits the training data and (2) evaluating its susceptibility to input noise—an inevitable
factor in field data—compared to the benchmark model CDMS-ion. In these figures, colored dots represent the fractional
change in re 2.2 (denoted as S2%) when ResFWD inputs are randomly varied between -10% and +10%, while grey dots reflect
the fractional change in resim22 (denoted as S339™) resulting from variations in CDMS-ion inputs at two extreme values, i.c.,
+10% and -10%. Figures Se—5i demonstrate that S54™ envelops S (the grey dots put a limit to the colored dots), indicating
that ResFWD exhibits a response to input noise similar to that of CDMS-ion. Moreover, both S35 and SMF display
comparable variations as functions of 1.

Fig. Se shows that S initially increases with >, and subsequently stabilizes. This behavior suggests that when initial
particle charge information is obscured by interactions with atmospheric ions during growth (leading to low .2 values), Fin
has a minimal effect on r.2,. However, when charge information is preserved during growth (higher r.»» values), r.2» scales
near linearly with Fyn and also vary between -10% to 10%. Conversely, when varying Nion, GR, CoagS and J, Sz initially
increases with r.»» and then decreases (Figs. 5f=51). This indicates that r.»» is relatively insensitive to variations of these
parameters when particle interactions with atmospheric ions are either highly effective (resulting in low rc»» values) or
ineffective (leading to high r. >, values). Comparisons between Figures Se—5i further reveal that r. ., is sensitive to variations
in GR, Nion, and J, but not to CoagS: a 10% variation in CoagS results in less than an 8% change in r¢2>. This finding aligns
with Figure 4, which indicates that simulations with differing GR, Nicn, and J values yield well-separated curves, while varying
CoagS values only change the curves slightly.

Despite good agreement with the benchmark model, the applicability of the ResFWD is limited by the data used for its
training. For instance, we have assumed constant ion concentration during NPF, which in reality changes due to varying ion
production and loss rates in the atmosphere. Observations suggest that NPF often concurs with a decrease in the concentration
of small ions, and the extent of decrease varies between different field campaigns. (Note that for continental stations, the ion
concentration usually has the highest value in the morning and lowest value in the afternoon, possibly due to the variation of
radon concentration (Horrak et al., 2003). This general trend of ion concentration decrease proceeds simultaneously with many
NPF events.) Data from the Tahkuse Observatory in the warm season of 1994 show that the concentration of small cluster ions
(mobility between 1.3-3.14 cm? V! s71) decreased by approximately 20% from 8:00 to 12:00 (Horrak et al., 2003). Huang et
al. (2022) shows that the concentration the ions (mobility between 0.5-3.14 cm? V! s7) decreases less than 25% within during

NPF events. Recently, Zhang reported that the median of ion concentration (mobility between 0.5-3.14 cm? V! s™!) decreased
by less than 10% from 9:00 and 15:00 during event days at the SMEAR II station, and less than 25% at the SORPES station.
According to the field observations, it is reasonable to assume that in a typical NPF event, the ion concentration vary by

+10% around its mean value. Based on our sensitivity analysis (Fig. 5f), a +10% variation of Njo, leads to an uncertainty of
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Finv mostly by less than +20%. However, to develop a rigorous quantitative relation between input variation and the particle
charge fraction, further simulations with time varing inputs are needed. Additionally, we did not consider scenarios where the
mobilities and concentrations of atmospheric positive and negative ions differ, restricting the direct application of ResFWD in
these cases. The applicability of ResFWD can be further expanded by training the neural network with a larger dataset that

includes the above considerations.

3.3 ResNet assisted inference of Fin

During field measurements of atmospheric NPF, the charge fraction and its ratio to the steady-state charge fraction (rc)
can be measured across different particle sizes (Leppa et al., 2013; Iida et al., 2006). To infer Fyn from these measurements,
the traditional approach involves identifying the optimal Fyn value that best fits Eq. (11) to the measured r.. In this study, we
utilize simulated r. values at 2.2 nm, 3 nm, 4 nm, 5 nm, 6nm, 7nm and 8 nm as inputs to directly infer Fy using ResBWD.
Alongside particle charge fractions, additional inputs to the ResNet model include GR, Nioy, J, and CoagS (Fig. 1d).

As particles grow, the information of their initial charge fraction can be obscured by interaction with atmospheric ions.
This is demonstrated by the re-d, curves in Figure S8a, which shows that despite the different Fyn (from 0% to 20%), the
particle charge fraction already converges to the steady state value (i.e., r.= 1) at d, = 2.2 nm at a high ion concentration (Nion
= 5000 cm™). In this case, it becomes impossible to infer Fin from the observed particle charge state since they are non-
distinguishable. In contrast, at a lower ion concentration (Nien = 450 cm™), the r.-d, values are still well separated at 2.2 nm,
hence one can deduce Fin from the r. in this case. In general, for closely spaced r.-d, curves at 2.2 nm, the neural network
would find it difficult to utilize their difference to infer Fynv. With these considerations, we define a parameter y as the change
of particle charge fraction at 2.2 nm when Fin changes by 1%, which essentially characterizes the amount of information
(regarding Fiiv) that are still retained as the particle size reaches 2.2 nm The larger y is, the further apart the r.-d, curves are,

and the more accurately the neural network can infer Fy.
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Figure 6. (a-b) Comparison between the predicted Fin by ResBWD and the true Fin used in CDMS-ion simulation. The upper
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Ic22, e s, and re . The sensitivity is defined as S, = ”NF—”N, with the subscript x denoting the size at which r. is varied. The
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green reference lines indicate Sy values of +0.2.

Figures 6a and 6b compare ResBWD predicted and the true Fin for = 0.11% and y = 0.55%, respectively, demonstrating
good agreement regardless of the y employed. This indicates that ResBWD effectively captures the nonlinear relationship
between the charge state of grown particles and Fin, even when the initial charge information is largely lost (Fig. 6a, x =
0.11%). However, further sensitivity tests (Figs. 6¢-h) reveal that noise in input parameters to ResBWD (i.e., random noises
of re22, Ies, Ieg Within -10% to +10%) results in Fyn variations primarily ranging from -10% to +10% for x = 0.55% (lower
panels), whereas this variation increases to -20% to +20% for y = 0.11% (upper panels). This suggests that as initial particle
charge information is more obscured due to stronger particle interactions with atmospheric ions, the deduction of Fin from
measured charge fractions becomes increasingly uncertain. In other words, when the r.-d,, curves (see Fig. S8 for such curves)
are closely spaced, a small variation of r. may correspond to a large variation of Fin. At very low Fun values (~0.01), high
sensitivity for both y =0.11% and y = 0.55% is observed in Figs. 6¢-h. This is as expected since the screening criterion ensures
the training data has an Fin resolution on the order of 1%, hence at low Fin values (close to 1%) ResBWD is more sensitive
to noises. Further comparisons of panels d, f and h (or panels c, e and g) indicate that r.» is a more critical parameter for Fin

inference than r.s and .3, as it retains the most information about Fy.
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Overall, predicting Fin from known 1. values necessitates more stringent conditions than the reverse process. This
challenge stems from the loss of initial charge information as particles increase in size. To find parameter sets of GR, Nion, J,

and CoagS which meet the screening criteria, the ResFWD model can be employed to calculate .

4. Conclusions

In this study, we developed a two-dimensional sectional model, CDMS-ion, to simulate particle growth and their
interactions with atmospheric ions. Using this model, we first explored the general characteristics of particle charge state
evolution. Our findings reveal that particle growth rate and ion concentration have the most significant effects on particle
charge. Notably, when the number concentration of charged particles is high, the ratio of the particle charge fraction to the
steady-state value can drop substantially below 1 due to coagulation between oppositely charged particles. Furthermore,
atmospheric new particles cannot be treated as if they are at steady state charge distribution until they grow to a certain size
(Eq. (S13) in the SI).

Using the extensive dataset generated by CDMS-ion, we trained two types of neural network models. The first model,
ResFWD, predicts the particle charge state as they grow, under the assumption that the fraction of ion-induced nucleation is
known. This model effectively captures the non-linearity of the particle charging process and shows good agreement with
model simulations. Compared to existing analytical equations, ResFWD demonstrates improved accuracy, particularly at high
Fun and J conditions. Therefore, this approach can serve as a reliable alternative to the analytical equation when the
assumptions inherent in the training data are met.

The second model, ResBWD, predicts the fraction of ion-induced nucleation using particle charge fractions measured at
several sizes. This prediction is more challenging compared to ResFWD because the initial charge information of new particles
may be lost as they grow. However, by restricting the application of the model to cases where initial charge information is
relatively well preserved (this screening can be completed with ResFWD), we can achieve accurate predictions of Fyn with
reasonable sensitivity to input noise.

This work represents an initial effort to describe the dynamic charging process of atmospheric new particles with machine
learning tools. With these tools, one can calculate the charge state of the new particles as they growth, or use observed particle
charge state to deduce the rates of ion induced nucleation, which is a major particle formation mechanism on the global scale.
Note that our simplifications of the NPF processes include constant nucleation rates, constant atmospheric ion concentrations,
and equal ion concentrations and mobilities. Future endeavors to develop more comprehensive ML models should take these

complexities into account.

Code and data availability: All the data needed to reproduce the figures can be found at
https://doi.org/10.5281/zenodo.15024817.
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