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ABSTRACT 44 
 45 
The role of plants in sequestering carbon is a critical component in mitigating climate 46 
change. A key aspect of this role involves plant nitrogen (N) uptake (Nup) and N use 47 
efficiency (NUE), as these factors directly influence the capacity of plants to store carbon. 48 
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However, the contribution of N deposition and soil factors (biotic and abiotic) in addition to 49 
climate to plant N cycle, remains inadequately understood, introducing significant 50 
uncertainties into climate change projections. Here, we used ground-based observations 51 
across 159 locations to calculate Nup and NUE and identify their main drivers in natural 52 
ecosystems. We found that global plant Nup is primarily driven by N deposition, air 53 
temperature and precipitation, with Nup increasing in warmer and wetter areas. In 54 
contrast, NUE is driven by soil biotic and abiotic factors, with little direct control by climatic 55 
factors. Specifically, NUE decreased with the intensity of the colonization by arbuscular 56 
mycorrhizal fungi and increased with soil pH and soil microbial stocks. Nup and NUE 57 
presented opposite latitudinal distributions, with Nup higher on tropical latitudes and NUE 58 
higher towards the poles. Total soil N stocks were not found to be a driver of Nup or NUE. 59 
We also compared our results with TRENDY models and found that models may 60 
overestimate Nup by ~ 100 Tg N yr-1 in the tropics and triple the standard deviation on 61 
boreal latitudes. Our findings emphasize the effect of N deposition and soil microbes that, 62 
in addition to climate and soil pH, are crucial for accurately predicting ecosystems’ capacity 63 
to sequester carbon and mitigate climate change. 64 
 65 
Plain language summary 66 
We used field empirical data worldwide to calculate plant nitrogen uptake (Nup) and 67 
nitrogen use efficiency (NUE) in woodlands and grasslands and determine its drivers, which 68 
can be used as empirical validation for models. Even though some regions of the world have 69 
decreased their N deposition, N deposition is still the most important driver explaining plant 70 
nitrogen uptake, aside from climatic variables.  71 
 72 
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 93 
 94 
 95 
1.Introduction 96 
 97 
Climate and nutrient availability play significant roles in the capacity of plants to sequester 98 
carbon (C). Nitrogen uptake (Nup) and nitrogen use efficiency (NUE) are fundamental 99 
processes in plant-soil N cycling, which in turn impact biodiversity, ecosystem productivity, 100 
C sequestration, food security and human health (Peñuelas et al., 2020). Hence, realistic 101 
quantifications of Nup and (NUE) and the understanding of their drivers are crucial to 102 
predict the fate of terrestrial ecosystems under a changing environment. Climate, biomass 103 
production, and Nup are strongly intertwined, where hotter and wetter ecosystems have 104 
the capacity to grow more, increase their N demand and therefore absorb more N if 105 
available (Berntson et al., 1998; Wu et al., 2011). Nonetheless, several factors can affect N 106 
availability. Traditionally, total soil N stocks were used to proxy N availability or plant Nup. 107 
Although this correlation is weak, it is still used in a modeling perspective (Stevens et al., 108 
2015; Vicca et al., 2018) assuming that total soil N, positively correlates with N availability. 109 
Recent advances in plant-soil science revealed the remarkable importance of the soil biotic 110 
community in N availability related processes and plant growth (Aber et al., 2001; 111 
Sinsabaugh et al., 2002; Sinsabaugh et al., 2008; Crowther et al., 2019; Delgado-Baquerizo 112 
et al., 2020; Etzold et al., 2020). Thus, by extension, soil microorganisms (e.g., soil microbes 113 
stocks and mycorrhizal associations) could potentially affect Nup and NUE. In addition, N 114 
deposition has increased from ~30 to ~80 Tg N/year worldwide since 1850 (Kanakidou et 115 
al., 2016), with substantial effects on global biogeochemical fluxes and N availability (Elser 116 
et al., 2010; Battye et al., 2017; Peñuelas et al., 2020). Consequently, reliable quantifications 117 
of plant Nup and NUE need to include climatic factors as well as soil biotic factors and N 118 
deposition. 119 
 120 
N regulates the capacity of ecosystems to store C (Hungate et al., 2003; Fernández-Martínez 121 
et al., 2014; 2019; Wang et al., 2017) and respond to climate change drivers (Fleischer et 122 
al., 2019; Terrer et al., 2019; Walker et al., 2021; Zhou et al., 2022) being the C-N assembly 123 
relevant for land surface models (LSM). Eight of the LSM of the TRENDY ensemble (Sitch et 124 
al., 2015), a model ensamble designed to disentangle the effects of climate, CO2, land-use 125 
and land cover change, include representations of the N cycle and plant N uptake. 126 
Nonetheless, its parameterization of N cycling is poorly constrained by observations (Zaehle 127 
et al., 2014; Fowler et al., 2015; Braghiere et al., 2022). As a consequence, when models are 128 
assembled, the result leads to accumulated uncertainty (Prentice et al., 2015; Franklin et 129 
al., 2020) and therefore divergent predictions of the land sink (Zaehle et al., 2014; Stocker 130 
et al., 2016; Arora et al., 2020). Furthermore, when accounting for N interactions, LSM do 131 
generally not consider the direct effects of microorganisms’ missing out on the role of soil 132 
bacteria or mycorrhizae on plant nutrient uptake. Thus, including global calculations of 133 
plant Nup and NUE based on empirical data as well as accounting for climate, N deposition, 134 
and soil biomass interactions would potentially refine the N accountability in LSM. 135 
 136 
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Here, we gathered information from 159 plots worldwide that describe woodlands and 137 
grasslands across different biomes to calculate plot-based plant Nup and plant NUE using 138 
exclusively empirical field data. Our analyses combine N concentration and net primary 139 
productivity (NPP) data in different aboveground and belowground plant tissues (i.e., 140 
leaves, roots, stem). We used linear models to identify the drivers of Nup and NUE, including 141 
N deposition, soil microbes, woodiness and climatic factors. We then upscaled those results 142 
using the machine-learning models to quantify yearly plant Nup and plant NUE at a global 143 
scale in natural terrestrial ecosystems (woodlands and grasslands) and compared these 144 
results with simulations from LSM. We hypothesize that factors such as N deposition and 145 
soil microorganisms have significant impacts on Nup and NUE respectively, playing a role as 146 
important as climatic drivers. We expect the ground-based data, and incorporation of these 147 
N-relevant drivers to increase the accuracy of global Nup quantifications. Thus, a mismatch 148 
between our estimation and current TRENDY simulation outputs is expected. 149 
 150 
2. Results and discussion 151 
2.1 Nitrogen uptake and nitrogen use efficiency 152 
Our findings indicate that N deposition and climate are fundamental factors explaining plant 153 
Nup on a global scale (Fig. 1). Further analysis revealed a positive relationship between Nup 154 
and accumulated N deposition, mean annual temperature (MAT), and mean annual 155 
precipitation (MAP). Thus, regions that are warm and wet, and also experience higher levels 156 
of N deposition, exhibit the highest rates of Nup. Our empirical results did not show 157 
important relationships between plant Nup and soil microbial interactions nor soil physico-158 
chemical variables including soil N stocks at a global scale (Fig. 1a). We further tested the 159 
univariate relation between Nup and total soil N stocks with no significant relation among 160 
them (Fig. S1a). 161 
 162 

https://doi.org/10.5194/egusphere-2024-3661
Preprint. Discussion started: 13 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 5 

163 
Figure 1. a) Variable importance plot for the general linear model describing plant nitrogen uptake (Nup). The dashed line 164 
is set at 0.8, separating the threshold for important variables. The model preudoR2 was 0.349. Linear regressions were 165 
displayed describing plants' nitrogen and important variables b) accumulated Nox deposition from 1901 to 2021, c) mean 166 
annual temperature, and d) mean annual precipitation. Equation and p-value per regression displayed. Acronyms: Nox: 167 
oxidized nitrogen, N: nitrogen, Myco %: Mycorryzal percentage.  168 

In contrast, when describing NUE our model selection analysis identified soil biotic and 169 
abiotic factors as NUE drivers with little direct control by climatic factors (Fig. 2). Specifically, 170 
our results described NUE decreased with AM % but a positive relation between soil pH, soil 171 
microbial N stocks and NUE was found. Thus, when plant species are more colonized by 172 
arbuscular mycorrhizae, are less efficient in N use to build biomass. In contraposition, basic 173 
pH and abundant soil microbial stocks facilitate higher NUE rates. Even though soil variables 174 
appear to be important for NUE, soil N stocks remain unrelated to NUE in the model and 175 
when tested individually (Fig. S1b). 176 
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 177 

178 
Figure 2. a) Variable importance plot for the generalized linear model describing nitrogen use efficiency (NUE). The model 179 
preudoR2 was 0.355. The dashed line is set at 0.75, separating the threshold for important variables. In b) arbuscular 180 
mycorrhizae percentage is divided into low, medium, and high, and NUE is displayed. * = P-value < 0.05, ** = P-value < 181 
0.01, *** = P-value < 0.001. Linear regressions were displayed describing plants' nitrogen use efficiency c) soil pH and d) 182 
microbial N stocks. Equation and p-value per regression displayed. 183 

2.2 Global maps of Nup and NUE 184 
Next, we used a machine-learning model to understand the global magnitude and 185 
distribution of Nup and NUE when the relationships found at the site-level are extrapolated 186 
at a global scale. For methodological consistency, the XGBoost model was trained using the 187 
same nine variables as the linear model. We identified temperature, precipitation, and N 188 
deposition as the most critical factors for describing Nup (Fig. S2), which aligned with those 189 
in the linear model, albeit in a slightly different order. Partial dependence plots further 190 
corroborated these relationships, showing consistent correlation signs with those observed 191 
in the linear models (Fig. S3). The upscaled Nup map showed a total yearly Nup of 842.215 192 
± 236.11 Tg of N, with a mean coefficient of variation of 26.77 % (Fig. S4) and an r2 of 0.54 193 
(Fig. S2). The lowest Nup values were on boreal latitudes and mountain ranges such as the 194 
Rocky Mountains in the USA, the Andes in South America, the different mountain ridges in 195 
Europe, and the Himalayan plateau in Asia. The higher rates of Nup are predicted in 196 
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temperate latitudes in Europe, the eastern United States, Southeast Asia, East Australia, 197 
most of South America and central Africa, with the most intense spot around Congo, where 198 
there is the most N deposition, temperature and precipitation combined (Fig. 3a). 199 
Therefore, Nup map shows an NPP influence, driven by temperature and precipitation, but 200 
added to an N deposition distribution that shades the strictly latitudinal distribution of Nup. 201 
 202 

 203 
Figure 3. Upscaled global maps describing a) Plant nitrogen uptake and b) Nitrogen use efficiency. The total amount of 204 
nitrogen uptake calculated per year is 842.215 Tg of N with a standard deviation of ± 236.11. The mean value of global 205 
nitrogen use efficiency is 110.26 kg of C per kg of N, and its standard deviation is 19.40. White color describes no data due 206 
to a lack of grasslands or woody vegetation. 207 

The machine-learning models describing NUE showed the importance of microbial N stocks, 208 
altitude, precipitation, soil pH, and AM% as NUE drivers (Fig. S5). These results generally 209 
align with the variable importance shown in the linear models, with the addition of 210 
precipitation and altitude. The variables´ relation showed similar general trends as in the 211 
linear model (Fig. S6). The average predictions for NUE at a global scale were 110.262 units 212 
of C per unit of N with a mean coefficient of variation of 17.89 % (Fig. S4) and an r2 of 0.44 213 
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(Fig. S5). The map distribution showed general lower NUE around the Equator, and 214 
progressively increasing towards the poles. Nonetheless, some heterogeneous parches 215 
alternating high and low NUE can be found between 50 and 60 degrees latitude north (Fig. 216 
3b).  217 
 218 
2.3 Global-scale Nup comparison with TRENDY models 219 
We further seek to compare our estimates for the total yearly Nup upscaled from field 220 
observations with the mean of the Nup provided by the eight models included in TRENDY. 221 
When comparing TRENDY Nup with our Nup upscaled projections, we found clear 222 
geospatial pattern differences. TRENDY models produce higher Nup in the tropical regions, 223 
reaching differences of around 100 kg N ha-1 yr-1 in those areas (Fig. 4a) representing more 224 
than 100% of the Nup estimated by field observations (Fig. 4b). Other areas like the north 225 
and northeast of North America, Southeast Asia, and north of Eurasia also appear to have 226 
higher Nup values in TRENDY models than in field observations. In boreal latitudes, the 227 
TRENDY models deviation for Nup could even reach 300% of overestimation. On the other 228 
hand, areas where the upscaled approach projects higher values than the TRENDY models, 229 
are the austral latitudes, the Middle Eastern regions, the Somali peninsula, and the Rocky 230 
Mountains (Fig. 4). Overall, TRENDY models estimate higher values of Nup, by 16.61 kg N 231 
ha-1 yr-1, meaning the 48.54 % of the variability. When aggregating the total year Nup, LPX-232 
Bern and CLM5.0 were the models that predicted overall values exceding our range of 233 
confidence, assuming a significantly larger Nup (Fig. S7). 234 
 235 
 236 
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 237 
Figure 4. Comparison between the mean of the nitrogen uptake provided by TRENDY v8 models minus the upscaled 238 
nitrogen uptake. The red color stands for higher values on the TRENDY model, and the blue color stands for higher nitrogen 239 
uptake values on the upscaled approach. In a) units in kg N ha-1 yr-1 and in b) units in percentage of deviation from field 240 
upscaling. Latitudinal aggregation on the right, with a red vertical line showing a ) the mean of the total comparison at 241 
16.61 kg N ha-1 yr-1 and b) the mean percentage of deviation at 48.54%. 242 

2.4 Nup global drivers and implications 243 
Our models estimated the annual global plant Nup at 842.215 ± 236.110 Tg of N. This figure 244 
is consistent with the findings of Peng et al., 2023, which estimated 950 ± 260 Tg of N, and 245 
Braghiere et al., 2022, with an estimated uptake of 841.8 Tg N. The slight variations can be 246 
attributed to differences in methodologies and data sources (simultaneous plot-averaged 247 
records vs individual-level records) used in these studies. In our study, linear models and 248 
machine learning models are consistent when determining N deposition, temperature, and 249 
precipitation as global drivers of Nup. Hotter and wetter environments increase biological 250 
activity, leading to more biomass production and therefore more N demand. An increase in 251 
N demand with enough N availability is associated with an increase in Nup. The 252 
accumulation of N deposition throughout time originating from anthropogenic sources has 253 
been increasing the N availability in some areas, generally close to industrial or agroforestry 254 
pools. Hence, in a global change context where CO2 fertilization and temperature increase 255 
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have generated a greening effect (Ruehr et al., 2023), areas with higher N deposition were 256 
able to better supply the increasing N demand. Thus, according to our results, 257 
anthropogenic N supply may have become a Nup driver as important as climate. 258 
 259 
These results are concerning since our data emphasize the far-reaching influence of human-260 
induced nitrogen deposition in shaping global Nup patterns. Some regions such as Europe, 261 
the Eastern USA, and the tropics have decreased their N deposition during the last four 262 
decades (Ackerman et al., 2019). Nonetheless, these efforts do not translate yet on low N 263 
deposition effects in natural woodlands and grasslands. This sustained entrance of 264 
anthropogenic N has been associated with a fertilization effect, enhancing the land C sink 265 
by 0.72 Pg C yr−1 during the 2010s (Gurmesa et al., 2022). Nonetheless, this N fertilization 266 
effect showed evidence of saturation in forests and grasslands (Tian et al., 2016; Peng et al., 267 
2020), where the biomass production and therefore the C sink increase slowed down. 268 
Consequently, this input of N not being captured by biomass will enhance the N leaching 269 
associated with eutrophication, acidification, loss of biodiversity, and N2O emissions (Aber 270 
et al., 1989; Gundersen et al., 1998; Bobbink et al., 2010) exacerbating environmental 271 
problems. 272 
 273 
2.5 NUE global drivers and implications 274 
Our results predict a mean NUE of 110.262 ± 19.40 kg C per kg N. Our results indicate soil 275 
biotic and abiotic factors drive NUE in natural ecosystems. The main divergence between 276 
linear models and machine learning models is the importance of altitude and precipitation, 277 
which showed explicit relevancy only in machine learning models. We attribute these 278 
differences to the nature of the models, where machine-learning models accommodate 279 
correlations without modifying their variable importance. Thus, the important variables in 280 
the linear model could also have embedded important latitudinal gradients and therefore 281 
altitudinal or precipitation gradients. Our NUE predictions contrasted with Peng et al., 2023, 282 
which predicts a mean NUE of 76 ± 26 kg C per kg of N. The main difference between studies 283 
is that our approach included biotic factors, such as mycorrhizal associations and microbial 284 
interactions, that described NUE better than abiotic factors. In contrast, Peng et al., 2023 285 
focused their predictions only on abiotic factors. In that regard, we do not consider 286 
environmental variables such as precipitation to be totally detached from NUE relations, 287 
since they are somewhat drivers of important biotic variables such as AM %, soil pH, and 288 
microbial N stocks. Nonetheless, the results showed that including biotic variables may 289 
result in more efficient use of N by plants at global scale. 290 
 291 
The response of NUE has been postulated as a method to assess N saturation in plant 292 
communities (Shcherbak et al., 2014). A negative relation between N addition and NUE and 293 
lower NUE levels would indicate N saturation (Iversen et al., 2010). In our study, tropical 294 
areas are shown to have the lowest NUE, being the less N limited and matching with 295 
previous global upscaling studies using different approaches (Du et al., 2020; Vallicrosa et 296 
al., 2022). According to the soil age hypothesis (Walker and Syers, 1976), N accumulates in 297 
ecosystems through time due to biological processes. Thus, newer formation areas, such as 298 
high elevation or lower pH areas are those showing higher values of NUE and where N is 299 
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expected to be more limiting. Our results only show a modest effect of N saturation due to 300 
N deposition, so further studies are needed to better assess where and under what 301 
circumstances areas are N saturated due to N deposition.  302 
 303 
Biological activity, such as the type of mycorrhizal associations and soil microbes N stocks, 304 
was found to have a strong impact in the terrestrial N cycle. Arbuscular mycorrhizal 305 
associations are the most abundant in the tropics (Soudzilovskaia et al., 2019) and are 306 
theorized to be more efficient in nutrient capture and more abundant in areas with fast N 307 
cycling (Averill et al., 2019). Our models show that AM associations have lower NUE, 308 
possibly driven by the abundance of N and the high efficiency of AM associations in N 309 
acquisition. Conversely, N obtention was more efficient in areas with high soil microbes 310 
stocks. As described by Kuzyakov and Xu 2013, we hypothesize a potential competition 311 
effect between soil microbes and plants for N, but further studies are needed to 312 
corroborate this relation. Thus, given the importance of biological activity in fixing and 313 
transforming N, it is reasonable that total soil N stocks, that include N in all forms and 314 
aggregations, would not be a good indicator of N availability and plant N uptake. 315 
 316 
2.6 Discrepancies between Nup map and TRENDY 317 
TRENDY model ensemble projects substantially higher Nup values than the empirical 318 
upscaling. These differences were especially relevant in the tropics in absolute terms and in 319 
boreal latitudes in % of deviation. This mismatch could be associated with an 320 
overestimation of terrestrial C sink capacity and a misinterpretation of the role of 321 
vegetation in N cycling. A possible explanation of this phenomenon would be the 322 
overestimation of biomass production by LSM when not accounting for growth-limiting 323 
factors such as phosphorus availability, drought, or overall biotic competition. Alternatively, 324 
overestimation when accounting for N concentration in tissues could also lead to Nup 325 
overestimation, which would necessarily reflect in overall lower NUE values. In our 326 
calculations, we embraced the variability of N concentration and net primary productivity 327 
among tissues and leaf resorption to generate a truthfully Nup and NUE values. 328 
 329 
2.7 Representativity and future research 330 
An inherent challenge in ecological studies of this scale is to ensure the global 331 
representativeness of the dataset, since there are systematic geographical sampling biases 332 
underrepresenting the global south. In this study, the 28 % of the data comes from areas 333 
below 15º latitude, outside the US, Europe, or China (Fig. S8). When accounting for 334 
ecosystems representativity, the Whittaker diagram shows we have a representation of all 335 
the biomes (Fig. S9), showing the lowest representativity on subtropical desert, tundra, and 336 
temperate rainforest. Nonetheless, we acknowledge that calculations based on empirical 337 
data, especially when a portion of the data have undergone a gap-filling process, can still 338 
have biases associated with sampling and the upscaling process, which are mainly defined 339 
by the more represented biomes of the observations. Still, we believe that calibrating and 340 
cross-checking models built over mathematical assumptions with field measurements is 341 
necessary to better root models to reality. 342 
 343 
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This study is focused on a quantitative approach at global scale, attempting to target 344 
variables’ relative importance on Nup and NUE along with its correlations to environmental 345 
and biotic variables. In future research, specific data detailing the different N fractions 346 
obtained at a global scale (e.g. organic-inorganic, ammonium-nitrate) and a more 347 
mechanistic frame are strongly encouraged. Approaches such as in Niu et al., 2016 348 
quantifying the fraction of Nup taken by plants, leached and retained in the soil at a global 349 
scale are crucial to enhance our understanding of the N cycle and its interactions with 350 
ecosystems.  351 
 352 
3. Conclusion 353 
We showed that accumulated N deposition and climatic variables are the main global-scale 354 
factor describing Nup, where regions that are warm and wet and also experience higher 355 
levels of N deposition, exhibit the highest rates of Nup. This result highlights the far-356 
reaching influence of nitrogen deposition in shaping the global Nup pattern. Interestingly, 357 
NUE was shown to be driven by soil biotic and abiotic factors, emphasizing the importance 358 
of soil microorganisms and pH as regulators of the N cycle. We further revealed that total 359 
soil N stocks are not a Nup nor NUE driver. Our upscaling showed large spatial-explicit 360 
differences with TRENDY Nup values, where TRENDY projects higher absolute values around 361 
the tropics and higher deviation values in boreal latitudes. This mismatch in the spatial 362 
correlation between empirical data and land system models could substantially affect 363 
model accuracy and future predictions of the C sink, where the tropical capacity to store C 364 
might have been overestimated. Our results provide insights to understand better the C – 365 
N interactions, N cycling, and absorption in terrestrial ecosystems and highlight that N 366 
deposition largely impacts plant Nup worldwide. 367 
 368 
4. Methods 369 
4.1 Plant data gathering 370 
We gathered 159 (Table S1) field plot data in natural conditions, including dominant species 371 
and vegetation type (grassland, coniferous or broadleaved), foliar and root N concentration, 372 
foliar and root biomass production, and stem biomass production in the case of woody 373 
plants on the same location and time. In situ measurements for foliage and fine roots are 374 
the most relevant for Nup calculation (Dybzinski et al., 2024), so all our datapoints include 375 
biomass production (NPP) and N content (N%) of leaves and roots. We gathered 45 376 
datapoints, representing a 28% of the data, coming from latitudes under the 15º latitude, 377 
despite of the systematic lack of field sampling on some regions of the earth such as the 378 
global south. We also complemented the dataset with field values of litter biomass 379 
production, litter N concentration, stem N concentration, soil pH, soil C %, soil N %, soil 380 
texture, soil moisture, mean annual precipitation, mean annual air temperature, and 381 
altitude. We included woody and grassland natural environments (Fig. S8), including 382 
representation from most biomes according to Whitakker’s diagram (Fig. S9). Each data 383 
point covered by the analysis has been collected from 1984 to 2022. If stem N was missing, 384 
happening in 25% of the data entries, we gap-filled it with the mean value of its vegetation 385 
type (coniferous=0.33 or broadleaved=0.52%). With leaves, stem and roots we calculated 386 
the gross Nup (see in the next section). By subtracting the amount of N recovered during 387 
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leaf senescence we obtain the net Nup. If litter biomass was missing, 52% of the time, we 388 
assumed it to be the same amount of green leaf biomass production. If litter N 389 
concentration was missing, we calculated the net Nup using the predicted value from a 390 
linear model created with net Nup in the base of gross Nup, in 33% of the entries. This 391 
model had an r2 of 0.88, a p-value < 2.2e-16, and a correlation of 0.72 between gross and 392 
net Nup.  393 
 394 
4.2 Environmental data 395 
We extracted mean annual precipitation from WorldClim2 (Fick and Hijmans, 2017), as well 396 
as soil pH, soil C, and soil N, soil moisture, soil bulk density, and soil texture from soilGrids 397 
(Poggio et al., 2021). All soil data for the topsoil layer (0-15 cm). We also identified the 398 
potential mycorrhizal association from the dominant species based on Soudzilovskaia et al. 399 
2020, and categorized it into 0, 50, or 100 arbuscular mycorrhizal (AM) percentages. When 400 
dominant species were not provided, we extracted the AM% based on the AM map of 401 
Soudzilovskaia et al. 2019 and the coordinates of our samples. Moreover, we extracted the 402 
microbial N stock from Xu et al. 2013. We calculated and obtained the accumulated oxidized 403 
N deposition from Yang and Tian, 2022 from 1901 to 2022 by georeferencing each field plot. 404 
Oxidized and reduced N deposition are correlated and are thought to have similar ecological 405 
effects (Sutton and Fowler, 1993; Yang and Tian, 2022). Oxidized forms generally come from 406 
combustion reactions while reduced forms generally come from agricultural practices. We 407 
decided to use the oxidized form because it is the most equally distributed at a global scale.  408 
 409 
4.3 Nitrogen uptake calculation 410 
We calculated the increase in annual N stock for each tissue (leaves, stem, roots, and litter) 411 
by multiplying the biomass increase by its N concentration. We obtained the gross annual 412 
Nup by aggregating tissue’s Nup (roots, leaves, and stem if woody). To account for the N 413 
that has been reabsorbed before senescence, we subtracted the litter N stock from the 414 
green leaves N stock. We subtracted the reabsorbed N from the gross Nup to obtain the 415 
final net Nup value as follows:  416 
 417 

𝐺𝑟𝑜𝑠𝑠𝑁𝑢𝑝	 = 	 (𝑁𝑃𝑃𝑙𝑒𝑎𝑣𝑒𝑠	 ∗ 	𝑁𝑙𝑒𝑎𝑣𝑒𝑠	 + 	𝑁𝑃𝑃𝑠𝑡𝑒𝑚	 ∗ 	𝑁𝑠𝑡𝑒𝑚	 + 	𝑁𝑃𝑃𝑟𝑜𝑜𝑡𝑠	 ∗ 	𝑁𝑟𝑜𝑜𝑡𝑠)	418 
 419 

𝑁𝑒𝑡𝑁𝑢𝑝	 = 	𝐺𝑟𝑜𝑠𝑠𝑁𝑢𝑝	–	(𝑁𝑃𝑃𝑙𝑒𝑎𝑣𝑒𝑠	 ∗ 	𝑁𝑙𝑒𝑎𝑣𝑒𝑠	 − 	𝑁𝑃𝑃𝑙𝑖𝑡𝑡𝑒𝑟	 ∗ 	𝑁𝑙𝑖𝑡𝑡𝑒𝑟)	420 
 421 

Nup = Plant nitrogen uptake (kg N/ha/yr) 422 
NPP = Net primary production (kg N/ha/yr) 423 
N = Nitrogen (% of dry weight) 424 
 425 
4.4 Nitrogen use efficiency calculation 426 
We calculated the nitrogen use efficiency (NUE) by calculating the total amount of biomass 427 
produced in leaves, stems, and root tissue divided by the amount of nitrogen in each tissue. 428 
It will give the amount of biomass produced by a unit of nitrogen. 429 
 430 

NUE	=	(NPPleaves	/Nupleaves)+	(NPPstem	/Nupstem)+	(NPProots/Nuproots)	431 
 432 
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NUE = Nitrogen use efficiency (kg C / kg N) 433 
NPP = Net primary production or biomass increase (kg N/ha/yr) 434 
Nup = Nitrogen uptake by tissue calculates as NPP * N % 435 
 436 
4.5 Linear statistical analysis 437 
From the available variables collected, we selected the less correlated ones using the cor 438 
function in R to deal with multicollinearity. The less correlated variables selected were mean 439 
annual air temperature, mean annual precipitation, altitude, arbuscular mycorrhizae 440 
percentage, microbial N stock, soil N stock, soil pH, accumulated oxidized N deposition from 441 
1901 to 2022, and woodiness. The biggest collinearity among variables was 0.52 between 442 
mean annual temperature and AM presence (Table S2). Generalized linear models were 443 
created using Nup and NUE as dependent variables and the family was set up as Gamma 444 
with an inverse link to fulfill the residuals normality requirements. We performed a model 445 
selection using the dredge function in the MuMIn R package (Barton, 2023) and chose the 446 
best linear model based on its lowest AIC. We calculated the variable importance using the 447 
function sw on the MuMIN R package (Barton, 2023). We calculated the pseudo R square 448 
of the models using the function pR2 from the package pscl (Jackman, 2020). Figures were 449 
created using the R package ggplot2 (Wickham, 2016). 450 
 451 
4.6 Nitrogen uptake and nitrogen use efficiency upscaling 452 
To upscale Nup and NUE to global grasslands and woody vegetation, we used extreme 453 
gradient boosting (XGBoost) models splitting the database into train, test, and validation 454 
using a ratio of 70:20:10, respectively. Extreme gradient boosting is a machine learning 455 
algorithm that builds ensemble decision trees, applying regularization and pruning 456 
techniques to improve performance and prevent overfitting (Chen et al., 2016). We trained 457 
an XGBoost model using the R package xgboost (Chen et al., 2023), forcing an early stop 458 
based on minimum root mean squared error to avoid overfitting and setting up the 459 
objective as a gamma regression. We optimized the parameters based on performance at a 460 
maximum depth of 6, minimum child weight of 1, and eta of 0.3. We considered the same 461 
independent variables included in the linear model without interactions. We repeated this 462 
process 20 times with random database separation to stabilize the variability due to 463 
randomness in subset splitting. We extracted the variable importance of each model using 464 
the function xgb.plot.importance on the xgboost R package (Chen et al., 2023), calculated 465 
the mean of the values among the 20 different training sets, and displayed it using ggplot. 466 
We calculated partial dependence plots using the function partial in purrr R package 467 
(Wickham and Henry, 2023) to explore the non-linear relations on the models. To calculate 468 
the model performance, we calculated the mean squared error of the test set and the r 469 
squared of the predicted vs observed in the validation subset, considering the validation set 470 
as completely independent. 471 
 472 
To predict the values at a global scale, we used the spatial explicit mean annual 473 
precipitation, mean annual temperature, and altitude variables provided by WorldClim2 474 
(Fick and Hijmans, 2017); the microbial N stocks by Xu et al. 2013; the oxidized accumulated 475 
N deposition from 1909 to 2022 calculated from Yang and Tian 2022 and soil N stocks and 476 
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soil pH provided by soilGrids 2.0 (Poggio et al., 2021) at 15 cm depth. We reclassified the 477 
European Space Agency Land Cover (ESA-LC) map (Defourny, 2019) (Table S3) and we 478 
downscaled its resolution to 2 km using the raster R package (Hijmans, 2023). We upscaled 479 
each of the 20 Nup and NUE models using the trained XGBoost models and their prediction 480 
per pixel at 2 km resolution and calculated the mean to obtain the final maps. We 481 
parallelized the process using the parallel function and spaDES.tools R package (McIntire 482 
and Chubaty 2023) to accelerate the upscaling. We masked areas not considered woodlands 483 
or grasslands in natural conditions according to the European Space Agency cover map 484 
(Defourny, 2019) (Table S3), and then, we obtained a map of the yearly Nup, Nup standard 485 
deviation, and annual NUE. We obtained the final number of yearly Nup by summing all the 486 
pixels available. 487 
 488 
4.7 Nitrogen uptake comparison with TRENDY models ensemble 489 
We obtained the available Nitrogen uptake of Vegetation (fNup) variable associated with 490 
all the available models in TRENDY v8 S3 (Sitch et al., 2015; Le Quéré et al., 2018). The 491 
models containing fNup are ORCHIDEE, LPX-Bern, LPJ-GUESS, JULES, JSBACH, DLEM, 492 
CLM5.0, and Cable-POP, and the S3 experiment in the simulation considering the adaptation 493 
of CO2, land use, N deposition, and climate from 1850 representing current environmental 494 
conditions. We calculated the yearly mean Nup from 1984 to 2022 for each model. Then, 495 
we calculated the difference between each TRENDY model and our Nup estimations. We 496 
also calculated the latitudinal mean of the difference to achieve a latitudinal profile and 497 
calculated the overall mean. 498 
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