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Abstract. Globally there are over 24,000 storage structures (e.g. dams and reservoirs) that contribute over 7,000 km3 of

storage. Until recently, most of the data regarding these reservoirs was not openly accessible. As a result, many studies rely on

generalized operations based on generalized assumptions about reservoir storage dynamics and management. With the creation

of global datasets such as the Global Reservoirs and Dams (GRanD), RealSat, GloLakes, and the International Coalition for

Large Dams database (iCOLD) as well as localized datasets such as ResOpsUS for the contiguous United States, and the5

Mekong Data Monitor for the Mekong River basin, the inference of reservoir operations using data derived techniques has

become much more ubiquitous regionally. Yet to our knowledge, there has been no global application of data-derived methods

due to their model complexities and data limitations. Therefore, our analysis aims to fill this gap by providing a workflow

for implementing data derived reservoir operations in the large scale hydrologic models with an application in the PCR-

GLOBWB 2 global hydrologic model. This methodology uses global satellite altimetry data from GloLakes, a parameterization10

methodology developed by Turner et al. (2021), and a random forest model. We also test the sensitivity of our reservoir scheme

to downstream demand by selecting three different downstream areas presumed to be served by reservoirs release (command

areas): 250 km, 650 km, and 1100 km. Our results demonstrate that our random forest algorithm is able to capture the storage

dynamics and that the errors are mainly due to the errors in using remotely sensed storage data. Additionally, we observe in

many cases that deriving operational bounds from historical reservoir time series has minimal impact on streamflow at the15

basin outlets nor is the scheme sensitive to the downstream command areas. We do observe that streamflow is affected directly

downstream from the reservoirs and that the data-derived methodology does increase the accuracy of simulated global reservoir

storage when compared to observations. In fact, the derived operations have much lower storage values that align better with

both direct and remotely sensed reservoir storage observations. This demonstrates that generic operations overestimate the total

amount of water stored in reservoirs and, as a result, are potentially overestimating water availability. Ultimately, our workflow20

allows global hydrologic models to capitalize on recent data acquisition by remote sensing to provide more accurate reservoir

storage and global water security.
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1 Introduction

Across the globe, there are over 24,000 reservoirs that regulate 63% of all global rivers (Hou et al., 2024), contain 61% of the

global seasonal variability in water storage (Cooley et al., 2021), and greatly decrease river connectivity (Grill et al., 2019;25

Belletti et al., 2020). With this loss of river connectivity comes a large amount of water storage (over 8,000,000 m3 (Lehner

et al., 2011)) that provides water for a variety of main purposes ranging from water supply and irrigation in more arid climates

to hydropower and flood control in more humid environments. For many reservoirs, these uses are not unique as one reservoir

may provide multiple uses integral to water management regardless of their primary use (Belletti et al., 2020; Biemans et al.,

2011; Boulange et al., 2021; Doll et al., 2009; Grill et al., 2019). With projected increases in global cropland (up to 1,244 MHa)30

and over 90% of the world’s population living within 10 km of readily available surface water (Kummu et al., 2011; Potapov

et al., 2021), the importance of reservoirs for flood control, irrigation, and water supply is large as the majority of society is

dependent on reservoirs for a variety of uses (Di Baldassarre et al., 2018). Therefore having an accurate depiction of reservoir

storage at the global scale in observations and models is crucial to evaluating both historical and projected water availability.

Reservoir operating policies strongly impact the seasonality and variability in downstream streamflow regimes, yet their op-35

erations in global hydrologic models are highly dependent on data availability. Across the globe, reservoirs decrease streamflow

variability with heightened effects during extreme flows (Salwey et al., 2023; Zajac et al., 2017; Chalise et al., 2021). However,

capturing this behavior in hydrological modeling tools is far from trivial due to a lack of observational data that describes

reservoir properties and operational policies. In many generic operations, streamflow sensitivity to reservoirs in large-scale

hydrologic models is quite limited with only a few regions experiencing large changes (Biemans et al., 2011; Hanasaki et al.,40

2006; Haddeland et al., 2006) Therefore observational data is required to support the development of parameterizations that

can replicate reservoir dynamics and be used to assess downstream impacts. Ultimately, the analysis of these impacts on the

global scale is now largely limited by the uncertainty in the parameterization of reservoir operation in hydrologic models which

leads to varied effects on the modeled streamflow regimes (Zajac et al., 2017). Therefore, more observational reservoir data is

needed to remedy the current biases and uncertainty within reservoir operations.45

Even with the current data limitations, global hydrologic models can use generic operating curves to approximate reservoir

releases and analyze the impact of water demands on global reservoir storage. In general, global reservoir storage capacity

increased over the past 40 years as dams were built to support a variety of main uses (Lehner et al., 2011; Haddeland et al.,

2006; Li et al., 2020; Wisser et al., 2013). This increase in storage capacity does not necessarily correlate with an increase

in storage as many regions (primarily arid basins such as southeastern Australia, southwestern US, and eastern Brazil) have50

observed decreases in total reservoir storage (Steyaert and Condon, 2024; Li et al., 2020) due in part to increased domestic

water demand resulting from population growth and decreased storage capacities from sedimentation (Simeone et al., 2024;

Li et al., 2020; Wang et al., 2024; Wisser et al., 2013). This regionality is especially important as remote sensing observations

show that most global reservoirs (more than 50%) have not filled between 2010-2022 and many reservoirs in the Southern

Hemisphere observe strong declines (Yao et al., 2023; Wang et al., 2024; Li et al., 2023). Ultimately, the regional differences in55

reservoir storage, the lack of observed filling, and the impact of sedimentation and water demand on storage levels are not well
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captured in generic operations due to simplified calculations that do not assimilate information derived from observed storage

values.

The first generation of generic reservoir operations by Meigh et al. (1999), Döll et al. (2003), Pietroniro et al. (2007), and Rost

et al. (2008) used static reservoir capacities and a water balance method to develop simplified generic operating curves. In these60

methodologies, researchers need a total storage capacity (usually derived from static datasets such as GRanD (Lehner et al.,

2011) or the World Registry of Dams from the International Commission of Large Dams (ICOLD; https://www.icold-cigb.org)

and/or surface area. These two values are used to denote how much water could be stored in a given reservoir for a given

time step and any "excess" water is released downstream. These methodologies are more readily incorporated into large-scale

hydrologic models, such as WaterGAP (Doll et al., 2009) and PCR-GLOBWB 2 (Sutanudjaja et al., 2018) due to their limited65

data requirements. Their main critique lies in the assumption that reservoirs are usually filled to their maximum capacity which

overestimates the amount of storage (Steyaert and Condon, 2024; Salwey et al., 2023). Additionally, the lack of different

reservoir purposes may result in generic operations that differ greatly from the observed operational policies (Steyaert and

Condon, 2024; Turner et al., 2021). More recent advances on these fronts by Salwey et al. (2023) and Brunner and Naveau

(2023) focus on utilizing water balance methods to back-calculate transient reservoir characteristics from openly available data70

such as regional streamflow. These methodologies show promise regionally but have not yet been scaled to global applications

nor implemented in global hydrologic models (Hosseini-Moghari and Döll, 2024).

The above generic operations have historically utilized static reservoir characteristics (e.g. location, capacity, area, main

purpose) from datasets such as the Global Reservoirs and Dams dataset (GRanD Lehner et al., 2011) and World Registry of

Dams from iCOLD. The majority of these datasets include data for the largest dams across the globe and provide valuable75

input as most hydrologic models are typically run on coarser spatial scales (0.5 degrees or around 50km at the equator).

However, recent developments in hyper-resolution modeling have resulted in a higher demand for high-resolution information

on reservoir properties, especially locations and operations (e.g. Hoch et al., 2022; van Jaarsveld et al., 2024). While datasets

like GRanD and iCOLD contain the majority of storage across the globe (8*106 m3), these two datasets do not include all

storage structures nor do they contain transient reservoir characteristics that can be used to develop operational curves. In fact,80

GRanD, the most used reservoir dataset for evaluation of reservoir operations only contains 6,000 global structures with a

storage of 6,197 km3 as it is focused on dams greater than 0.1 km3. More recent mapping by Wang et al. (2022) mapped

24,000 structures with a total storage of over 7,000 km3; however, this new dataset still does not contain transient reservoir

operation information. These static characteristics are useful for implementing generic reservoir operations to analyze the

impact of reservoirs on the larger hydrologic cycle, however, the lack of transience and defined seasonality can limit accurate85

storage simulations and in many cases can cause models to overestimate the amount of reservoir storage (Steyaert and Condon,

2024; Brunner and Naveau, 2023; Salwey et al., 2023).

More complex models of reservoir operations pushed for the inclusion of water demand and main use as a driving factor

for reservoir releases in order to better represent reservoir operations. Initially, the work by Hanasaki et al. (2006) accounted

for reservoir releases at a yearly time step and included demand in the reservoir release equation. In addition to this, Hanasaki90

et al. (2006) also included different operational policies based on the main reservoir purpose and employed a release factor
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(a ratio made up of current storage, maximum capacity, and dead storage) to denote how much extra water might need to be

accounted for based on how full the reservoir is. Similar to this approach, Biemans et al. (2011), Haddeland et al. (2006),

Voisin et al. (2013),and van Beek et al. (2011) also included downstream demand into the reservoir water balance as well as

incorporating different operational policies based on the reported main reservoir use. That said, only four main categories are95

typically employed: irrigation, flood control, hydropower generation, and navigation. In the case of van Beek et al. (2011)

and Voisin et al. (2013) only irrigation and hydropower uses are used. While van Beek et al. (2011) changed operations based

on main use, Voisin et al. (2013) changed operations based on seasonality (i.e. flood control operations in the spring and

irrigation prioritization in the summer/autumn). Ultimately, these operational policies are also easy to incorporate into large-

scale hydrologic models as their calculations rely solely on static reservoir capacity, modeled inflow, modeled downstream100

demand, and one or two extra parameters that can either be readily calculated within the model or calibrated using additional

observations.

With the inclusion of water demand another factor of uncertainty is introduced: what is the downstream command area (i.e.

the downstream area dependent on the upstream reservoir for water supply) that influences the reservoir release decisions?

While numerous studies have employed downstream demand in their reservoir operations (Yassin et al., 2019; Turner et al.,105

2021; Hanasaki et al., 2006; van Beek et al., 2011; Biemans et al., 2011; Voisin et al., 2013; Haddeland et al., 2006), only

three main studies provide the size of these command areas. In all cases, the downstream area is defined as the stream reach

downstream from the reservoir outlet to the next reservoir or the river mouth, whichever comes first. Haddeland et al. (2006)

opted to use a downstream distance of 250 km (or 5 grid cells at a spatial resolution of 0.5 degrees). They also employed a

check that ensured each dam had at least one downstream demand pixel and split the demand based on the ratio of reservoir110

capacities (meaning a larger reservoir would meet more demand than a smaller one). This value was updated by van Beek et al.

(2011), who observed that the most operational downstream area would be 600 km (or the distance a water droplet could travel

in one week). Hanasaki et al. (2006) used a downstream command area of 1100 km which is equivalent to the distance one

water particle could travel in a month, which was the temporal resolution of the employed hydrologic model. The difference

in how far downstream a reservoir should operate allows operational policies to be more sensitive to the short-term variations115

(such as using a downstream area of 250 km Haddeland et al., 2006) or to the longer-term changes in a system (600-1100 km

van Beek et al., 2011; Hanasaki et al., 2006). These differences are useful for analyses but aside from choosing a value based

on model characteristics, the actual sensitivity of modeled reservoir releases to differences in command areas has not yet been

studied.

Reservoir operation schemes are also adapting to the newly available data in both the regional and global context. Turner120

et al. (2021); Zhao et al. (2016); Burek et al. (2020); Macian-Sorribes and Pulido-Velazquez (2020), and Yassin et al. (2019)

parameterized reservoirs based on available data using anywhere from 10 to 72 key parameters. The majority of these methods

utilized reservoir data that was freely accessible via online platforms and opted to include operational bounds based on different

operational decisions (a level for flood control, an active storage level, a conservation pool, and a dead storage zone). Burek

et al. (2020) and Zhao et al. (2016) pioneered this work by dividing reservoirs into multiple levels based on multiple linear125

regressions (Burek et al., 2020) and using user-derived parameters obtained from the local stakeholders (Zhao et al., 2016).
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While these methodologies showed promise regionally, the lack of global data removes the individual operating nuances and

can result in errors in downstream flows specifically in regions that are underrepresented (Yassin et al., 2019; Turner et al.,

2021). Yassin et al. (2019) and Turner et al. (2021) furthered this methodology by using freely accessible historical reservoir

time series to obtain operational curves based data mined reservoir data. This data was used to create seasonal time series of130

storage and release patterns that (depending on the number of variables) can be more easily incorporated into regional models

(e.g. MOSART for Turner et al., 2021).

While the majority of these schemes analyze regional dynamics, only a few have been incorporated into regional models:

Turner et al. (2021) into MOSART, Yassin et al. (2019) into the Canadian land surface model MESH (Pietroniro et al., 2007),

and Macian-Sorribes and Pulido-Velazquez (2020) into RiuNet, with generally good results. The incorporation into large-135

scale hydrologic models has, until recently, been very limited by the high data requirements, reduced generalizability, the

number of interconnected variables, and the number of parameters in these models. The lack of available data, for example,

makes training and obtaining these parameters quite challenging as many global hydrologic models strive to quantify water

quantity on the global scale instead of the local scale and thus consistent high-quality input data needs to exist with global

coverage. Additionally, the incorporation of multiple parameters and inter-dependencies (i.e. large-scale hydrologic models140

require reservoir storage, yet reservoir storage calculations from data-driven models are dependent upon output from hydrologic

models) which increases the computational load and the potential for compounding errors already associated within the original

hydrologic model as well as the reservoir model.

The advancement and availability of high-resolution transient regional data has led to a rapid increase in the application

of machine learning in reservoir operations, specifically focused on networks (Coerver et al., 2018) and fuzzy logic schemes145

(Macian-Sorribes and Pulido-Velazquez, 2020). While these methods have seen large improvements in accurately depicting

reservoir storage and release, the amount of data required for their development, their complexity, and the numerous required

parameters can make linkages with global hydrologic models challenging. Especially since the transferability of these locally

parameterized models is limited and the high number of parameters makes it difficult to extrapolate these models to global-scale

applications. Therefore, there have not yet been any global applications of these machine learning operational schemes.150

Recent improvements in satellite altimetry data (Chen et al., 2022; Hou et al., 2024) as well as the plethora of public

and private satellite missions over the past 20 years have made the creation of transient reservoir operation datasets (such

as GloLakes Hou et al., 2024) and updated reservoir characteristics (GeoDAR Wang et al., 2022) possible. This increase in

satellite monitoring allows for the creation of reservoir surface area time series that can be input to statistical models to back-

calculate reservoir storage at select temporal and spatial resolutions. In general, surface areas are mapped via LandSat imagery155

using a combination of machine learning and manual approaches (Hou et al., 2024; Lehner et al., 2011; Ling et al., 2020;

Zhang et al., 2019). After pixels are classified as reservoirs, the digital elevation model is used to invert the reservoir storage.

Historically, remote sensing methodologies have used Sentinel or GREALM as their DEM (digital elevation model) component

(Zhao et al., 2016), but increases in satellite missions and the increased need for monitoring glacier and ice changes led to a

new satellite called IceSAT which has shown promise in monitoring lake elevations using Lidar measurements (Chen et al.,160

2022). Once the DEM, and surface area are obtained for each site, a statistical model is used to estimate the reservoir storage
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at each measurement point over the entirety of the time series(Hou et al., 2024; Chen et al., 2022; Zhao et al., 2016). Using

these datasets, Hou et al. developed a global dataset of historical reservoir storages that can be used to evaluate global reservoir

storage fluctuations, streamflow impacts, and to update reservoir release models.

To facilitate accurate global hydrologic modeling at high spatial resolutions, we need to combine the simplicity and general-165

izability of classical reservoir modeling approaches with the newly available data and data-driven operating rules. Specifically,

there is a need to better incorporate transient reservoir operations into global hydrologic models. Therefore, the objective of

this study is to utilize global reservoir storage data calculated via satellite altimetry in combination with a data-driven frame-

work to derive static and seasonal parameters for global reservoir operation. We will follow the work of Turner et al. (2021)

by estimating seasonal boundaries for release and conservation. Ultimately, these components will be placed into the global170

hydrologic model PCR-GLOBWB 2 (Sutanudjaja et al., 2018) to answer the following questions:

– Are reservoir operations whose operating rules have been extrapolated using data-derived approaches more accurate than

generic ones and what does this mean for the current data gaps in reservoir operational data?

– What is the sensitivity of different reservoir operations to the size of the command area

– How does the ability of global hydrologic models to reproduce streamflow and reservoir storage improve or decrease175

depending on the type of reservoir operation used (i.e. generic vs data-driven)?

To answer these questions, this study uses a dataset of remotely sensed reservoir time series from Hou et al. (2024) that can be

the basis for a statistical model (STARFIT) which derives reservoir operational bounds. Using these operational bounds, we

derive two main reservoir models for irrigation-like and hydropower-like dams. We implement these operational policies in

PCR-GLOBWB 2 in order to evaluate the global impact of changing reservoir regimes on global water resources.180

2 Methods

For this analysis, we updated the number of storage structures in PCR-GLOBWB 2 (Sutanudjaja et al., 2018) from 6,000 to over

24,000 worldwide using a new dataset: GeoDAR (Wang et al., 2022) (Section 2.1). Additionally, we also update the current

reservoir operations. To do this, we followed the data derived workflow outlined in Figure 1. First, we utilized a new dataset of

remotely sensed reservoir surface area and estimated storage created by Hou et al. (2024) called GloLAKES (titled reservoir185

time series in Figure 1). We input this weekly data into the STARFIT model developed by Turner et al. (2021) (Section 2.4.2) to

determine seasonal trends of flood and conservation zones from storage data. After obtaining flood and conservation curves for

1752 reservoirs, we then trained a random forest model to predict the ten parameters that determine the flood and conservation

zones for these 1752 reservoirs. The random forest model used static reservoir characteristics, and hydroclimatic socioeconomic

variables as features. We then used the trained random forest model (Section 2.5) to extrapolate active storage bounds for all190

of the 24,000 structures and compared this new operational scheme with the current reservoir scheme in PCR-GLOBWB 2

(Section 2.6). Finally, we split the 22,000 dams into categories based on their main use and modelled releases based on two
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Figure 1. Outlines our workflow to create the data-derived operations implemented in PCR-GLOBWB 2. Orange boxes denote the instances

where outside reservoir, socioeconomic, or hydroclimatic datasets were used. Blue boxes denote the parameters and the final curves, while

green boxes denote the models that we used in our methodology. For our analysis, we used 1752 reservoir time series and thus the STARFIT

maximum-minimum active zone boundaries are only available for 1752 dams. The Random forest methodology allows us to extrapolate the

active zone curves from these 1752 structures to 24,000 global reservoirs.

main operational schemes described in Section 2.4.3 and Section 2.4.4. This allowed us to analyze the bias in using different

input data in our random forest workflow and the impact of operational schemes on PCR-GLOBWB 2 outputs.

2.1 Data Sets195

To compliment the hydrologic model and statistical model (STARFIT from Turner et al. (2021)), we required a variety of

datasets that are depicted in Table 1. These datasets are used to update the number of reservoirs in PCR-GLOBWB 2, train the

random forest algorithm, and validate our analysis.
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Dataset Name Citation Type of Data Purpose

Global Runoff

Data Centre

https://www.bafg.de/

GRDC/EN/Home/

homepage_node.html

Discharge data Streamflow Validation

GeoDAR Wang et al. (2022) Static reservoir charac-

teristics

Base Maps

Global Reservoir

and Dams Dataset

Lehner et al. (2011) Static reservoir charac-

teristics

Base Maps

International

Commission

of Large Dams

Dataset

https://www.icold-cigb.

org

Static reservoir charac-

teristics

Gap filling missing reser-

voir purposes and con-

struction dates

GloLAKES Hou et al. (2024) Transient reservoir oper-

ations

Random forest algorithm

and storage validation

ResOpsUS Steyaert et al. (2022) Transient reservoir oper-

ations

Storage validation

Table 1. Describes the data used in this analysis. Column one gives the dataset name. Column two gives the paper citation or webpage

associated with the data source. Column three gives the type of data and column four describes the function the data played in this analysis

2.1.1 Reservoir Data

To update the number of reservoirs in PCR-GLOBWB 2, we used a newly minted reservoir dataset that contains over 24,000200

global structures (Wang et al., 2022). The dataset, itself, contains static reservoir properties such as surface area, capacity,

latitude, and longitude. In order to fill missing gaps in surface area, capacity, creation date, and main reservoir purpose, we

linked GeoDAR (Wang et al., 2022) to the Global Reservoirs and Dams Dataset (GRanD) created by Lehner et al. (2011) and

the International Commission of Large Dams (iCOLD) registry (ICOLD; https://www.icold-cigb.org, last access: 13 March

2019). From this updated table, we created yearly maps of static reservoir characteristics which are used to model reservoir205

releases and to distinguish between two operational policies hydropower-like and irrigation-like.

In addition to static reservoir characteristics, we required transient reservoir data for the STARFIT model. For this, we used

the GloLAKES dataset (Hou et al., 2024), a dataset that contains remotely sensed reservoir surface area time series data for

the majority of dams and lakes in HydroSHEDS (Giachetta and Willett, 2018). Hou et al. (2024) used remotely sensed surface

area extents from LandSat and reservoir depths from BLUEDOT/Sentinel-2. These outputs were then put into a storage area210

relationship from Crétaux et al. (2016) to calculate reservoir storage. From GloLakes, we fit curves for over 6000 storage

structures worldwide. Due to limited satellite coverage and temporal gaps, the majority of data points sit within latitudes

between 56° South and 82.8° North and are only available on the weekly time scale.

8

https://doi.org/10.5194/egusphere-2024-3658
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



2.2 Validation Data

To validate our analysis, we used two types of validation data to benchmark the quality of the random forest model and215

our data-driven reservoir operations: storage data from ResOpsUS and the LandSAT+ICESAT product from GloLAKES, and

streamflow data from the Global Runoff Data Center. Reservoir storage data from the ResOpsUS dataset Steyaert et al., 2022,

which contains over 600 reservoirs spread throughout the conterminous United States and was the original data Turner et al.

used to create the STARFIT algorithm, is used as an independent benchmark to evaluate how well the workflow captures

seasonalities against direct observations. To validate storage changes and potential storage uncertainties within the workflow220

globally, we used the estimated water level variations from LANDSAT+Sentinel2 and LandSAT+ICESAT as both are available

at the same temporal and spatial resolution. To validate and benchmark the addition of our data-driven operations in PCR-

GLOBWB 2, we used global streamflow data from over 10,000 gages in the Global Runoff Data Center’s (GRDC) dataset. The

data in GRDC has good coverage over North America and Europe and lower coverage in Asia and Africa (Burek and Smilovic,

2023). Even with the limited coverage, GRDC data is still the best for global validation of streamflow. Our validation used225

75% of all the gages and of these 75%, 8% of the gauges have a full period of record from 1979-2023 which is the period over

which we analyzed changes in streamflow due to reservoir operations. For a more detailed analysis, we removed all the gages

that were not directly downstream of a reservoir and were therefore left with 2,666.

All the data for this analysis was acquired through open-access sources and has been noted in the Data Availability section.

2.3 PCR-GLOBWB 2230

PCR-GLOBWB 2, our primary global hydrologic model, is a grid-based hydrologic model that covers the entirety of the globe

(aside from Greenland and Antarctica) and estimates human water use as well as hydrological variables. The computational

grid of PCR-GLOBWB 2 is available at a variety of resolutions: 30 arc minutes, 5 arc minutes (Sutanudjaja et al., 2018) or

30 arc seconds (van Jaarsveld et al., 2024; Hoch et al., 2022). For each grid and time step (daily for hydrologic variables and

dynamic for river routing), the model simulates moisture storage and water exchanges between the ground, atmosphere, and235

soils. Through this, it can effectively simulate transpiration from crops and vegetation, evaporation from soil and open water,

snow and glacier processes such as accumulation and melt, surface runoff, groundwater recharge, soil and plant transpiration,

discharge, reservoir storage, reservoir release, and runoff. The system’s runoff is routed through a river network to potential

sinks such as the ocean, or endoheric lakes and wetlands using the kinematic wave approach. The model currently has 6,000

dams based on GRanD (Lehner et al., 2011) that use a generic operation scheme developed by Sutanudjaja et al. and described240

in Section 2.4.1. In addition to modeling hydrologic variables, Wada et al. (2014) included an updated scheme for evaluating

human water use. At each daily time step in PCR-GLOBWB 2, three main steps occur: 1) water demand for irrigation, indus-

trial, livestock, and domestic uses is estimated, 2) these estimated demands are translated into withdrawals from surface and/or

groundwater sources subject to the availability of these resources and the maximum groundwater pumping capacities, and 3)

consumptive water use and return flows are calculated per sector (Sutanudjaja et al., 2018).245
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2.3.1 Inclusion of GeoDAR into PCR-GLOBWB 2 domain

Since PCR-GLOBWB 2 runs on a gridded model domain, our first step in updating the number of structures was to create new

input maps by remapping the geospatial structures from GeoDAR to the PCR-GLOBWB 2 domain. First, we rasterized the

GeoDAR attributes and overlaid them on the PCRaster global domain maps that has a 5 arc minute spatial resolution (about 10

km at the equator). This spatial resolution is the optimal balance between computational demand and model performance and250

has been extensively validated and benchmarked (Sutanudjaja et al., 2018). Due to the decision to model at a spatial resolution

of 5 arc minutes, we found that some dams are situated within the same grid cell. For these grid cells that had multiple dams,

we summed their storage capacity and chose the construction date of the first dam. After remapping the dams to their new

location on the PCR-GLOBWB 2 domain, we then ensured that reservoirs were not split between multiple catchments and that

lake and reservoirs were not mixed if situated in the same grid cell. Here, we calculated the total area of each lake and reservoir255

per cell and if the total area of the lake was larger than the reservoir for overlapping structures, we converted the reservoir

cells to lakes and visa versa. We ensured that reservoirs were only present in the dynamic model simulation after their initial

construction date to avoid unrealistic discharge simulations. Lastly, we repeated this process with the original input data from

GRanD to ensure any differences in our results could be solely attributed to the reservoir operations or initial reservoir input

data.260

2.4 Reservoir Operations

To evaluate the impact of "standard" generic operations and data-driven reservoir operations on global discharge, we opted to

utilize two different reservoir schemes. The first is a generic reservoir scheme derived from Sutanudjaja et al. (2018) which

uses static values such as maximum reservoir capacity and operational bounds: 10% of maximum storage capacity as the

dead storage (the point where water can no longer be abstracted from the dam) and 75% of maximum storage capacity as265

the maximum available storage, with year-round fixed boundaries that do not reflect seasonality. The second is a data-derived

reservoir scheme: STARFIT, derived by Turner et al. (2021) to fit historical reservoir time series from ResOpsUS (Steyaert

et al., 2022). This method derives weekly operational bounds for flood and conservation zones from historical storage time

series and has been calibrated and tested in the United States (Turner et al., 2021). As our analysis is all done globally, we use

data from 1752 dams in GloLAKES (Hou et al., 2024) and derive the operational bounds for the STARFIT using a combination270

of observations and machine learning. From there, we employ the two different operational schemes based on the main purpose:

Section 2.4.4 and Section 2.4.3)

For all of the operational schemes (generic, irrigation-like and hydropower-like, we employ the following method. First, we

define the initial release and set up the framework for other conditions such as environmental flows, and floods. To do this, we

first calculate the initial discharge into the model that is defined by equation 1.275

Ri = RF ∗Ravg (1)

where RF is the reduction factor as shown in equation 3 with the updated values as defined above, Ravg is the long-

term average outflow that is dynamically calculated within the model. This initial release (Ri) is used as a starting point

10

https://doi.org/10.5194/egusphere-2024-3658
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



in each operational scheme and is modified based on the type of operation used. In all cases, the Ri cannot be greater than the

downstream bankfull discharge value of 2.3 which is the highest ratio of streamflow to stream network is expected to transport280

without floods occurring.

Then, we calculate the new storage using the following water balance equation under the initial release to ensure a starting

point of storage:

Sc(t + 1) = Sc(t) + I(t) +P (t)−E(t)−Ri (2)

where I is inflow, A is area reservoir, P is precipitation, E is evaporation, R is release.285

We use this updated storage to define the reduction factor, which is the fraction of the long-term average reservoir release,

as outlined in equation 3.

RF =
Sc−Smin

Smax−Smin
(3)

where Scis the current storage level, Smax is the maximum storage capacity and Smin is the dead storage level.

After this, we employ updated release calculations based on Section 2.4.1, Section 2.4.3, or Section 2.4.4 depending on the290

type of operational scheme used as well as the type of dam. This new release is then placed back into equation 2 to update the

storage at the current timestep.

2.4.1 Generic Reservoir Scheme in PCR-GLOBWB 2

Generic reservoir operations are already implemented in PCR-GLOBWB 2 by Sutanudjaja et al. (2018) and mimic that of

hydropower operations. Each reservoir has an active zone between 10% and 75% of the reported maximum storage capacity295

in GRanD. When storage is below the dead storage limit (i.e. 10% of maximum capacity), the reservoir does not release any

water. Between 10% and 75% full, the reservoir outflow is scaled by the reduction factor denoted by equation 3

The generic release operations are defined by the following piecewise function.

R =





0 if Sc < Smin

RF ∗Qavg if Sc > Smin and Sc < Smax

Sc−Scap

Smax−Scap
∗ (Qbf −Qavg) +B if Sc > Smax

(4)

where Qavg is the longterm average discharge at the point location of the dam, Qbf is the bankfull discharge, and B is the300

bankfull number which is the ratio of bankfull discharge to the average discharge and is denoted as 2.3in our analysis (van

Beek et al., 2011).

In all instances, demand is set at zero meaning that the reservoir is changing releases solely based on storage. When reservoir

storage minus the projected release would be greater than the set maximum of 75% of storage capacity or Smax, the reservoir

enters flood conditions. At this point, an additional release is added to ensure that the reservoir is brought back to the upper305

75% of storage and is not over-topped. All the water is routed downstream where it can be further allocated within the river

network in PCR-GLOBWB 2.
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2.4.2 Data Driven Reservoir Operations - STARFIT

To remedy gaps in generic reservoir operations (primarily the lack of demand, no environmental flow, and uniformly large

active zones), Turner et al. (2021) used the ResOpsUS dataset (Steyaert et al., 2022) to create STARFIT, a reservoir model310

that takes historical reservoir storage, release, and inflow data to output operational ranges for each variable. To do this, these

daily storage, release and inflow values are aggregated into weekly time series and a combination of sine and cosine curves

(described by equation ?? below) are fit to the upper and lower percentiles of each time series. This results in two curves

bounded by the upper and lower percentiles with a total of 10 parameters which creates a range within which reservoir release,

storage, and inflow should sit based on historical data(Turner et al. (2021) used the period from 1980 - 2020).315

St = µ + α ∗ sin(2πωt) +β ∗ cos(2πωt) (5)

For our analysis, we were only able to obtain storage time series from GloLakes, as no global dataset of reservoirs releases

is available. We applied the Turner algorithm to GloLAKES storage data for 1752 dams from 1980 - 2020. This data is already

aggregated weekly due to the gaps in satellite passages and therefore we were able to use the estimated storage values directly

from these remotely-sensed observations. We did not gap-fill the data as this would add additional assumptions that could later320

lead to increased uncertainties. We fit flood and conservations curves to the 1752 dams and obtained the 10 parameters (five

for the flood and five for the conservation curve) denoting the upper and lower limits of the active zone. The 10 parameters

were then used as training data for a random forest model that was used to extrapolate the parameters to the global scale

(Section 2.5).

Since there are large differences between irrigation/water supply dams and hydropower/navigation, we grouped the dams325

into two main categories. Main purposes such as irrigation and water supply were grouped as their dynamics are driven

by downstream demand (either for agriculture or for domestic uses), while main purposes that have operations that are not

demand-driven such as hydropower, fisheries, navigation, recreation, and other were grouped into a second category. This

grouping allowed us to have two main operational strategies: one for hydropower type dams which strive to keep storage as

high as possible and one for irrigation type dams which strive to meet downstream demand.330

Before we could implement the data-derived reservoir operations in PCR-GLOBWB 2, we had to calculate command areas

as the reservoir operation scheme requires downstream demand to determine how much water should be released by water

supply and irrigation dams. Based on our literature review, we observed that there are three main command areas used by

large-scale hydrologic models: 250 km (Haddeland et al., 2006), 600 km (van Beek et al., 2011), 1100 km (Hanasaki et al.,

2006). For each dam represented in the GeoDAR map, we calculated the farthest location along the river network at a distance335

of 250 km, 600 km, or 1100 km and allocated the water demand in each cell up to this point to the upstream reservoir. If

during this process, another dam intersects the river network before the full command area is created, we assume that this is

the maximum distance that is served by the upstream reservoir.

Hydropower-like dams are only able to meet a portion of downstream demand when they are within their active zone

and meeting demand would not decrease storage below the conservation bounds. Irrigation-like dams, on the other hand, are340
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allowed to meet demand when in the active zone and above dead storage (denoted as 10% of the storage capacity). We also

included surface water abstractions for irrigation-like dams.

Lastly, we implement a piecewise function for releases based on the current reservoir storage (Sc) where Rf is the flood

release and RiandRh are the irrigation and hydropower releases in the active zone and are described in by equation 9 in

Section 2.4.4 and by equation 8 in Section 2.4.3 respectively.345

R =





Ri + Rf , if Sc−R≥ Scap

Rh if Sc > Smin and Sc < Smax and use is hydropower

Ri if Sc > Smin and Sc < Smax and use is irrigation

Env if Sc < Sminand RiorRh < Env and Sc−Env > 0

where Rf = Sc−R−Scap (6)

2.4.3 Operations for Hydropower-like Dams

For the hydropower-like dams, we implement a very similar methodology to the generic reservoir operations with the notable

exception that the upper and lower operational bounds are not set at 10% and 75% of maximum storage capacity but rather are

derived from the observational data using the workflow described in Figure 1. We derive the operational bounds for each type350

of dam and each location, in other words a fishery dam in the United States can have different operational bounds than a fishery

dam in Brazil, yet a hydropower dam in Switzerland could have similar operational bounds to a hydropower dam in Vietnam

as long as the input data shows similar trends). For all hydropower dams, we calculate a new initial hydropower release based

on equation 7:

Rhi =





D ∗RF/B, if R < D

R if R > D
(7)355

where D refers to the maximum demand, R is the currently calculated release, RF is the reduction factor (defined in equation

3, Rhi is the initial release, and B is the bankfull discharge.

Once the hydropower release is calculated, there are multiple options for the final release outlined by equation 8. When

storage is below conservation, the release is equal to the recalculated environmental flow and the dam meets no downstream

demand. When the storage again enters the active zone (the area between the conservation and flood curves), the release is the360

difference between the current storage (Sc) and the hydropower release described by equation 8. If this new release results in

a lower storage value than the conservation value, we assume the release is equal to the environmental flow value and does not

release any additional water.

Rh =





Sc−Rhi, if Smin < Sc < SmaxandSc−Rhi > Smin

max(Sc−Smin,0) if Sc−Rhi < Smin

(8)

where Rhi is the initial hydropower release defined by 7, Sc is the current storage, Smax is the flood value and Smin is the365

conservation value.
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2.4.4 Operations for Irrigation-like Dams

For irrigation-like dams, S[min] is set at 10% of the maximum storage capacity and Smax(t) is set at the flood value of that

given day. When storage is in the active zone and above the dead storage zone (defined as the lower 10%), the release will be

equal to the calculated demand, unless releasing that much water would push the storage into the dead zone (defined as the370

lower 10% of the storage capacity). In the case where the precalculated release is already greater than demand (1), the release

does not change. We use the following piecewise function to capture these dynamics:

Ri =





R, if Smin < Sc < SmaxandR > D

RF ∗D) if Smin < Sc < SmaxandR < D

max(Sc− 0.1 ∗Scap,0) if Sc−R < 0.1 ∗Scap

(9)

2.5 Random Forest Extrapolation

Since the weekly operational bounds from STARFIT are only available for 1752 structures globally, this would severely limit375

our global modeling capabilities. Therefore, we used a Random Forest approach to extrapolate the 10 parameters for the

approximately 22,000 other structures in GeoDAR based on relationships between the parameters for the 1752 dams and their

reservoir and catchment characteristics. As input features, we used static reservoir characteristics (i.e. storage capacity and main

purpose), socioeconomic variables (i.e. population density), and climatic variables for the upstream areas (i.e. precipitation,

temperature, and aridity) to best reflect potential drivers for changes in reservoir release policies. 75% of the 1752 structures380

were used to train the random forest model and the remaining 25% were used as independent validation. The obtained RF was

then used to extrapolate the 10 parameters to the remaining 24,000 structures.

Based on Steyaert and Condon (2024) and van Beek et al. (2011), we assume that the flood peak cannot be greater than 100%

or less than 5% of the total storage capacity. Therefore, any values that sit above 100 or less than 5 for flood are automatically set

at these bounds. We also assume that there is at least a 5% difference between the flood and conservation curves so that there is385

always an active zone in the reservoir. To ensure this is the case, we calculate the difference between the flood and conservation

curves at each weekly step for each dam and if the difference is less than 5, we use equation 10 below to calculate the new

conservation level where C[tnew]is the conservation value at the current timestep, Ft and Ct are the flood and conservation

values at the timestep.

[Ctnew = min(Ft− 5,Ct)] (10)390

2.6 Model Evaluation and Model Setup

In this study, we use five scenarios to test the impact of different reservoir datasets as well as different reservoir operating

schemes on the hydrologic simulations of PCR-GLOBWB 2. Our first two scenarios use the original reservoir operations in
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Model Reservoir Dataset and

number of dams

Operational Policies Command Area (km)

Baseline GRanD (6000) Sutanudjaja et al. (2018) None

BaseGeoDAR GeoDAR (24,000) Sutanudjaja et al. (2018) None

Turn250 GeoDAR (24,000) Turner et al. (2021) 250

Turn600 GeoDAR (24,000) Turner et al. (2021) 600

Turn1100 GeoDAR (24,000) Turner et al. (2021) 1100
Table 2. Shows the model scenarios that we have built and tested for this paper. The first column denotes the name assigned to the model

scenario in the results.

PCR-GLOBWB 2 and only differ by the reservoir input datasets 2: one has the GeoDAR database as the input (BaseGeoDAR)

and one has the GRanD data as input (named Baseline), both of these use the reservoir operating scheme as developed by395

Sutanudjaja et al. (2018). We then create three scenarios with the updated data-driven algorithm for the three command areas

we opted to test based on literature: 250 km (Turn250), 600 km (Turn600), and 1100 km (Turn1100). These three scenarios

all use the GeoDAR reservoir dataset as the input dataset and can directly be compared to the Baseline and BaseGeoDAR

scenarios that uses Sutanudjaja et al. (2018).

To estimate the impact of different reservoir datasets, we compared the Baseline and the BaseGeoDAR scenarios as any400

difference in the hydrologic variables (e.g. discharge, reservoir outflow, reservoir storage, reservoir evaporation, surface water

abstraction, and total runoff) can be related directly to the different number of reservoirs structures in the model. The compar-

ison between the BaseGeoDAR and Turn250, Turn600 or Turn1100 serves to identify the impact of implementing a different

reservoir operating scheme in an existing model like PCR-GLOBWB 2.

To validate our analysis, we compared PCR-GLOBWB 2 discharge at the point location closest to dams where observed405

discharge is available via GRDC (Federal Institute of Hydrology, 2020). While this validation has its limitations (mainly we are

only looking at single point locations and there is a skew towards more gauged basins) it allows us to observe how streamflow

regimes are changing between the different simulations, how different that regime change might be between different reservoir

release schemes, and to determine which reservoir operation scheme will produce the most accurate streamflow measurements.

To complement this, we also validate our reservoir storage against observed storage values in ResOpsUS as well as remotely410

sensed reservoir storage from GloLAKES to see if reservoir dynamics are better represented with the new database schemes.

3 Results

3.1 Impact of reservoir datasets

We first analyze the impact of changing the reservoir dataset on the global representation of reservoirs in PCR-GLOBWB 2.

Figure 2 shows the total storage that is added to the modeling domain when changing from GRanD (global storage of415
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Percent	Difference	(%)
>	25

15	-	25

5	-	15

-5	-	5

-15	-	-5

-25	-	-15

<	-	25

NA

Degree	of	Regulation	(10⁻²)
0	-	0

0	-	0,01

0,01	-	0,05

0,05	-	0,1

0,1	-	0,5

0,5	-	1

NA

Figure 2. Change in total storage globally in GeoDAR when compared with GRanD as a percentage (a) and the fraction of regulation in each

basin (b) where grey represents areas that have no storage. Both panels use the PCR-GLOBWBW 2 input files using GeoDAR to determine

the total storage in each basin. Panel b uses the average of 40 years of modeled runoff data from PCR-GLOBWB 2.

6,355.72 km3) to GeoDAR (global storage of 7,123.66 km3). 95% of the 230 global basins depicted in HydroSHEDS ob-

serve increases in reservoir storage as a result of the inclusion of new dams and only a few basins show a reduction. Of these

218 basins, 40 basins have slight increases in storage (noted as percent differences between 0 and 1%), while the remaining

178 basins observe more significant increases. The largest storage increases are observed in Greenland, Central Asia, the Mid-

dle East, the Horn of Africa, and Central Africa. Of the 11 basins that do not observe increases in storage, spread throughout420

Central Mexico, Brazil, east Africa, China, the Baltic states, Ireland, and Spain, two observe storage percentages very close to

0, and 9 observe much larger negative differences. The lowest value sits at -21% and is located in Ireland, which is the result

of corrections in dam locations or storage volumes moving from GRandD to GeoDAR.
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These negative values are the result of the two main decisions. The first is the decision to use GeoDAR as the "truth"

value when reporting storage capacity as GeoDAR included GRanD and updated these values where necessary. This decision425

could mean that some dams have lost storage capacity due to discrepancies between GRanD and GeoDAR. Secondly, our

workflow for creating the updated input maps for GeoDAR looks at each catchment and determines the total surface area of

each reservoir and lake. Since reservoirs cannot be split across multiple catchments, we calculate the total area of the reservoir

in each catchment and then place the reservoir in the location that has the largest area in large with the HydroSHEDS draining

network in PCR-GLOBWB 2 (Giachetta and Willett, 2018). While this is physically sound, the PCR-GLOBWB 2 drainage430

network might not directly align with the physical river networks, or the reservoir dataset does not align with the digital

drainage network, and therefore some reservoir structures might be oriented in a different basin. For small dams, this might not

be an issue, but for larger dams, this could end up causing storage differences.

To evaluate the impact the increased number of dams has on the global streamflow, we aggregated the long-term annual

average runoff from 1979 - 2023 across all 230 global basins and then divided the total storage capacity by the long-term435

average annual runoff for each basin. This yields the fraction of regulation per basin depicted in Figure 2b. 20% of the basins

or 42 total basins have zero regulation due to having no reported storage capacity (regions depicted in grey in Figure 2a) while

4 basins have regulation values greater than 0.5, meaning that half of the longterm basin runoff is stored in reservoirs (i.e. in

the southwestern US and the Middle East).

More notable than the exact regulation values are the differences and similarities between the patterns in Figure 2a and440

Figure 2b. Basins with a large degree of regulation (shown in Figure 2b) like the Colorado Basin, Yenasei, and the Tigris-

Euphrates have a large amount of storage which suggests that these regions have a multitude of medium to large dams compared

to the available runoff. Conversely, basins with a large amount of storage (Figure 2a) such as much of Central and South Eastern

Asia, Central Africa, and Western Australia do not have a high degree of regulation (Figure 2b).

3.2 Evaluation of the Random Forest Model445

First, we added the 24,000 structures to the PCR-GLOBWB 2 domain and developed the workflow described in Figure 1 to

incorporate two main types of reservoir operations into PCR-GLOBWB 2. We then evaluated the impact of this methodology

by using different input datasets: ResOpsUS (n=668, Steyaert et al., 2022) and GloLakes (n=24,000, Hou et al., 2024) in

four different combinations. The first combination is a comparison between the different STARFIT curves obtained from each

reservoir dataset (Table 3: column 1). This comparison (using 668 dams across the contiguous United States) allows us to450

evaluate the implicit impact of using local data (ResOpsUS) compared to a global remotely sensed dataset (GloLakes), that is

required for global applications like global hydrologic model simulation. The difference we find in this comparison shows the

potential reduced quality of global reservoir water level estimates compared to local information. The second combination is

a comparison between the STARFIT-derived curves for ResOpsUS (Table 3: column 2) and the extrapolation of those curves

(n=668) using our random forest methodology in Section 2.5. This allows us to evaluate how well our methodology matches455

the original derivation of reservoir operating curves compared to the benchmark dataset of STARFIT. The last two comparisons

are between two different data products from GloLakes for satellite altimetry: IceSat and LandSat (Table 3: columns 3 and 4),
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Performance Metric STARFIT with Glo-

Lakes vs STARFIT

with ResOpsUS

(n = 266)

STARFIT vs RF

extrapolation with

ResOpsUS

(n = 668)

STARFIT vs RF

extrapolation with

GloLakes/Sentinel

(n = 1753)

STARFIT vs RF

extrapolation with

GloLakes/ICESAT

(n = 2445)

Bias Flood 11.58 0.66 0.16 1.977

Bias Conservation -8.05 -3.06 0.08 1.38

Correlation Flood 0.83 0.78 0.96 0.98

Correlation

Conservation

0.59 0.73 0.94 0.97

RMSE Flood 18.03 20.16 11.31 8.91

RMSE Conservation 15.46 18.32 10.13 7.47
Table 3. Depicts the performance metrics (column 1) between the extrapolated curves using the methodology in Figure 1 and the STARFIT

algorithm developed by Turner et al. to evaluate the impact of changing data and the random forest on the "original curves." All RMSE values

are in the units (percent/week). Column two shows the metrics between the original curves derived from STARFIT and the constrained

curves using 668 actual storage values from ResOpsUS (Steyaert et al., 2022) in order to evaluate the impact of using Glolakes. Column three

depicts the RF workflow vs the extrapolation using ResOpUS to further evaluate the RF workflow without the error in satellite altimetry.

Column four depicts the comparison between the STARFIT curves and the random forest-constrained curves for the 1752 GloLakes dams

that could be input into STARFIT and were used to train and validate the RF workflow. Lastly, column five shows the same metrics for

another data product in GloLAKES using IceSAT. This is used to validate the RF workflow.

which allow us to see the difference in quality moving from local to global and using a random forest compared to the original

methodology.

The bias metrics in the first column show that STARFIT with Glolakes overestimates the flood level while the conservation460

level is slightly underestimated, yet the higher correlation demonstrates the timing is consistent between the two datasets.

Conversely, the conservation correlation is not as strong (0.59), however, the conservation curves are slightly closer to the

original STARFIT data than the flood curves.

After evaluating the uncertainty of the input STARFIT curves from direct observations and the satellite altimetry data (Ta-

ble 3: column 1), we evaluate the extrapolation methodology in Figure 1 with ResOpsUS (Table 3: column 2). The third column465

shows the bias between the random forest algorithm and the original algorithm. Overall, we observe a large bias for the flood

curves and quite high correlations for flood and the conservation curves suggesting the RF workflow is overestimating the flood

curves yet still aligns with the values in STARFIT. RMSE for both the flood and conservation curves are high which demon-

strates that while the timing of the flood curves match, the general errors are much larger in part because the RF algorithm

underestimates the conservation levels. Compared to column two, the conservation correlations rise and the bias decreases470

which suggests the random forest algorithm trained on observational data does a relatively good job of capturing the levels

for the conservation curves compared to the STARFIT algorithm. The RMSE values do increase and the flood correlation de-

18

https://doi.org/10.5194/egusphere-2024-3658
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



creases suggesting that the RF does not accurately capture the flood values potentially due to the short notice period for flood

conditions.

Columns 3 and 4 show the extrapolation metrics for both GloLakes datasets: IceSat (column 4) and Sentinel (column 3).475

These results show that when applied to GloLakes, the RF extrapolation effectively reproduces the flood and conservation

curves, even better than when the RF is applied to the ResOops STARFIT curves (Column 2). However, column 1 shows that

the largest error occurs when moving from ResOpsUS to GloLakes. Thus the total errors are mostly made up of errors in the

storage time series that are obtained from remote sensing. In general, the operating bounds are more narrow compared to the

original algorithm (Figure 3).480

While the metrics depicted in Table 3 provide a summary and validation of our workflow, the actual curves related to the

different data and method combinations are much more insightful. For illustration, Figure 3 shows the results for dams with

two main purposes: the Clinton Lake Dam (Illinois, United States) with a hydropower main purpose (Figure 3 top row) and the

Medina Dam (Texas, United States) with an irrigation main purpose (Figure 3 bottom row). We only include hydropower-like

and irrigation-like as our allotted reservoir operations in Section 2.4 use these two categories to determine operations.
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Figure 3. Operational curves as storage percentage vs epiweek for two main types of dams: hydropower (a, b, c, d, e) and irrigation (f, g,

h, i, j). Panels a and f depict the original curves that come out of the STARFIT model. Panels b and g depict the STARFIT model using the

data from GLoLAKES LandSat. Panels c and h depic the Random Forest algorithm trained on ResOpsUS. Panels d and i depict the Random

forest methodology shown in Figure 1 using the GloLAKES IceSAT data, while panels e and j show the final constrained curves from the

random forest methodology using GloLakes LandSat.

485

When looking at the hydropower example, Clinton Lake Dam, (Figure 3: top), we observe that all the curves have a peak

during the first half of the year which aligns with spring precipitation in this region. The ResOpsUS (Figure 3a) curve has a

larger peak (a range of 20% and 95 %) when compared to the other algorithms. GloLakes-STARFIT (Figure 3b), on the other

19

https://doi.org/10.5194/egusphere-2024-3658
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



hand, has a much more limited operational range (between 20% and 75%). This range is further limited when looking at the

RF model using GloLakes-IceSAT or GloLakes-LandSat (Figure 3d and 3e respectively), although these final storage ranges490

encompassed the average range of both ResOpsUS and GloLakes. The RF model with the ResOpsUS data (Figure 3c) is more

similar in range to the STARFIT curves made with GloLakes while maintaining the same peak in the early part of the year.

This suggests that in general, our RF workflow constrains the active zone of the reservoir while keeping the same seasonal

patterns when compared to the STARFIT curves for the hydropower-like dams.

For irrigation like dams, we plotted the same five curves for the Medina Dam (irrigation main purpose). Overall, the curves495

depict the same general trend (Figure 3 bottom) with the ResOpsUS (Figure 3f) curves having the largest active zone and

the RF workflow with GLoLakes-IceSAT (Figure 3i) having the most limited operational range. Opposite to the hydropower

example, the final GloLakes-LandSat extrapolation (Figure 3j) shows a much lower overall active zone with slight increases in

the active zone towards the latter part of the year, which is consistent with irrigation demand. In general, we see that moving

from local data ResOpsUS to more global data like GloLakes results in the strongest reduction in the operation bounds, while500

moving from STARFIT to RF only results in a small reduction of the operational bounds.

To evaluate the implication of these operational bounds, we first look at the impact on two dams: the Clinton Dam in Illinois

(with a water supply main purpose) and the Koelnbrein Dam in Austria (with a hydropower main purpose) shown in Figure 4.

To do this, we plot the monthly average storage fraction (Figure 4a and 4d), the difference between the reservoir inflow and

outflow at the point location of the dam (Figure 4b and 4e) and the discharge in m3/s at the respective basin outlets. For each505

panel, we plot three of the five models: Baseline (black, the reservoir rules as currently implemented in PCR-GLOBWB 2),

BaseGeoDAR (grey, original reservoir operating rules with additional reservoirs), and Turn250 (pink, new reservoir rules

and additional dams). We opted to not plot all Turn600 and Turn1100 as difference between the models are relatively small

(Appendix Figure A1).

In both cases, the reservoir storage is lower in the data-driven operations (Turn250) when compared to the generic oper-510

ations (Baseline and BaseGeoDAR). This is mostly due to the change in operational schemes but also affected by upstream

regulation and changes therein (the difference between Baseline and BaseGeoDAR). For the hydropower dam, the Baseline

and BaseGeoDAR storage fractions are not too different and have the same seasonal cycle. Conversely, the Turn250 storage

fractions sit between 0.01 and 0.02 with a shifted storage fraction peak towards the end of the year compared with the Baseline

and BaseGeoDAR which have a storage peak towards the spring. The water supply dam, which contains irrigation-like oper-515

ations, shows similar seasonal trends as the Baseline and BaseGeoDAR, yet the average storage drops much lower, especially

in the autumn and winter months.

To fully determine the shifts in storage observed in Figure 4a and 4d, we can use Figure 4b and 4e to determine when the

reservoir is filling (positive values) and when it is emptying (negative values). In all models, the irrigation dam fills in the winter

and spring and empties during the summer. The Turn250 model has slightly more filling, which is offset by more depletion520

in the spring months, indicating larger storage dynamics, but a lower average storage. It also does not return to full quite as

quickly as the Baseline and BaseGeoDAR models, potentially due to meeting (downstream) demand. For the hydropower dam,

all models have a peak in the springtime with a decrease in all other months. Conversely to the irrigation dam, the Baseline
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Figure 4. Implementation of the final operational curves in PCR-GLOBWB 2 for the three main reservoir models: Baseline (black), BaseGeo-

DAR (grey), Turn250(pink). The top row shows Clinton Lake, a water supply dam in the Mississippi basin, while the lower row shows the

Koelnbrein dam, a hydropower dam in the Danube basin. Column one (panels a and d) shows the storage fraction for all the models. The

second column (panels b and e) shows the change in storage between each month to observe where the dams are filling (positive values and

releasing (negative values). The final column (panels c and f) shows the discharge at the respective basin outlets.

model has more filling compared to the BaseGeoDAR and the Turn250 models. That said, the springtime depletion in the

Turn250 model is much more linear compared to the other models.525

The different reservoir schemes have small impacts at the basin scale, even in heavily managed basins (Figure 2). In the

Mississippi (Figure 4c), there is a small reduction in discharge for the Turn250 model during the peak flows in the spring and

slightly more discharge during the low flows in the winter months. In the Danube (Figure 4f), there is slightly less discharge at

the outlet during the winter for the Turn250 model, but otherwise, the modeled discharge is the same. The difference between

these two basins is in part due to the difference in regulation observed in Figure 2b, where the Danube basin has a lower degree530

of regulation compared to the Mississippi basin.

3.3 Reservoir model comparison and implications on storage and discharge

To validate the implementation of the new reservoir scheme, we first calculate the different water balance components (Ta-

ble ??). The data-derived operations do not affect the climatic forcings; therefore, we do not observe differences in precipitation

and only small differences in evaporation across all models. There is an increase in evaporation in the BaseGeoDAR model535

and an increase in water availability (denoted by an increase in water body storage and a positive change in total water storage

across the model time frame). These increases as well as the increase in surface water abstractions are a potential result of

increasing the total number of dams and the total storage capacity. Comparatively, we observe a decrease in water availability

(denoted by water body storage, change in total water thickness and runoff) as well as decreases in water body evaporation and

runoff in the data-derived operations (Turn250, Turn600, Turn1100) a potential result of the lower storage levels. Overall, the540
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Model Precipitation

(km3/yr)

Evaporation

(km3/yr)

Runoff

(km3/yr)

Surface Wa-

ter

Abstraction

(km3/yr)

Groundwater

Abstraction

(km3/yr)

Water Body

Storage

(km3/yr)

Water Body

Evaporation

(km3/yr)

Change in

Total Water

Storage

(km3/yr)

Baseline 62,803.44 111,556.56 49,029.85 2,467.25 566.18 10,570.41 1,651.557 -6.94

BaseGeoDAR 62,822.95 111,556.56 49,049.07 2,499.56 557.91 10,561.87 1,657.99 6.934

Turn250 62,794.48 111,556.56 49,021.39 2,519.99 561.670 8,614.62 1,627.17 -4.84

Turn600 62,794.53 111,556.56 49,025.71 2,518.20 561.44 8,614.97 1,627.23 -4.78

Turn1100 62,794.78 111,556.56 49,021.83 2,520.12 561.67 8,614.55 1,627.23 -4.70
Table 4. Different hydrologic components for evaluating the water balance across all the models. In addition to hydroclimatic variables

(precipitation, evaporation, and total water storage), we also include storage in lakes and reservoirs, evaporation from waterbodies, and

abstractions from ground and surface water.

water balance results demonstrate that the data-derived operations do not lead to large differences across the PCR-GLOBWB 2

domain, suggesting that the relative impacts are not large and are mostly regional to local.

To further validate the data-derived operations, we analyze discharge and reservoir storage, as the water balance table shows

that both are affected by changes in reservoir operations. First, we validate the discharge in our models against the observed

values in GRDC. Globally, 6,044 stations fit our criteria: a period of record starting in at least 1979, a minimum overlap of two545

or more years, catchment sizes that are at least 25% of each other, and no more than a difference of three magnitudes between

the observations and the simulated discharges. As other reservoir studies demonstrate that reservoir impacts on streamflow

are greatest near the dam (Hanasaki et al., 2006; Haddeland et al., 2006; Biemans et al., 2011; Zajac et al., 2017), we filtered

out any locations that were not directly impacted by upstream reservoirs. This left 2,666 gauges that fit the above criteria.

For these gauges, we calculated the Kling-Gupta Efficiency (KGE) and its components (correlation, bias ratio, and variance550

ratio) for each location and each model and plotted a cumulative distribution function (CDF, Figure 5). The CDF shows slight

improvements in the middle of the KGE range (-0.25 to 0.25), however, the improvements are quite minor. This means that

our reservoir operations do not lead to significant improvements in the discharge simulations in PCR-GLOBWB 2 at the

measurement locations and as a result do not allow draw conclusion into the impact of data-derived operations on streamflow

regimes.555

To identify the impact of the two reservoir operation schemes, we calculated the differences between the individual com-

ponents of KGE (R, beta, alpha). We included the current operational scheme in PCR-GLOBWB 2 with the inclusion of

GeoDAR (BaseGeoDAR) and the data-driven operations for the 250 command area (Turn250) compared against the Baseline

model (Figure 5b, c, and d respectively). We decided not to include the other command areas as a boxplot of the KGEs per

command area (i.e. Turn250, Turn600, and Turn1100) depicted no variations (Appendix Figure A1). When looking at the dif-560

ferences in the correlation (Figure 5b), there are more positive correlations for BaseGeoDAR and more negative correlations

for Turn250 when comparing these two models with the Baseline (42.78% above 0 for the BaseGeoDAR operations vs 41.46%
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Figure 5. Depicts the validation between the five models and the GRDC streamflow gauges globally. Panel a shows the daily KGE values

for the 2,666 stream gauges that have at least one dams upstream and are therefore directly impacted by our reservoir model. Each line is

colored by the model. Panel b, c, and d show the difference between the baseline for the BaseGeoDAR and Turn250 models for the R (b),

alpha (c), and beta (d) components of the KGE.

for Turn250 respectively). This suggests that in some cases, the inclusion of more dams is enough to improve model perfor-

mance, but in most, it is not. However, the magnitude of these differences is quite small as there are only four points above or

below a difference of +/-0.5 for the comparison between Turn250 and the Baseline and one point for the comparison between565

BaseGeoDAR and Baseline. For the bias difference (Figure 5c), the Turn250 model contains more bias values above and below

0 (50.86% vs 35.29% above and below for Turn250 and 52.22% vs 35.15% for the BaseGeoDAR). This suggests that the

data-derived scheme is more likely to overestimate discharge than the generic operations with the GeoDAR maps. Lastly, the

alpha (Figure 5d), which depicts variance ratio of the observations and modeled values, depicts more variance in the Turn250

model when compared to the Baseline (33.56% vs 40.78% above for Turn250 and 44.78% vs 37.56% for the BaseGeoDAR).570

This suggests that data-driven operations are better at representing the variability of discharges.

In addition, we validated the reservoir storage derived from each operational scheme against indirect observations (GloLakes)

and direct observations (ResOpsUS, Figure 6a and 6b respectively). To do this, we compared the long-term storage fraction

for the Turn250 (depicted in pink) and Baseline (depicted in black) models against the two observations of reservoir levels. In

both panels, the data-driven operations (Turn250) are more closely aligned with the observations (i.e. sit close to and above the575

1:1 line) than the Baseline operations (Figure 6). Figure 6a shows the scatter between indirect observations (reservoir levels are

translated to reservoir storage) taken from satellite altimetry using GloLakes. Here, we observe that the Turn250 aligns more

with GloLakes (an RMSE of 0.28 and more points at or above the 1:1 line) than the Baseline operations (an RMSE of 0.32).
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Figure 6. Shows scatter plots of reservoir storage observations vs modeled results for Turn250 (pink) and Baseline (black). Panel a uses

GloLakes as the observations, which is the dataset the operational policies are derived from) while panel b uses ResOpsUS as a more

"neutral" validation. For both panels, we matched the same period of record as GloLakes (01-01-1984 to 05-31-2023) and ResOpsUS

(variable depending on the reservoir, but typically 1980 - 2020).

Model RMSE with

GloLakes

Correlation

with

GloLakes

P-value with

GloLakes

RMSE with

ResOpsUS

Correlation

with

ResOpsUS

P-value with

ResOpsUS

Baseline 0.32 0.18 8.53 ∗ 10−14 0.37 0.08 0.06

Turn250 0.28 0.37 4.78 ∗ 10−53 0.30 0.14 0.0008
Table 5. Shows the RMSE, the spearman rank correlation and corresponding p values, between the scatter plots in Figure 6 for each of the

models (rows) and between the two datasets(columns). In both comparisons, the correlations are statistically significant.

Next, to remove the underlying bias that we trained our RF algorithm on data in GloLakes, we also compared our data-driven

operations to ResOpsUS. Figure 6b shows a scatter of the modeled storage fractions compared to observations for large dams in580

the United States (ResOpsUS). Once again, the Turn250 model aligns better with observations (RMSE of 0.30 for Turn250 vs

0.37 for the Baseline). Additionally, the Spearman rank correlation between both observations and models is moderately strong

for Turn250 when compared to GloLakes (0.37 for Turn250 and 0.18 for Baseline (Table 5 and slightly positive for ResOpsUS

(0.14 for Turn250 vs 0.08 for Baseline). Further analysis of the differences between the two main types of reservoirs in our

analysis (irrigation like and hydropower like, demonstrate that our hydropower operations are more similar to the observations585

(RMSE of 0.28 for Turn250) compared to both the generic operations (RMSE of 0.32) and the irrigation like dams (RMSE of

0.29 for Turn250) when comparing against the GloLakes dataset (Figure A2). In conclusion, this analysis demonstrates that

the data-driven operations have more realistic long-term average storage compared with the Baseline scenario.

To round off our analysis, we look at the density of all the storage fractions (Figure 6) for GloLakes and ResOpsUS. For

both of the observations, the majority of the observed storage fractions sit between 20% and 80% full slight variations in the590

exact peaks (30% full for GloLakes and 50% full for ResOpsUS). The storage fractions from the Turn250 operations contain
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more storage fraction values between 20% and 60% and in doing so underestimate the total storage when compared to both

observations. The Baseline storage fractions, on the other hand, contain a large density of values between 60% and 80% full,

which suggests that the Baseline operational scheme holds reservoirs at a higher storage value on average and is overestimating

the amount of storage. Ultimately, we find that the storage estimates in the Turn250 model are more accurate when looking at595

the correlations and RMSEs.

3.4 Reservoir Regulation Changes Over Time

To determine regions where the Turn250 model is able to capture storage dynamics, we opted to look at the median long-term

monthly reservoir fraction for each basin in HydroSHEDS and the aggregation per continent (Figure 7). In addition to plotting

the monthly storage fraction of all the models, we plot the monthly storage fraction for the GloLAKES-LANDSAT+Sentinel2600

reservoirs (the training dataset for our RF workflow) to allow for comparison between observations and model results. 468 dams

had a storage fraction greater than one when using the static values from our GeoDAR input maps, therefore, for these dams,

we used the maximum storage value in the GloLakes observations as the maximum storage for this analysis. This misalignment

could be due to flood conditions in the GloLAKES reservoirs or overestimations due to the workflow in Hou et al..

In looking at the median storage fraction across the different basins (Figure 7), we first observe higher storage fractions605

in the more northern basins. Basins with a large amount of regulation such as the Mississippi, Nile, and Orinoco (based on

Figure 2) have median storage fractions slightly above 0.5. The global differences in median storage fraction generally align

with increased aridity, where regions that are more arid such as Australia, the Sahara, Mexico, the Middle East, and India

have lower median storage fractions compared with the potential demand for water supply in these regions. Conversely, more

humid regions such as Northern Europe, the Amazon, the Mekong, and the Eastern United States have median storage fractions610

around 0.4.

Globally, the generic operations hold more water as the Baseline and BaseGeoDAR have the higher median storage fraction

of 0.63 and 0.59 respectively. Turn250 (0.50) sits closer to the median storage fraction observed in GloLAKES (0.48). Region-

ally though, the differences are more pronounced as the data derived operations do not capture the storage fractions observed

in North America, Australia and South America, while in Europe, Asia and Africa the data derived operations align better with615

observations. In general, though, all the models (Turn250, BaseGeoDAR and Baseline) have similar monthly trends that do

not necessarily align with the monthly trends in GloLAKES. For example, in North America, the observed storage values are

highest in March through July, while Turn250 has the highest storage in August to October and the Baseline and BaseGeoDAR

models both have fairly flat monthly storage values. Conversely, in Asia and South America, the modeled monthly storage

fraction (specifically when looking at Turn250) trend appear to align relatively accurately with the observed storage fractions.620
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Figure 7. Median storage fraction per basin in HydroSHEDS for the Turn250 as a spatial map surrounded by line plots. Each line plot

corresponds to a different continent and shows the long-term monthly storage for each model: Baseline(black), BaseGeoDAR (grey), Turn250

(pink), compared with the long-term monthly storage fraction in GloLAKES (navy)

4 Discussion

4.1 Global Impacts on the Hydrologic Cycle of the Data-Driven Reservoir Operations

To analyze the impact of the reservoir operations on the global hydrologic cycle, we first analyzed the ability of the model setup

to reproduce streamflow dynamics. Primarily, we evaluate the cumulative distribution of the daily KGE values, which shows

little to no difference between the different model configurations (Figure 5a). This is partly due to the limited number of GRDC625

gages (only one-third) that are directly downstream of reservoirs and thus the ability of this validation to directly quantify the

impact of changes in reservoir operations. While the correlations are not affected by the changes in reservoir operations, we do

observe that the variance ratio shows (Figure 5d) that the data-derived operations are slightly better at capturing the variability

26

https://doi.org/10.5194/egusphere-2024-3658
Preprint. Discussion started: 30 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Region Baseline RMSE BaseGeoDAR RMSE Turn250 RMSE

North America 0.32 0.24 0.21

South America 0.05 0.05 0.15

Europe 0.09 0.12 0.05

Australia 0.31 0.08 0.22

Asia 0.18 0.10 0.06

Africa 0.18 0.07 0.04

Global 0.11 0.15 0.04
Table 6. RMSE between the curves in Figure 7 for each of the given models (columns) and regions (rows). For this table, we took the

GloLAKES storage fraction as the observations. For clarity, we depict the best results in bold.

of the streamflow dynamics and the bias ratio shows the data-derived operations are more likely to overestimate streamflow

(Figure 5c). The sensitivity of the two operational schemes to the different components of KGE is most likely a result of the630

localized impacts which are more pronounced when we look at the difference between the long-term reservoir storage integral

(Figure 4b and e). While the aggregated results tend to dampen the impact of the reservoir operations on the streamflow

dynamics (Figure 4c and f, and Figure 5a), we see that locally there are still distinct differences in the simulated reservoir

outflows. In irrigation-like dams for the data driven operations, the magnitude of release is larger than that of inflow during

the autumn months when compared to the generic schemes(Figure 4c). This suggests that the addition of downstream demand635

into our reservoir scheme increases the overall drawdown of the reservoir and allows more water to move through the system,

a dynamic Voisin et al. (2013) observed in their scheme.

Due to the limitations in monitoring reservoir impacts on global streamflow dynamics, we recommend using alternative

methods such as regional or, where they exist, global reservoir storage observations. Compared to the streamflow results which

do not show strong impacts, we observe that the data-derived storage is more aligned with observations and therefore provides a640

more accurate reservoir storage representation globally (Figure 7 and Figure 6). In most regions except Australia, the reservoir

storage in the data-driven operations is decreased when compared to the generic operations (Figure 7). These lower storage

values are most likely due to the transference from GloLAKES to the final curves using the methodology in Section 2.5 as

this transference led to more constrained operational bounds compared to ResOpsUS (Figure 3). We also observe the data

derived operations do not align as well as the Baseline or BaseGeoDAR for Australia and North America (Figure 7). This645

could be due to data gaps in the GloLAKES dataset for these regions, more hydropower reservoirs, or operational patterns

that have shifted due to recent drought events, which our random forest workflow may not be able to capture as well as it

does not include temporal evaluations of the operating boundaries. Our model water balance shows less reservoir storage,

evaporation, and more surface water abstraction in the data-driven operations (Table 4). This suggests two things: first the

water is moving more quickly through the river system as there is not as much storage compared to the generic operations650

(Baseline and BaseGeoDAR) which results in more available water for abstraction at downstream locations (shown by the

difference in surface water abstractions between Turn250 and Turn1100). While this could create a water deficit in locations
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directly near the reservoir, the comparison with observed data in Figure 6 demonstrates that the lower storage values are more

comparable to independent observations than the larger storage values in the generic operations (Figure 6). Therefore, this

suggests that the generic operations overestimate the amount of water in storage and are not accurately pinpointing regional or655

localized water deficits (Salwey et al., 2023; Steyaert and Condon, 2024).

While using observed storage values is ideal for training reservoir models, the global datasets are limited by limitations in

data coverage and privacy concerns (Steyaert et al., 2022; Salwey et al., 2023). Therefore to capitalize on our global method-

ology, we utilized satellite altimetry data that correlates reservoir surface area with reservoir storage, instead of using observed

storage values directly. Ultimately, we observed that satellite altimetry data did not reduce the overall quality of our storage660

results in many regions, however, the GloLakes dataset does overestimate storage in 468 of the 1752 dams in our analysis

when using storage capacities from GeoDAR. While this skews the seasonal trends observed in Figure 7, it is a result of a

larger issue in data availability for reservoir management schemes. Since our analysis utilizes the general trends and dynamics

in the observations to derive trends of storage fraction that are combined with reported storage capacities in GeoDAR to derive

releases in PCR-GLOBWB 2, it is hypothesized that satellite altimetry is less able to capture the conservation dynamics (Hou665

et al., 2024; Zhang et al., 2020). However, we observe that the lack of seasonality in the conservation curves allows the random

forest algorithm to better represent these curves when compared to the flood curves (RMSE of 7.47 vs an RMSE of 8.91 for the

analysis with GLoLAKES-IceSat in Table 3). The random forest algorithm trained on GloLakes has high correlations between

the values from STARFIT further suggesting that the use of satellite-derived storage dynamics is the largest area of uncertainty

in our modeling framework. The biggest change is the decreased active zone both in range and in maximum and minimum670

values (Figure 3 and Figure 6). This is because satellite altimetry data uses storage-area relationships that tend to regress to the

mean and that may not necessarily account for natural processes that decrease the overall amount of available storage, such

as sedimentation, and are limited in their temporal and spatial resolution. Conversely, observed storage time series such as

ResOpsUS use the actual storage values derived from simplified water balance equations or storage elevation relationships and

contain a much larger active zone (Figure 3). This decrease in the operational range will limit the amount of water that can be675

stored in reservoirs and as a result, will increase the reservoir release (Figure 4b and 4e). However, we still observe through

Figure 6 that the data derived storage values are more accurate than the storage values obtained from the generic operations

even with the underestimations in part because the generic operations are not as sensitive to observed changes.

4.2 Evaluation with Other Reservoir Models

Similar to other modeled reservoir operations, we observe limited improvement in discharge at basin outlets (Hanasaki et al.,680

2006; Haddeland et al., 2006; Biemans et al., 2011; Zajac et al., 2017), yet the data-derived storage improvements are much

more similar to those of Turner et al. (2021) when using the extrapolated curves. We also observe more storage values aligning

with observations for different reservoir functions. Salwey et al. (2023) noted that grouping reservoirs based on main purpose

may miss key differences in the operational patterns, however, our results demonstrate that the hybrid incorporation of data-

driven operational bounds with a more generic reservoir operation scheme (grouped by two main categories) performs better685

than the generic schemes previously used. Ideally, we would be able to differentiate into more specific reservoir categories;
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however, at the global scale operational information for all main purposes (primarily for fisheries and recreation) is missing.

We also find modest improvements in all major reservoir use categories (irrigation, hydropower, water supply, and navigation)

by separating the values in Figure 6 based on the main purpose (Figure A2). Additionally, we also observe that our modeled

reservoir storage aligns with the monthly trends Steyaert and Condon (2024) found in the United States (i.e. flood and navi-690

gation reservoirs sit much closer to a storage fraction of 0.3 while irrigation-dominated basins have a higher storage fraction

with large seasonality). While the trends in the United States are not necessarily indicative of operational trends globally, this

is one of the few studies that look directly at the trends seen in storage observations instead of solely looking at the operational

impacts.

This said, our model provides a few notable improvements over other reservoir operation schemes. First and foremost, it695

utilizes observational data to derive key boundaries for reservoir operational bounds, something, that to our knowledge, has not

yet been done on the global scale (Turner et al., 2021; Yassin et al., 2019). The other reservoir schemes to utilize observational

data directly typically require multiple parameters (such as in Yassin et al.; Turner et al.; Burek et al.) or thus are parameterized

regionally (Turner et al., 2021; Salwey et al., 2023; Brunner and Naveau, 2023; Macian-Sorribes and Pulido-Velazquez, 2020).

Generic operations are typically chosen for global hydrologic models due to the ease of incorporation that relies on limited700

data (Haddeland et al., 2006; Hanasaki et al., 2006; van Beek et al., 2011; Sutanudjaja et al., 2018). Our scheme is scalable

both to specific regions and data availability and also to model complexity. This is because the main variable of importance is

the derived operational targets which can be easily obtained from limited remotely-sensed observational data.

Recently, there has been a strong push to back-calculate reservoir impacts from readily available hydrologic variables such

as streamflow (Salwey et al., 2023; Brunner and Naveau, 2023). These schemes show promise in areas where reservoir data is705

not readily available and in models that are currently relying on generic operations based on two main purposes: irrigation or

hydropower (Salwey et al., 2023). However they still rely on the assumption that reservoir releases are the difference between

naturalized streamflow and observed values (Brunner and Naveau, 2023). This can be accurate in many cases, but in human-

dominated basins with a large amount of surface water abstraction and complex interactions, such as the Colorado River basin

among others, this assumption may not be valid. Salwey et al. (2023) remedied this with their transfer function approach,710

however, the results were only tested in water supply-dominated basins in the United Kingdom, and different balances of uses

and operational patterns could change the results. Finally, in all instances, these methods assume that reservoir operations

are static over time which may not necessarily be the case (Patterson and Doyle, 2019; Patterson et al., 2021) and would

require nearby downstream observations of river discharge to infer the reservoir operating policies over time. While this is not

infeasible there are currently a limited number of reservoirs in the world where this would be a viable approach to accurately715

derive reservoir operations.

Utilizing data-driven operational bounds combined with a dual-purpose operational scheme has a plethora of benefits (more

realistic operational bounds, the ability to change operations based on location, use, and hydroclimatic variables, and increased

understanding of water availability). That said, there are still improvements to be made. First, the lack of global reservoir

storage observations or even regional data hindered our ability to create target curves based on observations and that do not720

rely on satellite altimetry data and its uncertainties (temporal gaps, back-calculated storage, etc). Additionally, we assume
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that our operational bounds are constant during the simulation period, however in a changing climate this assumption may no

longer hold, especially during extreme events (such as droughts) or under management changes (Salwey et al., 2023; Patterson

and Doyle, 2019; Steyaert and Condon, 2024). We also assume reservoirs are operated as a single entity and do not explicitly

and dynamically account for releases in series as we assume that the underlying storage data accounts for this dynamic and725

therefore these relationships exist in our operational bounds.

Based on these limitations, we find that more effort needs to be put into cultivating global datasets of historical reservoir

operations and also include more data-derived methods in operational reservoir schemes. While the first recommendation is

liable to privacy concerns (Steyaert et al., 2022), we believe that more accurate information on reservoir operations will increase

the reliability of large-scale hydrological models and thus serve a wider community. The addition of more data-derived methods730

in our reservoir operations scheme demonstrated much lower storage than PCR-GLOBWB 2 had previously modeled using

other methods. This could highlight unknown water deficits as the total reservoir storage in select regions may not be able to

account for surface water abstractions and the currently implemented reservoir operating rules could overestimate the amount

of available water in vulnerable regions.

5 Conclusions735

This study combines previous work by Turner et al. (2021) and data acquisition by Hou et al. (2024) to develop a workflow

for implementing data-driven reservoir operations in global hydrologic models. Using an updated dataset of reservoir locations

(Wang et al., 2022), satellite altimetry data from Hou et al. (2024) and the STARFIT model (Turner et al., 2021), we first

developed operational bounds for 1752 reservoirs whose storage time series were estimated using remote sensing that are

then used to train a random forest algorithm. We observe that the RF extrapolation is accurately able to depict the flood740

and conservation curves and that the main source of uncertainty is the errors associated with the storage estimations from

satellite altimetry. After this evaluation, we then estimated operational bounds for over 20,000 structures that are implemented

into PCR-GLOBWB 2 using the trained random forest algorithm. While the impact on discharge is modest and does vary

significantly based on location, we see large improvements in our reservoir storage and seasonal dynamics when using data-

derived operations over the generic ones. Therefore, we suggest reservoir operation models rely primarily on validation of745

storage in place of validation solely on streamflow as the available streamflow observations are rarely close to the release point

of the reservoir and therefore not as sensitive to reservoir operations compared to storage. We also do not see strong differences

when using different command areas even though it would be expected that changes to these values would increase or decrease

storage. This suggests that reservoir modelers can opt to use the command area that makes the most sense to their domain

(we opt to use the 250). To remedy issues with the static operations (i.e. no change in the future), in the future we hope to750

evaluate changes in operational patterns using smaller 10-year moving periods to see if there are large changes in operational

dynamics. We hope that this work can be further implemented into other large-scale hydrologic models to better represent

reservoir dynamics and to evaluate their impact on hydrologic regimes and anthropogenic water availability.
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Code availability. PCR-GLOBWB 2 is freely available on the Utrecht University GitHub at https://github.com/UU-Hydro/PCR-GLOBWB_

model. All analysis and Validation codes are available upon request.755

Data availability. All the data in our analysis is available on YODA a Utrecht Universiteit wide data repository at https://public.yoda.uu.nl/

geo/UU01/F2UO5H.html and DOI:10.24416/UU01-F2UO5H
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Figure A1. Shows a boxplot of the data derived operational scheme with the three main command areas: 250, 600 and 1100, in different

colors.
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Figure A2. Depicts a scatter plot of the storage fractions in GloLakes vs the storage fractions in Turn250 and Baseline models. The left panel

shows the results for dams with an irrigation main purpose and the right panel shows the dams with a hydropower main use.
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