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Abstract. Globally,
:
there are over 24,000 storage structures (e.g. dams and reservoirs) that contribute over 7,000 km3 of

storage, yet most reservoir data Until recently, most of the data regarding these reservoirs was
:
is

:
not openly accessible. As a

result, many studies rely on generalized operations based on generalized assumptions about reservoir storage dynamics and

management
::
to

:::::
create

::::::::::
generalized

::::::::::
operational

::::::
policies. With the creation of global

:::::::
remotely

::::::
sensed

:::::::
reservoir

:::::::
storage datasets

such as the Global Reservoirs and Dams (GRanD), RealSat , GloLakes , and the International Coalition for Large Dams5

database (iCOLD) as well as
::::::
RealSat

::::
and

::::::::
GloLakes

:::
and

:
localized datasets such as ResOpsUS for the contiguous United States,

and the Mekong Data Monitor for the Mekong River basin, the inference of reservoir operations using data derived techniques

has become much more ubiquitous regionally
:::
for

:::::::
regional

::::::
studies. Yet to our knowledge, there has been no global applica-

tion of data-derived methods due to their model complexities and data limitations . Therefore, our
::::
data

:::::::::
limitations

:::
and

::::::
model

:::::::::::
complexities.

:::
Our

:
analysis aims to fill

:::
fills

:
this gap by providing a workflow for implementing data derived reservoir operations10

in the large scale hydrologic modelswith an application in the PCR-GLOBWB 2 global hydrologic model. This methodology

uses global satellite altimetry data from GloLakes, a parameterization methodology developed by Turner et al. (2021), and a

random forest model . We also test the sensitivity of our reservoir scheme to downstream demand by selecting three different

downstream areas presumed to be served by reservoirs release (command areas): 250 km, 650 km, and 1100 km
:
to
::::::::::
extrapolate

:::::::::
operational

::::::
bounds. Our results demonstrate that our random forest algorithm is able to capture the

::
can

:::::::
capture

:
storage dy-15

namics and that the errors are mainly due to the errors in using remotely sensed storage data
::::::::
associated

:::::
errors

:::
are

::::::::::
propagated

::::
from

:::
the

::::
type

::
of

::::
data

::::
used. Additionally, we observe in many cases that deriving operational bounds from historical reservoir

time series has minimal impact on streamflow
::::
only

::::::
directly

:::::::
impacts

:::::::::
streamflow

:::::::
directly

::::::::::
downstream

::
of

:::::
dams

:::
and

::::
has

:::::::
minimal

::::::
impacts

:
at the basin outletsnor is the scheme sensitive to the downstream command areas. We doobserve that streamflow

is affected directly downstream from the reservoirs and that the ,
::::::::
however,

:::::::
observe

::::
that

:::
the data-derived methodology does20

increase
::::::::
increases the accuracy of simulated global reservoir storage when compared to observations. In fact, the derived

operations have much lower storage values that align better with both direct and remotely sensed reservoir
:::::::
remotely

::::::
sensed

:::
and

::::::::
observed storage observations. This demonstrates that generic operations overestimate the total amount of water stored in

reservoirs and , as a result, are
:::::
These

::::::
derived

:::::::
storages

:::
are

:::::
much

:::::
lower

::::
than

:::
in

::::::
generic

::::::::
operation

:::::::
schemes

::::::
which

:::::::
suggests

::::
that

::::::
current

:::::::::
operational

:::::::
schemes

:::
are

:::::::::::::
overestimating

:::
the

::::::
amount

::
of

::::::::
reservoir

::::::
storage

:::
and

:
potentially overestimating water availabil-25
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ity. Ultimately, our workflow allows global hydrologic models to capitalize on recent data acquisition by remote sensing to

provide more accurate reservoir storage and global water security.

1 Introduction

Across the globe, there are over 24,000 reservoirs that regulate 63% of all global rivers (Hou et al., 2024), contain 61% of the

global seasonal variability in water storage (Cooley et al., 2021), and greatly decrease river connectivity (Grill et al., 2019; Bel-30

letti et al., 2020). With this loss of river connectivity comes a large amount of water storage (over 8,000,000 m3 (Lehner et al.,

2011)) that provides water for a variety of main purposes,
:
ranging from water supply and irrigation in more arid climates to

hydropower and flood controlin more humid environments. For many reservoirs, these uses are not unique as one reservoir may

provide multiple uses integral to water management regardless of their primary use (Belletti et al., 2020; Biemans et al., 2011; Boulange et al., 2021; Doll et al., 2009; Grill et al., 2019)

.
:::::
These

::::::
storage

::::::::
structures

::::
also

:::::::
decrease

:::::::::
streamflow

:::::::::
variability

::::
with

:::::::::
heightened

:::::
effects

::::::
during

:::::::
extreme

::::
flows

:::::::::::::::::::::::::::::::::::::::::::::::::
(Salwey et al., 2023; Zajac et al., 2017; Chalise et al., 2021)35

:
. With projected increases in global cropland (up to 1,244 MHa) and over 90% of the world’s population living within 10 km

of readily available surface water (Kummu et al., 2011; Potapov et al., 2021), the importance of reservoirs for flood control,

irrigation, and water supply is large as the majority of society is dependent on reservoirs for a variety of uses (Di Baldassarre

et al., 2018). Therefore,
:

having an accurate depiction of reservoir storage at the global scale in observations and models is

crucial to evaluating both historical and projected water availability.40

Reservoir operating policies strongly impact the seasonality and variability in downstream streamflow regimes, yet their

operations in global hydrologic models are highly dependent on data availability. Across the globe, reservoirs decrease streamflow

variability with heightened effects during extreme flows (Salwey et al., 2023; Zajac et al., 2017; Chalise et al., 2021). However,

capturing this behavior in hydrological modeling tools is far from trivial due to a lack of observational data that describes

reservoir properties and operational policies. In many generic operations, streamflow sensitivity to reservoirs in large-scale45

hydrologic models is quite limited with only a few regions experiencing large changes (Biemans et al., 2011; Hanasaki et al., 2006; Haddeland et al., 2006)

Therefore observational data is required to support the development of parameterizations that can replicate reservoir dynamics

and be used to assess downstream impacts. Ultimately, the analysis of these impacts on the global scale is now largely limited

by the uncertainty in the parameterization of reservoir operation in hydrologic models which leads to varied effects on the

modeled streamflow regimes (Zajac et al., 2017). Therefore, more observational reservoir data is needed to remedy the current50

biases and uncertainty within reservoir operations.

Even with the current data limitations, global hydrologic models can use generic operating curves to approximate reservoir

releases and analyze the impact of water demands on global reservoir storage . In general, global reservoir storage
::::::
Global

:::::::
reservoir

::::::
storage

:
capacity increased over the past 40 years as dams were built to support a variety of main uses (Lehner et al.,

2011; Haddeland et al., 2006; Li et al., 2020; Wisser et al., 2013). This increase in storage capacity does not necessarily55

correlate with an increase in storage as many regions (primarily arid basins such as southeastern Australia, southwestern US,

and eastern Brazil) have observed decreases in total reservoir storage (Steyaert and Condon, 2024; Li et al., 2020) due in part

to increased domestic water demand resulting from population growth and decreased storage capacities from sedimentation
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(Simeone et al., 2024; Li et al., 2020; Wang et al., 2024; Wisser et al., 2013). This regionality is especially important as remote

sensing observations show that most global reservoirs (more than 50%) have not filled between 2010-2022and ,
:::::

with many60

reservoirs in the Southern Hemisphere observe
::::::::
observing strong declines (Yao et al., 2023; Wang et al., 2024; Li et al., 2023).

Ultimately, the regional differences in reservoir storage, the lack of observed filling, and the impact of sedimentation and

water demand on storage levels are not well captured in generic operations due to simplified calculations that do not assimilate

information derived from observed storage values.

The first generation of generic reservoir operations by Meigh et al. (1999), Döll et al. (2003), Pietroniro et al. (2007), and65

Rost et al. (2008) used static reservoir capacities and a water balance method to develop simplified generic operating curves.

In these methodologies, researchers need a total storage capacity
:::
This

::::
lack

:::
of

:::::::
accurate

::::::::::::
representation

::
is
::::
due

::
to

:::
the

:::::::
generic

::::::::::
assumptions

::::::
needed

::
in

:::::::
reservoir

:::::::::
operations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Meigh et al., 1999; Döll et al., 2003; Pietroniro et al., 2007; Rost et al., 2008)

:::
that

:::
use

:::::::
storage

:::::::::
capacities (usually derived

:
)
:
from static datasets such as GRanD

:::
the

::::::
Global

:::::::::
Reservoirs

::::
and

:::::
Dams

:::::::
Dataset

:::::::
(GRanD)

:
(Lehner et al., 2011) or the World Registry of Dams

::::::::
accessible

:
from the International Commission of Large Dams70

(ICOLD; https://www.icold-cigb.org) and/or surface area . These two values are used to denote how much water could be stored

in a given reservoir for a given time stepand any "excess" water is
::
to

:::::::
calculate

::
a
:::::
water

::::::
balance

::
in

:::
the

::::::::
reservoir

:
at
:::::
each

::::
time

::::
step.

:::
Any

:::::::
’excess’

:::::
water

:::::
above

:::
the

::::::
storage

:::::::
capacity

::
is

::::
then released downstream. These methodologies are more readily incorporated

into large-scale hydrologic models, such as WaterGAP (Doll et al., 2009) and PCR-GLOBWB 2 (Sutanudjaja et al., 2018) due

to their limited data requirements. Their main critique lies
:::::::
critiques

::
lie

:
in the assumption that reservoirs are usually filled to75

their maximum capacity
:
, which overestimates the amount of storage (Steyaert and Condon, 2024; Salwey et al., 2023)

:
,
:::
and

::::
that

:::
they

::::
lack

:::
the

:::::::::::
incorporation

:::
of

:::::::
different

::::::::::
operational

::::::
policies. Additionally, the lack of different reservoir purposes may resultin

generic operations that differ greatly from the observed operational policies (Steyaert and Condon, 2024; Turner et al., 2021)

:::
they

:::
are

:::::::
limited

::
by

:::
the

::::::::::
availability

::
of

:::
the

:::::
static

:::::::
reservoir

::::::
maps,

:::
and

:::
as

:
a
::::::
result,

::::
many

:::::
only

::::::
include

:::
the

:::::
6,000

::::::
largest

::::::::
reservoir

::::::::
structures

::::::::
described

::
in

:::::::
GRanD

:::::::::::::::::
Lehner et al. (2011)

:::
even

:::::::
though

::::
more

::::::
recent

:::::::
mapping

:::
by

::::::::::::::::
Wang et al. (2022)

::
has

::::::
shown

:::::
there80

::
are

:::::
over

::::::
24,000

:::::::
reservoir

:::::::::
structures. More recent advances on these fronts by Salwey et al. (2023) and Brunner and Naveau

(2023) focus on utilizing water balance methods to back-calculate transient reservoir characteristics from openly available data

such as regional streamflow. These methodologies show promise regionally but have not yet been scaled to global applications

nor implemented in global hydrologic models (Hosseini-Moghari and Döll, 2024).

The above generic operations have historically utilized static reservoir characteristics (e.g. location, capacity, area, main85

purpose) from datasets such as the Global Reservoirs and Dams dataset (GRanD Lehner et al., 2011) and World Registry of

Dams from iCOLD. The majority of these datasets include data for the largest dams across the globe and provide valuable

input as most hydrologic models are typically run on coarser spatial scales (0.5 degrees or around 50km at the equator).

However, recent developments in hyper-resolution modeling have resulted in a higher demand for high-resolution information

on reservoir properties, especially locations and operations (e.g. Hoch et al., 2022; van Jaarsveld et al., 2024). While datasets90

like GRanD and iCOLD contain the majority of storage across the globe (8*106 m3), these two datasets do not include all

storage structures nor do they contain transient reservoir characteristics that can be used to develop operational curves. In

fact, GRanD, the most used reservoir dataset for evaluation of reservoir operations only contains 6,000 global structures with a
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storage of 6,197 km3 as it is focused on dams greater than 0.1 km3. More recent mapping by Wang et al. (2022) mapped 24,000

structures with a total storage of over 7,000 km3; however, this new dataset still does not contain transient reservoir operation95

information. These static characteristics are useful for implementing generic reservoir operations to analyze the impact of

reservoirs on the larger hydrologic cycle, however, the lack of transience and defined seasonality can limit accurate storage

simulations and in many cases can cause models to overestimate the amount of reservoir storage (Steyaert and Condon, 2024; Brunner and Naveau, 2023; Salwey et al., 2023)

::
in

:::
part

::::
due

::
to

:::
the

:::
lack

:::
of

:::::::::
calibration

::::::::::::::::::::::::::::::::
data(Hosseini-Moghari and Döll, 2024).

More complex models of reservoir operations pushed for the inclusion of water demand and main use as a driving factor100

for reservoir releases in order to better represent reservoir operations. Initially, the work by Hanasaki et al. (2006) accounted for

reservoir releases at a yearly time step and included demand in the reservoir release equation. In addition to this, Hanasaki et al. (2006)

also included different operational policies based on the main reservoir purpose and employed a release factor (a ratio made

up of current storage, maximum capacity, and dead storage) to denote how much extra water might need to be accounted for

based on how full the reservoir is
:::::
These

::::::
policies

::::::::
included

:::::::
demand

:::
and

::::::
policy

:::::::
changes

:::::
based

::
on

:::::
main

:::::::
reservoir

::::
use

:::::::::
(pioneered105

::
by

::::::::::::::::::
Hanasaki et al. (2006). Similar to this approach, Biemans et al. (2011), Haddeland et al. (2006), Voisin et al. (2013),and

van Beek et al. (2011) also included downstream demand
:::::::
(denoted

:::
by

:
a
::::::::
command

::::
area

::
of

::::
250

:::
km

:::
for

:::::::::::::::::::
Haddeland et al. (2006)

:
,

:::
600

:::
km

:::
for

::::::::::::::::::
van Beek et al. (2011)

:
,
:::
and

::::
1100

::::
km

::
for

:::::::::::::::::::
Hanasaki et al. (2006))

:
into the reservoir water balance as well as incorpo-

rating different operational policies based on the reported main reservoir use . That said, only
:::::
based

::
on

:
four main categoriesare

typically employed: irrigation, flood control, hydropower generation, and navigation. In the case of van Beek et al. (2011) and110

Voisin et al. (2013) only ,
::::
with

:
irrigation and hydropower uses are used

:::::
being

:::
the

:::
two

::::
most

::::
used

:::::::::
categories

::::::::::::::::::::::::::::::::::
van Beek et al. (2011); Voisin et al. (2013)

. While van Beek et al. (2011) changed operations based on main use, Voisin et al. (2013) changed operations based on seasonal-

ity (i.e. flood control operations in the spring and irrigation prioritization in the summer/autumn). Ultimately, these operational

policies are also easy to incorporate into large-scale hydrologic models as their calculations rely solely on static reservoir ca-

pacity, modeled inflow, modeled downstream demand, and one or two extra parameters that can either be readily calculated115

within the model or calibrated using additional observations.

With the inclusion of water demand another factor of uncertainty is introduced: what is the downstream command area

(i.e. the downstream area dependent on the upstream reservoir for water supply) that influences the reservoir release decisions?

While numerous studies have employed downstream demand in their reservoir operations (Yassin et al., 2019; Turner et al., 2021; Hanasaki et al., 2006; van Beek et al., 2011; Biemans et al., 2011; Voisin et al., 2013; Haddeland et al., 2006)

, only three main studies provide the size of these command areas. In all cases, the downstream area is defined as the stream120

reach downstream from the reservoir outlet to the next reservoir or the river mouth, whichever comes first. Haddeland et al. (2006)

opted to use a downstream distance of 250 km (or 5 grid cells at a spatial resolution of 0.5 degrees). They also employed a check

that ensured each dam had at least one downstream demand pixel and split the demand based on the ratio of reservoir capacities

(meaning a larger reservoir would meet more demand than a smaller one). This value was updated by van Beek et al. (2011)

, who observed that the most operational downstream area would be 600 km (or the distance a water droplet could travel125

in one week). Hanasaki et al. (2006) used a downstream command area of 1100 km which is equivalent to the distance one

water particle could travel in a month, which was the temporal resolution of the employed hydrologic model. The difference

in how far downstream a reservoir should operate allows operational policies to be more sensitive to the short-term variations
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(such as using a downstream area of 250 km Haddeland et al., 2006) or to the longer-term changes in a system (600-1100 km van Beek et al., 2011; Hanasaki et al., 2006)

. These differences are useful for analyses but aside from choosing a value based on model characteristics, the actual sensitivity130

of modeled reservoir releases to differences in command areas has not yet been studied.

Reservoir operation schemes are also adapting to the newly available data in both the regional and global context. Turner

et al. (2021); Zhao et al. (2016); Burek et al. (2020); Macian-Sorribes and Pulido-Velazquez (2020), and Yassin et al. (2019)

parameterized reservoirs based on available data using anywhere from 10 to 72 key parameters. The majority of these meth-

ods utilized reservoir data that was freely accessible via online platforms and opted to include operational bounds based on135

different operational decisions (a level for flood control, an active storage level, a conservation pool, and a dead storage zone).

Burek et al. (2020) and Zhao et al. (2016) pioneered this work by dividing reservoirs into multiple levels based on multiple

linear regressions (Burek et al., 2020) and using user-derived parameters obtained from the local stakeholders (Zhao et al.,

2016).
:::
The

:::::::::::
advancement

:::
and

:::::::::
availability

:::
of

::::::::::::
high-resolution

::::::::
transient

:::::::
regional

:::
data

::::
has

::
led

::
to
::
a
::::
rapid

:::::::
increase

::
in
:::
the

::::::::::
application

::
of

:::::::
machine

:::::::
learning

::
in
::::::::
reservoir

:::::::::
operations,

::::::::::
specifically

:::::::
focused

:::
on

::::::::
networks

::::::::::::::::::
(Coerver et al., 2018)

:::
and

:::::
fuzzy

::::
logic

::::::::
schemes140

::::::::::::::::::::::::::::::::::::::
(Macian-Sorribes and Pulido-Velazquez, 2020).

:
While these methodologies showed promise regionally, the lack of global data

removes the individual operating nuances and can result in errors in downstream flows,
:
specifically in regions that are under-

represented (Yassin et al., 2019; Turner et al., 2021). Yassin et al. (2019) and Turner et al. (2021) furthered this methodology

by using freely accessible historical reservoir time series to obtain operational curves based data mined
::
on

::::::::::
data-mined reser-

voir data. This data was used to create seasonal time series of storage and release patterns that (depending on the number of145

variables) can be more easily incorporated into regional models (e.g. MOSART for Turner et al., 2021).

While the majority of these schemes analyze regional dynamics, only a few have been incorporated into regional models:

Turner et al. (2021) into MOSART, Yassin et al. (2019) into the Canadian land surface model MESH (Pietroniro et al., 2007),

and Macian-Sorribes and Pulido-Velazquez (2020) into RiuNet, with generally good results. The incorporation into large-

scale hydrologic models has, until recently, been very limited by the high data requirements, reduced generalizability, the150

number of interconnected variables, and the number of parameters in these models. The lack of available data, for example,

makes training and obtaining these parameters quite challenging as many global hydrologic models strive to quantify water

quantity on the global scale instead of the local scale and thus consistent high-quality input data needs to exist with global

coverage. Additionally, the incorporation of multiple parameters and inter-dependencies (i.e. large-scale hydrologic models

require reservoir storage, yet reservoir storage calculations from data-driven models are dependent upon output from hydrologic155

models) which
:::
and

::::
lack

::
of

:::::::::::::
generalizability

:
increases the computational load and the potential for compounding errors already

associated within the original hydrologic model as well as the reservoir model.

The advancement and availability of high-resolution transient regional data has led to a rapid increase in the application

of machine learning in reservoir operations, specifically focused on networks (Coerver et al., 2018) and fuzzy logic schemes

(Macian-Sorribes and Pulido-Velazquez, 2020). While these methods have seen large improvements in accurately depicting160

reservoir storage and release, the amount of data required for their development, their complexity, and the numerous required

parameters can make linkages with global hydrologic models challenging. Especially since the transferability of these locally
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parameterized models is limited and the high number of parameters makes it difficult to extrapolate these models to global-scale

applications. Therefore, there have not yet been any global applications of these machine learning operational schemes.

Recent
::::
This

::::
said,

:::
the

::::::
recent

:
improvements in satellite altimetry data (Chen et al., 2022; Hou et al., 2024) as well as the165

plethora of public and private satellite missions over the past 20 years have made the creation of transient reservoir operation

datasets (such as GloLakes Hou et al., 2024) and updated reservoir characteristics (GeoDAR Wang et al., 2022) possible. This

increase in satellite monitoring allows for the creation of reservoir surface area time series
:::
has

::::::
created

:::
an

::::::
avenue

:::
for

:::::::
creating

:::
data

:::::::
derived

:::::::::
operations

:
that can be input to statistical models to back-calculate reservoir storage at select temporal and

spatial resolutions. In general, surface areas are mapped via LandSat imagery using a combination of machine learning and170

manual approaches (Hou et al., 2024; Lehner et al., 2011; Ling et al., 2020; Zhang et al., 2019). After pixels are classified as

reservoirs, the digital elevation model is used to invert the reservoir storage. Historically, remote sensing methodologies have

used Sentinel or GREALM as their DEM (digital elevation model) component (Zhao et al., 2016), but increases in satellite

missions and the increased need for monitoring glacier and ice changes led to a new satellite called IceSAT which has shown

promise in monitoring lake elevations using Lidar measurements (Chen et al., 2022). Once the DEM, and surface area are175

obtained for each site, a statistical model is used to estimate the reservoir storage at each measurement point over the entirety

of the time series(Hou et al., 2024; Chen et al., 2022; Zhao et al., 2016). Using these datasets, Hou et al. developed a global

dataset of historical reservoir storages that can be used to evaluate global reservoir storage fluctuations, streamflow impacts,

and to update reservoir release models
::::::::
calibrated

:::
and

::::::::
validated

::
on

::
a

:::::
global

:::::
scale.

To facilitate accurate global hydrologic modeling at high spatial resolutions, we need to combine the simplicity and general-180

izability of classical reservoir modeling approaches with the newly available data and data-driven operating rules. Specifically,

there is a need to better incorporate transient reservoir operations into global hydrologic models. Therefore, the objective of

this study is to utilize global reservoir storage data calculated via satellite altimetry in combination with a data-driven frame-

work to derive static and seasonal parameters for global reservoir operation. We will follow the work of Turner et al. (2021)

by estimating seasonal boundaries for release and conservation. Ultimately, these components will be placed into the global185

hydrologic model PCR-GLOBWB 2 (Sutanudjaja et al., 2018) to answer the following questions:

– Are reservoir operations whose operating rules have been extrapolated using data-derived approaches more accurate than

generic ones and what does this mean for the current data gaps in reservoir operational data?

– What is the sensitivity of different reservoir operations to the size of the command area

– How does the ability of global hydrologic models to reproduce streamflow and reservoir storage improve or decrease190

depending on the type of reservoir operation used (i.e. generic vs data-driven)?

To answer these questions, this study uses a dataset of remotely sensed reservoir time series from Hou et al. (2024) that can

be the basis for a statistical model (STARFIT),
:
which derives reservoir operational bounds. Using these operational bounds,

we derive two main reservoir models for irrigation-like and hydropower-like dams
:::::::::::
irrigation-like

::::::
(dams

:::
that

:::
are

:::::::
focused

:::
on

::::::
meeting

:::::::::::
downstream

:::::::
demand)

::::
and

::::::::::::::
hydropower-like

:::::
dams

:::::
(dams

::::
that

:::
are

:::::::
focused

:::
on

::::::
holding

:::::::
storage

::::::
stable). We implement195
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these operational policies in PCR-GLOBWB 2 in order to evaluate the global impact of changing reservoir regimes on global

water resources.

2 Methods

For this analysis, we updated the number of storage structures in PCR-GLOBWB 2 (Sutanudjaja et al., 2018) from 6,000

to over 24,000 worldwide using a new dataset: GeoDAR (Wang et al., 2022) (Section 2.1). Additionally, we also update200

the current reservoir operations. To do this, we followed the data derived workflow outlined in Figure 1. First, we utilized a

new dataset of remotely sensed reservoir surface area and estimated storage created by Hou et al. (2024) called GloLAKES

::::::::
GloLakes (titled reservoir time series in Figure 1). We input this weekly data into the STARFIT model developed by Turner

et al. (2021) (Section 2.5.1) to determine seasonal trends of
:::::::
reservoir

::::
rule

::::::
curves

:::
that

:::::::
specify

:::::::
seasonal flood and conservation

zones from storage data
::::
pools. After obtaining

::::::
seasonal

:
flood and conservation curves

::::
pools

:
for 1752 reservoirs, we then trained

Figure 1. Outlines our workflow to create the data-derived operations implemented in PCR-GLOBWB 2. Orange boxes denote the instances

where outside reservoir, socioeconomic, or hydroclimatic datasets were used. Blue boxes denote the parameters and the final curves, while

green boxes denote the models that we used in our methodology. For our analysis, we used 1752 reservoir time series and thus
:
, the STARFIT

maximum-minimum active zone boundaries are only available for 1752 dams. The Random
::::::
random forest methodology allows us to extrap-

olate the active zone curves from these 1752 structures to 24,000 global reservoirs.

205

a random forest model to predict the ten parameters that determine the flood and conservation zones for these 1752 reservoirs.

The random forest model used static reservoir characteristics , and hydroclimatic socioeconomic variables as features. We

then used the trained random forest model (Section 2.6) to extrapolate active storage bounds for all of the 24,000 structures

and compared this new operational scheme with the current reservoir scheme in PCR-GLOBWB 2 (Section 2.7). Finally, we

split the 22,000 dams into categories based on their main use and modelled releases based on two main operational schemes210

described in Section 2.5.2 and Section 2.5.3. This allowed us to analyze the bias in using different input data in our random

forest workflow and the impact of operational schemes on PCR-GLOBWB 2 outputs.
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2.1 Data Sets

To compliment the hydrologic model and statistical model (STARFIT from Turner et al. (2021)), we required a variety of

datasets that are depicted in Table 1. These datasets are used to update the number of reservoirs in PCR-GLOBWB 2, train the215

random forest algorithm, and validate our analysis.

Dataset Name Citation Type of Data Purpose

Global Runoff

Data Centre

https://www.bafg.de/

GRDC/EN/Home/

homepage_node.html

Discharge data Streamflow Validation

::::::::
validation

GeoDAR Wang et al. (2022) Static reservoir

characteristics

Base Maps
:::::
maps

Global Reservoir

and Dams Dataset

Lehner et al. (2011) Static reservoir

characteristics

Base Maps
::::
maps

International

Commission

of Large Dams

Dataset

https://www.icold-cigb.

org

Static reservoir

characteristics

Gap filling missing

reservoir purposes and

::::::
missing

::::::::
reservoir

:::::::
purposes

:::
and

:

construction dates

GloLAKES

::::::::
GloLakes

Hou et al. (2024) Transient reservoir

operations

Random forest algorithm

and storage validation

ResOpsUS Steyaert et al. (2022) Transient reservoir

operations

Storage validation

Table 1. Describes the data used in this analysis. Column one gives the dataset name. Column two gives the paper citation or webpage

associated with the data source. Column three gives the type of data,
:
and column four describes the function the data played in this analysis

:
.

2.1.1 Reservoir Data

To update the number of reservoirs in PCR-GLOBWB 2, we used a newly minted reservoir dataset that contains over 24,000

global structures (Wang et al., 2022). The dataset , itself ,
::::
itself contains static reservoir properties such as surface area,

capacity, latitude, and longitude. In order to fill missing gaps in surface area, capacity, creation date, and main reservoir220

purpose, we linked GeoDAR (Wang et al., 2022) to the Global Reservoirs and Dams Dataset (GRanD) created by Lehner

et al. (2011) and the International Commission of Large Dams (iCOLD) registry (ICOLD; https://www.icold-cigb.org, last

access: 13 March 2019). From this updated table, we created yearly
:::::
annual

:
maps of static reservoir characteristics

::::
(e.g.

:::::
outlet

:::::
points,

:::::::
storage

:::::::
capacity,

::::::::
reservoir

::
id,

::::
and

::::::
surface

:::::
area), which are used

::
as

:::::
inputs

:
to model reservoir releases and to distinguish
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between two operational policies hydropower-like and irrigation-like.
:::
We

::::::::
separated

:::
our

:::::::::
operations

::::
into

::::
these

::::
two

:::::::::
categories225

::
as

:::::::::::::::::::::::
Steyaert and Condon (2024)

:::
and

::::::::::::::::::
Salwey et al. (2023)

::::
noted

:::::::::
differences

:::
in

:::::::::
operational

:::::::
patterns

::::::::
between

::::::
storage

:::::::::
reservoirs

:::::
(noted

::
as

::::::::
irrigation

::::
and

:::::
water

:::::
supply

:::::
main

::::
uses)

::::
and

::::::::::
non-storage

::::::::
reservoirs

:::::
(such

::
as

:::::::::::
hydropower,

:::::::::
navigation

:::
and

:::::
flood

::::::
control

:::::
uses).

In addition to static reservoir characteristics, we required transient reservoir data for the STARFIT model. For this, we

used the GloLAKES
::::::::
GloLakes

:
dataset (Hou et al., 2024), a dataset that contains remotely sensed reservoir surface area time230

series data for the majority of dams and lakes in HydroSHEDS (Giachetta and Willett, 2018). Hou et al. (2024) used remotely

sensed surface area extents from LandSat
::::::
Landsat

:
and reservoir depths from BLUEDOT/Sentinel-2

:::::::
Sentinel2

::::
and

::::
other

:::::::
satellite

:::::::
products. These outputs were then put into a storage area relationship from Crétaux et al. (2016) to calculate reservoir storage.

From GloLakes, we
::::
were

:::
able

:::
to fit curves for over 6000 storage structures worldwide. Due to limited satellite coverage and

temporal gaps, the majority of data points sit within latitudes between 56° South and 82.8° North and are only available on the235

weekly time scale.

2.2 Validation Data

To validate our analysis, we used two types of validation data to benchmark the quality of the random forest model and our data-

driven reservoir operations: storage data from ResOpsUS and the LandSAT+ICESAT product from GloLAKES
::::::::::::::::
LandsatPlusICESat2

::::::
product

:::::
from

::::::::
GloLakes, and streamflow data from the Global Runoff Data Center. Reservoir storage data from the ResOpsUS240

dataset Steyaert et al., 2022, which contains over 600 reservoirs spread throughout the conterminous United States and was the

original data Turner et al.
::::::::::::::::
Turner et al. (2021) used to create the STARFIT algorithm, is used as an independent benchmark to

evaluate how well the workflow captures seasonalities against direct observations. To validate storage changes and potential

storage uncertainties within the workflow globally, we used the estimated water level variations from LANDSAT+Sentinel2

and LandSAT+ICESAT
:::::::::::::::::
LandsatPlusSentinel2

::::
and

:::::::::::::::::
LandsatPlusICESat2,

:
as both are available at the same temporal and spa-245

tial resolution. To validate and benchmark the addition of our data-driven operations in PCR-GLOBWB 2, we used global

streamflow data from over 10,000 gages in the Global Runoff Data Center’s (GRDC) dataset. The data in GRDC has good

coverage over North America and Europe and lower coverage in Asia and Africa (Burek and Smilovic, 2023). Even with the

limited coverage, GRDC data is still the best for global validation of streamflow. Our validation used 75% of all the gages

and of these 75%, 8% of the gauges have a full period of record from 1979-2023 which is the period over which we analyzed250

changes in streamflow due to reservoir operations. For a more detailed analysis, we removed all the gages that were not directly

downstream of a reservoir and were therefore left with 2,666.

All the data for this analysis was acquired through open-access sources and has been noted in the Data Availability section.

2.3 PCR-GLOBWB 2

PCR-GLOBWB 2, our primary global hydrologic model, is a grid-based hydrologic model that covers the entirety of the globe255

(aside from Greenland and Antarctica) and estimates human water use as well as hydrological variables. The computational grid

of PCR-GLOBWB 2 is available at a variety of resolutions: 30 arc minutes
:::::::::
arcminutes, 5 arc minutes

:::::::::
arcminutes

:
(Sutanudjaja
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et al., 2018) or 30 arc seconds
:::::::::
arcseconds

:
(van Jaarsveld et al., 2024; Hoch et al., 2022). For each grid and time step (daily for

hydrologic variables and dynamic for river routing), the model simulates moisture storage and water exchanges between the

ground, atmosphere, and soils. Through this, it can effectively simulate transpiration from crops and vegetation, evaporation260

from soil and open water, snow and glacier processes such as accumulation and melt, surface runoff, groundwater recharge, soil

and plant transpiration, discharge, reservoir storage, reservoir release, and runoff. The system’s runoff is routed through a river

network to potential sinks such as the ocean, or endoheric
::::::::
endorheic

:
lakes and wetlands using the kinematic wave approach.

The model currently has 6,000 dams based on GRanD (Lehner et al., 2011) that use a generic operation scheme developed

by Sutanudjaja et al.
::::::::::::::::::::
Sutanudjaja et al. (2018) and described in Section 2.4.1. In addition to modeling hydrologic variables,265

Wada et al. (2014) included an updated scheme for evaluating human water use. At each daily time step in PCR-GLOBWB 2,

three main steps occur: 1) water demand for irrigation, industrial, livestock, and domestic uses is estimated, 2) these estimated

demands are translated into withdrawals from surface and/or groundwater sources subject to the availability of these resources

and the maximum groundwater pumping capacities, and 3) consumptive water use and return flows are calculated per sector

(Sutanudjaja et al., 2018).270

2.3.1 Inclusion of GeoDAR into PCR-GLOBWB 2 domain

Since PCR-GLOBWB 2 runs on a gridded model domain, our first step in updating the number of structures was to create

new input maps by remapping the geospatial structures from GeoDAR to the PCR-GLOBWB 2 domain. First, we raster-

ized the GeoDAR attributes and overlaid them on the PCRaster global domain maps that has a 5 arc minute
::::::::
arcminute spa-

tial resolution (about 10 km at the equator). This spatial resolution is the optimal balance between computational demand275

and model performance and has been extensively validated and benchmarked (Sutanudjaja et al., 2018).
::
We

::::
opt

:::
for

:::
the

::
5

::::::::
arcminute

:::::::::
resolution

::
in

:::::
order

::
to

::::::::
capitalize

:::
on

:::
the

::::::::
extensive

:::::::::
validation

::::
and

::::::::::::
benchmarking

::::
done

:::
by

:::::::::::::::::::::
Sutanudjaja et al. (2018)

:::
and

::
to

::::
limit

:::::::::
excessive

:::::::::
calculation

:::::
times

:::
that

:::::
occur

::
at
::::::

higher
::::::::::
resolutions

::::::::::::::::::::::
(van Jaarsveld et al., 2024).

:::
We

::::
then

:::::::
ensured

::::
that

:::
the

::::::
mapped

:::::::
location

::::::
based

::
on

:::
the

::::::::
latitudes

:::
and

:::::::::
longitudes

:::::
from

::::::::
GeoDAR

::::
also

:::::::
aligned

::::
with

:::::
other

:::::::
reservoir

::::::::::::
characteristics

:::::
such

::
as

::::::::
upstream

::::::::
catchment

:::::
area.

:::
We

:::::::::
compared

:::
the

:::::::::
catchment

::::
areas

::::::::
reported

::
in

:::::::
GRanD,

:::::::
iCOLD,

::::
and

::::::::
GeoDAR

::
to

:::
the

:::::::::
calculated280

::::::::
catchment

::::
area

::
at

:::
the

::::
dam

:::::::
location

:::::::::
calculated

:::::
from

:::
the

:::::::::::::
PCR-GLOBWB

::
2
:::::::
drainage

::::::::
network.

:::
For

:::::
each

:::::::
potential

::::::::
location,

:::
we

:::::::::
minimized

:::
the

::::::::
difference

:::
in

:::::::::
catchment

::::
area

:::
and

:::
the

::::::::
distance

::
to

:::
the

::::::::
reported

::::::
latitude

::::
and

::::::::
longitude

::
of

::::
the

::::
dam.

:
Due to the

decision to model at a spatial resolution of 5 arc minutes
::::::::
arcminutes, we found that some dams are situated within the same grid

cell. For these grid cells that had multiple dams, we summed their storage capacity and chose the construction date of the first

dam. After remapping the dams to their new location on the PCR-GLOBWB 2 domain, we then ensured that reservoirs were285

not split between multiple catchments and that lake
:::::
lakes and reservoirs were not mixed if situated in the same grid cell. Here,

we calculated the total area of each lake and reservoir per cell,
:
and if the total area of the lake was larger than the reservoir

for overlapping structures, we converted the reservoir cells to lakes and visa
:::
vice

:
versa. We ensured that reservoirs were only

present in the dynamic model simulation after their initial construction date to avoid unrealistic discharge simulations. Lastly,

we repeated this process with the original input data from GRanD to ensure any differences in our results could be solely290

attributed to the reservoir operations or initial reservoir input data.
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2.4 Reservoir Operations

To evaluate the impact of "standard" generic operations and data-driven reservoir operations on global discharge, we opted to

utilize two different reservoir schemes. The first is a generic reservoir scheme derived from Sutanudjaja et al. (2018) which

uses static values such as maximum reservoir capacity and operational bounds: 10% of maximum storage capacity as the295

dead storage (the point where water can no longer be abstracted from the dam) and 75% of maximum storage capacity as

the maximum available storage, with year-round fixed boundaries that do not reflect seasonality. The second is a data-derived

reservoir scheme: STARFIT, derived by Turner et al. (2021) to fit historical reservoir time series from ResOpsUS (Steyaert

et al., 2022). This method derives weekly operational bounds for flood and conservation zones from historical storage time

series and has been calibrated and tested in the United States (Turner et al., 2021). As our analysis is all done globally, we300

use data from
::
the

:
1752 dams in GloLAKES (Hou et al., 2024)

::::::::
GloLakes

::::::::::::::
Hou et al. (2024) and derive the operational bounds

for the STARFIT using a combination of observations and machine learning. From there
:::
To

::::::::::
complement

:::::
these

::::::::::
operational

::::::
bounds, we employ the two different operational schemes based on the main purpose:

:::
two

:::::
main

:::
sets

:::
of

::::::::
equations

:::::
based

:::
on

:::
two

::::
main

:::::::::
groupings

::
of

::::::::
reservoir

::::
main

::::::::
purposes:

::::::::::::
irrigation-like

:::
and

:::::::::::::
hydropower-like (Section 2.5.3 and Section 2.5.2).

::::
We

:::
use

::::
these

::::
two

:::::::::
groupings

::
to

::::::
denote

::::
how

:::::::
releases

::::::
change

::::::
based

::
on

::::::::
reservoir

:::::::
storage

:::::
level.

::
In

::::::::::::
irrigation-like

:::::
dams,

:::
the

::::
goal

::
is
:::

to305

::::
meet

::::::::::
downstream

:::::::
demand

:::
and

::::::::
therefore

:::
the

::::::::
equations

::
in
:::::::
Section

::::
2.5.3

::::::::
prioritize

::::
this

::::
goal

::
by

:::::::
meeting

:::
all

::::::::::
downstream

:::::::
demand

::::
when

::::::::
reservoir

:::::::
storage

:::
sits

:::::::
between

:::
the

::::
data

:::::::
derived

::::::::::
operational

::::::
bounds

::::
and

::::::::::::
proportionally

::::
less

:::::
when

::::::
storage

:::
sits

::::::::
between

::
the

:::::::::::
conservation

::::::
bound

:::
and

::::
10%

:::
of

:::
the

::::::::
maximum

:::::::
storage

:::::::
capacity

::
of

:::
the

::::::::
reservoir.

::::
For

:::::::::::::
hydropower-like

::::::
dams,

:::
the

::::
goal

::
is

::
to

::::
hold

::::::
storage

::
as

:::::
stable

:::
as

:::::::
possible.

:::::::::
Therefore,

:::
the

::::::::
equations

:::
in

::::::
Section

:::::
2.5.2

::::::::
prioritize

:::::::
meeting

::::::::::
downstream

:::::::
demand

:::::
when

:::
the

::::::
storage

::
in

:::
the

:::::::::::::
hydropower-like

::::::::
reservoir

:::
sits

:::::::
between

:::
the

:::
data

:::::::
derived

:::::::::
operational

:::::::
bounds.

::::::::
However,

:
if
:::::::
meeting

::::
this

::::::::::
downstream310

::::::
demand

::::::
causes

:::
the

::::::::
reservoir

::::::
storage

::
to

:::::
drop

:::::
below

:::
the

:::::::::::
conservation

::::::
bound,

::::
then

:::
the

::::::::
reservoir

:::
can

::::
only

:::::
meet

:
a
::::::
portion

:::
of

:::
the

::::::::::
downstream

:::::::
demand

::
to

:::::
allow

:::::::
storage

::
to

::::
stay

::
in

:::
the

::::::
active

::::
zone

::::::
(zone

:::::::
between

:::
the

::::::::::
operational

::::::::
bounds).

:::
For

::::
both

:::::
types

:::
of

::::::::
reservoirs,

:::
we

:::::::
employ

::
an

:::::::::
additional

::::
flood

:::::::
release

:::
and

:::::::
account

:::
for

::::::::::::
environmental

::::
flow

:::::::::::
requirements

::
as

::::
10%

::
of

:::
the

::::::::::
naturalized

::::
flow

:::::::::::::::::::::
(Gleeson and Wada, 2013)

:
.

For all of the operational schemes (generic, irrigation-like and hydropower-like, we employ the following method. First, we315

define the initial release and set up the framework for other conditions
:
, such as environmental flows , and floods. To do this,

we first calculate the initial discharge into the model that is defined by equation 1.

Ri =RF ∗Ravg (1)

where RF is the reduction factor as shown in equation 3 with the updated values as defined above, Ravg is the long-

term average outflow that is dynamically calculated within the model. This initial release (Ri) is used as a starting point320

in each operational scheme and is modified based on the type of operation used. In all cases, the Ri cannot be greater than the

downstream bankfull discharge value of 2.3,
:
which is the highest ratio of streamflow to stream network is expected to transport

without floods occurring.
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Then, we calculate the new storage using the following water balance equation under the initial release to ensure a starting

point of storage:325

Sc(t+1) = Sc(t)+ I(t)+P (t)−E(t)−Ri (2)

where I is inflow, A is area reservoir
::
Sc

::
is
::::::::
reservoir

::::::
storage, P is precipitation, E is evaporation,

:::
and R is release.

We use this updated storage to define the reduction factor, which is the fraction of the long-term average reservoir release,

as outlined in equation 3.

RF =
Sc −Smin

Smax −Smin
(3)330

where Scis the current storage level, Smax is the maximum storage capacity and Smin is the dead storage level.

After this, we employ updated release calculations based on Section 2.4.1, Section 2.5.2, or Section 2.5.3 depending on the

type of operational scheme used as well as the type of dam. This new release is then placed back into equation 2 to update the

storage at the current timestep.

2.4.1 Generic Reservoir Scheme in PCR-GLOBWB 2335

Generic reservoir operations are already implemented in PCR-GLOBWB 2 by Sutanudjaja et al. (2018) and mimic that of

hydropower operations. Each reservoir has an active zone between 10% and 75% of the reported maximum storage capacity

in GRanD. When storage is below the dead storage limit (i.e. 10% of maximum capacity), the reservoir does not release any

water. Between 10% and 75% full, the reservoir outflow is scaled by the reduction factor denoted by equation 3

The generic release operations are defined by the following piecewise function.340

R=


0 if Sc < Smin

RF ∗Qavg if Sc > Smin and Sc < Smax

Sc−Scap

Smax−Scap
∗ (Qbf −Qavg)+B if Sc > Smax

(4)

where Qavg is the longterm average discharge at the point location of the dam, Qbf is the bankfull discharge, and B is the

bankfull number which is the ratio of bankfull discharge to the average discharge and is denoted as 2.3 in our analysis (van

Beek et al., 2011).

In all instances, demand is set at zero
:
, meaning that the reservoir is changing releases solely based on storage. When reservoir345

storage minus the projected release would be greater than the set maximum of 75% of storage capacity or Smax, the reservoir

enters flood conditions. At this point, an additional release is added to ensure that the reservoir is brought back to the upper

75% of storage and is not over-topped. All the water is routed downstream where it can be further allocated within the river

network in PCR-GLOBWB 2.
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2.4.2 Data Driven Reservoir Operations - STARFIT350

2.5
::::

Data
::::::
Driven

:::::::::
Reservoir

::::::::::
Operations

:
-
:::::::::
STARFIT

2.5.1
::::::::::
Operational

:::::::
Curves

:::
by

:::::::::
STARFIT

To remedy gaps in generic reservoir operations (primarily the lack of demand, no environmental flow, and uniformly large

active zones), Turner et al. (2021) used the ResOpsUS dataset (Steyaert et al., 2022) to create STARFIT, a reservoir model

that takes historical reservoir storage, release, and inflow data to output operational ranges for each variable. To do this, these355

daily storage, release and inflow values are aggregated into weekly time series and a combination of sine and cosine curves

(described by equation 5 below) are fit to the upper and lower percentiles of each time series. This results in two curves bounded

by the upper and lower percentiles with a total of 10 parameters,
:
which creates a range within which reservoir release, storage,

and inflow should sit based on historical data (Turner et al. (2021) used the period from 1980 - 2020).

St = µ+α ∗ sin(2πωt)+β ∗ cos(2πωt) (5)360

For our analysis, we were only able to obtain storage time series from GloLakes, as no global dataset of reservoirs
:::::::
reservoir

releases is available. We applied the Turner algorithm to GloLAKES
:::::::
GloLakes

:
storage data for 1752 dams from 1980 - 2020.

This data is already aggregated weekly due to the gaps in satellite passages and therefore we were able to use the estimated

storage values directly from these remotely-sensed observations. We did not gap-fill the data as this would add additional

assumptions that could later lead to increased uncertainties. We fit flood and conservations
::::::::::
conservation

:
curves to the 1752365

dams and obtained the 10 parameters (five for the flood and five for the conservation curve) denoting the upper and lower limits

of the active zone. The 10 parameters were then used as training data for a random forest model that was used to extrapolate

the parameters to the global scale (Section 2.6).

Since there are large differences between irrigation/water supply dams and hydropower/navigation, we grouped the dams

into two main categories. Main purposes,
:
such as irrigation and water supply

:
, were grouped as their dynamics are driven370

by downstream demand (either for agriculture or for domestic uses), while main purposes that have operations that are not

demand-driven such as hydropower, fisheries, navigation, recreation, and other were grouped into a second category.
::
To

::::::
ensure

:::
that

:::::
these

:::
two

:::::::::
groupings

::::
had

::::::
distinct

:::::::::
dynamics,

:::
we

::::::::
evaluated

:::
the

:::::::
average,

::::::::::
maximum,

:::
and

:::::::::
minimum

::::
flood

::::
and

:::::::::::
conservation

:::::
curves

:::
for

:::::
both

::::::::::::
irrigation-like

:::
and

::::::::::::::
hydropower-like

::::::::
reservoirs

:::
for

::
all

:::
the

:::::
1752

:::::::
training

::::::
dams.

:::::
These

:::::::::::
distinctions,

:::::
shown

:::
in

::::::::
Appendix

:::
A3,

:::::::::::
demonstrate

:::
that

:::
our

:::::::::
groupings

:::
had

:::::::
uniquely

::::::::
different

::::::::::
conservation

:::::::::
timeseries.This grouping allowed us to have375

two main operational strategies: one for hydropower
::::::::::::::
hydropower-like type dams which strive to keep storage as high as possible

and one for irrigation
::::::::::::
irrigation-like type dams which strive to meet downstream demand.

Before we could implement the data-derived reservoir operations in PCR-GLOBWB 2, we had to calculate command areas as

the reservoir operation scheme requires downstream demand to determine how much water should be released by water supply

and irrigation dams. Based on our literature review, we observed that there are three main command areas used by large-scale380

hydrologic models: 250 km (Haddeland et al., 2006), 600 km (van Beek et al., 2011), 1100 km (Hanasaki et al., 2006). For
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each dam represented in the GeoDAR map, we calculated the farthest location along the river network at a distance of 250 km,

600 km, or 1100 km and allocated the water demand in each cell up to this point to the upstream reservoir. If during this

process, another dam intersects the river network before the full command area is created, we assume that this is the maximum

distance that is served by the upstream reservoir.
::::
This

::::::::
command

::::
area

::
is

::::
used

::
to
:::::::::
aggregate

:::
the

::::
total

::::::::::
downstream

:::::::
demand

::::
that385

::::
could

:::
be

::::
met

::
by

::::
the

::::::::
reservoir.

:::
We

:::
use

::::
this

:::::::::
aggregated

:::::::::::
downstream

:::::::
demand

::
in

::::
both

:::
the

::::::::::::::
hydropower-like

:::
and

::::::::::::
irrigation-like

::::
dams

::
as

::::
both

::::
dam

:::::
types

:::
can

:::::
meet

:::
the

::::::::::
downstream

:::::::
demand

:::::
when

::::::
storage

:::
sits

:::::::
between

:::
the

::::
data

::::::
derived

::::::::::
operational

:::::::
bounds.

:::
We

:::::
found

:::
that

:::::
while

::::
our

:::::
model

::::
was

:::
not

::::::::
sensitive

::
to

:::
the

:::::::::::
downstream

:::
area

::::::::::
(Appendix

::::
A1),

:::
we

:::
did

:::::::
observe

::::
that

:::
the

:::::::
addition

::
of

::
a

::::::::
command

::::
area

::::::::
increased

:::
our

:::::
model

:::::::::::
performance

:::::::::
(Appendix

::::
A4).

:

Hydropower-like
::::::::::::::
Hydropower-like dams are only able to meet a portion of downstream demand when they are within their390

active zone and meeting demand would not decrease storage below the conservation bounds. Irrigation-like
::::::::::::
Irrigation-like

dams, on the other hand, are allowed to meet demand when in the active zone and above dead storage (denoted as 10% of the

storage capacity). We also included surface water abstractions for irrigation-like dams.
::::::::::::
irrigation-like

:::::
dams.

::
In

:::::::::::::
PCR-GLOBWB

::
2,

::::::
surface

:::::
water

:
is
:::::::::
abstracted

::::
from

:::
the

::::
river

::
or

::::
lake

:::
cell

::::::
closest

::
to

:::
the

:::
cell

::::
with

:
a
:::::::
demand.

::::
For

:::::::::::
irrigation-like

:::::
dams,

:::
we

::::
only

:::::::
allowed

::::::
surface

:::::
water

::::::::::
abstractions

:
if
:::
the

:::::::::
abstracted

::::::
volume

::
of

:::::
water

::::::
would

:::
not

::::
drop

:::
the

:::::::
reservoir

:::::::
storage

:::::
below

:::
the

::::::::::
conservation

::::::
curve.395

Lastly, we implement a piecewise function for releases based on the current reservoir storage (Sc) where Rf is the flood

releaseand ,
::::

Env
::
is

:::
the

::::::::::::
environmental

::::
flow

::::::::::
requirement

:::::::
defined

::
in

:::::::::::::
PCR-GLOBWB

::
2,
::::
and Riand and

:::
Rh are the irrigation and

hydropower releases in the active zone and are described in by equation 9 in Section 2.5.3 and by equation 8 in Section 2.5.2

respectively.400

R=



Ri +Rf , if Sc −R≥ Scap

Rh if Sc > Smin and Sc < Smax and use is hydropower

Ri if Sc > Smin and Sc < Smax and use is irrigation

Env if Sc < Sminand RiorRh <Env and Sc −Env > 0

where Rf = Sc −R−Scap (6)

2.5.2 Operations for Hydropower-like Dams

For the hydropower-like
:::::::::::::
hydropower-like dams, we implement a very similar methodology to the generic reservoir operations

:
,

with the notable exception that the upper and lower operational bounds are not set at 10% and 75% of maximum storage

capacity but rather are derived from the observational data using the workflow described in Figure 1. We derive the operational405

bounds for each type of damand each location, in other words a fishery dam in the United States can have differentoperational

bounds than a fishery dam in Brazil, yet
:::
use

:::::
these

:::::::::
operational

::::::
bounds

::
to

::::::
denote

:::
the

:::::
active

:::::
zone

:::
and

::::::::
therefore

:::
the

::::::
release

:::::
factor

::::::::
(Equation

::
3)

:::
for

:::
the

::::::::::
hydropower

:::::
dam.

:::
We

:::::
opted

:::
for

::::::::
different

::::::::::
hydropower

:::
and

::::::::
irrigation

:::::::::
operations

::
as
::::

the
::::
main

::::
goal

::
of

:::::
each

:::
type

:::
of

:::::::
reservoir

::
is
:::::::
slightly

::::::::
different.

:::
For

::::::::
example,

:
a hydropower dam in Switzerland could have similar operational bounds

to
::::::
slightly

::::::::
different

:::::::::
operational

:::::::
bounds

::::
than

:
a hydropower dam in Vietnamas long as the input data shows similar trends)

:
,410

:::::::
however,

:::
the

:::::
main

:::::::
purpose:

::::
hold

::::::
enough

:::::
water

::
to
:::::::
support

::::::::
electricity

::::::::::
generation,

:::::
would

:::
be

:::
the

::::
same. For all hydropower dams,
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we calculate a new initial hydropower release based on equation 7:

Rhi =

D ∗RF/B, if R<D

R if R>D
(7)

where D refers to the maximum demand
::::::::
aggregated

::
at
:::
the

::::::::
specified

::::::::::
downstream

::::
area

::::
(250

:
km
:::

,
:::
650

:
km
::

,
::::
1100 km

:: :
),
:
R is the

currently calculated release, RF is the reduction factor (defined in equation 3), Rhi is the initial release, and B is the bankfull415

discharge.

Once the hydropower release is calculated, there are multiple options for the final release outlined by equation 8. When

storage is below conservation, the release is equal to the recalculated environmental flow and the dam meets no downstream

demand. When the storage again enters the active zone (the area between the conservation and flood curves), the release is the

difference between the current storage (Sc) and the hydropower release described by equation 8. If this new release results in420

a lower storage value than the conservation value, we assume the release is equal to the environmental flow value and does not

release any additional water.

Rh =

Sc −Rhi, if Smin < Sc < SmaxandSc −Rhi > Smin

max(Sc −Smin,0) if Sc −Rhi < Smin

(8)

where Rhi is the initial hydropower release defined by 7, Sc is the current storage, Smax is the flood value and Smin is the

conservation value.425

2.5.3 Operations for Irrigation-like Dams

For irrigation-like dams, S[minmin
:::

is set at 10% of the maximum storage capacity and Smax(t) is set at the flood value of

that given day. When storage is in the active zone and above the dead storage zone (defined as the lower 10%) , the release will

be equal to the calculated demand, unless releasing that much water would push the storage into the dead zone (defined as the

lower 10% of the storage capacity). In the case where the precalculated release is already greater than demand (
:::::::
equation

:
1),430

the release does not change. We use the following piecewise function to capture these dynamics:

Ri =


R, if Smin < Sc < SmaxandR >D

(RF ∗D) if Smin < Sc < SmaxandR <D

max(Sc − 0.1 ∗Scap,0) if Sc −R< 0.1 ∗Scap

(9)

2.6 Random Forest Extrapolation

Since the weekly operational bounds from STARFIT are only available for 1752 structures globally, this would severely limit

our global modeling capabilities. Therefore, we used a Random Forest
::::::
random

:::::
forest

:
approach to extrapolate the 10 param-435

eters for the approximately 22,000 other structures in GeoDAR based on relationships between the parameters for the 1752
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dams and their reservoir and catchment characteristics. As input features, we used static reservoir characteristics (i.e. storage

capacity and main purpose), socioeconomic variables (i.e. population density), and climatic variables for the upstream areas

(i.e. precipitation, temperature, and aridity) to best reflect potential drivers for changes in reservoir release policies. 75% of

the 1752 structures were used to train the random forest model and the remaining 25% were used as independent validation.440

::::::::::
Additionally,

:::
we

::::
may

::::
find

::::
that

::
by

:::::
using

:
a
::::::::
different

::::::::
validation

:::::::
scheme,

:::
our

::::::::::
operational

::::::
curves

::::
may

:::
also

:::::::
change

::
as

:::
our

:::::::
random

:::::
forest

::
is

:::::::
sensitive

::
to
:::

the
:::::

input
::::
data

:::::::::
(Appendix

:::::
A1). The obtained RF was then used to extrapolate the 10 parameters to the

remaining
::
all 24,000 structures.

Based on Steyaert and Condon (2024) and van Beek et al. (2011), we assume that the flood peak cannot be greater than 100%

or less than 5% of the total storage capacity. Therefore, any values that sit above 100 or less than 5 for flood are automatically445

set at these bounds. We also assume that there is at least a 5% difference between the flood and conservation curves so that

there is always an active zone in the reservoir. To ensure this is the case, we calculate the difference between the flood and

conservation curves at each weekly step for each dam and if the difference is less than 5, we use equation 10 below to calculate

the new conservation level where C [tnewtnew
:::

is the conservation value at the current timestep, Ft and Ct are the flood and

conservation values at the timestep.450

[Ctnewtnew
:::

=min(Ft − 5,Ct)] (10)

2.7 Model Evaluation and Model Setup

In this study, we use five scenarios to test the impact of different reservoir datasets as well as different reservoir operating

schemes on the hydrologic simulations of PCR-GLOBWB 2. Our first two scenarios use the original reservoir operations in

PCR-GLOBWB 2 and only differ by the reservoir input datasets 2
:::::
(Table

::
2

::::::
column

::
2): one has the GeoDAR database as the455

input (BaseGeoDAR) and one has the GRanD data as input (named Baseline), both of these use the reservoir operating scheme

as developed by Sutanudjaja et al. (2018). We then create three scenarios with the updated data-driven algorithm for the three

command areas we opted to test based on literature: 250 km (Turn250), 600 km (Turn600), and 1100 km (Turn1100). These

three scenarios all use the GeoDAR reservoir dataset as the input dataset and can directly be
::
be

:::::::
directly compared to the

Baseline and BaseGeoDAR scenarios that uses
:::
use Sutanudjaja et al. (2018).460

To estimate the impact of different reservoir datasets, we compared the Baseline and the BaseGeoDAR scenarios as any

difference in the hydrologic variables (e.g. discharge, reservoir outflow, reservoir storage, reservoir evaporation, surface water

abstraction, and total runoff) can be related directly to the different number of reservoirs structures in the model. The compar-

ison between the BaseGeoDAR and Turn250, Turn600,
:
or Turn1100 serves to identify the impact of implementing a different

reservoir operating scheme in an existing model like PCR-GLOBWB 2.465

To validate our analysis, we compared PCR-GLOBWB 2 discharge at the point location closest to dams where observed

discharge is available via GRDC (Federal Institute of Hydrology, 2020). While this validation has its limitations (mainly we are

only looking at single point locations and there is a skew towards more gauged basins) it allows us to observe how streamflow

regimes are changing between the different simulations, how different that regime change might be between different reservoir
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Model Reservoir Dataset and

number of dams

Operational Policies Command Area (km)

Baseline GRanD (6000) Sutanudjaja et al. (2018) None

BaseGeoDAR GeoDAR (24,000) Sutanudjaja et al. (2018) None

Turn250 GeoDAR (24,000) Turner et al. (2021) 250

Turn600 GeoDAR (24,000) Turner et al. (2021) 600

Turn1100 GeoDAR (24,000) Turner et al. (2021) 1100
Table 2. Shows the model scenarios that we have built and tested for this paper. The first column denotes the name assigned to the model

scenario in the results.

release schemes, and to determine which reservoir operation scheme will produce the most accurate streamflow measurements.470

To complement this, we also validate our reservoir storage against observed storage values in ResOpsUS as well as remotely

sensed reservoir storage from GloLAKES
::::::::
GloLakes to see if reservoir dynamics are better represented with the new database

schemes.

3 Results

3.1 Impact of reservoir datasets475

We first analyze the impact of changing the reservoir dataset on the global representation of reservoirs in PCR-GLOBWB 2.

Figure 2 shows the total storage that is added to the modeling domain when changing from GRanD (global storage of

6,355.72 km3) to GeoDAR (global storage of 7,123.66 km3). 95% of the 230 global basins depicted in HydroSHEDS ob-

serve increases in reservoir storage as a result of the inclusion of new dams and only a few basins show a reduction. Of these

218 basins, 40 basins have slight increases in storage (noted as percent differences between 0 and 1% ), while the remaining480

178 basins observe more significant increases. The largest storage increases are observed in Greenland, Central Asia, the Mid-

dle East, the Horn of Africa, and Central Africa. Of the 11 basins that do not observe increases in storage, spread throughout

Central Mexico, Brazil, east
:::
East

:
Africa, China, the Baltic states, Ireland, and Spain, two observe storage percentages very

close to 0, and 9 observe much larger negative differences. The lowest value sits at -21% and is located in Ireland, which is the

result of corrections in dam locations or storage volumes moving from GRandD to GeoDAR.485

These negative values are the result of the two main decisions. The first is the decision to use GeoDAR as the "truth"

value when reporting storage capacity
:
, as GeoDAR included GRanD and updated these values where necessary. This decision

could mean that some dams have lost storage capacity due to discrepancies between GRanD and GeoDAR. Secondly, our

workflow for creating the updated input maps for GeoDAR looks at each catchment and determines the total surface area of

each reservoir and lake. Since reservoirs cannot be split across multiple catchments, we calculate the total area of the reservoir490

in each catchment and then place the reservoir in the location that has the largest area in large with the HydroSHEDS draining
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Percent	Difference	(%)
>	25

15	-	25

5	-	15

-5	-	5

-15	-	-5

-25	-	-15

<	-	25

NA

Degree	of	Regulation	(10⁻²)
0	-	0

0	-	0,01

0,01	-	0,05

0,05	-	0,1

0,1	-	0,5

0,5	-	1

NA

Figure 2. Change in total storage globally in GeoDAR when compared with GRanD as a percentage (a) and the fraction of regulation in each

basin (b) where grey represents areas that have no storage. Both panels use the PCR-GLOBWBW 2 input files using GeoDAR to determine

the total storage in each basin. Panel b uses the average of 40 years of modeled runoff data from PCR-GLOBWB 2.

network in PCR-GLOBWB 2 (Giachetta and Willett, 2018). While this is physically sound, the PCR-GLOBWB 2 drainage

network might not directly align with the physical river networks, or the reservoir dataset does not align with the digital

drainage network, and therefore,
:
some reservoir structures might be oriented in a different basin. For small dams, this might

not be an issue, but for larger dams, this could end up causing storage differences.495

To evaluate the impact the increased number of dams has on the global streamflow, we aggregated the long-term annual

average runoff from 1979 - 2023 across all 230 global basins and then divided the total storage capacity by the long-term

average annual runoff for each basin. This yields the fraction of regulation per basin depicted in Figure 2b. 20% of the basins

or 42 total basins have zero regulation due to having no reported storage capacity (regions depicted in grey in Figure 2a) while
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4 basins have regulation values greater than 0.5, meaning that half of the longterm basin runoff is stored in reservoirs (i.e. in500

the southwestern US and the Middle East).

More notable than the exact regulation values are the differences and similarities between the patterns in Figure 2a and

Figure 2b. Basins with a large degree of regulation (shown in Figure 2b),
:
like the Colorado Basin, Yenasei, and the Tigris-

Euphrates,
:

have a large amount of storage which suggests that these regions have a multitude of medium to large dams com-

pared to the available runoff. Conversely,
:::::
some basins with a large amount of storage (Figure 2a) such as much of Central and505

South Eastern Asia, Central Africa, and Western Australia do not have a high degree of regulation,
:::::
which

:::::::
implies

:::
that

:::::
there

::
is

:::
not

:
a
:::::
direct

::::::::::
relationship

:::::::
between

::::
total

::::::
storage

::::
and

:
a
::::
high

::::::
degree

::
of

:::::::::
regulation (Figure 2b).

3.2 Evaluation of the Random Forest Model

First, we added the 24,000 structures to the PCR-GLOBWB 2 domain and developed the workflow described in Figure 1 to

incorporate two main types of reservoir operations into PCR-GLOBWB 2. We then evaluated the impact of this methodology510

by using different input datasets: ResOpsUS (n=668, Steyaert et al., 2022) and GloLakes (n=24,000, Hou et al., 2024) in

four different combinations. The first combination is a comparison between the different STARFIT curves obtained from each

reservoir dataset (Table 3: column 1). This comparison (using 668 dams across the contiguous United States) allows us to

evaluate the implicit impact of using local data (ResOpsUS) compared to a global remotely sensed dataset (GloLakes), that is

required for global applications like global hydrologic model simulation. The difference we find in this comparison shows the515

potential reduced quality of global reservoir water level estimates compared to local information. The second combination is

a comparison between the STARFIT-derived curves for ResOpsUS (Table 3: column 2) and the extrapolation of those curves

(n=668) using our random forest methodology in Section 2.6. This allows us to evaluate how well our methodology matches the

original derivation of reservoir operating curves compared to the benchmark dataset of STARFIT. The last two comparisons are

between two different data products from GloLakes for satellite altimetry: IceSat and LandSat
:::::::
ICESat2

:::
and

::::::::
Sentinel2

:
(Table 3:520

columns 3 and 4), which allow us to see the difference in quality moving from local to global and using a random forest

compared to the original methodology.

The bias metrics in
:::::
(given

::
in

::::::::::
percentages)

::
in

:
the first column show that STARFIT with Glolakes

:::::::
GloLakes

:
overestimates the

flood level while the conservation level is slightly underestimated, yet the higher correlation demonstrates the timing is con-

sistent between the two datasets. Conversely, the conservation correlation is not as strong (0.59
:
%), however, the conservation525

curves are slightly closer to the original STARFIT data than the flood curves.

After evaluating the uncertainty of the input STARFIT curves from direct observations and the satellite altimetry data (Ta-

ble 3: column 1), we evaluate the extrapolation methodology in Figure 1 with ResOpsUS (Table 3: column 2). The third column

shows the bias between the random forest algorithm and the original algorithm. Overall, we observe a large bias for the flood

curves and quite high correlations for flood and the conservation curves suggesting the RF workflow is overestimating the530

flood curves yet still aligns with the values in STARFIT. RMSE
:
(%/week

:
) for both the flood and conservation curves are high

which demonstrates that while the timing of the flood curves match, the general errors are much larger in part because the

RF algorithm underestimates the conservation levels. Compared to column two, the conservation correlations rise and the bias
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Performance Metric STARFIT with Glo-

Lakes vs STARFIT

with ResOpsUS

(n = 266)

STARFIT vs RF

extrapolation with

ResOpsUS

(n = 668)

STARFIT vs RF

extrapolation with

GloLakes/Sentinel

:::::::
Sentinel2

(n = 1753)

STARFIT vs RF

extrapolation with

GloLakes/ICESAT

::::::
ICESat2

:

(n = 2445)

Bias Flood
:::
(%) 11.58 0.66 0.16 1.977

Bias Conservation

:::
(%)

-8.05 -3.06 0.08 1.38

Correlation Flood

:::
(%)

0.83 0.78 0.96 0.98

Correlation

Conservation
:::
(%)

0.59 0.73 0.94 0.97

RMSE Flood

:
(%/week

:
)

18.03 20.16 11.31 8.91

RMSE Conservation

:
(%/week

:
)

15.46 18.32 10.13 7.47

Table 3. Depicts the performance metrics (column 1) between the extrapolated curves using the methodology in Figure 1 and the STARFIT

algorithm developed by Turner et al.
:::::::::::::::
Turner et al. (2021) to evaluate the impact of changing data and the random forest on the "original

curves." All RMSE values are in the units (

percent/week

%/week ). Column two shows the metrics between the original curves derived from STARFIT and the constrained curves using 668 actual

storage values from ResOpsUS (Steyaert et al., 2022) in order to evaluate the impact of using Glolakes
:::::::
GloLakes. Column three depicts the

RF workflow vs the extrapolation using ResOpUS to further evaluate the RF workflow without the error in satellite altimetry. Column four

depicts the comparison between the STARFIT curves and the random forest-constrained curves for the 1752 GloLakes dams that could be

input into STARFIT and were used to train and validate the RF workflow. Lastly, column five shows the same metrics for another data product

in GloLAKES
:::::::
GloLakes using IceSAT

::::::
ICESat2. This is used to validate the RF workflow.
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decreases which suggests the random forest algorithm trained on observational data does a relatively good job of capturing the

levels for the conservation curves compared to the STARFIT algorithm. The RMSE values
:::::
(given

::
in
:
%/week

:
) do increase and535

the flood correlation decreases suggesting that the RF does not accurately capture the flood values potentially due to the short

notice period for flood conditions.

Columns 3 and 4 show the extrapolation metrics for both GloLakes datasets: IceSat
:::::::
ICESat2

:
(column 4) and Sentinel

::::::::
Sentinel2 (column 3). These results show that when applied to GloLakes, the RF extrapolation effectively reproduces the flood

and conservation curves, even better than when the RF is applied to the ResOops
:::::::::
ResOpsUS STARFIT curves (Column 2).540

However, column 1 shows that the largest error occurs when moving from ResOpsUS to GloLakes. Thus the total errors are

mostly made up of errors in the storage time series that are obtained from remote sensing. In general, the operating bounds are

more narrow compared to the original algorithm (Figure 3).

While the metrics depicted in Table 3 provide a summary and validation of our workflow, the actual curves related to the

different data and method combinations are much more insightful. For illustration, Figure 3 shows the results for dams with two545

main purposes: the Clinton Lake Dam (Illinois
:::
Butt

::::::
Valley

::::
Dam

::::::::::
(California, United States) with a hydropower main purpose

(Figure 3 top row) and the Medina Dam (Texas, United States) with an irrigation main purpose (Figure 3 bottom row). We

only include hydropower-like and irrigation-like as our allotted reservoir operations in Section 2.4 use these two categories to

determine operations.
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Figure 3. Operational curves as storage percentage vs epiweek for two main types of dams: hydropower (a, b, c, d, e) and irrigation (f, g,

h, i, j). Panels a and f depict the original curves that come out of the STARFIT model. Panels b and g depict the STARFIT model using the

data from GLoLAKES LandSat
:::::::
GloLakes

:::::::
Sentinel2. Panels c and h depic

:::::
depict the Random Forest algorithm trained on ResOpsUS. Panels

d and i depict the Random forest methodology shown in Figure 1 using the GloLAKES IceSAT
:::::::
GloLakes

:::::::
ICESat2 data, while panels e and

j show the final constrained curves from the random forest methodology using GloLakes LandSat
:::::::
Sentinel2.
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When looking at the hydropower example, Clinton Lake
:::
Butt

::::::
Valley Dam, (Figure 3: top), we observe that all the curves

have a peak during the first half of the year which aligns with spring precipitation in this region. The ResOpsUS (Figure 3a)550

curve has a larger peak (a range of 20% and 95 %) when compared to the other algorithms. GloLakes-STARFIT (Figure 3b),

on the other hand, has a much more limited operational range (between 20% and 75%). This range is further limited when

looking at the RF model using GloLakes-IceSAT or GloLakes-LandSat
:::::::::::::::
GloLakes-ICESat2

::
or

:::::::::::::::::
GloLakes-Sentinel2 (Figure 3d

and 3e respectively), although these final storage ranges encompassed the average range of both ResOpsUS and GloLakes. The

RF model with the ResOpsUS data (Figure 3c) is more similar in range to the STARFIT curves made with GloLakes while555

maintaining the same peak in the early part of the year. This suggests that in general, our RF workflow constrains the active

zone of the reservoir while keeping the same seasonal patterns when compared to the STARFIT curves for the hydropower-like

dams.

For irrigation like dams, we plotted the same five curves for the Medina Dam (irrigation main purpose). Overall, the curves

depict the same general trend (Figure 3 bottom) with the ResOpsUS (Figure 3f) curves having the largest active zone and560

the RF workflow with GLoLakes-IceSAT
:::::::::::::::
GloLakes-ICESat2

:
(Figure 3i) having the most limited operational range. Opposite

to the hydropower example, the final GloLakes-LandSat
::::::::::::::::
GloLakes-Sentinel2 extrapolation (Figure 3j) shows a much lower

overall active zone with slight increases in the active zone towards the latter part of the year, which is consistent with irrigation

demand. In general, we see that moving from local data ResOpsUS to more global data like GloLakes results in the strongest

reduction in the operation bounds, while moving from STARFIT to RF only results in a small reduction of the operational565

bounds.

To evaluate the implication of these operational bounds, we first look at the impact on two dams: the Clinton
::::
Lake

:
Dam in

Illinois (with a water supply main purpose) and the Koelnbrein Dam in Austria (with a hydropower main purpose) shown in

Figure 4. To do this, we plot the monthly average storage fraction (Figure 4a and 4d), the difference between the reservoir inflow

and outflow at the point location of the dam (Figure 4b and 4e) and the discharge in m3/s at the respective basin outlets. For570

each panel, we plot three of the five models: Baseline (black, the reservoir rules as currently implemented in PCR-GLOBWB 2),

BaseGeoDAR (grey, original reservoir operating rules with additional reservoirs), and Turn250 (pink, new reservoir rules and

additional dams). We opted to not
::
not

:::
to plot all Turn600 and Turn1100 as difference

:::
the

:::::::::
differences

:
between the models are

relatively small (Appendix Figure A1).
:::::::::::
Additionally,

:::
the

::::::::::
comparison

:::::::
between

:::::
these

::::
dams

::::
and

:::
the

::::
rest

::
of

:::
the

::::::::
modelled

:::::
dams

::
are

::::::
shown

::
in

:::::
Table

:::
A2

::::
and

:::::
Table

:::
A3

:::
and

:::::::::
additional

::::::::
examples

::
of

::::::
single

::::
point

:::::::
location

:::::::::::
comparisons

:::
are

::::::
shown

::
in

::::::
Figure

::::
A12575

:::
and

::::::::
additional

:::::
basin

::::::
outlets

:::
are

:::::
given

::
in

::::::
Figure

::::
A13.

In both cases, the reservoir storage is lower in the data-driven operations (Turn250) when compared to the generic oper-

ations (Baseline and BaseGeoDAR). This is mostly due to the change in operational schemes but also affected by upstream

regulation and changes therein (the difference between Baseline and BaseGeoDAR). For the hydropower dam, the Baseline

and BaseGeoDAR storage fractions are not too different and have the same seasonal cycle. Conversely, the Turn250 storage580

fractions sit between 0.01 and 0.02 with a shifted storage fraction peak towards the end of the year compared with the Baseline

and BaseGeoDAR which have a storage peak towards the spring. The water supply dam, which contains irrigation-like oper-
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Figure 4. Implementation of the final operational curves in PCR-GLOBWB 2 for the three main reservoir models: Baseline (black), BaseGeo-

DAR (grey), Turn250 (pink). The top row shows Clinton Lake
::::
Dam, a water supply dam in the Mississippi basin, while the lower row shows

the Koelnbrein dam, a hydropower dam in the Danube basin. Column one (panels a and d) shows the storage fraction for all the models.

The second column (panels b and e) shows the change in storage between each month to observe where the dams are filling (positive values

and releasing (negative values). The final column (panels c and f) shows the
:::::::
long-term

::::::
monthly

:
discharge

:::
over

:::
the

::
40

::::
year

::::::::
simulation

:::::
period

::::
(1980

:
-
:::::
2023) at the respective basin outlets.

ations, shows similar seasonal trends as the Baseline and BaseGeoDAR, yet the average storage drops much lower, especially

in the autumn and winter months.

To fully determine the shifts in storage observed in Figure 4a and 4d, we can use Figure 4b and 4e to determine when the585

reservoir is filling (positive values) and when it is emptying (negative values). In all models, the irrigation dam fills in the winter

and spring and empties during the summer. The Turn250 model has slightly more filling, which is offset by more depletion

in the spring months, indicating larger storage dynamics, but a lower average storage. It also does not return to full quite as

quickly as the Baseline and BaseGeoDAR models, potentially due to meeting (downstream) demand. For the hydropower dam,

all models have a peak in the springtime with a decrease in all other months. Conversely to the irrigation dam, the Baseline590

model has more filling compared to the BaseGeoDAR and the Turn250 models. That said, the springtime depletion in the

Turn250 model is much more linear compared to the other models.

The different reservoir schemes have small impacts at the basin scale, even in heavily managed basins (Figure 2). In the

Mississippi (Figure 4c), there is a small reduction in discharge for the Turn250 model during the peak flows in the spring and

slightly more discharge during the low flows in the winter months. In the Danube (Figure 4f), there is slightly less discharge at595

the outlet during the winter for the Turn250 model, but otherwise, the modeled discharge is the same. The difference between

these two basins is in part due to the difference in regulation observed in Figure 2b, where the Danube basin has a lower degree

of regulation compared to the Mississippi basin.
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Model
Precipitation

:::::::::
Evaporation

(km3/yr)

Evaporation

:::::::::
Precipitation

:

(km3/yr)

Runoff

(km3/yr)

Surface Wa-

ter

Abstraction

(km3/yr)

Groundwater

Abstraction

(km3/yr)

Water Body

Storage

(km3/yr)

Water Body

Evaporation

(km3/yr)

Change in

Total Water

Storage

(km3/yr)

Baseline 62,803.44 111,556.56 49,029.85 2,467.25 566.18 10,570.41 1,651.557 -6.94

BaseGeoDAR 62,822.95 111,556.56 49,049.07 2,499.56 557.91 10,561.87 1,657.99 6.934

Turn250 62,794.48 111,556.56 49,021.39 2,519.99 561.670 8,614.62 1,627.17 -4.84

Turn600 62,794.53 111,556.56 49,025.71 2,518.20 561.44 8,614.97 1,627.23 -4.78

Turn1100 62,794.78 111,556.56 49,021.83 2,520.12 561.67 8,614.55 1,627.23 -4.70
Table 4. Different hydrologic components for evaluating the water balance across all the models. In addition to hydroclimatic variables

(precipitation, evaporation, and total water storage), we also include storage in lakes and reservoirs, evaporation from waterbodies, and

abstractions from ground and surface water.

3.3 Reservoir model comparison and implications on storage and discharge

To validate the implementation of the new reservoir scheme, we first calculate the different water balance components (Table 4).600

The data-derived operations do not affect the climatic forcings; therefore, we do not observe differences in precipitation and

only small differences in evaporation across all models. There is an increase in evaporation in the BaseGeoDAR model and

an increase in water availability (denoted by an increase in water body storage and a positive change in total water storage

across the model time frame). These increases as well as the increase in surface water abstractions are a potential result of

increasing the total number of dams and the total storage capacity. Comparatively, we observe a decrease in water availability605

(denoted by water body storage, change in total water thickness and runoff) as well as decreases in water body evaporation and

runoff in the data-derived operations (Turn250, Turn600, Turn1100) a potential result of the lower storage levels. Overall, the

water balance results demonstrate that the data-derived operations do not lead to large differences across the PCR-GLOBWB 2

domain, suggesting that the relative impacts are not large and are mostly regional to local.

To further validate the data-derived operations, we analyze discharge and reservoir storage, as the water balance table shows610

that both are affected by changes in reservoir operations. First, we validate the discharge in our models against the observed

values in GRDC. Globally, 6,044 stations fit our criteria: a period of record starting in at least 1979, a minimum overlap of two

or more years, catchment sizes that are at least 25% of each other, and no more than a difference of three magnitudes between

the observations and the simulated discharges. As other reservoir studies demonstrate that reservoir impacts on streamflow

are greatest near the dam (Hanasaki et al., 2006; Haddeland et al., 2006; Biemans et al., 2011; Zajac et al., 2017), we filtered615

out any locations that were not directly impacted by upstream reservoirs. This left 2,666 gauges that fit the above criteria.

For these gauges, we calculated the Kling-Gupta Efficiency (KGE) and its components (correlation, bias ratio, and variance

ratio) for each location and each model and plotted a cumulative distribution function (CDF, Figure 5). The CDF shows slight

improvements in the middle of the KGE range (-0.25 to 0.25), however, the improvements are quite minor. This means that
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Figure 5. Depicts the validation between the five models and the GRDC streamflow gauges globally. Panel a shows the daily KGE values

for the 2,666 stream gauges that have at least one dams upstream and are therefore directly impacted by our reservoir model. Each line is

colored by the model. Panel b, c, and d show the difference between the baseline for the BaseGeoDAR and Turn250 models for the R (b),

alpha (c), and beta (d) components of the KGE.
:
A

:::
plot

::
of

::::
these

:::::
values

::::::
without

:::
the

::::
zoom

::
is

:::::
shown

::
in

:::
the

:::::::
appendix

::
as

:::::::
Appendix

::::
A14

our reservoir operations do not lead to significant improvements in the discharge simulations in PCR-GLOBWB 2 at the620

measurement locations and as a result do not allow draw conclusion into the impact of data-derived operations on streamflow

regimes.

To identify the impact of the two reservoir operation schemes, we calculated the differences between the individual com-

ponents of KGE (R, beta, alpha). We included the current operational scheme in PCR-GLOBWB 2 with the inclusion of

GeoDAR (BaseGeoDAR) and the data-driven operations for the 250 command area (Turn250) compared against the Baseline625

model (Figure 5b, c, and d respectively). We decided not to include the other command areas as a boxplot of the KGEs per

command area (i.e. Turn250, Turn600, and Turn1100) depicted no variations (Appendix Figure A1). When looking at the

differences in the correlation (Figure 5b), there are more positive correlations for BaseGeoDAR and more negative correla-

tions for Turn250 when comparing these two models with the Baseline (42.78% above 0 for the BaseGeoDAR operations vs

41.46% for Turn250 respectively). This suggests that in some cases, the inclusion of more dams is enough to improve model630

performance, but in most, it is not. However, the magnitude of these differences is quite small as there are only four points

above or below a difference of +/-0.5 for the comparison between Turn250 and the Baseline and one point for the comparison

between BaseGeoDAR and Baseline. For the bias difference (Figure 5c), the Turn250 model contains more bias values above

and below 0 (50.86% vs 35.29% above and below for Turn250 and 52.22% vs 35.15% for the BaseGeoDAR). This suggests

that the data-derived scheme is more likely to overestimate discharge than the generic operations with the GeoDAR maps.635

Lastly, the alpha (Figure 5d), which depicts
::
the

:
variance ratio of the observations and modeled values, depicts more variance
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in the Turn250 model when compared to the Baseline (33.56% vs 40.78% above for Turn250 and 44.78% vs 37.56% for the

BaseGeoDAR). This suggests that data-driven operations are better at representing the variability of discharges.
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Figure 6. Shows scatter plots of reservoir storage observations vs modeled results for Turn250 (pink) and Baseline (black). Panel a uses

GloLakes as the observations, which is the dataset the operational policies are derived from) while panel b uses ResOpsUS as a more

"neutral" validation. For both panels, we matched the same period of record as GloLakes (01-01-1984 to 05-31-2023) and ResOpsUS

(variable depending on the reservoir, but typically 1980 - 2020).

In addition, we validated the reservoir storage derived from each operational scheme against indirect observations (GloLakes)

and direct observations (ResOpsUS, Figure 6a and 6b respectively). To do this, we compared the long-term storage fraction640

for the Turn250 (depicted in pink) and Baseline (depicted in black) models against the two observations of reservoir levels. In

both panels, the data-driven operations (Turn250) are more closely aligned with the observations (i.e. sit close to and above the

1:1 line) than the Baseline operations (Figure 6). Figure 6a shows the scatter between indirect observations (reservoir levels are

translated to reservoir storage) taken from satellite altimetry using GloLakes. Here, we observe that the Turn250 aligns more

with GloLakes (an RMSE of 0.28 and more points at or above the 1:1 line) than the Baseline operations (an RMSE of 0.32).645

Next, to remove the underlying bias that we trained our RF algorithm on data in GloLakes, we also compared our data-driven

operations to ResOpsUS. Figure 6b shows a scatter of the modeled storage fractions compared to observations for large dams in

the United States (ResOpsUS). Once again, the Turn250 model aligns better with observations (RMSE of 0.30 for Turn250 vs

0.37 for the Baseline). Additionally, the Spearman rank correlation between both observations and models is moderately strong

for Turn250 when compared to GloLakes (0.37 for Turn250 and 0.18 for Baseline (Table 5 and slightly positive for ResOpsUS650

(0.14 for Turn250 vs 0.08 for Baseline). Further analysis of the differences between the two main types of reservoirs in our

analysis (irrigation like and hydropower like, demonstrate that our hydropower operations are more similar to the observations

(RMSE of 0.28 for Turn250) compared to both the generic operations (RMSE of 0.32) and the irrigation like dams (RMSE of

0.29 for Turn250) when comparing against the GloLakes dataset (Figure
:::::::
Appendix A2).

::
An

:::::::
analysis

::
of

:::
the

:::::::
monthly

::::::
RMSE

::::
and

:::::::
monthly

::::
KGE

::::::
values

:::::::
between

:::
all

::
the

:::::::
models

:::
and

:::
the

::::::::
GloLakes

:::::
point

:::::::::::
observations

:::
also

:::::::::::
demonstrate

:::
that

:::
the

:::::::
Turn250

::::::
model

::
is655
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Model RMSE with

GloLakes

Correlation

with

GloLakes

P-value with

GloLakes

RMSE with

ResOpsUS

Correlation

with

ResOpsUS

P-value with

ResOpsUS

Baseline 0.32 0.18 8.53 ∗ 10−14 0.37 0.08 0.06

Turn250 0.28 0.37 4.78 ∗ 10−53 0.30 0.14 0.0008
Table 5. Shows the RMSE, the spearman

:::::::
Spearman rank correlation and corresponding p values, between the scatter plots in Figure 6 for

each of the models (rows) and between the two datasets(columns). In both comparisons, the correlations are statistically significant.

::::
more

::::::
aligned

::::
with

:::::::::::
observations

:::::::::
(Appendix

:::
A6

:::
and

::::::::
Appendix

::::
A7).

:
In conclusion, this analysis demonstrates that the data-driven

operations have more realistic long-term average storage compared with the Baseline scenario.

To round off our analysis, we look at the density of all the storage fractions (Figure 6) for GloLakes and ResOpsUS. For

both of the observations, the majority of the observed storage fractions sit between 20% and 80% full slight variations in the

exact peaks (30% full for GloLakes and 50% full for ResOpsUS). The storage fractions from the Turn250 operations contain660

more storage fraction values between 20% and 60% and in doing so underestimate the total storage when compared to both

observations. The Baseline storage fractions, on the other hand, contain a large density of values between 60% and 80% full,

which suggests that the Baseline operational scheme holds reservoirs at a higher storage value on average and is overestimating

the amount of storage. Ultimately, we find that the storage estimates in the Turn250 model are more accurate when looking at

the correlations and RMSEs.665

3.4 Reservoir Regulation Changes Over Time

To determine regions where the Turn250 model is able to capture storage dynamics, we opted to look at the median long-term

monthly reservoir fraction for each basin in HydroSHEDS and the aggregation per continent (Figure 7). In addition to plotting

the monthly storage fraction of all the models, we plot the monthly storage fraction for the GloLAKES-LANDSAT+Sentinel2

::::::::::::::::::::::::::
GloLakes-LandsatPlusSentinel2 reservoirs (the training dataset for our RF workflow) to allow for comparison between obser-670

vations and model results. 468 dams had a storage fraction greater than one when using the static values from our GeoDAR

input maps, therefore, for these dams, we used the maximum storage value in the GloLakes observations as the maximum

storage for this analysis. This misalignment could be due to flood conditions in the GloLAKES
::::::::
GloLakes reservoirs or overes-

timations due to the workflow in Hou et al.
::::::::::::::
Hou et al. (2024).

In looking at the median storage fraction across the different basins (Figure 7), we first observe higher storage fractions675

in the more northern basins. Basins with a large amount of regulation such as the Mississippi, Nile, and Orinoco (based on

Figure 2) have median storage fractions slightly above 0.5. The global differences in median storage fraction generally align

with increased aridity, where regions that are more arid such as Australia, the Sahara, Mexico, the Middle East, and India

have lower median storage fractions compared with the potential demand for water supply in these regions. Conversely, more
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Figure 7. Median storage fraction per basin in HydroSHEDS for the Turn250 as a spatial map surrounded by line plots. Each line plot

corresponds to a different continent and shows the long-term monthly storage for each model: Baseline(black), BaseGeoDAR (grey), Turn250

(pink), compared with the long-term monthly storage fraction in GloLAKES
:::::::
GloLakes (navy).

humid regions such as Northern Europe, the Amazon, the Mekong, and the Eastern United States have median storage fractions680

around 0.4.

Globally, the generic operations hold more water as the Baseline and BaseGeoDAR have the higher median storage fraction

of 0.63 and 0.59 respectively. Turn250 (0.50) sits closer to the median storage fraction observed in GloLAKES
::::::::
GloLakes (0.48).

Regionally,
:
though, the differences are more pronounced as the data derived operations do not capture the storage fractions

observed in North America, Australia and South America, while in Europe, Asia and Africa the data derived operations align685

better with observations. In general, though, all the models (Turn250, BaseGeoDAR and Baseline) have similar monthly trends

that do not necessarily align with the monthly trends in GloLAKES
::::::::
GloLakes. For example, in North America, the observed

storage values are highest in March through July, while Turn250 has the highest storage in August to October and the Baseline
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Region Baseline RMSE BaseGeoDAR RMSE Turn250 RMSE

North America 0.32 0.24 0.21

South America 0.05 0.05 0.15

Europe 0.09 0.12 0.05

Australia 0.31 0.08 0.22

Asia 0.18 0.10 0.06

Africa 0.18 0.07 0.04

Global 0.11 0.15 0.04
Table 6. RMSE between the curves in Figure 7 for each of the given models (columns) and regions (rows). For this table, we took the

GloLAKES
:::::::
GloLakes storage fraction as the observations. For clarity, we depict the best results in bold.

and BaseGeoDAR models both have fairly flat monthly storage values. Conversely, in Asia and South America, the modeled

monthly storage fraction (specifically when looking at Turn250) trend appear to align relatively accurately with the observed690

storage fractions.

4 Discussion

4.1 Global Impacts on the Hydrologic Cycle of the Data-Driven Reservoir Operations

To analyze the impact of the reservoir operations on the global hydrologic cycle, we first analyzed the ability of the model setup

to reproduce streamflow dynamics. Primarily, we evaluate the cumulative distribution of the daily KGE values, which shows695

little to no difference between the different model configurations (Figure 5a). This is partly due to the limited number of GRDC

gages (only one-third) that are directly downstream of reservoirs and thus the ability of this validation to directly quantify the

impact of changes in reservoir operations. While the correlations are not affected by the changes in reservoir operations, we do

observe that the variance ratio shows (Figure 5d) that the data-derived operations are slightly better at capturing the variability

of the streamflow dynamics and the bias ratio shows the data-derived operations are more likely to overestimate streamflow700

(Figure 5c). The sensitivity of the two operational schemes to the different components of KGE is most likely a result of

the localized impacts which are more pronounced when we look at the difference between the long-term reservoir storage

integral (Figure 4b and
:::::
Figure

::
4e). While the aggregated results tend to dampen the impact of the reservoir operations on the

streamflow dynamics (Figure 4c and
:::::
Figure

:
4f, and Figure 5a), we see that locally there are still distinct differences in the

simulated reservoir outflows. In irrigation-like dams for the data driven operations, the magnitude of release is larger than that705

of inflow during the autumn months when compared to the generic schemes (Figure 4c). This suggests that the addition of

downstream demand into our reservoir scheme increases the overall drawdown of the reservoir and allows more water to move

through the system, a dynamic Voisin et al. (2013) observed in their scheme
:::::::
observed

::
in
:::
the

:::::::
scheme

::
of

::::::::::::::::
Voisin et al. (2013).
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Due to the limitations in monitoring reservoir impacts on global streamflow dynamics, we recommend using alternative

methods such as regional or, where they exist, global reservoir storage observations. Compared to the streamflow results710

which do not show strong impacts, we observe that the data-derived storage is more aligned with observations and therefore

provides a more accurate reservoir storage representation globally (Figure 7 and Figure 6). In most regions except Australia, the

reservoir storage in the data-driven operations is decreased when compared to the generic operations (Figure 7). These lower

storage values are most likely due to the transference from GloLAKES
:::::::
GloLakes

:
to the final curves using the methodology

in Section 2.6 as this transference led to more constrained operational bounds compared to ResOpsUS (Figure 3). We also715

observe
:::
that the data derived operations do not align as well as the Baseline or BaseGeoDAR for Australia and North America

(Figure 7). This could be due to data gaps in the GloLAKES
::::::::
GloLakes dataset for these regions, more hydropower reservoirs,

or operational patterns that have shifted due to recent drought events, which our random forest workflow may not be able to

capture as well as it does not include temporal evaluations of the operating boundaries.
:::::::::::
Additionally,

:::
we

:::
may

::::
find

:::
that

:::
by

:::::
using

:
a
:::::::
different

:::::::::
validation

:::::::
scheme,

:::
our

::::::::::
operational

:::::
curves

::::
may

::::
also

::::::
change

:::
as

:::
our

::::::
random

::::::
forest

:
is
::::::::
sensitive

::
to

:::
the

:::::
input

::::
data.

:
Our720

model water balance shows less reservoir storage, evaporation, and more surface water abstraction in the data-driven operations

(Table ??
:
4). This suggests two things: first the water is moving more quickly through the river system as there is not as much

storage compared to the generic operations (Baseline and BaseGeoDAR) which results in more available water for abstraction

at downstream locations (shown by the difference in surface water abstractions between Turn250 and Turn1100). While this

could create a water deficit in locations directly near the reservoir, the comparison with observed data in Figure 6 demonstrates725

that the lower storage values are more comparable to independent observations than the larger storage values in the generic

operations (Figure 6). Therefore, this suggests that the generic operations overestimate the amount of water in storage and are

not accurately pinpointing
::
do

:::
not

:::::::::
accurately

:::::::
pinpoint

:
regional or localized water deficits (Salwey et al., 2023; Steyaert and

Condon, 2024).

While using observed storage values is ideal for training reservoir models, the global datasets are limited by limitations730

in data coverage and privacy concerns (Steyaert et al., 2022; Salwey et al., 2023). Therefore
:
,
:
to capitalize on our global

methodology, we utilized satellite altimetry data that correlates reservoir surface area with reservoir storage, instead of using

observed storage values directly. Ultimately, we observed that satellite altimetry data did not reduce the overall quality of

our storage results in many regions, however, the GloLakes dataset does overestimate storage in 468 of the 1752 dams in our

analysis when using storage capacities from GeoDAR. While this skews the seasonal trends observed in Figure 7, it is a result of735

a larger issue in data availability for reservoir management schemes. Since our analysis utilizes the general trends and dynamics

in the observations to derive trends of storage fraction that are combined with reported storage capacities in GeoDAR to derive

releases in PCR-GLOBWB 2, it is hypothesized that satellite altimetry is less able to capture the conservation dynamics (Hou

et al., 2024; Zhang et al., 2020). However, we observe that the lack of seasonality in the conservation curves allows the random

forest algorithm to better represent these curves when compared to the flood curves (RMSE of 7.47 vs an RMSE of 8.91 for740

the analysis with GLoLAKES-IceSat
:::::::::::::::
GloLakes-ICESat2

:
in Table 3). The random forest algorithm trained on GloLakes has

high correlations between the values from STARFIT,
:
further suggesting that the use of satellite-derived storage dynamics is

the largest area of uncertainty in our modeling framework. The biggest change is the decreased active zone both in range and in
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maximum and minimum values (Figure 3 and Figure 6). This is because satellite altimetry data uses storage-area relationships

that tend to regress to the mean and that may not necessarily account for natural processes that decrease the overall amount745

of available storage, such as sedimentation, and are limited in their temporal and spatial resolution. Conversely, observed

storage time series such as ResOpsUS use the actual storage values derived from simplified water balance equations or storage

elevation relationships and contain a much larger active zone (Figure 3). This decrease in the operational range will limit the

amount of water that can be stored in reservoirs and as a result, will increase the reservoir release (Figure 4b and 4e). However,

we still observe through Figure 6 that the data derived storage values are more accurate than the storage values obtained from750

the generic operations even with the underestimations in part because the generic operations are not as sensitive to observed

changes.

4.2 Evaluation with Other Reservoir Models

Similar to other modeled reservoir operations, we observe limited improvement in discharge at basin outlets (Hanasaki et al.,

2006; Haddeland et al., 2006; Biemans et al., 2011; Zajac et al., 2017), yet the data-derived storage improvements are much755

more similar to those of Turner et al. (2021) when using the extrapolated curves. We also observe more storage values aligning

with observations for different reservoir functions. Salwey et al. (2023) noted that grouping reservoirs based on main purpose

may miss key differences in the operational patterns, however, our results demonstrate that the hybrid incorporation of data-

driven operational bounds with a more generic reservoir operation scheme (grouped by two main categories) performs better

than the generic schemes previously used. Ideally, we would be able to differentiate into more specific reservoir categories;760

however, at the global scale
:
, operational information for all main purposes (primarily for fisheries and recreation) is missing.

We also find modest improvements in all major reservoir use categories (irrigation, hydropower, water supply, and navigation)

by separating the values in Figure 6 based on the main purpose (Figure A2). Additionally, we also observe that our modeled

reservoir storage aligns with the monthly trends Steyaert and Condon (2024) found in the United States (i.e. flood and navi-

gation reservoirs sit much closer to a storage fraction of 0.3 while irrigation-dominated basins have a higher storage fraction765

with large seasonality). While the trends in the United States are not necessarily indicative of operational trends globally, this

is one of the few studies that look directly at the trends seen in storage observations instead of solely looking at the operational

impacts.

This said, our model provides a few notable improvements over other reservoir operation schemes. First and foremost,

it utilizes observational data to derive key boundaries for reservoir operational bounds, something , that to our knowledge,770

has not yet been done on the global scale (Turner et al., 2021; Yassin et al., 2019). The other reservoir schemes to uti-

lize observational data directly typically require multiple parameters (such as in Yassin et al.; Turner et al.; Burek et al.) or

thus
::::::::::::::::::::::::::::::::::::::::::::::::
Yassin et al. (2019); Turner et al. (2021); Burek et al. (2020)

:
)
::
or are parameterized regionally (Turner et al., 2021; Salwey

et al., 2023; Brunner and Naveau, 2023; Macian-Sorribes and Pulido-Velazquez, 2020). Generic operations are typically cho-

sen for global hydrologic models due to the ease of incorporation that relies on limited data (Haddeland et al., 2006; Hanasaki775

et al., 2006; van Beek et al., 2011; Sutanudjaja et al., 2018). Our scheme is scalable both to specific regions and data availability
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and also to model complexity. This is because the main variable of importance is the derived operational targets which can be

easily obtained from limited remotely-sensed observational data.

Recently, there has been a strong push to back-calculate reservoir impacts from readily available hydrologic variables such

as streamflow (Salwey et al., 2023; Brunner and Naveau, 2023). These schemes show promise in areas where reservoir data is780

not readily available and in models that are currently relying on generic operations based on two main purposes: irrigation or

hydropower (Salwey et al., 2023). However,
:
they still rely on the assumption that reservoir releases are the difference between

naturalized streamflow and observed values (Brunner and Naveau, 2023). This can be accurate in many cases, but in human-

dominated basins with a large amount of surface water abstraction and complex interactions, such as the Colorado River basin
:
,

among others, this assumption may not be valid. Salwey et al. (2023) remedied this with their transfer function approach,785

:
; however, the results were only tested in water supply-dominated basins in the United Kingdom, and different balances of

uses and operational patterns could change the results. Finally, in all instances, these methods assume that reservoir operations

are static over time which may not necessarily be the case (Patterson and Doyle, 2019; Patterson et al., 2021) and would

require nearby downstream observations of river discharge to infer the reservoir operating policies over time. While this is not

infeasible,
:
there are currently a limited number of reservoirs in the world where this would be a viable approach to accurately790

derive reservoir operations.

Utilizing data-driven operational bounds combined with a dual-purpose operational scheme has a plethora of benefits (more

realistic operational bounds, the ability to change operations based on location, use, and hydroclimatic variables, and increased

understanding of water availability). That said, there are still improvements to be made. First, the lack of global reservoir

storage observations or even regional data hindered our ability to create target curves based on observations and that do not795

rely on satellite altimetry data and its uncertainties (temporal gaps, back-calculated storage, etc). Additionally, we assume

that our operational bounds are constant during the simulation period, however in a changing climate this assumption may no

longer hold, especially during extreme events (such as droughts) or under management changes (Salwey et al., 2023; Patterson

and Doyle, 2019; Steyaert and Condon, 2024). We also assume reservoirs are operated as a single entity and do not explicitly

and dynamically account for releases in series as we assume that the underlying storage data accounts for this dynamic and800

therefore these relationships exist in our operational bounds.

:::::
Apart

::::
from

::::::
errors

::::::::
accruing

::::
from

::::::
above

:::::::::::
assumptions,

:::
the

::::::::
accuracy

:::
of

:::
our

::::::
results

::
is
::::

also
:::::::

limited
:::
by

:::
the

::::::
errors

:::
that

::::
are

:::::::::
propagated

:::::::
through

:::
our

:::::::::
workflow.

::::::::::
Specifically,

::::::::::::::::
PCR-GLOWBWB

:
2
:::::::::::::

underestimates
:::
the

:::::::::
flashiness

::
of

:::::::::
streamflow

::::::::
regimes.

::
It

:
is
::::
also

::::
less

:::::::
accurate

::
in
:::::::

specific
:::::::
regions

::::
such

::
as

:::
the

::::::
Niger,

:::
the

::::::
Rocky

:::::::::
Mountains

::::
and

:::::::
portions

::
of

::::::::::
continental

::::::
Eastern

:::::::
Europe

:::
due

::
to

:::::
errors

:::
in

:::
the

::::
snow

:::::::::
dynamics,

:::::::::
estimation

:::
of

:::
the

::::::::::
groundwater

:::::::::
responses

:::
and

::::
data

:::::::::
limitations

:::::::::::::::::::::
(Sutanudjaja et al., 2018)

:
.805

::::::::::
Additionally,

::::
the

::::::::
estimation

:::
of

:::
the

:::::::::
operational

:::::::::
STARFIT

::::
rules

:::::
from

:::
the

::::::::
remotely

::::::
sensed

::::::
storage

::::
data

::
of

:::::::::
GloLakes

:
is
:::::::

limited

::
by

:::
the

:::::
revisit

:::::
time

::
of

::::::::
satellites,

:::
the

::::::::
influence

::
of

:::::
cloud

:::::
cover

:::
and

::::::::::
atmospheric

::::::::::
interference

:::
as

::::
well

::
as

:::
the

::::::::
statistical

::::::
models

::::
that

::::
back

:::::::
calculate

:::::::
storage

:::
that

:::
are

:::::::
limited

::
by

:::
the

::::::
digital

::::::::
elevation

:::::::
model’s

:::::
spatial

:::::::::
resolution

::::::::::::::::::::::::::::::
Hou et al. (2024); Chen et al. (2022)

:
.
::
As

:::::::
storage

::
is

:::::::
typically

:::
not

::
a
:::::
direct

:::::::::::
measurement

::::
and,

::::
even

::
in
:::

the
::::

case
:::

of
:::::
in-situ

::::::::
observed

:::::
water

:::::
levels

:::::::::::
observations,

::
is
:::::
back

::::::::
calculated

::::
from

:::::::::::
storage/area

::
or

::::::::::::::
storage/elevation

:::::::::::
relationships,

::::::::
validation

::::::::
primarily

:::
on

::::::
storage

:::::
alone

::
is

:::::::
inherent

::
to

::::::::::
uncertainty.810

::::::::
Primarily,

:::::
these

:::::::::
limitations

:::
can

:::::
affect

:::
the

:::::
actual

::::::
storage

:::::
value

::
as

::::
they

::::
rely

::
on

::::::
storage

::::::::
elevation

:::::
charts

::::
that

:::
are

::::
only

::::::::::
periodically
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::::::
updated

::::::::::::::::::
Steyaert et al. (2022).

::::::
While

:::
the

::::::
single

::::::
errors

:::
are

::::::::::
propagated

:::::::
through

:::
our

:::::::
system,

:::
the

::::::
results

:::
of

:::
the

:::::::::::
independent

::::::::
validation

::::
with

:::::::::
ResOpsUS

:::
and

::::::::
GloLakes

:::::::
(Figure

:
6
:::
and

::::::
Figure

::
7)

:::::
show

::::::::
improved

::::::::::
performance

:::
for

::::::
storage

:::::
values

::
in

::::::::::::::
PCR-GLOBWB

:
2

:::
and

::::::
suggest

:::::::
similar

::::::::::::
improvements

:::
for

::::
other

::::::
global

:::::::::
hydrologic

:::::::
models

::::
with

:::
the

:::::
caveat

::::
that

:::::
errors

::::
may

:::::::::
propagate

:::::::
through

:::
the

::::::::
modelling

:::::::
system.815

Based on these limitations, we find that more effort needs to be put into cultivating global datasets of historical reservoir

operations and also include more data-derived methods in operational reservoir schemes. While the first recommendation is

liable to privacy concerns (Steyaert et al., 2022), we believe that more accurate information on reservoir operations will increase

the reliability of large-scale hydrological models and thus serve a wider community. The addition of more data-derived methods

in our reservoir operations scheme demonstrated much lower storage than PCR-GLOBWB 2 had previously modeled using820

other methods. This could highlight unknown water deficits as the total reservoir storage in select regions may not be able to

account for surface water abstractions and the currently implemented reservoir operating rules could overestimate the amount

of available water in vulnerable regions.

5 Conclusions

This study combines previous work by Turner et al. (2021) and data acquisition by Hou et al. (2024) to develop a workflow825

for implementing data-driven reservoir operations in global hydrologic models. Using an updated dataset of reservoir loca-

tions (Wang et al., 2022), satellite altimetry data from Hou et al. (2024) and the STARFIT model (Turner et al., 2021), we

first developed operational bounds for 1752 reservoirs whose storage time series were estimated using remote sensing that are

then used to train a random forest algorithm. We observe that the RF extrapolation is accurately able to depict the flood and

conservation curves and that the main source of uncertainty is the errors associated with the storage estimations from satellite830

altimetry. After this evaluation, we then estimated operational bounds for over 20,000 structures that are implemented into

PCR-GLOBWB 2 using the trained random forest algorithm. While the impact on discharge is modest and does vary signifi-

cantly based on location, we see large improvements in our reservoir storage and seasonal dynamics when using data-derived

operations over the generic ones. Therefore, we suggest reservoir operation models rely primarily on validation of storage in

::::::::
emphasize

::::::
model

::::::::
validation

:::
on

::::::::
reservoir

::::::
storage

::
in

:::::::
addition

::
to

:::::::::
validation

:::::
based

::
on

:::::::::
streamflow

:::
in place of validation solely on835

streamflow as the available streamflow observations are rarely close to the release point of the reservoir and therefore not as

sensitive to reservoir operations compared to storage. We also do not see strong differences when using different command

areas even though it would be expected that changes to these values would increase or decrease storage. This suggests that

reservoir modelers can opt to use the command area that makes the most sense to their domain (we opt to use the 250). To

remedy issues with the static operations (i.e. no change in the future), in the future we hope to evaluate changes in operational840

patterns using smaller 10-year moving periods to see if there are large changes in operational dynamics. We hope that this work

can be further implemented into other large-scale hydrologic models to better represent reservoir dynamics and to evaluate their

impact on hydrologic regimes and anthropogenic water availability.
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Figure A1. Shows a boxplot of the data derived operational scheme with the three main command areas: 250, 600 and 1100, in different

colors.
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Figure A2. Depicts a scatter plot of the storage fractions in GloLakes vs the storage fractions in Turn250 and Baseline models. The left panel

shows the results for dams with an irrigation main purpose and the right panel shows the dams with a hydropower main use.
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Figure A3.
::::
Shows

:::
the

:::::::
average,

:::::::
maximum

:::
and

::::::::
minimum

::::::::::
conservation

:::
and

::::
flood

::::::::
timeseries

::
for

::
all

:::::
1752

:::::::
STARFIT

:::::
curves

:::
that

:::
are

::::::::
employed

:
in
:::

the
::::::
random

:::::
forest

:::::::
algorithm

::::::
colored

:::
by

::::
main

:::
use

::::::
denoted

::
in

:::
our

::::::
analysis.

::::
The

:::
blue

:::::
curves

:::
are

::::::::
indicative

::
of

::
the

::::::::
irrigation

:::::
curves

:::
and

:::
the

::
red

:::
are

:::
the

:::::::::
hydropower

:::::
curves.

::
In

:::
the

:::::
above

::::::
figure

:::::::::
(Appendix

::::
A3),

:::
we

::::
plot

:::
the

:::::::
average,

:::::::::
maximum

::::
and

::::::::
minimum

:::::
value

:::
of

:::
the

::::::
derived

:::::::::
STARFIT

::::::
curves

::
for

:::
the

::::::::::::
irrigation-like

:::::
(blue)

::::
and

::::::::::::::
hydropower-like

::::
(red)

:::::
dams

:::
for

::::
both

:::
the

::::
flood

::::::::::
(Appendix

:::
A3,

:::
top

:::::
row)

:::
and

:::
the

:::::::::::
conservation

:::::::::
(Appendix

:::
A3,

::::::
bottom

::::
row)

:::::::
bounds.

:::::
While

:::
the

:::::::
average

:::
and

::::::::
maximum

:::::
flood

:::
and

:::
the

:::::::::
maximum

::::::::::
conservation

::::::
values

::
do

:::
not

:::::
differ1005

::::
much

::::::::
between

:::
the

:::::
dams,

:::
we

:::
do

:::
see

:::::
large

:::::::::
differences

:::
in

:::
the

:::::::
average

::::::::::
conservation

::::
and

:::
the

:::::::::
minimum

::::
flood

::::
and

:::::::::::
conservation

:::::
curves

::::::
which

::::
could

:::
be

:
a
:::::
result

::
of

:::
the

::::::::
differing

::::::::
operations

::
at
:::
the

:::::
lower

::::
end

::
of

:::::::
storage.

::::::::::
Specifically,

:::
the

::::
flood

:::::::::
minimum

:::::
peaks

::
in

::::::::::::
irrigation-type

::::
dams

::
in
:::
the

::::::
spring

:::
and

:::::::
summer

:::::::
months

::
to

:::::::::
potentially

::::::
support

:::::::::::
downstream

:::::::
demands

:::
in

::::
drier

:::::::
periods,

:::::
while

:::
the

:::::::::::::
hydropower-like

:::::
dams

::::
have

:::::
lower

:::::
flood

::::::::
minimum

::::::
values.

::::
The

::::::::::
conservation

::::::
curves

:::::::::
experience

:::
the

:::::
most

:::::::
changes

::
in

:::
part

::::
due

::
to

::
the

::::::::::::::
hydropower-like

:::::
dams

::::::
holding

:::::::
storage

:::::
much

:::::
higher

::::::
across

:::
the

::::
year

::::
while

:::
the

::::::::::::
irrigation-like

:::::
dams

:::
are

:::::::
meeting

::::::::::
downstream1010

::::::
demand

:::
in

:::
the

::::::
autumn

:::::::
months.

::::
For

:::
the

::::::::
minimum

:::::::::::
conservation

::::::
values,

:::
the

::::::::::::
irrigation-like

:::::
dams

::::
have

::::::
higher

::::::
storage

::::::::
fractions

::::::::
compared

::
to

:::
the

::::::::::::::
hydropower-like

:::::
dams.

::::
Due

::
to

:::
the

:::::::::
differences

:::
in

:::
the

:::::::::
seasonality

::
of

:::
the

:::::
lower

:::::::
bounds

:::
for

:::
the

::::
flood

:::::
curve

::::
and

::
the

::::::::::
differences

::
in

:::
the

::::::::::
conservation

:::::::
curves,

::
we

::::
still

:::::
think

:::
that

:::
the

:::::::::
distinction

::
in

::::::::::
operational

:::::::
schemes

::
is

::::::
useful.
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Figure A4.
:::::
Depicts

:::
the

:::::::::
cumulative

:::::::::
distribution

::::::
function

::
of
:::

the
::::
three

:::::
main

:::::
models

:::
in

:::
our

::::::
analysis:

:::::::
Baseline

::::::
(black),

::::::::::
vanBeekGeo

::::::
(grey),

::::::
Turn250

::::::
(pink),

::
as

:::
well

::
as

:::
two

::::::::
additional

::::
tests

::::
with

:::::::
removing

:::
the

::::::::
command

::::
areas

:::
(No

::::::::
Command

::::
Area

::
in

::::::
purple)

:::
and

:
a
::::::::

simplified
::::::
release

:::::
method

:::::::
(Simple

::::
Curve

::
in
::::::
green).

::
As

:::
the

:::::
Simple

:::::
Curve

:::
and

:::
the

:::
No

::::::::
Command

::::
Area

:::::
curves

::::
were

:::
only

::::::::
evaluated

::
for

:::
the

::::::::
Mississippi

:::::
basin,

:::
we

:::
only

:::::::
included

::
the

:::::
daily

::::
KGE

:::::
values

::
in

::
the

:::::::::
Mississippi

::::
basin

:::
for

::::
other

::::::
models.

:::
We

::::::::
computed

:::
the

:::::
daily

:::::
KGE

:::::
values

:::
for

:::::
these

::::
two

::::::
models

:::
as

::::
well

::
as

:::
the

::::::::
Turn250,

::::::::
Baseline

:::
and

:::::::::::
vanBeekGeo

:::::::
against

:::
the

:::::::::
streamflow

::::::::::
observations

::
in
:::::::
GRDC.

:::::
While

:::
the

:::::::
addition

::
of

:::
the

:::::::::
command

:::
area

:::::::
slightly

::::::::
improves

:::
the

:::::
model

::::::
(Figure

::::
A4,

:::::
purple

:::
vs1015

::::
pink

:::::
lines),

:::
we

::
do

:::
see

:::::
large

::::::::::::
improvements

::
in

:::::
using

:::
two

::::::::
different

:::::::::
operational

:::::::
schemes

::::::
(green

::
vs

::::
pink

:::::
lines

::
in

::::::
Figure

::::
A4).

::::
This

:::::::
suggests

:::
that

::::::::
creating

:::
two

::::::::
different

::::::
release

::::
rules

:::
for

::::::::::::
irrigation-like

::::
and

:::::::::::::
hydropower-like

:::::
dams

::::::::
enhances

::::::
model

:::::::::::
performance

::::::::
compared

::
to

:
a
::::::
single

::::::::
simplified

:::::::
scheme.

:::
We

::::
also

::::
saw

::::
there

:::
are

::::::::::
operational

:::::::::
differences

::
in

:::
the

:::::::
average

:::::::::::
conservation

:::::
curves

::::
and

::
the

:::::
flood

:::
and

:::::::::::
conservation

::::::::
minimum

::::::
curves

::::
when

:::::::
looking

::
at

::
the

::::
two

:::::::::
typologies

::
we

:::::::
defined

::::::::
(Appendix

::::
A3).

:::::
This,

::
in

::::::::::
conjunction

::::
with

:::::::::::::::::::::::
Steyaert and Condon (2024)

:::
and

::::::::::::::::::
Salwey et al. (2023)

:::::
noting

::::
that

:::::
there

:::
are

:::::::::
differences

:::
in

:::::::::
irrigation,

:::::
water

::::::
supply

::::
and1020

::::::::::
hydropower

:::::
dams,

::::::
further

::::::::
supports

:::
our

:::::::::
conclusion

::::
that

::::::
having

::::
two

::::
main

:::::
types

:::
of

::::::::
reservoir

:::::::::
operations

:::::
better

:::::::::
represents

:::
the

:::::::
observed

:::::::::
dynamics.
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Figure A5.
:::::
Depicts

:::
the

:::::::
longterm

::::::
monthly

::::::
average

::
of

:::
the

:::::
storage

:::::::
fractions

::
for

:::
the

::::
three

:::::
model

::
in

:::
our

::::::
analysis:

:::::::
Baseline

::::::
(black),

::::::::::
vanBeekGeo

::::
(grey)

:::
and

:::::::
Turn250

:::::
(pink)

::
as

:::
well

::
as

:::
the

::::::::
simplified

:::::
release

::::
curve

:::::::
denoted

::
as

:::::
Simple

:::::
Curve

::::::
(green).

:::
We

::::::
decided

::
to
:::::::::
implement

::
a
::::::
simple

:::
rule

:::::
curve

:::
for

:::
the

:::::::::
Mississippi

:::::
Basin

::::
that

:::::::
accounts

:::
for

:::
the

::::::::::
downstream

:::::::
demand

::::
(the

:::::
green

:::
line

::
in

:::::::::
Appendix

:::
A4

:::
and

:::::::::
Appendix

::::
A5).

::::
This

:::::::::
simplified

:::::::::
operational

::::::
policy

:::
still

::::::::
accounts

:::
for

::::::::::
downstream

:::::::
demand

:::::::::
according

::
to

:::
the

::::::
250km

:::::::
distance

:::
and

:::
can

:::::
meet

:::
this

:::::::
demand

:::
and

:::::::
surface

:::::
water

::::::::::
abstractions

:
if
:::::::
storage

:
is
::::::
within

:::
the

:::::
active

::::
zone

::::::::
(defined

::
as1025

::
the

::::
area

:::::::
between

:::
the

:::::
flood

:::
and

:::::::::::
conservation

::::::
curves)

::::
and

:::::::
includes

::::::::::::
environmental

::::
flow

:::
and

:::::
flood

:::::::
releases.

:::
We

:::
ran

:::
the

::::::
model

:::
for

::
the

::::::::::
Mississippi

:::::
basin

:::::::
without

:::
the

::::::::
command

::::
area

:::
(by

::::::
setting

:::
the

:::::::::::
downstream

:::::::
demand

::
to

::
0)

:::
but

::::::::
including

::::
the

:::
two

::::::::::
operational

:::::::
schemes

::::::
(purple

:::::
line).

::
In

::::::::
analyzing

:::
the

::::::::
longterm

:::::::
monthly

::::::
storage

:::
for

:::
the

::::::
simple

:::
rule

:::::
curve

:::
we

:::::::
observe

:::
that

:::
we

::::
hold

::::
less

:::::
water

::
on

:::::::
average,

:::
but

:::
the

:::::::
seasonal

::::::::
dynamics

:::
are

::::::
similar

::
to
:::
the

:::::
other

::::::
models

:::::::::
(Appendix

::::
A5).

::::
This

::::::::
suggests

:::
that

:::
the

::::::
biggest

:::::::::
difference

:
is
:::
the

:::::::
overall

::::::
storage

:::::::
fraction

:::::
levels

::::
and

:::
this

:::::::::
simplified

::::
rule

:::::
curve

::::::::
decreases

:::
the

::::::
overall

:::::
water

::::::::::
availability

::
in

:::
the

::::::::::
Mississippi1030

::::::
region.
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Figure A6.
::::::::
Cumulative

:::::::::
distribution

:::::::
functions

::
of

:::
the

:::::::
monthly

::::
KGE

:::
and

:::::::
monthly

:::::
RMSE

:::::::
between

::
the

::::
three

:::::
main

::::::
models:

:::::::
Baseline

::::::
(black),

:::::::::
vanBeekGeo

:::::
(grey)

:::
and

:::::::
Turn250

:::::
(pink)

:::::::
evaluated

:::::
against

::::
point

::::::::::
observations

::
in

::::::::
GloLakes.

:::
The

:::::
above

:::::::
figures

:::::
shows

:::
the

:::::::::
evaluation

:::::::
between

:::
the

:::::
three

:::::
main

:::::::::
operational

:::::::
scheme

::::::
models

::::
and

:::
the

:::::
point

:::::::::::
observations

::
in

::::::::
GloLakes.

::::
The

:::::
KGE

::::
plot

:::::
shows

::::
that

:::
the

:::::::
Turn250

::::::
model

:::
has

:::::::::
relatively

::::
more

::::::::
negative

:::::
KGE

::::::
values,

::::::::
however,

::::
these

::::::::
negative

:::::::::::
performances

:::
are

:::::::
typically

::
in
::::::
wetter

::::::
periods

::::::
where

:::::::::::::
PCR-GLOBWB

::
2
::
is

::::::
already

::::::::::::::
underestimating

:::::::::
streamflow.

::::
This

::::::
model

::::
also

:::
has

:::::
larger

:::::
KGE

::::::
values.

:::
As

:::
for

:::
the

::::::
RMSE

:::
we

:::
do

:::
see

::::
that

:::
the

:::::::
Turn250

::::
has

::::
more

::::::
values

::::::
closer

::
to

::
0,

:::::::::
suggesting

:::
the

::::::::
Turn2501035

:::::
model

:::
is

::::
more

:::::::
aligned

::::
with

:::
the

:::::::::::
observations.

:::
We

::::
also

:::::
opted

::
to

:::
plot

:::
the

:::::
KGE

::::::::::
components

:::::::::
(Appendix

::::
A7).

:
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Figure A7.
:::::
Shows

:::
the

::::::::
cumulative

:::::::::
distribution

:::::::
functions

::
of
:::

the
:::::
KGE

:::::::::
components,

:::::
alpha,

::::
beta

:::
and

::
R

:::::::
between

::
the

:::::
three

::::::
models:

:::::::
Baseline

::::::
(black),

:::::::::
vanBeekGeo

:::::
(grey)

:::
and

:::::::
Turn250

:::::
(pink)

:::::::
evaluated

:::::
against

::::
point

::::::::::
observations

::
in

::::::::
GloLakes.

:::
The

:::::
alpha

::::
and

::
R

::::::::::
components

:::::
show

:::::
slight

::::::::::::
improvements

::
in

::::::::
modeled

::::::
storage

::::
with

::::
the

:::::::
Turn250

::::::::::
operations,

:::::
while

:::
the

::::
beta

:::::
shows

:::
that

:::
the

::::::::
Turn250

:::
has

::::
more

:::::
bias,

:::::
which

::
is

::::
most

:::::
likely

:::::::::
occurring

::
in

:::
the

:::::
wetter

:::::::
periods.
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Figure A8.
:::::
Depicts

:::
the

:::::
KGE

:::
and

:::::
RMSE

:::::
CDFs

:::
for

:::
the

:::::
storage

::::::::
evaluation

::::
with

:::::
point

::::::
location

::
in

::::::::
GloLakes

:::::
across

::
the

::::::
United

:::::
States.

::::
The

:::::::
simulated

::::::
models

:::
are

::::::
depicted

::
in
:::::

black
:::
for

:::::::
Baseline,

::::
grey

:::
for

::
the

::::::::::
vanBeekGeo

::::
and

:::
pink

:::
for

:::::::
Turn250.

::::
The

::::::
dashed

:::
pink

::::
line

::::::
denotes

:::
the

:::::::
boundary

::::
above

:::::
which

:::
the

::::
KGE

:::::
values

::::
show

::::::::::
significance.
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Figure A9.
:::
Map

::
of

:::
the

::::
point

:::::::
locations

::
of

::
the

::::::::
GloLakes

:::::::::
observations

::::
used

::
to

:::
train

:::
our

::::::
random

:::::
forest

:::::::
algorithm

:::
and

::::::
validate

:::
our

:::::::
analysis.
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Figure A10.
:::

Point
:::::::
location

:::
map

::
of

::
all

:::::::
GeoDAR

:::::::
locations

::::
that

::
are

::::
used

::
in

:::
our

::::::
analysis.

::
To

:::::::
evaluate

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::::
GloLakes

::::::
curves

::
in

::::::
Figure

::
7,

:::
we

::::::::
evaluated

:::
the

:::::::
number

::
of

:::::
dams

::
in

:::
the

::::::::
GloLakes

:::
vs

:::::::
GeoDAR

:::::::
(Figure

:::
A9

:::
and

::::::
Figure

:::::
A10)

::
as

::::
well

::
as

:::
the

::::::
RMSE

:::
and

:::::
KGE

:::
for

::
the

::::
US

::::
dams

:::::::
(Figure

::::::
A8.The

:::::::
number

::
of

:::::
dams

::
in

:::
the1040

:::
US

::
in

::::::::
GloLakes

:::::
(1752

::::
with

::::
543

::
or

::::
31%

::
in
:::
the

::::
US

::::::
plotted

::
in

:::
red

::
in

::::::
Figure

:::
A9)

::::::
differs

:::::
from

:::
the

::::
total

::::::
number

:::
of

::::
dams

:::::
used

::
in

:::
our

:::::::
analysis

::::
(over

::::::
20,000

::::
with

:::::
8214

::
or

::::
40%

::
in

:::
the

:::
US

::::::
plotted

::
in

:::
blue

::
in
::::::
Figure

:::::
A10).

:::::::::::
Additionally,

:::
the

:::::::
random

:::::
forest

::::::::
algorithm

::::
looks

:::
for

::::::::::
similarities

:::
and

::::::::::
differences

:::::
across

:::
all

:::
the

:::::
dams

::
in

:::
the

:::::::
training

:::
set.

::::
This

:::::::
training

:::
set

:::::
(75%

::
of

:::
all

:::
the

:::::
data)

::
is

::::::
chosen

::::::::
randomly

::::
and,

:::::
while

:
it
::::::::

includes
:::::
dams

::::
from

:::
the

::::
US,

:::
we

:::::
make

::::
sure

::
to

::::::
choose

:::::::
multiple

:::::::
regions.

:::::::::
Therefore,

::::
this

:::::
could

:::::::
account

::
for

:::
the

:::::::
regional

::::::::::
differences

::
in

:::
our

:::::::
storage

:::::::
patterns

::::::::
compared

::
to

:::
the

::::::::
GloLakes

::::::::::::
observations.

:::::
When

:::::::
plotting

:::
the

:::::::
monthly

:::::
KGE1045

:::
and

:::::::
monthly

::::::
RMSE

:::::::::
(Appendix

::::
A8)

:::
for

::::
each

:::
of

:::
the

:::::::
models,

:::
we

::
do

:::
see

::::
that

:::
the

::::::
RMSE

::
in

:::
the

::::::
United

::::::
States

:::
are

:::::
much

::::::
higher

:::
and

:::
the

::::
KGE

::
is
:::::::
slightly

:::::
worse.

::::
This

::::::::
suggests

:::
that

:::
the

:::::
issue

::
in

::::::::::
performance

::
is

:::::::
perhaps

:::
due

::
to

:::
the

:::::::::
underlying

::::::
model

::::::::
dynamics

::
in

:::::::::::::
PCR-GLOBWB

::
2

::
as

::::
well

::
as

:::
the

::::::::
inclusion

::
of

::::
other

:::::::
regions

::
in

:::
the

:::::::
training

::::::
dataset

::
to

:::::
create

:::
the

:::::::
Random

::::::
Forest

::::::::
algorithm.

:
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Figure A11.
:::::

Scatter
:::
plots

::
of
:::
the

::::::::
streamflow

:::::
KGE

:::::::::
components

::::::
between

::::
each

:::::
model

:::
and

::::::::::
observations.

:::
We

:::
plot

:::
the

::::
KGE

:::::::::
components

:
(
:::::
alpha,

:::
beta,

::::
and

::
R)

::
for

:::
the

:::::::
Turn250

:::::
model

::
on

:::
the

:
y
:::
axis

:::
and

:::
the

::::
KGE

:::::::::
components

:::
for

:::
the

:::::::::
vanBeekGeo

:::::
model

:::
on

::
the

::
x

:::
axis.

::::
The

:::::
dashed

:::
red

:::
line

::
is

::
the

::::::::
one-to-one

::::
line.

::
To

:::::
show

:::
the

::::::::
difference

::::::::
between

:::
the

:::::::
different

::::::::::
components

::
of

:::
the

:::::
KGE

::
in

::::::
Figure

::
5,

:::
we

::::::
created

:::::::
scatters

::::
plots

::
of

:::
the

::::::::
different

::::
KGE

::::::::::
components

:::::::
between

:::
the

::::::::
Turn250

:::
and

:::::::::::
vanBeekGeo

::::::
models

:::::::
(Figure

:::::
A11).

:::::
While

:::
the

::::::
scatter

:::
for

:::
the

::
R

:::::::::
component

::::::
makes1050

:::
this

:::::::::
component

::::::
appear

::
to

:::
be

:::
the

::::
most

:::::::::
important,

:::
we

:::
find

::::
that

::::
both

:::
the

::
R

:::
and

::::
beta

::::::::::
components

::::
have

::::::
almost

:::::
equal

:::::
values

::::::
above

:::
and

:::::
below

:::
the

:::
1:1

::::
line,

:::::::::
suggesting

::::
that

::::
these

::::
two

::::::::::
components

:::
are

::::::
muting

:::
the

:::::
KGE

::::::::::
differences.

::::::::::::
Comparatively,

:::::
alpha

:::
has

:::::
1196

:::::
points

:::::
above

:::
the

:::
1:1

::::
line

:::
and

::::
779

:::::
points

::::::
below

:::
the

:::
1:1

::::
line

:::::
which

::::::::
suggests

:::
that

:::::
alpha

::
is

:::
the

::::
most

::::::::
sensitive

::
to

:::
the

::::::::::
operational

::::::
changes

::::
and

:::::::::
contributes

:::
the

:::::
most

::
to

:::
the

::::
KGE

:::::::
changes

:::::
(1210

:::::
above

:::
the

:::
1:1

::::
line

:::
and

:::::
1158

:::::
below

:::
the

:::
1:1

:::::
line).
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Figure A12.
:::
Plots

::
of
:::

the
:::::::
longterm

::::::
storage

::::::
fraction

:::
and

:::
the

:::::::
longterm

::::::
storage

::::::
integral

:::
for

:::
the

::::
three

::::::
models:

:::::::
Baseline

::::::
(black),

::::::::::
vanBeekGeo

::::
(grey)

:::
and

:::::::
Turn250

:::::
(pink).
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Figure A13.
::::::
Depicts

:::
the

:::::::
longterm

::::::
monthly

:::::::
averages

::
of

::
an

:::::::
additional

::::
nine

:::::
global

:::::
basins

::::::
ordered

::
by

:::::::
location.

::
All

::::
plots

::::::
include

:::
the

::::
same

::::
three

::::
main

::::::
models:

::::::
Turn250

::::::
(pink),

:::::::::
vanBeekGeo

:::::
(grey)

:::
and

:::::::
Baseline

::::::
(black),

::
to

::
see

:::
the

::::::
changes

::
in

:::::::
discharge

:::
for

::::::::
additional

:::::
basins.
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Figure A14.
::::

Show
::
the

:::::
KGE,

:::
and

::::
KGE

:::::::::
components

::
of

:::
the

:::::
models

:::
we

::::
used

::
in

::
our

:::::::
analysis

::
for

:::::
Figure

::
5
::
in

::
the

:::::::::
manuscript

::::::
without

:::
any

:::::
zoom.
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:::::
Model

::::
MSE

::::
MAE

:::::
K-Fold

::::
cross

:

:::::::
validation

::::
with

:::
CV

:
=
::
10

:

:::::
359.77

::::
(stdev

::
=
:::::
47.13)

::::
12.96

:

::::
(stdev

::
=
::::
0.83)

:::
Best

::::::
K-Fold

::::
cross

:::::::
validation

:::::
model

:

:::::
291.15

::::
11.74

:::::
Single

::
RF

: :::::
388.39

::::
11.65

:

Table A1.
:::::
RMSE

:::::::
between

::
the

::::::
curves

::
in

:::::
Figure

:
7
:::

for
::::
each

::
of

:::
the

::::
given

::::::
models

::::::::
(columns)

:::
and

::::::
regions

::::::
(rows).

:::
For

:::
this

::::
table,

:::
we

::::
took

:::
the

:::::::
GloLakes

::::::
storage

::::::
fraction

::
as

::
the

::::::::::
observations.

:::
For

::::::
clarity,

::
we

:::::
depict

:::
the

:::
best

:::::
results

::
in

::::
bold.
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:::::
Model

: ::::::
Clinton

::::
KGE

:::::::
(Storage)

::::::
Clinton

:
R
:::::::
(Storage)

::::::
Clinton

::::
KGE

::::::
(Storage

:::::::
Integral)

::::::
Clinton

:
R
:::::::
(Storage

::::::
Integral)

::::::
Baseline

::::
0.068

:::
0.05

:::::::
-7.95e17

::::
-0.88

:::::::::
vanBeekGeo

: :::
-0.45

: :::
0.43

:::::::
-3.37e18

::::
-0.69

::::::
Turn250

:::::
-0.219

::::
-0.032

: :::::::
-2.01e18

:::::
-0.911

Table A2.
:::::::::
Performance

::::::
metrics

::
for

:::
the

::::::
Clinton

::::
Lake

::::
Dam

:::::::
compared

::
to

:::
the

:::
rest

::
of

::
the

::::::::
reservoirs

:::::
within

:::
our

::::::
analysis
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:::::
Model

: ::::::::
Koelnbrein

::::
KGE

::::::::
(Storage)

::::::::
Koelnbrein

::
R

:::::::
(Storage)

::::::::
Koelnbrein

::::
KGE

:::::::
(Storage

:::::::
Integral)

::::::::
Koelnbrein

::
R

::::::
(Storage

:::::::
Integral)

::::::
Baseline

:::
0.13

: :::
0.96

::::::
-4.47e17

: :::
0.41

:::::::::
vanBeekGeo

: :::
0.25

: :::
0.85

::::::
-5.63e17

: :::
0.65

::::::
Turn250

:::
0.13

: :::
0.85

::::::
-7.56e17

: :::
0.56

Table A3.
:::::::::
Performance

::::::
metrics

::
for

:::
the

::::::::
Koelnbrein

::::
Dam

::::::::
compared

::
to

::
the

:::
rest

::
of
:::
the

::::::::
reservoirs

:::::
within

::
our

:::::::
analysis
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