
Reviewer 1: 
Steyaert et al. present an approach to deriving reservoir operations for global scale 
hydrologic models. The study is of value to the water resources modeling community, 
but requires major revisions before being accepted for publication in HESS. Some 
elements of the method are not well justified, including the categorization of dams into 
“irrigation-like” and “hydro-like”, as well as use of a release decision approach based on 
downstream demand aggregated across an arbitrary command area. Use of a random 
forest model to extrapolate curves is a nice idea but is not evaluated fully (i.e., using a 
cross-validation scheme) and appears quite ineIective based on the results shown. 
Although the level and depth of analysis conducted is impressive, the quality of 
results/figures is quite poor, and often confusing. The study can be simplified and 
reworked to deliver more clear and compelling results (with more impactful figures) on 
improvements oIered by a data-derived storage scheme. The paper would also benefit 
from a significant reduction in number of words. The introduction is 13 paragraphs long 
and contains a lot of general detail. I encourage the authors to rewrite the introduction 
in a way that brings immediate focus to the problem area, most recent literature 
addressing that problem, and aims of the study. Three or four paragraphs will suIice. 
The abstract, currently almost 400 words, can be halved without loss of essential 
information. 
 
Thank you for your comment and for noting the importance of our work within the 
larger reservoir modelling community. We agree that the introduction and abstract 
can be shortened. We shortened the abstract to 300 words or less and limited the 
total number of paragraphs in the introduction to seven that are focused on the 
following key points: 

- The large number of dams and their impacts 
- The multiple ways of modelling reservoirs and their current advantages and 

limitations 
- How remotely sensed data can support the derivation of operational 

schemes.  
- Our main research goals for this publication. 

 
 
Comments: 
Title: Awkward repetition of "reservoir operations". Did you mean "A data derived 
workflow for simulating reservoir operations in a global hydrologic model" ? Also, this 
wording suggests that it is the *workflow* that is data derived, rather than the reservoir 
operation. So, did you actually mean something like "Data derived reservoir operations 
in a global hydrologic model" ? 
 
We agree that the repetition of reservoir operations leads to an awkward sentence 
and that the title sounds like the workflow is data derived. Therefore, we used your 
proposed title: “Data derived reservoir operations simulated in a global hydrologic 
model.” 
 
Abstract L2. "most of the data was not openly accessible". I would suggest that this 
remains true. Specify the type of data. 



We included the following change: “Globally there are over 24,000 storage 
structures (e.g. dams and reservoirs) that contribute over 7,000km3 of storage, yet 
until recently, most of these data was not openly accessible until recently.” 
 
L27. water supply reservoirs, flood control reservoirs, and hydropower dams are found 
in all climate types. 
Thank you for this comment, we removed the regionality in this sentence. The 
sentence now reads as follows: “With this loss of river connectivity comes a large 
amount of water storage (over 8,000,000 m3 (Lehner et al., 2011) that provides water 
for a variety of purposes ranging from water supply and irrigation to hydropower 
and flood control.” 
 
L187. Do you mean: “…to determine reservoir rule curves that specify seasonal flood 
and conservation pools…” ? 
Yes, this is a more clear and concise way to state what we are referring to. We made 
the following modification to the manuscript: “We input this weekly data into the 
STARFIT model developed by Turner et al. (2021) (Section 2.4.2) 
to determine reservoir rule curves that specify seasonal flood and conservation 
pools. After obtaining seasonal flood and conservation pools for 1752 reservoir, …” 
 
L205. Not clear what is meant by “yearly maps of static reservoir characteristics”. 
This refers to the reservoir characteristics used as inputs for PCRGLOBWB2. These 
maps are used to determine 1) where reservoirs exist and 2) the necessary 
hydrologic characteristics (outlet points, storage capacity, reservoir id, and surface 
area) that are used to calculate storage within the model.  This input is given to the 
model as they do not change frequently; however, this also means that new 
reservoirs will always appears on January 1st and will only contribute to the river 
management from that day until they are removed (if this occurs during the 
simulation period). To make this clearer, we made the following change: “From this 
updated table, we created annual maps of static reservoir characteristics (e.g. 
outlet points, storage capacity, reservoir id, and surface area), which are used as 
inputs to model reservoir releases and to distinguish between two operational 
policies hydropower-like and irrigation-like.” 
 
 Also, since L180 I have been reading and wondering the motivation and reasoning 
behind these two categories (“hydropower-like” and “irrigation-like”). Please try to 
clarify the role of this categorization early in the study. 
Thank you for your comment. We agree that explaining this classification earlier in 
the manuscript is useful. We will add a description at line 180 to clarify what these 
two groupings are. The updated sentence reads as follows: “Using these 
operational bounds, we derive two main reservoir models for irrigation-like (dams 
that are focused on meeting downstream demand) and hydropower-like dams 
(dams that are focused on holding storage stable). We will also edit the following 
description at line 205 as follows: “We separated our operations into these two 
categories as Steyaert and Condon and Salwey et al. noted di_erences in 
operational patterns between storage reservoirs (noted as irrigation and water 



supply main uses) and non-storage reservoirs (such as hydropower, navigation and 
flood control uses).” 
 
L250. Please add further detail here on whether any eIorts were made to ensure 
reservoirs were placed on correct streams. From what I read, it seems the lat/lon of the 
reservoirs are snapped to the PCR-GLOBWB grid then assigned that grid cell. 
To correctly match the dams, we calculated the closest grid cells in PCR-GLOBWB 
2 to the latitude and longitude reported in GeoDAR and the catchment areas of 
each grid cell in PCR-GLOBWB 2. We then minimized the eucludian distance 
between the grid cell and the location of the dam and the di_erence between 
reported catchment area and the catchment area on the PCR-GLOBWB 2 domain. 
This ensures that the GeoDAR dam is mapped to the correct stream and that the 
entire reservoir sits within a single catchment.  In some cases, this information is 
missing from GeoDAR and we therefore spatially snapped the reservoirs to the 
nearest latitude and longitude point on the river network. While this could lead to 
inaccuracies, the 5 minute spatial resolution (approx. 10km) typically contains the 
largest rivers in the network, so it is not likely that we are mapping large dams to 
very small rivers. To clarify this in the manuscript, we added the following 
description on line 250: “We then ensured that the mapped location based on the 
latitudes and longitudes from GeoDAR also aligned with other reservoir 
characteristics such as catchment area. We compared the catchment areas 
reported in GRanD, iCOLD and GeoDAR to the calculated catchment area at the 
dam location calculated from the PCR-GLOBWB 2 DEM. For each potential 
location, we minimized the di_erence in catchment area and the distance to the 
reported latitude and longitude of the dam.” 
 
 
L270. Ok—here I am now realizing that irrigation-like and hydropower-like categories are 
used to inform releases, with the starfit approach solely defining storage curves. 
Doesn’t this mean the operations are not full data-driven but rather half data driven 
(storage curves) and half “generic” (release policy based on command area demand 
and reservoir purpose)? 
Unlike Turner et al., 2022, we were unable to gather enough reservoir data to fully 
derive the reservoir releases using a purely data derived method as in most cases 
data for reservoir releases is missing. Therefore, we opted to only derive reservoir 
storage bounds using static reservoir characteristics described in Section 2.5. 
These reservoir storage bounds denote the active area within which reservoir 
release is defined by the equations in Section 2.4. We, therefore, use the two main 
groupings, irrigation-like and hydropower-like, to steer the release equations. Both 
of these groupings take into downstream demand that has been aggregated along 
the downstream areas of 250, 600, or 1100. We opted to use this instead of a 
generic scheme as Steyaert and Condon ( 2024) noted that hydropower and 
navigation dominate regions in the United States have a more stable reservoir 
storage compared to regions dominated by irrigation and water supply uses.  
 
In order to clarify this, we updated Lines 270 – 272 to include the following: “As our 
analysis is done globally, we use data from the 1752 dams in GloLAKES (Hou et al., 



2024) and derive the operational bounds for the STARFIT using a combination of 
observations and machine learning. To compliment these operational bounds, we 
employ two main sets of equations based on two main groupings of reservoir main 
purposes: irrigation-like and hydropower-like (Section 2.4.4 and Section 2.4.3).  We 
use these two groupings to denote how releases change based on the level of 
storage. In irrigation-like dams, the goal is to meet downstream demand and 
therefore the equations in Section 2.4.1 prioritize this goal by meeting all 
downstream demand when reservoir storage sits between the data derived 
operational bounds and proportionally less when storage sits between the 
conservation bound and 10% of the maximum storage capacity of the reservoir. For 
hydropower-like dams, the goal is to hold storage as stable as possible. Therefore, 
the equations in Section 2.4.2 prioritize meeting downstream demand when the 
storage in the hydropower-like reservoir sits between the data derived operational 
bounds. However, if meeting this downstream demand causes the reservoir 
storage to drop below the conservation bound, then the reservoir can only meet a 
portion of demand to allow storage to stay in the active zone (zone between the 
operational bounds). For both types of reservoirs, we employ an additional flood 
release and account for environmental flow requirements as described in Gleeson  
and Wada (2013).” 
 
L313 – missing reference to equation 5. 
 We added  the requested reference. Please see the following edits: “To do this, 
these daily storage, release and inflow values are aggregated into weekly time 
series and a combination of sine and cosine curves (described by equation 5 
below) are fit to the upper and lower percentiles of each time series.” 
 
L325-330. I would be very unsure about labels of water supply / irrigation vs hydro etc 
within GranD leading to a neat splitting of dams respectively operated for downstream 
demand versus maintaining high storage levels. Apart from the issue of inaccurate 
reservoir purposes in the available global datasets, one rarely finds such simple 
distinctions in reality. Are you able to show that two categories of operations actually 
exist, e.g., by comparing the starfit curves for irrigation-like versus hydropower-like 
dams in the set of 1752 observed dams? I would be surprised if you find a clear 
distinction. If this is the case, I don’t see strong justification for the splittling—which in a 
way complicates the study. 
We kindly thanks the reviewer for this comment. We do agree that there may be 
inaccuracies in the main uses in GranD. This said, GRanD is still the leading dataset 
for determining reservoir main uses. As shown in Figure 3 in the manuscript, there 
are di_erences in the two main categories of reservoirs we used, however, we agree 
that analysis of the StarFIT curves for di_erences in the operations is useful. In the 
following figure (Figure 1), we plot the average, maximum and minimum value of the 
derived STARFIT curves for the irrigation-like (blue) and hydropower-like (red) dams 
for both the flood (Figure 1, top row) and the conservation (Figure 1, bottom row) 
bounds. While the average and maximum flood and the maximum conservation 
values do not di_er much between the dams, we do see large di_erences in the 
average conservation and the minimum flood and conservation curves which could 
be a result of the di_ering operations at the lower end of storage. Specifically, the 



flood minimum peaks in irrigation type dams in the spring and summer months to 
potentially support downstream demands in more drier periods, while the 
hydropower-like dams have lower flood minimum values. The conservation curves 
experience the most changes in part due to the hydropower-like dams holding 
storage much higher across the year while the irrigation-like dams are meeting 
downstream demand in the autumn months. For the minimum conservation 
values, the irrigation-like dams have higher storage fractions compared to the 
hydropower-like. Due to the di_erences in the seasonality of the lower bounds for 
the flood curve and the di_erences in the conservation curves, we still think that 
the distinction in operational schemes is useful.  We included this as Appendix A3 
and included the above description.  
 

-  
Figure 1: Depicts the average, maximum and minimum flood (top row) and conservation (bottom row) curves that are 
used in PCR-GLOBWB2 

 
L335. It’s unclear to me what the command area oIers. The storage curves can guide 
the release without a downstream demand. Were any tests performed to evaluate 
whether this downstream demand actually improves on accuracy? 
The storage curves are able to guide a release without a downstream area; 
however, we wanted to include the downstream water demand dependencies. In 
addition, we wanted to test the sensitivity of streamflow to di_erence in these 
three command areas typically described in the literature. We did not solely isolate 
the downstream command areas in our analysis; however, we do show in our 
results that the curves separated by reservoir use and using a command area do 
provide a more accurate representation of reservoir storage globally (Figure 6 and 
Figure 7 in the submitted manuscript). We acknowledge that it would be useful to 



perform a more comprehensive test to see if di_erences in the command area do 
contribute to changes in our operational scheme. To do this, we re-ran our model 
set up for the Mississippi basin and set the downstream command area to 0 which, 
when multiplied by the downstream demand, removes the demand. We then 
evaluated the daily streamflow KGE values (Figure 2) to observe the di_erences 
between the previous model runs and the model run without the command area.  
From Figure 2, we do see that the addition of the command area and accounting for 
downstream demand does improve streamflow dynamics when using the two 
reservoir groupings (hydropower-like and irrigation-like dams).  
 
 To clarify this in the text, we added the following: “If during this process, another 
dam intersects the river network before the full command area is created, we 
assume that this is the maximum distance that is served by the upstream reservoir. 
This command area is used to aggregate the total downstream demand that could 
be met by the reservoir. We use this aggregated downstream demand in both the 
hydropower-like and irrigation-like dams as both dam types can meet the 
downstream demand when storage sits between the data derived operational 
bounds. We found that while our model was not sensitive to the downstream area 
(Figure A1), we did observe that the addition of a command area increased our 
model performance (Figure A4).” We opted to include Figure 2 as Figure A4 in the 
manuscript. 

 
Figure 2: Depicts the cumulative distribution function of the daily streamflow KGE values for the original model 
scenarios: Baseline (black), vanBeekGeo (grey) and Turn250 (pink), the run without the command area in purple, and 
the simplified rule curve (green). 



L342. How are surface water abstractions considered? Is this based on demand within 
the same grid cell as the reservoir? 
In PCR-GLOBWB 2, surface water is abstracted from the closest water body or river 
to the grid cell within a 100km radius that has demand. We updated this scheme to 
only abstract water from the reservoir if it is in our irrigation-like category and if the 
abstraction would not cause the dam to drop below the conservation level. We 
included  the following lines to explain this further: “In PCR-GLOBWB 2, surface 
water is abstracted from the river or lake cell closest to the cell with a demand. We 
changed this scheme to limit surface water abstraction to irrigation- like dams, and 
only to the extent that the abstracted volume of water would not drop the reservoir 
storage below the conservation curve.” 
 
Equation 6. Maybe I missed this, but how is Env defined? Also, how is the flood release 
defined? Is this just spill required to draw the reservoir back to the active zone? 
Thank you for noticing this. We left o_ the description of Env.  To clarify this section, 
we added the following: “Lastly, we implement a piecewise function for releases 
based on the current reservoir storage (Sc) where Rf is the flood release, Env is the 
environmental flow requirement defined in PCR-GLOBWB 2 as 10% of the 
naturalized flow (Gleeson & Wada, 2013). Ri and Rh are the irrigation and 
hydropower releases in the active zone and are described in by equation 9 in 
Section 2.4.4 and by equation 8 in Section 2.4.3 respectively.” 
 
Yes, this flood release is the release needed to draw the reservoir back to the active 
zone.  
 
L350. Unclear what is being done here. Are you creating an active zone per dam type 
and country? Why? I thought the random forest provides full parameterization for each 
dam. 
We are not providing an active zone per dam type and country, but an active zone 
per dam based on a random forest algorithm, where type of use, socioeconomic 
and climatic variables are used as features (predictors). We then use a set of 
equations to simulate release based on downstream demand. While it is ensured 
that the reservoir storage stays within the active zone defined by the random forest 
algorithm (Equations 6-9). We define two main categories of equations for 
irrigation-like and hydropower-like reservoirs to simulate the di_erent dynamics 
within each. For hydropower-like reservoirs, the equations assume that the 
operator is attempting to keep reservoir storage in the active zone as much as 
possible and there are no releases if the reservoir is below the active zone. For 
irrigation-like reservoirs, the goal is to meet all the downstream demand within the 
command area.   
 
To clarify our workflow, we added the following paragraph explaining the 
di_erences at Line 270. “To compliment these operational bounds, we employ two 
main sets of equations based on two main groupings of reservoir main purposes: 
irrigation-like and hydropower-like (Section 2.4.4 and Section 2.4.3).  We use these 
two groupings to denote how releases change based on the level of storage. In 
irrigation-like dams, the goal is to meet as much downstream demand and 



therefore the equations in Section 2.4.1 prioritize meeting downstream demand 
with more downstream demand met when the storage sits between the data 
derived operational bounds and proportionally less when the storage sits between 
the conservation bound and 10% of the maximum storage capacity of the reservoir. 
For hydropower-like dams, the goal is to hold storage as stable as possible. 
Therefore, the equations in Section 2.4.2 prioritize meeting downstream demand 
when the storage in the hydropower-like reservoir sits between the data derived 
operational bounds. However, if meeting this downstream demand causes the 
reservoir storage to drop below the conservation bound, then the reservoir can only 
meet a portion of demand to allow storage to stay in the active zone (zone between 
the operational bounds). For both types of reservoirs, we employ an additional 
flood release and also account for environmental flow requirements as described 
in Gleeson and Wada (2013).” 
 
We also combined Sections 2.4.2, 2.4.3 and 2.4.4 to one section titled “Data Driven 
Reservoir Operations-STARFIT,” with three subsections defined as 1) Operational 
curves by STARFIT, 2) operations for hydropower-like dams, and 3) operations for 
irrigation-like dams. We also added the above text to the beginning of Section 2.4.2. 
Lastly, we added the follow text to line 350: “We use these operational bounds to 
denote the active zone and therefore the release factor (Equation 4) for the 
hydropower dam. We opted for di_erent hydropower and irrigation operations as 
the main goal of each type of reservoir is slightly di_erent. For example, a 
hydropower dam in Switzerland could have slightly di_erent operational bounds 
than a hydropower dam in Vietnam, however the main purpose: hold enough water 
to support electricity generation, would be the same.”  
 
 
L381. After validating the model and demonstrating eIectiveness with the 25% out 
validation, why not re-train with all 1,752 structures before extrapolating? Also, given 
the importance of the random forest to the overall framework, I strongly suggest the 
authors pursue a k-fold cross validation scheme rather than single training and test 
samples. 
Thank you for the comment. We did retrain all the structures as well as the 1,752 
before extrapolating. We will update line 381 to read: “The obtained RF was then 
used to extrapolate the 10 parameters to all 24,000 structures.”  We also think a k-
fold cross validation could be useful to validation. We ran a test with the 1752 dams 
with the same 75% training and 25% testing split as the single RF method, meaning 
we put 75% of the data through the k-fold validation and kept 25% out to validate 
and test our method. The k-fold cross validation splits the data into 10 equal 
portions. We then created a composite score of the MAE and MSE to determine the 
overall best model from the k-fold using the 25% of the data we left out for 
validation.  For all 10 models we received the following results for the mean 
squared error, mean absolute error and the r squared comparing the random forest 
models predictions to the Turner values.  

Model k-fold with cv = 
10 

Best K-fold cross 
validation model  

Single RF method 



MSE 359.77 
(stdev = 47.13) 

291.15 288.39 

MAE 12.96 
(stdev = 0.83) 

11.74 11.65 

 
 From these results, we see that the current random forest setup has a lower MSE 
and MAE values suggesting the single RF method is performing well. The k-fold 
cross validation does show us that there is some sensitivity to our testing and 
training dataset due to the standard deviations of the MSE and MAE. Our initial 
setup performs slightly better when looking at the MSE and MAE as the errors 
associated with the single RF methodology are lower. Therefore, we think it is 
justified to use the full dataset for the RF, however we already noted in the 
discussion that the extrapolation of parameter values is an area of uncertainty that 
could be further reduced by using di_erent techniques or more data and we 
provided the above table depicting the results of the cross validation in the 
appendix as Table A1.  
 
The addition to Line 588 now reads as follows: “Additionally, we may find that by 
using a di_erent validation scheme, our operational curves may also change as our 
random forest is sensitive to the input data.” 
 
L385. How many reservoirs end up being constrained to these bounds? Also, it’s not 
clear what is meant by flood peak here. Do you mean upper bound of active storage? 
Table 2. Here would be very interesting to see a version that drops the command area 
and demand parameters (as well as hydro/irrigation split) entirely. I can’t see a strong 
justification for the demand-based release or the command area (or the hydro / 
irrigation split for that matter). A simple way to test this would be to take the mid-point 
of the active zone (i.e. assume just one curve to target) and operate toward that at all 
times (giving you a very simple release function). 
Thank you for your comment. We decided to implement a simple rule curve for the 
Mississippi Basin that accounts for the downstream demand (the green line in 
Figure 3 and Figure 2). This simplified operational policy still accounts for 
downstream demand according to the 250km distance and can meet this demand 
and surface water abstractions if storage is within the active zone (definied as the 
area between the flood and conservation curves) and includes environmental flow 
and flood releases. We ran the model for the Mississippi basin without the 
command area (by setting the downstream demand to 0) but including the two 
operational schemes (purple line). In analyzing the longterm monthly storage for 
the simple rule curve we observe that we hold less water on average, but the 
seasonal dynamics are similar to the other models ( Figure 3). This suggests that 
the biggest di_erence is the overall storage fraction levels and in fact this 
simplified rule curve decreases the overall water availability in the Mississippi 
region.  
 
We then computed the daily KGE values for these two models as well as the 
Turn250, Baseline and vanBeekGeo against the streamflow observations in GRDC. 
While the addition of the command area slighlty improves the model (Figure 2, 



purple vs pink lines), we do see large improvements in using two di_erent 
operational schemes (green vs pink lines in Figure 2). This suggests that creating 
two di_erent release rules for irrigation-like and hydropower-like dams enhances 
model performances compared to a single simplified scheme. We also saw there 
are operational di_erences in the average conservation curves and the flood and 
conservation minimum curves when looking at the two typologies we defined 
(Figure 1 above and copied below).  This, in conjunction with Steyaert et al., 2024 
and Salwey et al., 2023 noting that there are di_erences in irrigation, water supply 
and hydropower dams, further supports our conclusion that having two main types 
of reservoir operations better represents the observed dynamics. We included 
these two figures (Figure 3 and Figure 2) as Figures A5 and Figure A4 as well as the 
above explanation in the supplementary.  

 
Figure 3: Longterm storage fraction of the diSerent models in our analysis (Turn250 in pink, Baseline in black, and 
vanBeekGeo in grey) as well as the simple rule curve (green). 



 
Figure 2: Depicts the cumulative distribution function of the daily streamflow KGE values for the original model 
scenarios: Baseline (black), vanBeekGeo (grey) and Turn250 (pink), the run without the command area in purple and 
the simplified rule curve (green). 

 



Figure 1: Depicts the average, maximum and minimum flood (top row) and conservation (bottom row) curves that are 
used in PCR-GLOBWB2 

 
L503. Above you state that Clinton dam has a hydropower main purpose. 
You are correct. We initially used the Clinton dam here, but changed the dams in 
the final version of the code but did not account for these changes in our 
mansucript. Figure 3 in the manuscript shows Butt Valley dam in California for 
hydropower use and Figure 4 in the manuscript shows Clinton Lake Dam which has 
a water supply main use and Koelnbrein dam which is a hydropower main use. We 
corrected the manuscript accordingly.  
 
Figure 4. Is this average monthly discharge over a number of years, or are you showing a 
single year’s output? 
 
We are showing the longterm monthly average discharge over the model period and 
have updated the caption accordingly. 
 
L588 – this is an inadequate way to evaluate storage dynamics improvement. You have 
observation and results. Compute NSE / RMSE / KGE or similar for each dam (sim vs 
obs) and show the diIerence across a distribution (perhaps splitting by continent or 
large basin). 
Thank you for this comment. We agree that adding a plot showing the improvement 
by calculating the KGE, NSE or RMSE between our observations and simulations 
would be a useful addition. Instead of including all three, we opted to show the KGE 
and RMSE between the modelled values and the observations as global CDFs 
(Figure 4). The KGE plot shows that the Turn250 model has relatively more negative 
KGE values, however, these negative performances are typically in wetter periods 
where PCR-GLOBWB 2is already underestimating streamflow. This model also has 
larger KGE values. As for the RMSE we do see that the Turn250 has more values 
closer to 0 suggesting the Turn250 model is more aligned with the observations. We 
also opted to plot the KGE components (Figure 5). The alpha and R components 
show slight improvements in modelled storage with the Turn250 operations, while 
the beta shows that the Turn250 has more bias, which is most likely occuring in the 
wetter periods. To supplement this, we included the above description and the 
following figures to the supplementary as Figure A6 and Figure A7.  



 
Figure 4: Cumulative distribution plots of the monthly storage KGE and monthly storage RMSE for the Baseline (black), 
vanBeekGeo (grey) and the Turn250 (pink) models 

 
Figure 5: Cumulative distribution plots of the storage KGE components: alpha, beta and the cross correlation (CC), for 
the three models in our analysis: Baseline (black), vanBeekGeo ( grey) and Turn250 (pink).  

Figure 7. It’s not clear why the data-derived storage curves result in a diIerent seasonal 
storage pattern than GloLAKES for North America. Aren’t the curves based on GloLAKES 
data? 
 Yes, the curves are based on the data in GloLAKES and therefore should align, 
however, the number of US dams in GloLAKES (1752 with 543 or 31% in the US 
plotted in red in Figure 7) di_ers from the total number of dams (over 20,000 with 
8214 or 40% in the US plotted in blue in Figure 8). Additionally, the random forest 
algorithm looks for similarities and di_erences across all the dams in the training 
set. This training set (75% of all the data) is chosen randomly and, while it includes 
dams from the US, we make sure to choose multiple regions. Therefore, this could 
account for the regional di_erences in our storage patterns compared to the 
GloLAKES observations. When plotting the monthly KGE and monthly RMSE (Figure 



6) for each of the models, we do see that the RMSE in the United States are much 
higher and the KGE is slightly worse. This suggests that the issue in performance is 
perhaps due to the underlying model dynamics in PCR-GLOBWB 2 as well as the 
inclusion of other regions in the training dataset to create the Random Forest 
algorithm. We have added these three figures to the supplementary (Figure A8, 
Figure A9, Figure A10) and included the above description there as well.  

  
Figure 6: Cumulative distribution plots of the monthly storage KGE and monthly storage RMSE for the Baseline (black), 
vanBeekGeo (grey) and the Turn250 (pink) models across the United States.  

 

 
Figure 7: Map of the point locations of the Glolakes observations used to train our random forest algorithm and 
validate our analysis. 



 
Figure 8: Point location map of all the dam locations in GeoDAR that are included in our analysis. 

 
Reviewer 2: 

I find this paper to largely be well written and its work addresses an important gap in the 
literature. There are some points I would like addressed and some room to improve clarity 
but overall I think it should be accepted after revisions.  

Thank you for your kind words and comments.  

Some revisions to be considered: 
1: One topic I would like to see expanded upon is in relation to how certain sources of error 
in the input data and method may be influencing the final results. Specifically, the fact that 
storage values are what is used to constrain model training. To discuss why I think this is 
important I refer to.  

Line 745-747 “Therefore, we suggest reservoir operation models rely primarily on validation 
of storage in place of validation solely on streamflow as the available streamflow 
observations are rarely close to the release point of the reservoir and therefore not as 
sensitive to reservoir operations compared to storage. “  

While this may be true if the modelers in question are primarily concerned with the 
reproduction of storage, it seems to me that there are plenty of other sources of error that 
could make this untrue for other metrics. For one example, errors in the other fluxes of ET, 
precip, and storage lost to recharge could easily be introducing errors to the actual releases. 
Given the model is being trained to reproduce observed storage values, any errors in these 
fluxes will be baked into the final release. Even if this does not result in large streamflow 
differences downstream, if one cares more about release sizes than storage levels I could 
easily see streamflow data providing additional information.  

Thank you for your comments. We do agree that there could be issues that are 
propogated from other soures of error. We changed Lines 745 – 747 to read as 
follows: “emphasize model validation on reservoir storage in addition to validation 
based on streamflow,” in place of validation solely on streamflow as available 



streamflow observations are rarely close to the release point of the reservoir and 
therefore not as sensitive to reservoir operations compared to storage.  

I do want to acknowledge the authors have already provided analyses of underlying error, an 
example of which can be seen in lines 740-742:  

“We observe that the RF extrapolation is accurately able to depict the flood and conservation 
curves and that the main source of uncertainty is the errors associated with the storage 
estimations from satellite altimetry.“  

What I think could be made a little more clear though is that the core role of storage in the 
training process, combined with the need to integrate many sources of data all with their own 
error, could mean there could easily be difficulties in reproducing less related metrics. And in 
fact, the improvements to storage related results do strongly outperform the improvements 
other metrics such as streamflow.  

Hopefully I have not fundamentally misunderstood the paper when providing this comment. I 
do see that, for example, the authors validated against streamflow data as well and made 
sure to select only locations with measurements directly downstream. But my interpretation 
is that at the larger scale, estimates of storage are the only available data and thus the only 
available constraint. 

 

I do not want to add a lot of work and whole new analysis to an already well written paper. I 
think simply a paragraph or two more directly acknowledging the challenges presented by 
these underlying errors with an illustrative example of one way that might play out, as well as 
qualifying some of the stronger statements in the introduction and conclusion making 
recommendations to modelers, would be sufficient.  

Thank you for your comprehensive comment. We do agree that adding a section on 
the propogation of errors would enhance the paper. We added the following 
paragraph about error propagation to  Section 4.2: 

“Apart from errors accruing from above assumptions, the accuracy of our results is 
also limited by the errors that are propogated through our workflow. Specifically, 
PCR-GLOWBWB 2 underestimates the flashiness of streamflow regimes. It is also 
less accurate in specific regions such as the Niger, the Rocky Mountains and 
portions of continental Eastern Europe due to errors in the snow dynamics, 
estimation of the groundwater responses and data limitations (Sutanudjaja et al., 
2018). Additionally, the estimation of the operational STARFIT rules from the 
remotely sensed storage data of GloLAKES is limited by the revisit time of satellites, 
the influence of cloud cover and atmospheric interference as well as the statistical 
models that back calculate storage that are limited by the digitial elevation model 
resolution (Hou et al., 2024; Chen et al., 2022). As storage is typically not a 
measured value and, even in the case of in-situ observed water levels observations, is 
back calculated from storage/area or storage/elevation relationships, validation 
primarily on storage alone is inherent to uncertainty. Primarily, these limitations 
can affect the actual storage value as they rely on storage elevation charts that are 
only periodically updated (Steyaert et al., 2022) While the single errors are 
propogated through our system, the results of the independent validation with 
ResOpsUS (Figure 6in the manuscript)  and GloLAKES (Figure 6 and Figure 7 in 



the manuscript) show improved performance for storage values in PCR-GLOBWB 
2 and suggest similar improvements for other global hydrologic models with the 
caveat that errors may propagate through the modelling system.” 

 

2:  

My second point is in regards to lines 250-251  

“This spatial resolution is the optimal balance between computational demand and model 
performance and has been extensively validated and benchmarked“  

I feel that this statement is too strong given the particular problem context. It may be true 
that this resolution has been extensively validated, but optimality is always a question of 
“optimal for what metric” and it is not clear to me that this previous work was looking at 
optimality under the same set of tradeoffs. For example, given that this method can be used 
to produce datasets, an outcome with a lot of potential downstream consumers, it may be 
optimal to use a lot more compute for even marginal gains in accuracy.  

Additionally, this specific problem has characteristics that may mean a finer resolution is 
actually optimal. One in particular is discussed on the next several lines, and it is the fact 
that at this resolution some groups of reservoirs need to be considered as one reservoir 
because they share a grid cell. This nonlinearity presents what to me is a clear difference in 
trade offs from a simple performance/compute analysis.  

To be clear, I am not suggesting this work should have been done at a different resolution, 
but this statement seems too broad.  

This is a really good point. We intially meant this statement to refer to the 
computational time for running our model on the global scale. By moving to a higher 
resolution of the PCRGLOBWB 2 model (such as the 30 second resolution), we 
introduce more potential errors in land cover type and snow dynamics that further 
complicate the results due to increased evapotranspiration from crop types and lack 
of lateral transport for snow (van Jaarsveld et al 2025). Additionally, running the 
PCRGLOBWB 2 model globally on the 30 second resolution takes 401 computational 
hours accoding to van Jaarsveld et al., 2024.  Ultimately, we agree that this is a broad 
statement and made the following change: “We opt for the 5 minute resolution in 
order to capitalize on the extensive validation and benchmarking done by Sutandujaja 
et al., 2018 and to limit excessive calculation times that occur at higher resolutions 
(van Jaarsveld et al., 2025).” 

3:  

My third point is in regards to the analysis of the various components of the KGE in figure 5. 
Because all of the models performed very similarly on KGE overall, I am suspicious of 
reading too much into the size of the various components. Even an individual model with 
enough degrees of freedom may have parameters tunings that all produce the same overall 
KGE but with quite different component values. In this case, which component the model 
appears to perform better on will depend entirely on where you start your gradient descent.  

So what is not clear to me is if the different methods have different component values 
because they are actually better suited to handle that component, or if they have different 



component values because they both have similar levels of ability to fit the data and have 
both settled at a somewhat arbitrary local minima that weights the components slightly 
differently.  

This is a really good point. To expand on this point, we created scatters plots of the 
different KGE components between the Turn250 and vanBeekGeo models (Figure 9). 
While the scatter for the R component makes this component appear to be the most 
important, we find that both the R and beta components have almost equal values 
above and below the 1:1 line suggesting that these two components are muting the 
KGE differences. Comparatively, alpha has 1196 points above the 1:1 line and 779 
points below the 1:1 line which suggets that alpha is the most sensitive to the 
operational changes and contributes the most to the KGE changes (1210 above the 
1:1 line and 1158 below the 1:1 line). To show this in the analysis, we added this figure 
as Figure A11 and included the above description. 

 

 

Figure 9: Scatter plots of the streamflow KGE components between each model and observations. We plot the KGE 
components ( alpha, beta, and R) for the Turn250 model on the y axis and the KGE components for the vanBeekGeo 
model on the x axis. The dashed red line is the one to one line.  

4:  

My fourth point is in regards to the command area analysis. The authors state the command 
area does not matter much, but I think this could be an artifact of the particular method.  



Particularly, it is not clear to me that downstream demand plays a large role after the release 
curves have already been so constrained based on historical data. What I would like to see 
is a more clear description of through which equations the command area plays a role in 
determining the releases in the section performing the analysis. While the equations are 
described in the methods, it's a bit hard to sort out the answer to this specific question given 
the breadth of material being covered.  

Thank you for your comments. The command areas are taken into account in 
equations 7 and 9. We calculate the command area as the downstream region that the 
reservoir could supply water to. Therefore, D in equations 7 and 9 refers to the 
maximum downstream demand that is aggregated over the specified command area 
per model (i.e. 250, 600, and 1100). We added the following to clarify this on line 356: 
“where D refers to the maximum demand aggregated at the specified downstream 
area (250, 650, 1100).” 

5: It feels like both the abstract and introduction could be shorter. For the introduction, some 
of the context being provided might be better suited to the methods section.  

 We agree that shortening the introduction and the abstract would be useful and 
shortened the abstract to less than 300 words. We shortened the introduction from 13 
paragraphs to 7. We do think some of the context is quite lengthy and we can still 
cover the main components in a simplier fashion.   

6: While I find the illustrative examples used to examine storage dynamics improvement 
useful, I think additional analysis needs to be done given the small sample they provide. 
Particularly, I would like to know how the examples compare to the average to know they 
have not been cherry picked. Also, at least one of the selected examples should perform 
about average. 

Thank you for your comment. We thought the single point location was a nice way to 
illustrate the potentiall differences in operational dynamics and their impacts. We 
agree that a point location does not tell the full story. To better tell this story, we have 
opted to include the climatology of the storage fraction and the storage integral to 
show the average changes between the different model scenarios. From this figure, 
we observe on average that the storage fractions in Figure 4 in the manuscript align 
with the general trends we see in the average storage fraction climatology (Figure 10). 
That said, the average storage values are lower in modelled values in Figure 4 in the 
manuscript compared to all the dams in our analysis.  To compliment this qualitative 
analysis, we also calculated the correlation and the KGE for the three models between 
the longterm monthly storage of all the dams and the Clinton and Koelnbrein dams 
(below table). We do observe that the Koelnbrein dam has high correlations and 
slightly positive KGE values that suggest that this dam is fairly representative of the 
dynamics we observe when taking the average of all the dams in the longterm 
storage. The Clinton dam, however, has a varied performance depending on the 
model suggesting that this dam has different dynamics than the longterm monthly 
storage values.  

Model Clinton 
KGE 
(storage) 

Clinton R 
(storage) 

Clinton 
KGE 
(storage 
integral) 

Clinton 
R 
(storage 
integral) 

Baseline 0.068 0.05 -7.95e17 -0.88 
vanBeekGeo -0.45 0.43 -3.37e18 -0.69 



Turn250 -0.219 -0.032 -2.01e18 -0.911 

 

 

 

  

 

When looking at the storage integral average climatology, we see varied dynamics in 
the summer months that align with the average of the two examples in Figure 4 in the 
manuscript. However, the KGE and correlation values show that the Clinton dam is 
not well represented by the longterm average plots and the Koelnbrein dam on the 
other hand is representative of the average dynamics. Therefore, the two examples 
shown in Figure 4 in the manuscript both show an example of a dam that aligns with 
the expected average values (Koelnbrein dam) and an example of a dam that is not 
indicative of the average trends (Clinton dam).  We added this figure (Figure 10) was 
Figure A12 and the two tables in the supplementary (Tables A2 and A3). We decided 
to keep Figure 4 in the manuscript as is. We also included a plot of the longterm 
monthly discharge at major basin outlets so the regional differences can be better 
seen (Figure A13) in the supplementary. 

 

  

Figure 10: Plots of the longterm storage fraction (left) and the longterm storage integral (right) for the three models: 
Baseline (black), vanBeekGeo (grey) and Turn250 (pink).  

 

Model Koelnbrein 
KGE 
(storage) 

Koelnbrein 
R 
(storage) 

Koelnbrein 
KGE (storage 
integral) 

Koelnbrein R 
(storage integral) 

Baseline 0.13 0.96 -4.47e17 0.41 
vanBeekGeo 0.25 0.85 -5.62e17 0.65 

Turn250 0.13 0.85 -7.56e17 0.56 



Minor suggestions for improved clarity 
7: It took me a while to find that in the table 3 description it was specified that all RMSE 
values are in %/week. This made it very hard to interpret the results. I would suggest that 
these units be given wherever RMSE values are reported  

Similarly, it seems the biases are being reported as percentages but that is not noted until 
many bias values have been reported. I similarly think the units should be specified at each 
location that biases are reported.  

Thank you for your comment. We updated the table to include the units. We also went  
through the manuscript and made sure the units were stated when we first mention 
the metric.  

8: Figure 5. 
Could the legend be made smaller to provide more room for wider graphs? They are narrow 
enough to be harder to interpret. Could also consider a 2x2 layout instead of 4x1. Also, it 
looks to me like the upper ylim was not set high enough for the KGE components and the 
distribution is being cut off at the top.  

We agree that a 2x2 layout would align better with this figure. We specifically set the 
ylim in order to see the small differences in the distribution as the majority of values 
were at 0 for alpha, beta and and R. We updated Figure 5 to include the 2x2 panel 
(Figure 11) and put the plot without the zoom (Figure 12) in the supplementary as 
Figure A14. 

 

Figure 11: Show the KGE, and KGE components of the three models we used in our analysis for Figure 5 in the 
manuscript without any zoom. 



 

Figure 12: Show the KGE, and KGE components of the three models we used in our analysis for Figure 5 in the 
manuscript as a 2x2 panel plot. 

9: Lines 443-444: “Conversely, basins with a large amount of storage (Figure 2a) such as 
much of Central and South Eastern Asia, Central Africa, and Western Australia do not have 
a high degree of regulation”  

I had to read this line a couple times to get it. I think changing to something like  

“Conversely, some basins with a large amount of storage (Figure 2a) such as much of 
Central and South Eastern Asia, Central Africa, and Western Australia do not have a high 
degree of regulation, which implies...”  

Thank you for the comment. We think this is a really nice change and amended the 
manuscript as follows: “Conversely, some basins with a large amount of storage 
(Figure 2a) such as much of Central and Southeastern Asia, Central Africa, and 
Western Australia do not have a high degree of regulation, which implies that there is 
not a direct relationship between total storage and a high degree of regulation (Figure 
2b)” 

Would make what I believe to be the intended contrast to the previous lines more clear 10: 
Figure 3 y-axis just says %. It would be more immediately legible if it said % of what.  

We agree that this could be clearer. We updated the axis to include Storage Percent 
(%). 

 
 


