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Abstract. Climate change increases the risk of disastrous floods and makes intelligent fresh water management an ever more
important issue for society. A central prerequisite is the ability to accurately predict the water level in rivers from a range of
predictors, mainly meteorological forecasts. The field of rainfall runoff modeling has seen neural network models surge in
popularity over the past few years, but a lot of this early research on model design has been conducted on catchments with
smaller size and a low degree of human impact to ensure optimal conditions. Here we present a pipeline that extends the
previous neural network approaches in order to better suit the requirements of larger catchments or those characterized by
human activity. Unlike previous studies, we do not aggregate the inputs per catchment, but train a neural network to predict
local runoff spatially resolved on a regular grid. In a second stage, another neural network routes these quantities into and along
entire river networks. The whole pipeline is trained end-to-end, exclusively on empirical data. We show that this architecture is
able to capture spatial variation and model large catchments accurately, while increasing data efficiency. Furthermore, it offers
the possibility of interpreting and influencing internal states due to its simple design. Our contribution helps to make neural
networks more operations-ready in this field and opens up new possibilities to more explicitly account for human activity in

the water cycle.

1 Introduction

As one of the most frequent and destructive natural disasters, floods are expected to become more common due to climate
change (Bevacqua et al., 2021) and more hazardous as the worldwide population in high risk areas is likely to increase (Kam
et al., 2021). Heavy precipitation is expected to become more frequent, which will increase flooding risks (Griindemann
et al., 2022). Europe is becoming increasingly more vulnerable to flooding due to large-scale atmospheric patterns that lead
to widespread precipitation extremes (Bevacqua et al., 2021) and certain landscape properties. This study focuses on river
floods in central Europe, where heavy precipitation and snow melt are driving the expansion of flood-impacted areas (Fang
et al., 2024). Accurate prediction of such events is the foundation for creating resilience and preventing material damages,
displacement of people, and loss of human lives. The field of hydrological research concerned with predicting river levels
from meteorological variables is called rainfall streamflow modeling'. The aim is to capture the process by which precipitation

feeds into rivers and other bodies of water. Predicting runoff, i.e. the amount of excess precipitation being drained away on

! Another commonly used term is rainfall runoff modeling. As this paper aims to predict streamflow in rivers, we decided to use the more specific term

rainfall streamflow modeling, but we will use rainfall runoff modeling to refer to the general literature.
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the surface, requires modeling different processes that take place inside or right above the ground, such as evaporation and
seepage. It hinges on keeping some record of the state of the surface, e.g. the amount of precipitation in the last days or how
much water is stored as snow during winter season. These processes are highly localized, and as a next step, the resulting
local runoff needs to be converted into streamflow along a network of rivers. This modeling step is called routing. There is a
large body of research that employs (conceptually simplified) physical models for both these tasks (Beven, 2012). Furthermore,
models based on neural networks have increasingly been proposed in recent years, e.g. Kratzert et al. (2018); Nearing et al.
(2024). We build upon this line of work by introducing a neural network that performs both local rainfall-runoff modeling on
a regular grid and routing along the river network to predict streamflow time series measured at river gauges. The model is
trained to do this in a data-driven, end-to-end fashion. This spatially distributed modeling framework is able to capture spatial
co-variability of the input features, thereby enhancing prediction accuracy in larger basins (Yu et al., 2024). It also allows for
controllability and scientific discovery, and it is ready to scale to higher spatial and temporal resolution.

The following Section 2 discusses in detail which types of neural networks have been considered for rainfall runoff prediction
and routing, and explains our contribution to this ongoing field of research. In Section 3 we introduce a novel, publicly available
dataset for spatially resolved rainfall streamflow modeling in five river basins in Germany and neighboring countries, and we
describe our model architecture in Section 4. Section 5 presents the main results from the experiments. Section 6 concludes

with a brief outlook onto future directions, highlighting the influence of human activity.

2 Related Work

We start this section by introducing a classification scheme for rainfall streamflow models. This scheme will provide orientation
as we subsequently present previous work on neural networks in rainfall runoff modeling in general, and spatially resolved
processing and routing in particular. We carve out how our approach is different and end this section with an overview over

this paper’s contributions.
2.1 Typology of Rainfall Runoff Models

We adapt a classification scheme for rainfall streamflow models originally introduced by Sitterson et al. (2018): Depending on
the level of abstraction, models are said to be empirical (also detailed or physical) if they involve physical equations of the
involved processes (Horton et al., 2022). Conceptual (or physically inspired) models make some substantial simplifications,
but still contain (abstract) subsystems or quantities that can be identified with physical entities. Finally, statistical models
refrain from explicit modeling of anything physical and instead focus on the statistical relationship between inputs and outputs
exclusively. Our approach is based on neural networks and falls into the latter category, while most operational models such as
LISFLOOD (Van Der Knijff et al., 2010) fall under the conceptual category.

Another criterion for classifying models is the way space is represented in the model: Lumped models aggregate all variables
(temporal or static) across a station’s catchment area before modeling. Not representing the spatial extension of a catchment can

be a reasonable modeling assumption for small catchments, but it implies losing the opportunity to model spatial co-variance
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within the catchment. An example of the importance of spatial co-variance is the different effect that heavy rainfall might have
over a forested area versus on sealed soil. Distributed models on the other hand explicitly model local processes, usually on a
grid, less commonly on an irregular mesh vector-based, e.g. Hitokoto and Sakuraba (2020); Sun et al. (2022). Most physical or
conceptual models fall under the latter category, as the underlying formulas are local and it is straightforward to resolve them
on a regular grid for computation. Neural networks in this domain on the other hand started to be developed as lumped models
for a combination of historical and technical reasons which we discuss in the next Subsection 2.2.1. In between sits a class of
models called semi-distributed, where some sort of sub-structure is modeled. Many routing models fall under this category.
An example of a neural network based routing model is Nearing et al. (2024), where a network of gauging stations is modeled
with high temporal resolution, but not the processes inside each station’s catchment area. As we detail below, our model first

predicts runoff fully distributed in space, then mapping these runoffs onto the river network in a second stage.
2.2 Neural Networks in Rainfall Runoff Modeling

Neural networks have been used for rainfall runoff modeling since the 1990s (Smith and Eli, 1995), but have surged in pop-
ularity since Kratzert et al. (2018), when long short term memory (LSTM) layers (Hochreiter and Schmidhuber, 1997) were
employed for the first time. Kratzert et al. (2019c) then described the beneficial effects of adding static location information to
the meteorological inputs, albeit in an aggregated manner. This type of model has since been demonstrated to predict stream-
flow more accurately than models not based on neural networks, across a variety of locations and experimental setups (Lees
et al., 2021; Mai et al., 2022; Clark et al., 2024). It also transfers more readily to ungauged basins (Kratzert et al., 2019b).
Calibrating physical or conceptual rainfall runoff models usually requires hand-crafting ancillary input features to support
the meteorological forcing variables, such as catchments’ climate type or hydrological signature (see Beven (2012) for an
overview). Sometimes, the dataset is first partitioned into hydrologically homogeneous subsets, on which separate parameters
are then calibrated (Beven, 2012). Neural networks do not require such human labor and in contrast profit from processing all
catchments indiscriminately and with a single model (Kratzert et al., 2024). As we demonstrate in this study, neural networks
can be stacked flexibly into a task-specific pipeline and trained end-to-end, without any manual calibration or intermediate
steps. They are capable of extracting task-relevant information from a large array of potentially informative, raw static features
(Kratzert et al., 2019¢). These data sources can include categorical information such as land cover or soil classes, which can not
be readily integrated into physical formulas. Neural networks can also leverage entirely new types of input data, such as large-
scale remote sensing data (Zhu et al., 2023), concentrations of isotopes (Smith et al., 2023) and chemical compounds (Sterle
et al., 2024). In addition, research on the explainability of neural networks has been conducted by Kratzert et al. (2019a) and
Lees et al. (2022). These studies focused on identifying hydrological quantities and concepts within neural networks. Cheng
et al. (2023) used an explainability framework to extracted hydrological signatures from networks in a data driven fashion.
Furthermore, Jiang et al. (2022) show that the use of explainability methods can provide a better understanding of the domi-
nant flooding mechanisms across different catchments. Explainability is crucial for reliable operations in real-life applications
because it allows for controlling of risk. It also enables scientific discovery (Shen et al., 2018). In summary, LSTM-based

models have been firmly established as state of the art in rainfall runoff modeling with a combination of consistently superior
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performance and addressing the most pressing concerns regarding reliability, even though many questions remain to be an-
swered. Due to their flexibility, they are primary candidates for entirely novel approaches that will become more relevant as

climate change gives rise to questions of human influence and multi-factor disasters.
2.2.1 Spatially Resolved Processing

Smith and Eli (1995), the first study on neural networks in rainfall runoff modeling, train a simple, non-recurrent neural
network on a five-by-five grid of synthetic data as a proof of concept. Another early example of semi-distributed processing is
Hu et al. (2007). The authors evaluate the effect of lumping, but use only five rain gauging stations as input instead of a full
grid, and a single catchment as a target. Xiang and Demir (2022), unfortunately not peer-reviewed, presents an architecture
closely resembling the first stage of our model, which they call GNRRM-TS: Inputs are processed separately on a regular
grid before being aggregated using a manually computed flow direction map. Also here the scope is limited to a single station
and the only inputs are precipitation and drainage area of each grid cell. Xie et al. (2022) use LSTMs in a gridded fashion to
estimate monthly baseflow instead of daily runoff. They also include static information as inputs, but they train their model
on hand-selected subgroups of catchments. Muhebwa et al. (2024) propose a nuanced semi-distributed strategy, which instead
of aggregating entire catchments, aggregates regions within a catchment that are similarly far upstream. The resulting set of
input features for each region group are concatenated and jointly processed by a LSTM model. Hitokoto and Sakuraba (2020)
is an interesting example of using an irregular vector-mesh rather than a regular grid. For each node, a conceptual model
provides estimates of local runoff that are then aggregated by iteratively simplifying a mesh using a technique that is inspired
by particle filters. Once coarsened to 96 nodes, they use a relatively simple four layer fully connected neural network for
routing. This approach can be classified as semi-distributed When considering only the portion of the pipeline managed by the
neural network, i.e. after the conceptual model’s outputs have been coarsened. Sun et al. (2022) also act on an irregular mesh,
this time training a graph neural network on the outputs of a conceptual model. After this pre-training, they fine-tune the neural
network on streamflow observations - an elegant way to deal with sparse empirical data in this context. However, their study,
too, is limited to a single smaller basin in the western United States. Because their model consists of complexly interleaved
graph and time convolution layers, they rely on graph coarsening to be able to scale up this approach to another, larger basin.

Yu et al. (2024) propose a combination of a LSTM model on the catchment level and a conceptual model for routing.
2.2.2 Routing

Routing refers to modeling the flow of water between gauging stations in a river network. Neural networks have been suc-
cessfully employed for this task as well. In this context, streamflow at a given station is predicted from the streamflows of
upstream stations alone, typically at an hourly resolution. At such high temporal resolution, routing within the river system
can ignore slower process like runoff generation or baseflow, and instead focus entirely on the movement of runoff along the
river network. Since the stations within a river system can be conceptualized as nodes in a directed acyclic graph, it seems
natural to model this data with a graph neural network, although this term is fairly broad (Bronstein et al., 2021). Example of

this approach include Moshe et al. (2020), Sit et al. (2021), Sun et al. (2021), Sun et al. (2022), Nevo et al. (2022) and Nearing
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et al. (2024) all of which demonstrated excellent performance in this setting. In comparison, the design of the routing stage in
our model as detailed below is much more parsimonious in order to give the user more fine-grained control and interpretability.

Another line of research investigates models that act on networks of rain gauges instead of a regular grid of inputs. Such
models can be considered semi-distributed as well. The general focus here seems to be on finding suitable architectures for
this task, combining self-attention, LSTM, convolution and more complex graph convolution layers. For example, Chen et al.
(2023) intricately stack several LSTM layers to represent the river network structure, while Zhou et al. (2023) propose a
mixture of self-attention, recurrency and convolution to build a graph neural network for this routing task. Zhu et al. (2023)
aggregate remote-sensing rain data within each catchment in a data-driven fashion by training separate convolutional neural
networks for every input product. They then concatenate each sub-basin’s lumped information with rain gauge data for further
routing in a semi-distributed scheme. This convolutional approach amounts to a more sophisticated form of lumping, as it is
concerned with unimodal spatial integration of data that will be integrated and temporally modeled only at a later stage. Hu
et al. (2024) partially work on gridded data, namely remote-sensing measurements of rainfall. Each sub-basin is aggregated
separately using a convolutional LSTM to produce a spatially aggregated timeseries of rainfall in the sub-basin, concatenate
it with static information and recent runoff and continue processing this information in a semi-distributed fashion. The crucial
difference here is that the convolutional LSTM serves as a data-driven aggregation mechanism for the gridded rainfall input

data, but hydrological modeling again takes place in the semi-distributed domain.
2.2.3 CAMELS-type datasets

We have just discussed several studies featuring individual or a few select catchments. Yet the bulk of large-scale rainfall runoff
modeling with neural networks has extensively featured the CAMELS dataset or one of its derivatives, based on Newman et al.
(2015) and extended to its current form by Addor et al. (2017). It contains meteorological time series and ancillary data for 671
catchments located within the contiguous United States, manually selected for minimal human impact. This implies that the
catchments are relatively small, but on the other hand ensures "laboratory conditions" for hydrological modeling. The downside
of this is the limited applicability of findings generated with this data to areas of the world where human influence contributes
significantly to streamflow, such as central Europe. But as the dataset covers the contiguous US homogeneously, spans a large
area, contains many catchments and with a wide variety of different climates, it offers optimal conditions for training neural
networks. And so CAMELS rose to popularity together with the neural network approach in rainfall runoff modeling. Since
then, similar datasets were introduced to the public that cover other parts of the world: Chile (Alvarez-Garreton et al., 2018),
Great Britain (Coxon et al., 2020), Brazil (Chagas et al., 2020), Australia (Fowler et al., 2021), the upper Danube basin (Klingler
et al., 2021), France (Delaigue et al., 2022), Switzerland (Hoge et al., 2023), Denmark (Liu et al., 2024) and Germany (Loritz
et al., 2024).
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2.3 Contributions

In this paper, we present three contributions that go beyond what we have discussed so far: We process the data in a spatially
resolved manner without prior aggregation, we use a simple routing module that allows for interpretability, and we train this
model in an end-to-end fashion on a novel, spatially resolved dataset in central Europe.

Spatially resolved processing takes place in the first or local stage of our model, detailed in Subsection 4.1. Its architecture
largely follows the one presented in Kratzert et al. (2019b). Instead of using lumped basins as inputs, we apply the same neural
network in parallel to each cell of a regular grid of meteorological time series and ancillary inputs. We show that this finer
spatial resolution allows us to capture co-variances and provide regularization, especially benefiting larger catchments. This
approach is natural for physical or conceptual models that solve local equations at a given rasterization. Yet, no one to our
knowledge has applied a neural network directly to the grid of inputs in a way that scales up to entire river basins. The local
stage yields a local runoff quantity for each grid cell , exemplarily visualized in the right panel of Figure 6.

The second or routing stage, detailed in Subsection 4.2, consists of only two simple network layers without any nonlinearity,
efficiently mapping these local runoff quantities onto a river network. Both stages are trained jointly in an end-to-end fashion
on the entire dataset, rendering any kind of expert knowledge obsolete. This also means that the model is fitted exclusively
on empirical data, enabling scientific discovery from raw data. We show that the river network connectivity graph can be
used as inductive bias to constrain the model to reproduce the river’s natural layout. This increases data efficiency and allows
for better interpretability. We explain how in principle, although this has yet to be shown in practice, the model can be con-
trolled interactively: Extracting or injecting quantities of water can simulate human influence such as industrial, agricultural
or hydroelectric energy generation activity, which significantly contributes to streamflow but is independent of the modeled
hydrological processes.

Lastly, the lumped datasets discussed above are unsuited for this spatially resolved modeling approach, since it requires both
non-spatially-aggregated inputs and streamflow data for entire basins. Hence, for this study we compiled gridded meteorolog-
ical and static data as well as river streamflow records for five entire basins in central Europe. These basins are characterized
by an overall high level of human activity, compared to the CAMELS dataset. The data is publicly available and described in
more detail in Vischer et al. (2025).

3 Data

As discussed above, previously released datasets for rainfall streamflow modeling are unsuited for spatially resolved processing,
so we compiled a new, publicly available dataset, referenced in the data availability statement. We present the data sources,
preprocessing steps and practical aspects in more detail in a separate publication (Vischer et al., 2025). The river discharge data
that we use as targets for training as well as the catchment metadata from which we derive the river connectivity is available

from the original provider. We provide code that processes and combines it with the input data after manual download.

2Qrography was adapted from the European Space Agency’s Copernicus Global 90 m DEM (GLO-90, doi:10.5270/ESA-c5d3d65) © EuroGeographics
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Figure 1. Overview of study area, input grid and data types. (a) The study area comprises 5 basins that cover a contiguous area in central
Europe®. (b) Cells of input grid (orange) for Upper Danube basin. Catchment boundaries (black) are overlaid with corresponding stations
(blue), as well as connecting arrows representing the station connectivity network. Cells along catchment boundaries are assigned entirely
to the catchment that contains their center point. (c) Visualizations for one example feature of each type of input. Basin outlines (black) and

borders of Germany (turquoise) are plotted for reference.

3.1 Study Area, Study Period and Resolution

Our study covers five river basins in Germany and parts of neighboring countries: Elbe, Oder, Weser, Rhine as well as the
upstream part of the Danube river up to Bratislava (see Figure 1c, right panel). Due to the sparser coverage of gauging stations
in the lower reaches of the Danube basin, we decided to focus on the upper reaches where the station network is more homoge-
neous. Additionally, the placement of river gauging stations varies across countries, as each follows distinct policies for station
location. From a machine learning perspective, this results in diverse sampling strategies across the river network. We decided
to limit our study to this region so as not to confound the performance of routing with such different sample distributions. The
total study area covers a contiguous 570.581 km? area. Figure Ic also visualizes exemplary features in the study area with
boundaries of the river basins and Germany for geographic reference. Based on the consistent availability of streamflow data,

we decided to conduct our experiments on the water years 1981-2011. A water year lasts from October 1st of the previous year



195

200

205

210

215

220

to September 30th. Due to data availability, we homogenized all input data to daily temporal resolution and regular grid that
is compatible with the ERAS5-Land dataset (Mufioz Sabater, 2019) and covers the earth’s surface with a spatial resolution of
0.1° x 0.1° or roughly 9km x 9km. If a grid cell is located along a catchment boundary, we assign it entirely to the catchment
that contains the cell’s center point. This avoids having to represent fractional cells in the pipeline and seemed an acceptable

trade-off for the sake of simplicity, considering that the area covered by each grid cell is relatively small.
3.2 Dynamic Input Data

Runoff is primarily driven by precipitation, but temperature and solar radiation need to be taken into account as well to properly
capture processes like evaporation or snow dynamics. Thus, our metrological input variables or forcings are daily minimum,
average and maximum temperature, daily sum and standard deviation of precipitation and average potential evaporation - a
score computed from radiation, temperature, air pressure and humidity. This set of variables is widely used in previous studies
(Kratzert et al., 2018, 2019b) and was retrieved from ERAS5-Land (Muiioz Sabater, 2019). The variables, downloaded at three
hour intervals, were aggregated to a daily time step to match the time resolution of the target time series.? (CopernicusClimat-
eChangeService, 2022). We amend these six meteorological input features with two more sine-cosine embeddings of day of

the week and day of the year, which can be considered as a coarse proxy to human activity (Otero et al., 2023).
3.3 Static Input Data

Following the insights from Kratzert et al. (2019c) and Shalev et al. (2019), we include static data, also called ancillary data
with the aim of training models jointly on all locations and thus increasing transfer performance. Specifically, we include
hydrogeological properties, soil class, land cover, and orographic features derived from a digital elevation map for a total of
46 feature dimensions. Please refer to Vischer et al. (2025) for a detailed description of the origin and preprocessing steps
of all input features. The number of inputs could be streamlined in the future, as Cheng et al. (2023) shows how relevance

propagation identifies non-task relevant features.
3.4 Target Streamflow Time Series, Station Information and River Networks

Target time series of streamflow at each station were obtained from the Global Runoff Data Center (GRDC) data portal.
Together with the streamflow data, the GRDC offers a catalog of station information. We considered all stations in the station
catalog, but excluded stations that had ten or more values missing in the time series for the selected study period. Furthermore,
initial experiments showed that including stations with less than 500 km? drainage area in training decreased performance,
even when evaluating exclusively on larger stations. We decided to exclude these small catchments, and discuss this decision in
Section 6. Another natural limitation on the spatial scope of this approach is that it only captures rainfall-streamflow dynamics

in locations contained in the drainage area of a gauging station. In coastal areas, runoff might directly enter the sea through

3The dataset was downloaded from the Copernicus Climate Change Service (2022). The results contain modified Copernicus Climate Change Service
information 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it

contains.
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smaller streams that are not gauged. Hence, our study area usually starts several kilometers inland from the sea. The following
number of stations resulted in each basin: 62 in upper Danube, 34 in Elbe, 36 in Oder, 78 in Rhine and 29 in Weser basins,
for a total of 239 stations. For comparison, the CAMELS dataset contains 671 catchments. Further visualizations of the river

networks can be inspected in the preprocessing scripts, along with all details on how the metadata was processed.

4 Methods

This section provides detail on our model’s local and routing stage. This is followed by an explanation of how the river network
connectivity graph is calculated and integrated into the routing stage of the model as inductive bias. We then describe the end-

to-end training process and which metrics and baselines were used in our experiments.

4.1 Model Local Stage - Modeling Spatially Resolved Runoff
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Figure 2. Overview of the local stage of the network architecture, acting in parallel on each of the input grid cells. Static inputs are reduced to
ten features by feeding them through a simple, fully connected embedding layer and applying a nonlinearity function. The resulting feature
vector is repeated for every time step T of the meteorological forcing time series and concatenated with the time series. The resulting 20
features are fed through a 250-unit LSTM layer. The recurrent layer’s output is then reduced to a 1D output time series by sequentially
applying two fully connected readout layers plus a nonlinearity in between. Numbers in parentheses signify feature vectors at a given stage

in the model pipeline, numbers without parentheses signify the size of a layer’s weight matrix.

The task of the model’s local stage is to integrate all input modalities and predict local runoff quantities on a regular grid.
These local quantities are then fed through the routing layer described in the following subsection. As mentioned before,
we follow Kratzert et al. (2019b) by adding static information to the meteorological input and adapting their original model
design for the local stage. While this model was originally used on aggregated catchment time series, we apply it to all grid
locations in parallel. Also contrary to the original design, we add a simple, fully connected layer that reduces the 46 static input

dimensions down to ten dimensions. They are concatenated with another ten dimensions of meteorological forcings for a total
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input dimensionality to the LSTM layer of 20, compared to 32 in the case of Kratzert et al. (2019b). Their LSTM layer consists
of 256 units, ours of 250. However, we reduce the 250 output values of the LSTM layer by using two regression layers instead
of one. We do not employ a nonlinearity after the second readout layer, meaning that the network’s outputs are not confined
to the range of e.g. [—1, 1], but rather live in the range of actual, physical quantities. Figure 2 visualizes the simple network
architecture. In summary, the routing stage of our model is largely identical to the model used in Kratzert et al. (2019b) with a
few small modifications. We want to emphasize here that the model does not have any predictive capabilities in itself. It uses
meteorological forecasts to produce a forecast of runoffs.

In an exploratory experiment, we compared concatenating static inputs to dynamic inputs before and after the LSTM layer.
Feeding the static inputs through the LSTM together with the dynamic inputs resulted in substantially better performance.
This is consistent with the findings of Kratzert et al. (2019b) and can be explained by the static inputs helping the LSTM to
better adapt to the hydrological dynamics of a location. It is similar to training separate models for different climatic zones,
but in a data-driven fashion. Indeed, Cheng et al. (2023) show that clustering on the relevance values of the different inputs
results in hydrologically plausible clusters. Concatenating all features before feeding them through the LSTM layer requires
more parameters in this layer, which due to its intricate inner workings is particularly expensive to train in terms of data and
compute. We also used gated recurrent units (GRU) (Cho et al., 2014) instead of LSTMs as a backend, which mitigates this
problem a little because they are computationally more efficient. We found that they do not affect performance, but decided
to stick with LSTM as our main backbone as it is more common in the literature. Nevertheless, using GRUs could be another

way to further optimize the model.
4.2 Model Routing Stage - Integrating Local Runoff and Routing

The task of the routing stage of our model is to map the locally generated runoff to a station’s catchment area, and then routing
the runoff along the river network to predict streamflow time series for every station in the basin. Figure 3 visualizes the layout.
Within a given river basin, we concatenate the predicted runoff time series of all grid cells. The network learns a simple,
strictly linear mapping consisting of two layers: First, a fully connected layer without nonlinearity maps all grid cells G to
their respective stations S. Since no nonlinearity is added, this layer can be translated into a weighted, time dependent average
of all grid cells within a catchment. Location information from the station catalog, described below, can be used as an inductive
bias to constrain this layer so as to only route water in a physically plausible way. Then, a 1D-convolution layer (Kiranyaz
et al., 2021) performs time convolution on each station’s time series to combine information inside the river network over the
last nine days. Separate kernel values can be learned for each day, but the same kernel is applied jointly over the entire time
series. The kernel length of nine days was chosen as a conservative estimate of the maximum time that it would take water
to run along the entirety of any of the river networks considered in this study, but of course awaits empirical validation and
further optimization. The kernels in this layer are constrained by the connectivity of the river network in order to be physically
plausible as we explain in the following subsection. Crucially, this stage does not involve any nonlinearity. Hence, both the
fully connected as well as the time convolution layer are linear functions and as such can be chained to form yet another linear

function. This means that the quantities of water "flowing" through this pipeline are physically interpretable. Put differently,

10
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Figure 3. Overview of the routing stage of the network architecture, acting on the output of the local stage. The local runoff time series of all
grid cells in a given basin are concatenated. Together, they are fed through a fully connected layer that projects them down onto the number
of the basin’s stations. The weight matrix in this layer is constrained to be non-zero only if a grid cell lies in the catchment of a given station.
The stations’ time series are then time-convolved with a kernel length of 9 time steps to model he flow of water in between stations. Again,
each kernel is constrained to be only non-zero only if a given station is directly upstream of another station. The routing stage yields time
series for all stations in the basin. It does not include any nonlinearity, so all activation values can be interpreted as streamflow quantities. The
basin map icon and dotted arrows indicate that the river connectivity information serves as inductive bias on these two layers, constraining

the activations to replicate the real river network.

input quantities can be added or subtracted meaningfully to and from the input. A practical application example of this, which
we plan to further investigate, is the injection or extraction of water in between two stations to simulate agricultural, industrial
or hydroelectric human activity. This sets our approach apart from previous routing approaches. We also investigated the effect
of not constraining the weight matrices with the connectivity matrices, which leads to slightly poorer performance when data

is scarce (see Subsections 4.5 and 5.5).
4.3 Structural Bias

The station catalog contains polygons of each station’s catchment area. From this, we can derive two important kinds of
information: First, for every grid cell we can determine in which station’s catchment it is located. Second, for each station
we can determine how it is connected to upstream and downstream stations. This subsetion explains how this information is
extracted and how we use it as structural inductive bias to constrict the routing layer to only consider physically plausible

routes of water flow.
4.3.1 Catchment Matrices

Mapping grid cells to stations is important to ensure that the runoff predicted at a given location ends up at the only station
that is physically plausible. Since a given station’s catchment area is contained within all the downstream stations’ catchment
areas, we need to make sure that we select the one where the generated runoff first enters the river network. To do so, we
select the station with the smallest catchment area that contains a given grid cell. For each river network, we represent this

information conveniently in a one-hot matrix with grid cells as rows and stations as columns. This matrix is then used to
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constrain the fully connected layer in the routing stage of the network. This is achieved by multiplying the one-hot matrix
point-wise with the freshly initialized weight matrix of this layer before training begins. Weights corresponding to physically
impossible connections are thus set to zero from the start. Zero weights can not contribute to gradients, and will remain zero

throughout the training. All other weights are free to be optimized.
4.3.2 Connectivity Matrices

From the catchment area polygons, a graph representing the connectivity between stations in the river network can be derived.
Each node in the graph represents a station, a directed edge exists between a station A and B if A is directly upstream of B.
We determine this by verifying if the catchment area of A is contained in the catchment area of B, ensuring that there are
no intermediary stations in between, i.e. contained by B and containing A. Note that this automatically leads to a directed,
acyclic graph. This fits our approach well, as it does not require us to apply any model of routing iteratively in order to capture
cyclic movements within the graph. The graph is represented by a connectivity matrix, i.e. a square matrix with rows (input)
and columns (output) corresponding to stations, where the entries are 1 if a directed edge exists and 0 otherwise. This matrix
is used to constrain the time convolution layer in a manner similar to the catchment matrix. After initialization of the weight
matrix, the connectivity matrix is multiplied point-wise, preserving the weights where a connection exists and setting them to
zero where no connection is present. The only difference is that the connectivity matrix needs to be repeated by the depth of

the temporal convolution, nine times in our case for the nine days of past information that we convolve.
4.4 Training and Metrics

We split the data into three parts, all containing entire water years: A training set from water years 1981 to 2005, a validation
set for model selection from 2005 to 2008, and a test set to report the final performance from 2008 to 2011. We also created
two special training datasets to illustrate how the models perform on less training data: A medium length training set ranging
from 1991 to 2005 and a short training set from 1999 to 2005. Regardless of the length of the training set, we divide it into
chunks of 400 days that partially overlap. The first 30 days are used as a warm up period for the LSTM. During this time no
gradients are computed and the LSTM can stabilize into an operating regime before starting the learning process. The value of
400 was chosen to accommodate an entire year plus the warm up period, while still being able to fit the gradients claculated
during training into GPU memory. It would not be detrimental to use even longer time series and the model is capable of
processing time series of arbitrary length. In fact, no gradients are computed during inference, which significantly reduces the
memory footprint and allows us us to calculate all metrics on uninterrupted time series in a single model forward pass. In all
experiments, we trained for 2000 epochs of the training data. This number of epochs is generous for all models to converge.
Since the purpose of this study is to provide a proof of concept of this type of spatially resolved processing, we decided to
not conduct an extensive hyperparameter optimization or perform input feature ablation. Instead, we included all potentially
relevant static data and ran hyperparameter tuning experiments only on a limited set of values for a few key hyperparameters,
summarized in Table A2. We trained ten different random seeds for every setting, and report the best seed in terms of station-

wise median Nash-Sutcliffe Efficiency (NSE) score on the test period.
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We use the widespread NSE metric (Nash and Sutcliffe, 1970) both as a loss function in training as well as a score to quantify
performance. The NSE normalizes the square loss of each station by the standard deviation of the station’s values in the training
period, so as to count each station equitably towards the loss or performance, regardless of the magnitude of the river at this
point. We do not split training and test partitions geographically, as breaking up basins would make routing impossible. We
also refer to Klotz et al. (2024) for a word of caution when combining NSE values that are calculated on partitions of a dataset.
Unless noted otherwise, the scores we report were calculated on the test period. The median NSE over all stations serves as a
robust point estimate of performance, but for the interested reader we provide mean NSE scores in Table A1, which we found
to correlate strongly with the median NSE for all seeds. Likewise, we report the percentage of stations with a NSE score below
zero, which indicates predictive performance worse than simply using the average value of a station’s runoff for prediction, i.e.
chance level. The popular Kling-Gupta efficiency (KGE) metric (Gupta et al., 2009) was developed in the context of univariate,
convex optimization - both these assumptions do not hold in the case of training a neural network. However for the sake of
comparability, we also report the KGE values in the appendix as well.

As stated before, in this study we refrained from extensive hyperparameter optimization to maximize the performance. A
few exploratory experiments to calibrate our pipeline seemed necessary nonetheless: Dropout (0, 10%, 30%, 50% separately
in recurrent and readout layers of the routing stage) did not increase performance, so we removed it entirely. 250 units in
the LSTM layer (out of 150, 200, 250 and 300) yielded the best results. We use an automatic learning rate scheduler, the
ReduceLROnPlateau scheduler provided by Pytorch (Ansel et al., 2024) with threshold 1e-3 and patience 10, so the pipeline
trains robustly with regard to the initial learning rate (le-4, 5e-4, le-5). But as the baselines in the experiments have vastly
different number of parameters, we decided to continue the experiments by always trying out both of the lower values. Unless
explicitly mentioned, we report the performance resulting from the better value for every condition, table A2 lists the results in

detail.
4.5 Baselines

We introduce two baselines in order to evaluate the performance gains of the two central aspects of our pipeline: spatially
resolved processing in the local stage and the inclusion of structural bias in the routing stage. In the first baseline experiment,
we aggregate all spatial information within a catchment and feed it through the same architecture as used in the local stage.
Normally, this stage of the model processes individual grid cells. But here it processes entire, aggregated catchments, and the
output is a prediction of the runoff measured at the corresponding station. The aggregated baseline does not require any further
routing. This model and processing pipeline is identical to the one in Kratzert et al. (2019b), apart from the small differences in
parameter values listed in Subsection 4.1. As we discussed above, it has been widely used in the literature since its introduction,
which allows us to compare our own results from our custom dataset to a wider body of literature. We will call this baseline
aggregated, whereas our default model will be referred to as spatially resolved.

The second baseline leaves the local stage unaltered, but does not constrain the weight matrices in the routing stage. Instead,

we use two fully connected time convolution layers with a kernel size of nine and three days, respectively, and a nonlinearity
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in between. The design is intended to be more simple and conventional for neural networks. We will refer to this baseline as

naive routing, and to our default model as structured routing.

5 Results and Discussion

We start this section by presenting and contextualizing the general performance of our model. We then show that our model
excels in modeling large catchments, is less prone to overfitting and learns from the data more efficiently than the baselines.
Inductive bias does not make a big difference to performance. We end this section by showcasing that our model is, unlike
most neural networks, not an entirely black box model, and that capturing human influence seems to be the biggest challenge

in our study area.
5.1 Model Performance

The aggregated baseline achieves a median NSE test performance of 0.69 on our dataset. As discussed above, it is virtually
identical to the model from Kratzert et al. (2019b), who report a median NSE of 0.74 on the CAMELS dataset. These results
were subsequently confirmed, small modifications of the model parameters or test period notwithstanding, by Shalev et al.
(2019) (median NSE 0.73), Acuiia Espinoza et al. (2024) (median NSE 0.75) and Frame et al. (2022) (median NSE between
0.72 and 0.81) We conjecture that our baseline performance is probably lower due to our dataset being smaller than CAMELS
and likely containing greater human activity. Turning to other regions, the same model was used for example by Mai et al.
(2022) for the Great Lakes Area (median KGE of 0.76), by Lees et al. (2021) for Great Britain (median NSE 0.88) and by
Loritz et al. (2024) for Germany (median NSE 0.84). The latter two results go against our conjecture for inferior performance
due to human signal. The fact that Loritz et al. (2024) use an ensemble of models might be a factor at play, but in any case this
requires further investigation. These studies provide valuable comparisons with other model types: In all studies just mentioned,
the authors compared the neural network model against a variety of physical, conceptual or hybrid models and consistently
found that the alternatives were outperformed by the neural network.

Our model achieves a median NSE performance on the test dataset of 0.77 compared to the baseline of 0.69 and thus appears
to be able to compensate somewhat for the more demanding modeling context. Only training and testing our model on a
spatially extended version of CAMELS would allow for more direct comparability with other approaches. Unfortunately this
has to be left for future research as it requires creating a spatially resolved version of CAMELS first. In any case, despite
the data being different and not allowing for a straightforward comparison, this shows that runoff generation and routing can
be learned end-to-end by a single model pipeline and without additional data along the way. Moreover, the simplicity of the
routing module’s design, along with the possibilities it offers, does not come at a significant performance cost. An example in
case is that the internal activations inside the network between local and routing stage appear to be hydrologically plausible, as

Figure 6 illustrates. We want to stress that this is an emergent property and was not incentivized during training.
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Input Processing ~ Routing median NSE  NSE <0

spatially resolved  structured 0.773 0.000
spatially resolved  naive 0.719 0.000
aggregated - 0.691 0.013

Table 1. Comparison of median catchment NSE-scores and fraction of catchments with NSE scores below zero for spatially resolved pipeline
(structured and naive routing) and the aggregated baseline, which corresponds to the model introduced by Kratzert et al. (2019b). Structured
routing outperforms naive routing, and spatial processing outperforms aggregated processing. Metrics are reported for the best of ten random
seeds in terms of median NSE score. An extended version of this table including KGE scores and shorter training times can be found in Table
Al.

5.2 Modeling Large Catchments

Do larger catchments benefit more from spatially resolved processing like we expected? Figure 4 shows the effect of catch-
ment size on per-catchment performance, comparing our spatially resolved model to the aggregated baseline for training and
testing periods. We focus on the test results first (right panel): For aggregated processing, we observe a negative trend be-
tween performance and catchment size. This might be explained by the assumption that underlies spatial aggregation, namely
the homogeneity of the aggregated area, not holding for large catchments. Indeed, the trend is reversed for spatially resolved
processing, where larger catchments outperform smaller ones. Our results suggest that spatially resolved processing should be

considered particularly when modeling large and heterogeneous catchments.
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Figure 4. Effect of catchment size: Each point corresponds to a station’s performance vs. the size of its catchment, for aggregated baseline
(blue) and spatially resolved pipeline (red) on training (left panel) and test (right panel) period. The individual data points are fitted linearly
to show the trend. Aggregated processing impairs performance, especially in larger catchments. The trend is more pronounced on the test
dataset, indicating overfitting on the training dataset. Spatially resolved processing is less prone to overfitting and manages to handle large

catchments accurately in a low data setting.
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5.3 Inherent Regularization

A comparison between the left and right panel of Figure 4 reveals a substantial performance drop between train and test
period. To a certain degree, this is normally to be expected due to overfitting. But the effect is much more pronounced for the
aggregated than for the spatially resolved model. It stands to reason that the neural network in the aggregated baseline with its
associated reduction of data overfits severely. This also becomes apparent when looking at the median NSE values in training
and test datasets. While overall performance drops from 0.86 in training to 0.69 in test for aggregated processing, spatially
resolved processing deteriorates more gracefully from 0.90 to 0.77. Spatially resolved processing, with its shared local stage

and overall much more data, seems to have an intrinsic regularization effect.

5.4 Data Efficiency

The positive effect of spatially resolved training, especially for large catchments, becomes even more pronounced when looking
at modeling in an environment with limited available training data. Figure 5 visualizes the difference in NSE score between
spatial and aggregated processing on a per-catchment level, when training on 25, 15 and six years of training data. Differences
are positive across all sizes of catchments, meaning spatial processing on average performs better regardless of the catchment

size. Yet the positive trend becomes stronger as data becomes more scarce. Spatially resolved processing utilizes the available

data more efficiently.
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Figure 5. Effect of training period length: Each point corresponds to a station’s NSE test performance after training for 25 years (green),
15 years (purple), and 6 years (orange). Across all catchment sizes and different amounts of training data, the spatial pipeline (left panel)
outperforms the aggregated baseline (right panel). The latter’s performance deteriorates quickly when training data is scarce. The spatially

resolved pipeline is much more robust in this regard, demonstrating its increased data efficiency.
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5.5 Inductive Bias

Including inductive bias for what we call structured routing leads to slightly better performance than naive routing without
the additional real-world information, resulting in a median NSE of 0.77 compared to 0.72. Figure A1 contains more detailed
results, but also shows that the performance gain is small. The point we want to make here is that the practical benefit of being
able to simulate the injection or extraction of quantities of water in routing process does not come at the cost of lowering
performance. As we mentioned before, naive routing on the other hand does remain an important tool in modeling basins
where catchment delineation information is unavailable or unreliable, or where lateral transport of water inside the bedrock
layer across catchment boundaries is suspected. Whether or not we use inductive bias in the routing layer, our networks are
extremely simple compared to other networks proposed in the literature for routing that we discusses above. Certainly, we
demonstrate that routing modules do not need to be complex, and river network extraction algorithms are not necessary for

end-to-end routing, e.g. when no catchment boundary information is available.
5.6 Interpretable Internal States

Internal states of neural networks are usually not interpretable. In our case, however, the activations of the final layer of
the local stage which would go into the routing module stage of the model appear to be hydrologically plausible. As an
illustrating example, Figure 6 displays these activation values for two exemplary days in spring and summer. The spatio-
temporal correlation seems to suggest that in the example day in spring, runoff is primarily driven by snow melt in low
mountain ranges, whereas in summer, it seems to be driven by heavy precipitation events. We want to make the point that we
did not enforce this property during the training process, e.g. by providing additional target information or training a special
readout layer. This is a purely data-driven, emergent behavior, resulting from both the end-to-end training process and the
model’s parsimonious design. Particularly, we attribute this phenomenon to the shared recurrent layer in the local stage and
the combination of inductive bias and linearity of the routing stage. Unlike more complex neural network designs which are
generally considered black box models, this suggests that our model naturally allows for a certain degree of internal control
by manipulating these internal states, e.g. by subtracting or adding quantities of water to the natural runoff. It also creates new

opportunity for further scientific discovery from large quantities of data.
5.7 On Human Influence

We conclude this section by discussing a specific negative outlier in terms of station-wise NSE. As explained above, a negative
NSE values indicates performance below chance level. The only two stations that yield negative NSE values after training -
consistently across all ten random seeds - are Spremberg and Boxberg (GRDC numbers 6340800 and 6340810) located along
small rivers next to large brown coal surface mining operations in the Lusatia region. A potential explanation for these extreme
outliers is that those mining operations have an influence on the overall water balance that is relatively large compared to
the hydrological processes in such catchments. This seems to support our assumption that human influence is one of the main

obstacles to be overcome by rainfall streamflow models in the densely populated areas of central Europe. We want to emphasize
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Figure 6. Internal states of the model are hydrologically interpretable. This figures shows precipitation data from the input (left column) and
activation values after the local stage of the model (right column) for two days in March (top row) and August 2006 (bottom row). The days
were manually selected for illustration purposes. Values are displayed in arbitrary units, with blue signifying more runoff or precipitation.
We included the outline of Germany (© EuroGeographics for the administrative boundaries) in dotted lines for geographic reference. For
the day in spring (top row), a low spatial correlation between precipitation and runoff together with a pattern of high runoff values in low
mountain ranges suggests that runoff on this day is primarily driven by snow melt in intermediate altitudes. For the day in summer (bottom

row) on the other hand, we see runoff that is driven by two clusters of heavy precipitation in the eastern part of our study area.

that the two stations in question only performed very poorly in the validation period, but not in the test period. We hypothesize
that operations might have changed in the meantime or the test period simply lacks substantial events of human influence by

chance. We plan to investigate this phenomenon more closely and explore potential solutions in future work.

6 Summary and Future Directions

We have successfully trained a neural network in an end-to-end fashion to capture runoff generation in a spatially resolved
manner on large scale. Training on five entire river basins in central Europe, we have shown that this approach is advantageous

especially in large catchments. The parsimonious network design of the module that performs routing within these river basins
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is also noteworthy. Not only does this approach mitigate overfitting and increase data efficiency, but the simplicity of the
design and the ability to integrate inductive bias opens new possibilities to control the inner workings of the model. This is not
common for neural networks.

Our model reaches a level of performance comparable to that of other benchmark models, both conceptual and statistical. In
future work, we plan to compare our model to other state-of-the-art models used in science and operations. The creation of a
spatially resolved version of the popular CAMELS dataset would make our model’s performance directly comparable with a
large portion of the neural networks literature. A direct comparison of our overall pipeline to that of an operational system like
LISFLOOD would be similarly interesting. Another question that needs to be addressed in the future is how the performance
of our model decreases with the forecast horizon. As we discussed before, our model does not have predictive capabilities of
its own. Instead, it relies on a suitable meteorological forecast as input to generate a forecast of streamflow quantities, and the
quality of the model’s predictions thus depends on the quality of the forecast meteorological input. Quantifying this effect is
important for real-world applications.

In this study, we excluded catchments where we suspected that human influence is too strong based on a simple catchment
area heuristic. Unlike much research in this area, we do not train our model exclusively on catchments with little human
influence. But a more sophisticated strategy, inspired e.g. by Loritz et al. (2024) or Tursun et al. (2024) is needed to properly
quantify human impact and thus being able to disentangle the effects of catchment area and human influence on performance.
Likewise, while we included day of the week and day of the year as simple approximations to human influence, the effectiveness
of this measure can only be properly evaluated with a suitable ground truth.

Another big limitation in terms of data availability is the temporal and spatial resolution: The relatively small size of the
recurrent layer enables our model to process time series at a higher than daily temporal resolution. Because the local stage
is applied in parallel to all input locations, the number of parameters is independent of the number of inputs. This is where
most of the computation happens, and its computational demands grow only linearly with the number of locations. The weight
matrices in the routing stage grow quadratically, but are much smaller in the first place.

Another important aspect that we will address in future work is discussed in Klotz et al. (2022), where the authors extend
a model similar to ours by using the outputs as parameters of a distribution. Such distributional predictions could be obtained
from our model in the same way and would be of great interest for many real-world applications. Producing genuinely prob-
abilistic forecasts and warnings in this fashion is theoretically more sound than training an ensemble of more or less different
models and combining their predictions.

As would be expected from the high degree of human activity in our study area, we found evidence that the effect of
human influence is the central obstacle to further improving model performance in such an environment. Yet, a comprehensive
investigation of the extent and impact of this phenomenon is still required. Future research could demonstrate that our neural
network is capable of incorporating simulated human activity, such as water extraction or diversion, into the modeling of

hydrological processes.
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Code and data availability. The data used in this study is publicly available under CC BY-NC-SA license at hydroshare, the code used to

preprocess it is available under Clear BSD license at our repository.
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Figure Al. Station-wise differences in NSE performance between structured and naive routing, plotted against the size of the station’s
catchment on training (left panel) and test period (right panel). Positive values indicate that structured routing performs better. The individual
data points are fitted linearly. Structured routing marginally outperforms naive routing on the test dataset (indicated by values greater zero).
On the training dataset, naive routing performs better when data is scarce (values below zero for short training period in green), indicating

overfitting.
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Input Processing  Routing Train Period median NSE mean NSE NSE <0 median KGE mean KGE

spatially res. structured  long 0.773 0.751 0.000 0.803 0.779
spatially res. naive long 0.719 0.706 0.000 0.791 0.775
aggregated - long 0.691 0.643 0.013 0.731 0.702
spatially res. structured  med. 0.739 0.717 0.004 0.775 0.753
spatially res. naive med. 0.735 0.692 0.008 0.776 0.744
aggregated - med. 0.642 0.603 0.013 0.708 0.666
spatially res. structured  short 0.687 0.633 0.017 0.752 0.724
spatially res. naive short 0.653 0.605 0.004 0.739 0.709
aggregated - short 0.485 0.318 0.126 0.610 0.513

Table A1. Various performance metrics for the experiments presented in section 5. The metrics were calculated after picking the best out of

ten random seeds for each condition in terms of median NSE.
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Input Processing  Routing initial LR median NSE

spatially res. structured  Se-4 0.738
spatially res. naive 5e-4 0.724
aggregated - 5e-4 0.691
spatially res. structured  le-3 0.745
spatially res. naive le-3 0.721
aggregated - le-3 0.704

Table A2. Median NSE over 20 seeds for exploratory experiments on the optimal initial learning rate. Performance was evaluated on the

validation period, as this is part of the model selection process.
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