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Abstract. Climate change increases the risk of disastrous floods and makes intelligent fresh water management an ever more

important issue for society. A central prerequisite is the ability to accurately predict the water level in rivers from a range of

predictors, mainly meteorological forecasts. The field of rainfall runoff modeling has seen neural network models surge in

popularity over the last
:::
past

:
few years, but a lot of this early research on model design has been conducted on catchments

with smaller size and a low degree of human impact to ensure optimal conditions. Here we present a pipeline that extends5

the previous neural network approaches in order to better suit the requirements of larger catchments or those characterized by

human activity. Unlike previous studies, we do not aggregate the inputs per catchment, but train a neural network to predict

local runoff spatially resolved on a regular grid. In a second stage, another neural network routes these quantities into and along

entire river networks. The whole pipeline is trained end-to-end, exclusively on empirical data. We show that this architecture is

able to capture spatial variation and model large catchments accurately, while increasing data efficiency. Furthermore, it offers10

the possibility to interpret and influence
::
of

:::::::::
interpreting

::::
and

:::::::::
influencing

:
internal states due to its simple design. Our contribution

helps to make neural networks more operations-ready in this field and opens up new possibilities to more explicitly account for

human activity in the water cycle.

1 Introduction

As one of the most frequent and destructive natural disasters, floods are expected to become more common due to climate15

change (Bevacqua et al., 2021) and more hazardous as the worldwide population in high risk areas is likely to increase (Kam

et al., 2021). Heavy precipitation is expected to become more frequent, which will increase flooding risks (Gründemann

et al., 2022). Europe is becoming increasingly
::::
more

:
vulnerable to flooding due to large-scale atmospheric patterns that lead to

widespread precipitation extremes (Bevacqua et al., 2021) and certain landscape properties. This study focuses on river floods

in central Europe, where heavy precipitation and snowmelt
:::::
snow

::::
melt are driving the expansion of flood-impacted areas (Fang20

et al., 2024). Accurate prediction of such events is the foundation for creating resilience and preventing material damages,

displacement of people
:
, and loss of human lives. The field of hydrological research concerned with predicting river levels from

meteorological variables is called rainfall streamflow modeling1. The aim is to capture the process how
::
by

:::::
which

:
precipitation

feeds into rivers and other bodies of water. Predicting runoff, i.e. the amount of excess precipitation being drained away on the

1Another commonly used term is rainfall runoff modeling. As this paper aims to predict stream flow
:::::::
streamflow in rivers, we decided to use the more

specific term rainfall streamflow modeling, but we will use rainfall runoff modeling to refer to the general literature.
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surface, requires modeling different processes that take place inside or right above the ground, such as evaporation and seepage.25

It hinges on keeping some record of the state of the surface, e.g. the amount of precipitation in the last days or how much water

is stored as snow during winter season. These processes are highly localized, and as a next step, the resulting local runoff

needs to be converted into streamflow along a network of rivers. This modeling step is called routing. There is a large body of

research employing
:::
that

::::::::
employs (conceptually simplified) physical models for both these tasks (Beven, 2012). Furthermore,

models based on neural networks have increasingly been proposed in recent years, e.g. Kratzert et al. (2018); Nearing et al.30

(2024). We build upon this line of work by introducing a neural network that performs both local rainfall-runoff modeling

on a regular grid and routing along the river network to predict streamflow
:::
time

::::::
series measured at river gauges. All of this

is learned
:::
The

:::::
model

::
is
::::::
trained

:::
to

::
do

::::
this in a data-driven, end-to-end fashion. Here, we present a

:::
This

:
spatially distributed

modeling framework , more versatile than other neural networks as it captures the
::
is

::::
able

::
to

::::::
capture

:
spatial co-variability of

the input features,
::::::
thereby

:
enhancing prediction accuracy in larger basins (Yu et al., 2024). This approach

:
It
::::
also

:
allows for35

controllability and scientific discovery, and it is ready to scale to higher spatial and temporal resolution.

The following Section 2 discusses in detail which types of neural networks have been considered for rainfall runoff prediction

and routing, and explain
:::::::
explains our contribution to this ongoing field of research. In Section ?? we describe our model

architecture and
:
3

::
we

:
introduce a novel, publicly available dataset for spatially resolved rainfall streamflow modeling in five

river basins in Germany and neighboring countries
:
,
:::
and

:::
we

:::::::
describe

:::
our

::::::
model

:::::::::
architecture

:::
in

::::::
Section

:
4. Section 5 presents the40

main results from the experiments. Section 6 concludes with a brief outlook onto future directions, highlighting the influence

of human activity.

2 Related Work

We start this section by introducing a classification scheme for rainfall streamflow models. This scheme will allow us to keep

an overview
::::::
provide

::::::::::
orientation as we subsequently present previous work on neural networks in rainfall runoff modeling in45

general, and spatially resolved processing and routing in particular. We carve out how our approach is different and end this

section with an overview over this paper’s contributions.

2.1 Typology of Rainfall Runoff Models

We adapt a classification scheme for rainfall streamflow models originally introduced by Sitterson et al. (2018): Depending on

the level of abstraction, models are said to be empirical (also detailed or physical) if they involve physical equations of the50

involved processes (Horton et al., 2022). Conceptual (or physically inspired) models make some substantial simplifications,

but still contain (abstract) subsystems or quantities that can be identified with physical entities. Finally, statistical models

refrain from explicit modeling of anything physical and instead focus on the statistical relationship between inputs and outputs

exclusively. Our approach is based on neural networks and falls into the latter category, while most operational models such as

LISFLOOD (Van Der Knijff et al., 2010) fall under the conceptual category.55
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Another criterion for classifying models is the way space is represented in the model: Lumped models aggregate all vari-

ables (temporal or static) across a station’s catchment area before modelingstarts. Not representing the spatial extension of

a catchment can be a reasonable modeling assumption for small catchments, but it implies losing the opportunity to model

spatial co-variance within the catchment, such as the different effect of heavy rainfall .
:::
An

:::::::
example

:::
of

::
the

::::::::::
importance

::
of

::::::
spatial

:::::::::
co-variance

::
is
:::
the

:::::::
different

:::::
effect

::::
that

:::::
heavy

:::::::
rainfall

:::::
might

::::
have over a forested area versus on sealed soil. Distributed models60

on the other hand explicitly model local processes, usually on a grid, less commonly on an irregular mesh vector-based, e.g.

Hitokoto and Sakuraba (2020); Sun et al. (2022). Most physical or conceptual models fall under the latter category, as the

underlying formulas are local and it is straightforward to resolve them on a regular grid for computation. Neural networks in

this domain on the other hand started to be developed as lumped models for a combination of historical and technical reasons

which we discuss in the next Subsection 2.2.1. In between sits a class of models called semi-distributed, where some sort of65

sub-structure is modeled. Many routing models fall under this category. An example of a neural network based routing model

is Nearing et al. (2024), where a network of gauging stations is modeled with high temporal resolution, but not the processes

inside each station’s catchment area. As we detail below, our model first predicts runoff fully distributed in space, then mapping

these runoffs onto the river network in a second stage.

2.2 Neural Networks in Rainfall Runoff Modeling70

Neural networks have been used for rainfall runoff modeling since the 1990s (Smith and Eli, 1995), but have surged in pop-

ularity since Kratzert et al. (2018), when long short term memory (LSTM) layers (Hochreiter and Schmidhuber, 1997) were

employed for the first time. Kratzert et al. (2019c) then described the beneficial effects of adding static information about the

locations
::::::
location

::::::::::
information

:
to the meteorological inputs, albeit in an aggregated manner. This type of model has since been

demonstrated to predicting
::::::
predict streamflow more accurately than models not based on neural networks,

:
across a variety of75

locations and experimental setups (Lees et al., 2021; Mai et al., 2022; Clark et al., 2024). It also transfers more readily to un-

gauged basins (Kratzert et al., 2019b). Calibrating physical or conceptual rainfall runoff models usually requires hand-crafting

ancillary input features to support the meteorological forcing variables, such as catchments’ climate type or hydrological signa-

ture (see Beven (2012) for an overview). Sometimes, the dataset needs to be
:
is
::::
first partitioned into hydrologically homogeneous

subsets, on which separate parameters are then calibrated (Beven, 2012). Neural networks do not require such human labor80

and in contrast profit from processing all catchments indiscriminately and with a single model (Kratzert et al., 2024).
::
As

:::
we

::::::::::
demonstrate

::
in

:::
this

:::::
study,

::::::
neural

::::::::
networks

:::
can

::
be

:::::::
stacked

:::::::
flexibly

:::
into

::
a

::::::::::
task-specific

:::::::
pipeline

:::
and

::::::
trained

::::::::::
end-to-end,

:::::::
without

:::
any

::::::
manual

::::::::::
calibration

::
or

:::::::::::
intermediate

:::::
steps. They are capable of extracting task-relevant information from a large array of

potentially informative, raw static features (Kratzert et al., 2019c). These data sources can include categorical information such

as land cover or soil classes, which can not be readily integrated into physical formulas. Neural networks can also leverage85

entirely new types of input data, such as large-scale remote sensing data (Zhu et al., 2023), concentrations of isotopes (Smith

et al., 2023) and chemical compounds (Sterle et al., 2024). As we demonstrate in our study, neural networks can be stacked

flexibly into a pipeline designed for a specific task and trained end-to-end without any manual calibration or intermediate steps.

Additionally,
::
In

:::::::
addition,

:
research on the explainability of neural networks has been conducted by Kratzert et al. (2019a) and
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Lees et al. (2022), who .
::::::

These
::::::
studies focused on identifying hydrological quantities and concepts in

:::::
within neural networks.90

Similarly, using
::::::::::::::::
Cheng et al. (2023)

::::
used an explainability framework Cheng et al. (2023)

::
to extracted hydrological signatures

from networks in a data driven fashion. Furthermore, as shown in Jiang et al. (2022)
:::::::::::::::
Jiang et al. (2022)

::::
show

::::
that

:
the use of

explainability methods can provide a better understanding about
::
of the dominant flooding mechanisms across different catch-

ments. Explainability is crucial for reliable operations in real-life applications because it allows for controlling of risk, as well

as for
:
.
:
It
::::
also

:::::::
enables scientific discovery (Shen et al., 2018). In summary, LSTM-based models have been firmly established95

as state of the art in rainfall runoff modeling with a combination of consistently superior performance and addressing the most

pressing concerns regarding reliability, even though many questions remain to be answered. Due to their flexibility, they are

primary candidates for entirely novel approaches that will become more relevant as climate change gives rise to questions of

human influence and multi-factor disasters.

2.2.1 Spatially Resolved Processing100

Smith and Eli (1995), the first study on neural networks in rainfall runoff modelingtrained ,
::::
train

:
a simple, non-recurrent neural

network on a five-by-five grid of synthetic data as a proof of concept. Another early example of semi-distributed processing is

Hu et al. (2007). The authors evaluate the effect of lumping, but use only five rain gauging stations as input instead of a full grid,

and a single catchment as a target. Xiang and Demir (2022), unfortunately not peer-reviewed, presents an architecture closely

resembling the first stage of our model, which they call GNRRM-TS: Inputs are processed separately on a regular grid before105

being aggregated using a manually computed flow direction map. Here, too,
::::
Also

::::
here the scope is limited to a single station

and the only inputs are precipitation and drainage area of each grid cell. Xie et al. (2022) use LSTMs in a gridded fashion to

estimate monthly baseflow instead of daily runoff. But similar to us, they
::::
They also include static information as inputsand

:
,
:::
but

:::
they

:
train their model on hand-selected subgroups of catchments. Muhebwa et al. (2024) propose a nuanced semi-distributed

strategy, which instead of aggregating entire catchments, aggregates regions within a catchment that are similarly far upstream.110

The resulting set of input features for each region group are concatenated and jointly processed by a LSTM model. Hitokoto

and Sakuraba (2020) is an interesting example of using an irregular vector-mesh rather than a regular grid. For each node, a

conceptual model provides estimates of local runoff that are then aggregated by iteratively simplifying a mesh using a technique

that is inspired by particle filters. Once coarsened to 96 nodes, they use a relatively simple four layer fully connected neural

network for routing.
::::
This

::::::::
approach

:::
can

:::
be

::::::::
classified

::
as

::::::::::::::
semi-distributed

:
When considering only the portion of the pipeline115

managed by the neural network—i.e.,
:
,
:::
i.e. after the conceptual model’s outputs have been coarsened—this approach can be

classified as semi-distributed. Sun et al. (2022) also act on an irregular mesh, this time training a graph neural network on

the outputs of a conceptual model. After this pre-training, they fine-tune the neural network on streamflow observations - an

elegant way to deal with sparse empirical data in this context. However, their studyis also
:
,
:::
too,

::
is

:
limited to a single smaller

basin in the western United States, and they have to .
:::::::
Because

:::::
their

:::::
model

:::::::
consists

:::
of

:::::::::
complexly

:::::::::
interleaved

:::::
graph

::::
and

::::
time120

:::::::::
convolution

::::::
layers,

::::
they

:
rely on graph coarsening to scale this approach up

::
be

::::
able

::
to

:::::
scale

::
up

::::
this

::::::::
approach to another, larger

basin, as their model consists of complexly interleaved graph and time convolution layers. Yu et al. (2024) propose to apply a
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:
a
::::::::::
combination

:::
of

:
a
:
LSTM model on the catchment level , then use

:::
and a conceptual model to route the predicted streamflows

along the gauges in the river network
::
for

::::::
routing.

2.2.2 Routing125

Routing refers to modeling the flow of water between gauging stations in a river network. Neural networks have been success-

fully employed for this task as well. Within
:
In

:
this context, streamflow at a given station is predicted from the streamflows of

upstream stations alone, typically at an hourly resolution. At this
:::
such

::::
high

:
temporal resolution, routing within the river system

can ignore slower process like runoff generation or baseflow, and instead focus entirely on the movement of runoff along the

river network. Since the stations within a river system can be conceptualized as nodes of
:
in
:
a directed acyclic graph, it seems130

natural to model this data with a graph neural network, although this term is fairly broad (Bronstein et al., 2021). Example of

this approach include Moshe et al. (2020), Sit et al. (2021), Sun et al. (2021), Sun et al. (2022), Nevo et al. (2022) and Nearing

et al. (2024) all of which demonstrated excellent performance in this setting. In comparison, the design of the routing stage

in our model as detailed below is much more minimal
:::::::::::
parsimonious in order to give the user more fine-grained control and

interpretability.135

Another line of research investigates models that act on networks of rain gauges instead of a regular grid of inputs. These

::::
Such

:
models can be considered semi-distributed as well. The general focus here seems to lie more

::
be on finding suitable

architectures for this task, combining self-attention, LSTM, convolution and more complex graph convolution layers. For

example, Chen et al. (2023) intricately stack several LSTM layers to represent the river network structure, while Zhou et al.

(2023) propose a mixture of self-attention, recurrency and convolution to build a graph neural network for this routing task.140

Zhu et al. (2023) aggregate remote-sensing rain data within each catchment in a data-driven fashion by training separate

convolutional neural networks for every input product. They then concatenate each sub-basin’s lumped information with rain

gauge data for further routing in a semi-distributed scheme. The
:::
This

:
convolutional approach amounts to a more sophisticated

form of lumping, as integrating the different data sources as well as temporal modeling happens
:
it
::
is

:::::::::
concerned

::::
with

::::::::
unimodal

:::::
spatial

:::::::::
integration

::
of

::::
data

:::
that

::::
will

::
be

:::::::::
integrated

:::
and

:::::::::
temporally

:::::::
modeled

::::
only

:
at a later stage, once all spatial data has been fully145

aggregated. Hu et al. (2024) partially work on gridded data, namely remote-sensing measurements of rainfall. Each sub-basin

is aggregated separately using a convolutional LSTM to produce a spatially aggregated timeseries of rainfall in the sub-basin,

concatenate it with static information and recent runoff and continue processing this information in a semi-distributed fashion.

The crucial difference here is that the convolutional LSTM serves as a data-driven aggregation mechanism for the gridded

rainfall input data, but hydrological modeling again takes place in the semi-distributed domain.150

2.2.3 CAMELS-type datasets

Apart from the studies which we just discussed ,
:::
We

::::
have

::::
just

::::::::
discussed

::::::
several

:::::::
studies featuring individual or a few select

catchments,
:
.
:::
Yet

:::
the

::::
bulk

::
of large-scale rainfall runoff modeling with neural networks has extensively featured the CAMELS

dataset
::
or

:::
one

:::
of

::
its

:::::::::
derivatives, based on Newman et al. (2015) and extended to its current form by Addor et al. (2017). It

contains meteorological time series and ancillary data for 671 catchments located within the contiguous United States, manually155
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selected for minimal human impact. This implies that the catchments are relatively small, but on the other hand ensures

"laboratory conditions" for hydrological modeling. The downside of this is the limited applicability of findings generated with

this data to areas of the world where human influence contributes significantly to streamflow, such as central Europe. But as

the dataset covers the contiguous US homogeneously, spans a large area, contains many catchments and
::::
with a wide variety

of different climates, it offers optimal conditions for training neural networks. And so CAMELS rose to popularity together160

with the neural network approach in rainfall runoff modeling. Since then, similar public datasets were introduced
:
to

:::
the

::::::
public

that cover other parts of the world: Chile (Alvarez-Garreton et al., 2018), Great Britain (Coxon et al., 2020), Brazil (Chagas

et al., 2020), Australia (Fowler et al., 2021), the upper Danube basin (Klingler et al., 2021), France (Delaigue et al., 2022),

Switzerland (Höge et al., 2023), Denmark (Liu et al., 2024) and Germany (Loritz et al., 2024).

2.3 Contributions165

The
:
In
::::

this
::::::
paper,

:::
we

::::::
present

:::::
three

:::::::::::
contributions

::::
that

:::
go

::::::
beyond

:::::
what

:::
we

::::
have

:::::::::
discussed

::
so

::::
far:

:::
We

:::::::
process

:::
the

::::
data

::
in

::
a

:::::::
spatially

:::::::
resolved

:::::::
manner

::::::
without

:::::
prior

::::::::::
aggregation,

:::
we

::::
use

:
a
::::::
simple

::::::
routing

:::::::
module

::::
that

:::::
allows

:::
for

:::::::::::::
interpretability,

::::
and

:::
we

::::
train

:::
this

::::::
model

::
in

::
an

:::::::::
end-to-end

:::::::
fashion

::
on

:
a
::::::
novel,

:::::::
spatially

:::::::
resolved

::::::
dataset

::
in
::::::
central

:::::::
Europe.

:

:::::::
Spatially

:::::::
resolved

:::::::::
processing

:::::
takes

:::::
place

::
in

:::
the first or local stage of our model, detailed in Subsection 4.1, .

:::
Its

::::::::::
architecture

largely follows the architecture
::
one

:
presented in Kratzert et al. (2019b), but instead .

:::::::
Instead

:
of using lumped basins as170

input
:::::
inputs, we apply a single

::
the

:::::
same neural network in parallel to

::::
each

:::
cell

::
of

:
a regular grid of meteorological

::::
time

:::::
series

and ancillary inputs. This novel kind of spatially resolved processing is enabled by modern GPUs with large memory. We show

that this finer spatial resolution allows us to capture co-variances and provide regularization, benefiting especially
::::::::
especially

::::::::
benefiting

:
larger catchments. This approach is natural for physical or conceptual models , which have to

:::
that solve local equa-

tions at a certain level of
:::::
given rasterization. Yet, no one to our knowledge has applied a neural network directly to the grid of175

inputs in a way that scales up to entire river basins.

The right panel of Figure 6 visualizes the output of the local stage in an exemplary fashion. These local runoff quantities are

then mapped onto a river network in the
:::
The

::::
local

:::::
stage

:::::
yields

::
a

::::
local

:::::
runoff

:::::::
quantity

:::
for

::::
each

::::
grid

:::
cell

:
,
::::::::::
exemplarily

:::::::::
visualized

::
in

:::
the

:::::
right

:::::
panel

::
of

:::::
Figure

::
6.
:

:::
The

:
second or routing stagedescribed in Subection 4.2. It consists of ,

:::::::
detailed

::
in

:::::::::
Subsection

::::
4.2,

::::::
consists

:::
of

::::
only two simple180

network layers without any nonlinearity.
:
,
:::::::::
efficiently

:::::::
mapping

:::::
these

::::
local

::::::
runoff

::::::::
quantities

::::
onto

::
a
::::
river

::::::::
network.

::::
Both

::::::
stages

::
are

:::::::
trained

:::::
jointly

:::
in

::
an

:::::::::
end-to-end

:::::::
fashion

::
on

:::
the

:::::
entire

:::::::
dataset,

::::::::
rendering

::::
any

::::
kind

::
of

::::::
expert

:::::::::
knowledge

::::::::
obsolete.

::::
This

::::
also

:::::
means

::::
that

::
the

::::::
model

::
is

::::
fitted

::::::::::
exclusively

::
on

::::::::
empirical

::::
data,

::::::::
enabling

:::::::
scientific

:::::::::
discovery

::::
from

:::
raw

:::::
data. We show that the river

network connectivity graph can be used as inductive bias to constrain the model to reproduce the river’s natural layout. This

increases data efficiency and allows for better interpretability. Below we discuss that
::
We

:::::::
explain

::::
how in principle, although185

this has yet to be shown
::
in

:::::::
practice, the model can be controlled interactively: Extracting or injecting quantities of water

can simulate human influence such as industrial, agricultural or hydroelectric energy generation activity, which significantly

contributes to streamflow but is independent of the modeled hydrological processes. Both stages are trained jointly in an

6



end-to-end fashion on the entire dataset, rendering any kind of expert knowledge obsolete. This also means that the model is

fitted exclusively on empirical data, enabling scientific discovery from raw data.190

The
:::::
Lastly,

:::
the

:
lumped datasets discussed above are unsuited for our approach, as it requires non-aggregated information

for spatial processing as well as entire basinsfor routing
:::
this

::::::::
spatially

:::::::
resolved

:::::::::
modeling

::::::::
approach,

:::::
since

::
it
:::::::
requires

:::::
both

::::::::::::::::::::
non-spatially-aggregated

:::::
inputs

::::
and

:::::::::
streamflow

::::
data

:::
for

:::::
entire

:::::
basins. Hence, for this study we compiled gridded meteorolog-

ical and static data
::
as

::::
well

::
as

::::
river

::::::::::
streamflow

::::::
records

:
for five entire basins in central Europe,

:
.
:::::
These

::::::
basins

:::
are characterized

by an overall high level of human activity, compared to the CAMELS dataset. The data is publicly available
::
and

:::::::::
described

::
in195

::::
more

:::::
detail

::
in

::::::::::::::::::
Vischer et al. (2025b).

3 Dataand Methods

As discussed above, previously released datasets for rainfall streamflow modeling are unsuited for spatially resolved processing,

so we compiled a new, publicly available dataset, referenced in the data availability statement. We present the data sources, pre-

processing steps and how to handle the files
::::::
practical

:::::::
aspects in more detail in a separate publication (Vischer et al., 2025a, under review)200

::::::::::::::::::
(Vischer et al., 2025b). The river discharge data that we use as targets for training and the catchment information

::
as

::::
well

::
as

:::
the

::::::::
catchment

::::::::
metadata

:
from which we derive the river connectivity information is publicly available for download

:
is

::::::::
available

from the original provider. We provide code that processes and combines it with the input data after manual download. The

following subsections give an overview of the data, followed by an introduction of our neural network.

3.1 Study Area, Study Period and Resolution205

The focus of our study is on
:::
Our

:::::
study

::::::
covers five river basins covering

:
in
:

Germany and parts of neighboring countries: Elbe,

Oder, Weser, Rhine as well as the upstream part of the Danube river up to Bratislava (see Figure 1c, right panel). Due to the

sparser coverage of gauging stations in the lower reaches of the Danube basin, we decided to focus on the upper reaches where

the station network is more homogeneous. Additionally, the placement of river gauging stations varies across countries, as each

follows distinct policies for station location. From a machine learning perspective, this results in diverse sampling strategies210

across the river network. We restricted our study to this region to prevent variations in sampling distributions from affecting

the assessment of routing performance. We decided to limit our study to this region so as not to confound the performance

of routing with such different sample distributions. The total study area covers a contiguous 570.581 km2 areaof Germany

and neighboring countries. Figure 1c
::::
also visualizes exemplary features in the study area with boundaries of the river basins

and Germany for geographic reference. Based on the consistent availability of streamflow data, we decided to conduct our215

experiments on the water years 1981-2011. A water year lasts from October 1st of the previous year to September 30th. Due

to data availability, we homogenized all input data to daily temporal resolution and regular grid covering the
:::
that

:
is
::::::::::
compatible

::::
with

:::
the

::::::::::
ERA5-Land

::::::
dataset

::::::::::::::::::::
(Muñoz Sabater, 2019)

:::
and

:::::
covers

:::
the

:
earth’s surface with a spatial resolution of 0.1◦ × 0.1◦ or

2
:::::::
Orography

:::
was

:::::
adapted

::::
from

::
the

:::::::
European

::::
Space

:::::::
Agency’s

::::::::
Copernicus

::::
Global

::
90
::

m
::::
DEM

:::::::
(GLO-90,

:::
doi:

:::::::::::::::
10.5270/ESA-c5d3d65)

::
©
::::::::::::
EuroGeographics

::
for

::
the

::::::::::
administrative

:::::::
boundaries

::
in

::::
panel

::
(a)

:::
and

::
(c).
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(a)
::::
Study

::::
Area (b)

::::
Input

::::
Grid

:::
and

:::::
Station

:::::::
Network

::
in

:::::
Upper

::::::
Danube

:::::
Basin

(c)
:::::::
Examples

::
for

::::
each

::::
Input

::::
Type

Figure 1.
::::::::
Overview

::
of

::::
study

::::
area,

::::
input

::::
grid

:::
and

:::
data

:::::
types.

:::
(a)

:::
The

::::
study

::::
area

::::::::
comprises

:
5
:::::
basins

::::
that

::::
cover

:
a
:::::::::

contiguous
:::
area

::
in
::::::
central

:::::
Europe2.

:::
(b)

::::
Cells

::
of
:::::
input

:::
grid

:::::::
(orange)

::
for

:::::
Upper

:::::::
Danube

::::
basin.

:::::::::
Catchment

::::::::
boundaries

::::::
(black)

:::
are

::::::
overlaid

::::
with

:::::::::::
corresponding

::::::
stations

:::::
(blue),

::
as

:::
well

::
as
:::::::::

connecting
:::::
arrows

::::::::::
representing

::
the

::::::
station

:::::::::
connectivity

:::::::
network.

::::
Cells

:::::
along

::::::::
catchment

::::::::
boundaries

:::
are

:::::::
assigned

::::::
entirely

:
to
:::
the

::::::::
catchment

:::
that

:::::::
contains

:::
their

:::::
center

:::::
point.

::
(c)

:::::::::::
Visualizations

::
for

::::
one

::::::
example

::::::
feature

:
of
::::

each
::::
type

::
of

::::
input.

:::::
Basin

::::::
outlines

::::::
(black)

:::
and

:::::
borders

::
of
:::::::
Germany

:::::::::
(turquoise)

::
are

::::::
plotted

::
for

::::::::
reference.

roughly 9km× 9km.
:
If

:
a
::::

grid
::::
cell

::
is

::::::
located

:::::
along

:
a
:::::::::
catchment

::::::::
boundary,

:::
we

::::::
assign

::
it

::::::
entirely

::
to

:::
the

:::::::::
catchment

::::
that

:::::::
contains

::
the

:::::
cell’s

::::::
center

:::::
point.

::::
This

::::::
avoids

::::::
having

::
to

::::::::
represent

::::::::
fractional

::::
cells

:::
in

:::
the

:::::::
pipeline

:::
and

:::::::
seemed

::
an

:::::::::
acceptable

::::::::
trade-off

:::
for220

::
the

::::
sake

:::
of

:::::::::
simplicity,

:::::::::
considering

::::
that

:::
the

::::
area

::::::
covered

:::
by

::::
each

::::
grid

:::
cell

::
is

::::::::
relatively

:::::
small.

:

Overview of study area and visualizations for an example feature of each type. Basins are outlined in black, the boundaries

of Germany are shown in turqoise. The right hand panel shows additional river network information as yellow arrows.

3.2 Dynamic Input Data

Runoff is primarily driven by precipitation, but to properly capture processes like evaporation or snow dynamics, temperature225

and solar radiation need to be taken into account as well . Our meteorological input variables , also called
::
to

:::::::
properly

:::::::
capture

::::::::
processes

:::
like

::::::::::
evaporation

:::
or

:::::
snow

:::::::::
dynamics.

:::::
Thus,

:::
our

:::::::::::
metrological

:::::
input

::::::::
variables

::
or

:
forcings are thus daily minimum,

8



average and maximum temperature, daily sum and standard deviation of precipitation and average potential evaporation - a

score computed from radiation, temperature, air pressure and humidity. This set of variables
:
is
:
widely used in previous studies

(Kratzert et al., 2018, 2019b)
:::
and was retrieved from ERA5-Land (Muñoz Sabater, 2019). The variables, downloaded at three230

hour intervals, were aggregated to a daily time step to match the time resolution of the target . These time serieswere obtained

by aggregating daily the values contained in the ERA5 database
::::
time

::::::
series.3 (CopernicusClimateChangeService, 2022). We

amend these six meteorological input dimensions
::::::
features

:
with two more sine-cosine embeddings of day of the week and day

of the year, which can be considered as a coarse proxy to human activity (Otero et al., 2023).

3.3 Static Input Data235

Following the insights from Kratzert et al. (2019c) and Shalev et al. (2019), we include static data, also termed ancillary

data , to enable genuinely data-driven and transferable models , trained
:::::
called

::::::::
ancillary

:::
data

:::::
with

:::
the

:::
aim

:::
of

::::::
training

:::::::
models

jointly on all locations
:::
and

::::
thus

::::::::
increasing

:::::::
transfer

::::::::::
performance. Specifically, we include hydrogeological properties, soil class,

land cover, and orographic features derived from a digital elevation map for a total of 46 feature dimensions. Please refer to

(Vischer et al., 2025a, under review)
:::::::::::::::::
Vischer et al. (2025b) for a detailed description of the origin and preprocessing

::::
steps

:
of240

all input features. Cheng et al. (2023) demonstrated that relevance propagation could help to streamline the model’s inputs by

identifying
:::
The

:::::::
number

::
of

::::::
inputs

:::::
could

::
be

::::::::::
streamlined

::
in

:::
the

::::::
future,

::
as

:::::::::::::::::
Cheng et al. (2023)

:::::
shows

::::
how

::::::::
relevance

::::::::::
propagation

:::::::
identifies

:
non-task relevant features.

3.4 Target Streamflow Time Series, Station Information and River Networks

Target time series of streamflow at each station were obtained from the Global Runoff Data Center (GRDC) data portal.245

Together with the streamflow data, the GRDC offers a catalog of station information. We considered all stations in the station

catalog, but excluded stations that had ten or more values missing in the time series for the selected study period. Furthermore,

initial experiments showed that including stations with less than 500 km2 drainage area in training decreased performance,

even when evaluating exclusively on larger stations. We decided to exclude these small catchments, and discuss this decision in

Section 6. Another natural limitation on the spatial scope of this approach is that it only captures rainfall-streamflow dynamics250

in locations contained in the drainage area of a gauging station. In coastal areas, runoff might directly enter the sea through

smaller streams that are not gauged. Hence, our study area usually starts several kilometers inland from the sea. The following

number of stations resulted in each basin: 62 in upper Danube, 34 in Elbe, 36 in Oder, 78 in Rhine and 29 in Weser basins,

for a total of 239 stations. For comparison, the CAMELS dataset contains 671 catchments. Further visualizations of the river

networks can be inspected in the preprocessing scripts, along with all details on how the metadata was processed.255

3The dataset was downloaded from the Copernicus Climate Change Service (2022). The results contain modified Copernicus Climate Change Service

information 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it

contains.
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4
:::::::
Methods

::::
This

::::::
section

::::::::
provides

:::::
detail

:::
on

:::
our

:::::::
model’s

:::::
local

::::
and

::::::
routing

::::::
stage.

::::
This

::
is

::::::::
followed

:::
by

::
an

::::::::::
explanation

:::
of

::::
how

:::
the

:::::
river

:::::::
network

::::::::::
connectivity

:::::
graph

::
is

::::::::
calculated

::::
and

::::::::
integrated

::::
into

:::
the

::::::
routing

:::::
stage

::
of

:::
the

:::::
model

::
as

::::::::
inductive

:::::
bias.

:::
We

::::
then

:::::::
describe

::
the

::::::::::
end-to-end

::::::
training

:::::::
process

:::
and

::::::
which

::::::
metrics

:::
and

::::::::
baselines

:::::
were

::::
used

::
in

:::
our

:::::::::::
experiments.

4.1
:::::
Model Local Stage (1) - Modeling Spatially Resolved Runoff260

Figure 2. Overview of the local stage of the network architecture, acting
:
in
::::::
parallel

:
on

:::
each

::
of

:
the regular grid input . Each grid cell’s static

::::
cells.

::::
Static

:
inputs are reduced to ten features by feeding them through a simple, fully connected embedding layer and applying a nonlinearity

function. The resulting feature vector is repeated for every time step T of the meteorological forcing time series and concatenated for a total

of
:::
with

:::
the

:::
time

:::::
series.

:::
The

:::::::
resulting 20 features

::
are fed into the

:::::
through

::
a

::::::
250-unit LSTM layerconsisting of 250 parallel units. The recurrent

layer’s output is then reduced to the
:
a
:
1D output time series by sequentially applying two fully connected readout layers plus a nonlinearity

in between. Numbers in parentheses signify feature vectors at a given stage in the model pipeline, numbers without
:::::::::
parentheses signify the

size of the weight matrix of a given layer
:

’s
:::::
weight

:::::
matrix.

Figure 2 visualizes the simple network architecture used in the local stage to predict locally generated runoff
:::
The

::::
task

::
of

:::
the

:::::::
model’s

:::::
local

:::::
stage

::
is

::
to

::::::::
integrate

:::
all

:::::
input

:::::::::
modalities

:::
and

:::::::
predict

::::
local

::::::
runoff

:::::::::
quantities

:
on a regular grid.

:::::
These

::::
local

::::::::
quantities

:::
are

::::
then

:::
fed

:::::::
through

:::
the

:::::::
routing

::::
layer

::::::::
described

:::
in

:::
the

::::::::
following

:::::::::
subsection.

:
As mentioned before, following

Kratzert et al. (2019b) we add
::
we

::::::
follow

::::::::::::::::::::
Kratzert et al. (2019b)

::
by

::::::
adding

:
static information to the meteorological inputs.

This
::::
input

::::
and

:::::::
adapting

:::::
their

::::::
original

::::::
model

::::::
design

:::
for

:::
the

::::
local

::::::
stage.

:::::
While

::::
this model was originally conceived to model265

aggregated catchments, but we adapt the design and
:::
used

:::
on

:::::::::
aggregated

:::::::::
catchment

::::
time

:::::
series,

:::
we

:
apply it to all grid locations

in parallel, which are then fed into a routing layer. Our pipeline features 46 static input dimensions, which we reduce to ten by

adding .
:::::
Also

:::::::
contrary

::
to

:::
the

:::::::
original

::::::
design,

:::
we

:::
add

:
a simple, fully connected embedding layer . The resulting static features

::::
layer

:::
that

:::::::
reduces

:::
the

::
46

:::::
static

::::
input

::::::::::
dimensions

:::::
down

::
to

:::
ten

::::::::::
dimensions.

::::
They

:
are concatenated with another ten dimensions of

meteorological forcings . The
::
for

::
a

::::
total input dimensionality to the LSTM layer is thus

:
of

:
20in our case, compared to 32 in the270
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case of Kratzert et al. (2019b). Their LSTM layer consists of 256 units, ours of 250. However, we reduce the 250 output values

of the LSTM layer by using two regression layers instead of one. We do not employ a nonlinearity after the second readout

layer, meaning that the network’s outputs are not confined to the range of e.g. [−1,1], but rather live in the range of actual,

physical quantities. The model itself
:::::
Figure

:
2
:::::::::
visualizes

:::
the

::::::
simple

:::::::
network

::::::::::
architecture.

::
In

:::::::::
summary,

::
the

:::::::
routing

::::
stage

:::
of

:::
our

:::::
model

::
is

::::::
largely

:::::::
identical

:::
to

:::
the

:::::
model

::::
used

:::
in

::::::::::::::::::
Kratzert et al. (2019b)

::::
with

:
a
::::

few
:::::
small

::::::::::::
modifications.

:::
We

:::::
want

::
to

:::::::::
emphasize275

:::
here

::::
that

:::
the

::::::
model

:
does not have any predictive capabilities , but produces a forecast of streamflow if the inputs lie in the

future, i.e. are taken from a meteorological forecast
::
in

:::::
itself.

:
It
::::
uses

:::::::::::::
meteorological

:::::::
forecasts

::
to
:::::::
produce

::
a
:::::::
forecast

::
of

::::::
runoffs.

In an exploratory experiment, we compared concatenating static inputs to dynamic inputs before and after the LSTM layer.

Feeding the static inputs through the LSTM together with the dynamic inputs resulted in substantially better performance. This

is consistent with the findings of Kratzert et al. (2019b) and can be explained by the static inputs helping the LSTM to better280

adapt to the hydrological dynamics of a location. This
:
It
:

is similar to training separate models for different climatic zones,

but in a data-driven fashion. Indeed, Cheng et al. (2023) show that clustering on the relevance values of the different inputs

results in hydrologically plausible clusters. Concatenating all features before feeding them through the LSTM layer requires

more parameters in this layer, which due to its intricate inner workings is particularly expensive to train in terms of data and

compute. We also used gated recurrent units (GRU) (Cho et al., 2014) instead of LSTMs as a backend, which mitigates this285

problem a little because they are computationally more efficient. We found that they do not affect performance, but decided

to stick with LSTM as our main backbone as it is more popular
:::::::
common

:
in the literature. Nevertheless, using GRUs could be

another way to further optimize the model.

4.2
:::::

Model Routing Stage (2) - Mapping
::::::::::
Integrating Local Runoff to the River Nework and Routing

The task of the routing stage of our model is to map the locally generated runoff to a station’s catchment area, and then routing290

the runoff along the river network to predict streamflow time series for every station in the basin. Figure 3 visualizes the layout.

Within a given river basin, we concatenate the predicted runoff time series of all grid cells. The network learns a simple,

strictly linear mapping consisting of two layers: First, a fully connected layer without nonlinearity maps all grid cells G to

their respective stations S. Since no nonlinearity is added, this layer can be translated into a weighted, time dependent average

of all grid cells within a catchment. Location information from the station catalog, described below, can be used as an inductive295

bias to constrain this layer so as to only route water in a physically plausible way.
:

Then, a 1D-convolution layer (Kiranyaz

et al., 2021) performs time convolution on each station’s time series to combine information inside the river network over the

last nine days. Separate kernel values can be learned for each day, but the same kernel is applied jointly over the entire time

series. The value
:::::
kernel

::::::
length of nine days was chosen as a conservative estimate of the maximum time that water would be

running inside the
:
it
::::::

would
::::
take

:::::
water

::
to

::::
run

:::::
along

:::
the

::::::
entirety

:::
of

:::
any

:::
of

:::
the river networks considered in this study, but of300

course awaits empirical validation and further optimization. The kernels in this layer are constrained by the connectivity of

the river network in order to be physically plausible as we explain in the following subsection. Crucially, this stage does not

involve any nonlinearity. Hence, both the fully connected as well as the time convolution layer are linear functions and as such

can be chained to form yet another linear function. This means that the quantities of water "flowing" through this pipeline are
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Figure 3. Runoff
:::::::
Overview

::
of

:::
the

::::::
routing

::::
stage

::
of

:::
the

::::::
network

::::::::::
architecture,

:::::
acting

::
on

:::
the

:::::
output

::
of

:::
the

::::
local

:::::
stage.

:::
The

::::
local

:::::
runoff

:
time

series for every
:
of
:::
all grid cell within

:::
cells

::
in
:
a given basins

::::
basin are concatenatedand

:
.
:::::::
Together,

::::
they

:::
are fed through a fully connected

layer that projects them down onto the number of
::
the

::::::
basin’s

:
stations. The weight matrix in this layer is constrained to be non-zero only

when
::
if a grid cell lies in the catchment of a given station. The stations’

::::
time

:::::
series are then time-convolved with a kernel length of 9 time

steps
:
to
:::::

model
:::

he
:::
flow

::
of
:::::
water

::
in

::::::
between

::::::
stations. Each

:::::
Again,

::::
each kernel is also constrained to be only non-zero

:::
only

:
if a given station

is directly upstream of another station. This
:::
The

:::::
routing

:
stage yields time series for all stations in the network

::::
basin. It does not include any

nonlinearity, so all activation values can be interpreted as streamflow quantities. The basin map
:::
icon and dotted arrows indicate that the river

connectivity information serves as inductive bias on these two layers, constraining the activations to replicate the real river network.

physically interpretable, or put differently, that .
:::
Put

::::::::::
differently, input quantities can be added or subtracted meaningfully to305

and from the input. A practical application example of this, which we plan to further investigate, is the injection or extraction

of water in between two stations as a result of
::
to

:::::::
simulate agricultural, industrial or hydroelectric human activity. This sets our

approach apart from previous routing approaches. We also investigated the effect of not constraining the weight matrices with

the connectivity matrices, which leads to slightly poorer performance when data is scarce (see Subsections 4.5 and 5.5).

4.3 Structural Bias310

Among many other kinds of information, the station catalog contain polygons describing
:::
The

::::::
station

::::::
catalog

:::::::
contains

::::::::
polygons

::
of each station’s catchment area. From this, we can derive two important kinds of information: first

::::
First, for every grid cell

we can determine in which station’s catchment it is located; second.
:::::::
Second, for each station , we can determine how it is

connected to upstream and downstream stations.
:::
This

::::::::
subsetion

:::::::
explains

::::
how

::::
this

::::::::::
information

::
is

::::::::
extracted

:::
and

::::
how

:::
we

:::
use

::
it

::
as

::::::::
structural

::::::::
inductive

:::
bias

::
to
::::::::
constrict

:::
the

::::::
routing

::::
layer

:::
to

::::
only

:::::::
consider

:::::::::
physically

:::::::
plausible

::::::
routes

::
of

:::::
water

::::
flow.

:
315

4.3.1 Catchment Matrices

Mapping grid cells to stations is important to ensure that the runoff predicted at a given location ends up at the only station

that is physically plausible. Since a given station’s catchment area is contained within all the downstream stations’ catchment

areas, we need to make sure that we select the one where the generated runoff first enters the river network. To do so, we

select the station with the smallest catchment area that contains a given grid cell. For each river network, we represent this320

information conveniently in a one-hot matrix with grid cells as rows and stations as columns. This matrix is then used to
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constrain the fully connected layer in the routing stage of the network. This is achieved by multiplying the one-hot matrix

point-wise with the freshly initialized weight matrix of this layer before training begins. Weights corresponding to physically

impossible connections are
::::
thus set to zero from the start. Zero weights can not contribute to gradients, and will remain zero

throughout the training. All other weights can be freely
::
are

::::
free

::
to

::
be

:
optimized.325

4.3.2 Connectivity Matrices

From the catchment area polygons, a graph representing the connectivity between stations in the river network can be derived.

Each node in the graph represents a station, a directed edge exists between a station A and B if A is directly upstream of B.

We determine this by verifying if the catchment area of A is contained in the catchment area of B, ensuring that there are

no intermediary stations in between, i.e. contained by B and containing A. Note that this automatically leads to a directed,330

acyclic graph. This fits our approach well, as it does not require us to apply any model of routing iteratively in order to capture

cyclic movements within the graph. The graph is represented by
:
a
:
connectivity matrix, i.e. a square matrix with rows (input)

and columns (output) corresponding to stations, where the entries are 1 if a directed edge exists and 0 otherwise. This matrix

is used to constrain the time convolution layer in a manner similar to the catchment matrix. After initialization of the weight

matrix, the connectivity matrix is multiplied point-wise, preserving the weights where a connection exists and setting them to335

zero where no connection is present. The only difference is that the connectivity matrix needs to be repeated by the depth of

the temporal convolution, nine times in our case for the nine days of past information that we convolve.

4.4 Training and Metrics

We split the data into three parts, all containing entire water years: A training set from water years 1981 to 2005, a validation

set for model selection from 2005 to 2008, and a test set to report the final performance from 2008 to 2011. We also created two340

special training datasets to illustrate how the models perform on less training data: A medium length training set comprising

ranging from 1991 to 2005 and a short training set from 1999 to 2005. Regardless of the length of the training set, we divide

it into chunks of 400 days that partially overlap. The first 30 days are used as a warm up period for the LSTM. During this

time no gradients are computed and the LSTM can stabilize into an operating regime before starting the learning process. The

value of 400 was chosen to accommodate an entire year plus the warm up period,
:::::
while

::::
still

:::::
being

::::
able

::
to

:::
fit

:::
the

::::::::
gradients345

::::::::
claculated

::::::
during

:::::::
training

::::
into

::::
GPU

::::::::
memory. It would not be detrimental to use even longer time series , but this cutoff is

dictated by GPU memory space. When calculating scores
:::
and

::
the

::::::
model

::
is

::::::
capable

::
of

:::::::::
processing

::::
time

:::::
series

::
of

::::::::
arbitrary

::::::
length.

::
In

:::
fact, no gradients are computed , resulting in a significantly smaller memory footprint . This allows us

:::::
during

:::::::::
inference,

:::::
which

::::::::::
significantly

:::::::
reduces

:::
the

:::::::
memory

::::::::
footprint

:::
and

::::::
allows

::
us

::
us

:
to calculate all scores

::::::
metrics on uninterrupted time series

in a single model forward pass. In all experiments, we trained for 2000 epochs of the training data. This number of epochs is350

generous for all models to converge. Since the purpose of this study is to provide a proof of concept of this type of spatially

resolved processing, we decided to not conduct an extensive hyperparameter optimization or perform input feature ablation.

Instead, we included all potentially relevant static data and ran hyperparameter tuning experiments only on a limited set of
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values for a few key hyperparameters, summarized in Table A2. We trained ten different random seeds for every setting, and

report the best seed in terms of station-wise median Nash-Sutcliffe Efficiency (NSE) score on the validation
::
test

:
period.355

We use the widespread NSE metric (Nash and Sutcliffe, 1970) both as a loss function in training as well as a score to quantify

performance. The NSE normalizes the square loss of each station by the standard deviation of the station’s values in the training

period, so as to count each station equitably towards the loss or performance, regardless of the magnitude of the river at this

point. We do not split training and test partitions geographically, as breaking up basins would make routing impossible. We

also refer to Klotz et al. (2024) for a word of caution when combining NSE values that are calculated on partitions of a dataset.360

Unless noted otherwise, the scores we report were calculated on the test period. The median NSE over all stations serves as a

robust point estimate of performance, but for the interested reader we provide mean NSE scores in Table A1, which we found

to correlate strongly with the median NSE for all seeds. Likewise, we report the percentage of stations with a NSE score below

zero, which indicates predictive performance worse than simply using the average value of a station’s runoff for prediction, i.e.

chance level. The popular Kling-Gupta efficiency (KGE) metric (Gupta et al., 2009) was developed in the context of univariate,365

convex optimization - both these assumptions do not hold in the case of training a neural network. However for the sake of

comparability, we also report the KGE values in the appendix as well.

As stated before, in this study we refrained from extensive hyperparameter optimization to maximize the performance. A

few exploratory experiments to calibrate our pipeline seemed necessary nonetheless: Dropout (0, 10%, 30%, 50% separately

in recurrent and readout layers of the routing stage) did not increase performance, so we removed it entirely. 250 units in370

the LSTM layer (out of 150, 200, 250 and 300) yielded the best results. We use an automatic learning rate scheduler, the

ReduceLROnPlateau scheduler provided by Pytorch (Ansel et al., 2024) with threshold 1e-3 and patience 10, so the pipeline

trains robustly with regard to the initial learning rate (1e-4, 5e-4, 1e-5). But as the baselines in the experiments have vastly

different number of parameters, we decided to continue the experiments by always trying out both of the lower values. Unless

explicity
::::::::
explicitly mentioned, we report the performance resulting from the better value for every condition, table A2 lists the375

results in detail.

4.5 Baselines

We introduce two baselines in order to evaluate the performance gains of the two central aspects of our pipeline: spatially

resolved processing in the local stage and the inclusion of structural bias in the routing stage. In the first baseline experiment,

we aggregate all spatial information within a catchment and feed it through the same architecture as used in the local stage.380

Normally, this stage of the model processes individual grid cells, but
:
.
:::
But here it processes entire, aggregated catchments, and

the output is a prediction of the runoff measured at the corresponding station. This
:::
The aggregated baseline does not require

any further routingand is virtually .
:::::

This
:::::
model

::::
and

:::::::::
processing

:::::::
pipeline

::
is identical to the approach in Kratzert et al. (2019b)

. We will use this as baseline and coin it
:::
one

::
in

::::::::::::::::::
Kratzert et al. (2019b)

:
,
::::
apart

:::::
from

:::
the

:::::
small

:::::::::
differences

::
in
:::::::::

parameter
::::::
values

::::
listed

::
in
::::::::::

Subsection
:::
4.1.

:::
As

:::
we

::::::::
discussed

::::::
above,

::
it

:::
has

::::
been

::::::
widely

:::::
used

::
in

:::
the

::::::::
literature

::::
since

:::
its

:::::::::::
introduction,

:::::
which

::::::
allows385

::
us

::
to

::::::::
compare

:::
our

::::
own

::::::
results

::::
from

::::
our

::::::
custom

::::::
dataset

::
to
::

a
:::::
wider

:::::
body

::
of

::::::::
literature.

::::
We

:::
will

::::
call

:::
this

::::::::
baseline aggregated,

whereas our default model is
:::
will

::
be

:
referred to as spatially resolved.
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The second baseline leaves the local stage unaltered, while
:::
but

::::
does

:::
not

::::::::
constrain

::
the

::::::
weight

::::::::
matrices in the routing stagethe

weight matrices are not constrained. Instead, we use two fully connected time convolution layers with a kernel size of nine and

three days, respectively, and a nonlinearity in between, as simple and more conventional neural network approach.
::::
The

::::::
design390

:
is
::::::::
intended

::
to

::
be

:::::
more

::::::
simple

:::
and

:::::::::::
conventional

:::
for

:::::
neural

::::::::
networks. We will refer to this baseline as naive routing, and to our

default model as structured routing.

5 Results and Discussion

We start this section by presenting and contextualizing the general performance of our model. We then show that our model

excels in modeling large catchments, is less prone to overfitting and learns from the data more efficiently than the baselines.395

Inductive bias does not make a big difference to performance. We end this section by showcasing that our model is, unlike

most neural networks, not an entirely black box model, and that capturing human influence seems to be the biggest challenge

in our study area.

5.1 Model Performance

Our model reaches
:::
The

:::::::::
aggregated

:::::::
baseline

::::::::
achieves a median NSE performance on the test dataset

::
test

:::::::::::
performance

:
of 0.77.400

This is on par with the
::::
0.69

::
on

:::
our

:::::::
dataset.

::
As

::::::::
discussed

::::::
above,

::
it

:
is
::::::::
virtually

:::::::
identical

::
to

:::
the

:::::
model

:::::
from

::::::::::::::::::
Kratzert et al. (2019b)

:
,
::::
who

:::::
report

::
a
:
median NSE of 0.74 reported by Kratzert et al. (2019b) and

::
on

::::
the

::::::::
CAMELS

:::::::
dataset.

::::::
These

::::::
results

:::::
were

::::::::::
subsequently

::::::::::
confirmed,

:::::
small

:::::::::::
modifications

::
of

:::
the

::::::
model

:::::::::
parameters

::
or

::::
test

:::::
period

::::::::::::::
notwithstanding,

:::
by

:::::::::::::::::
Shalev et al. (2019)

:::::::
(median

::::
NSE

:
0.73reported by Shalev et al. (2019), both on the CAMELS dataset . Training

:
),
:::::::::::::::::::::::::
Acuña Espinoza et al. (2024)

:::::::
(median

::::
NSE

::::
0.75)

::::
and

::::::::::::::::
Frame et al. (2022)

:::::::
(median

::::
NSE

:::::::
between

::::
0.72

:::
and

:::::
0.81)

:::
We

:::::::::
conjecture

:::
that

:::
our

:::::::
baseline

:::::::::::
performance405

:
is
::::::::

probably
:::::
lower

::::
due

::
to

:::
our

:::::::
dataset

:::::
being

::::::
smaller

::::
than

:::::::::
CAMELS

::::
and

:::::
likely

:::::::::
containing

::::::
greater

::::::
human

:::::::
activity.

:::::::
Turning

:::
to

::::
other

:::::::
regions,

:::
the

:::::
same

:::::
model

::::
was

::::
used

:::
for

:::::::
example

:::
by

::::::::::::::
Mai et al. (2022)

::
for

:::
the

:::::
Great

::::::
Lakes

::::
Area

:::::::
(median

:::::
KGE

::
of

:::::
0.76),

:::
by

::::::::::::::
Lees et al. (2021)

:::
for

:::::
Great

::::::
Britain

:::::::
(median

::::
NSE

:::::
0.88)

:::
and

:::
by

::::::::::::::::
Loritz et al. (2024)

::
for

::::::::
Germany

:::::::
(median

::::
NSE

::::::
0.84).

:::
The

:::::
latter

:::
two

::::::
results

::
go

:::::::
against

:::
our

:::::::::
conjecture

:::
for

:::::::
inferior

::::::::::
performance

::::
due

::
to

::::::
human

::::::
signal.

::::
The

::::
fact

:::
that

:::::::::::::::::
Loritz et al. (2024)

::
use

:::
an

::::::::
ensemble

::
of

::::::
models

:::::
might

::
be

::
a
:::::
factor

::
at

::::
play,

:::
but

::
in

:::
any

::::
case

::::
this

:::::::
requires

::::::
further

:::::::::::
investigation.

:::::
These

::::::
studies

:::::::
provide

:::::::
valuable410

::::::::::
comparisons

::::
with

:::::
other

::::::
model

:::::
types:

::
In

:::
all

::::::
studies

:::
just

::::::::::
mentioned,

:::
the

::::::
authors

:::::::::
compared

:::
the

:::::
neural

:::::::
network

::::::
model

::::::
against

::
a

::::::
variety

::
of

:::::::
physical,

::::::::::
conceptual

::
or

::::::
hybrid

::::::
models

:::
and

::::::::::
consistently

::::::
found

:::
that

:::
the

::::::::::
alternatives

::::
were

::::::::::::
outperformed

::
by

:::
the

::::::
neural

:::::::
network.

:

:::
Our

::::::
model

:::::::
achieves

:
a
::::::
median

:::::
NSE

::::::::::
performance

:::
on

:::
the

:::
test

::::::
dataset

::
of

::::
0.77

::::::::
compared

::
to

:::
the

:::::::
baseline

::
of

::::
0.69

:::
and

::::
thus

:::::::
appears

::
to

::
be

::::
able

:::
to

::::::::::
compensate

:::::::::
somewhat

:::
for

:::
the

:::::
more

:::::::::
demanding

:::::::::
modeling

:::::::
context.

::::
Only

:::::::
training

::::
and

::::::
testing

:
our model on a415

spatially extended version of CAMELS would allow for more direct comparability with other approaches, but
:
.
::::::::::::
Unfortunately

this has to be left for future research . The aggregated baseline only achieves a median NSE of 0.69. This is a first indicator

that our spatially resolved modeling pipeline is able to compensate our dataset being smaller than CAMELS and probably

containing a larger human signal. Despite
:
as

::
it
:::::::
requires

:::::::
creating

::
a
:::::::
spatially

::::::::
resolved

::::::
version

::
of

:::::::::
CAMELS

::::
first.

:::
In

:::
any

:::::
case,
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::::::
despite the data being different and not allowing for a straightforward comparison, this shows that runoff generation and routing420

can be learned end-to-end by a single model pipeline and without additional data along the way. Moreover, the simplicity of

the routing module’s design, along with the possibilities it offers, does not come at a significant performance cost. An example

in case is that the internal activations inside the network between local and routing stage appear to be hydrologically plausible,

as Figure 6 illustrates, despite not enforcing this property .
:::
We

:::::
want

::
to

:::::
stress

::::
that

:::
this

::
is
:::
an

::::::::
emergent

:::::::
property

::::
and

::::
was

:::
not

::::::::::
incentivized during training.425

::::
Input

::::::::
Processing

: ::::::
Routing

:::::
median

::::
NSE

: ::::
NSE

:
<
:
0
:

::::::
spatially

:::::::
resolved

:::::::
structured

: ::::
0.773

: ::::
0.000

:

::::::
spatially

:::::::
resolved

::::
naive

::::
0.719

: ::::
0.000

:

::::::::
aggregated

: :
-

::::
0.691

: ::::
0.013

:

Table 1.
:::::::::
Comparison

::
of

::::::
median

:::::::
catchment

:::::::::
NSE-scores

:::
and

::::::
fraction

::
of

:::::::::
catchments

:::
with

::::
NSE

:::::
scores

:::::
below

:::
zero

:::
for

::::::
spatially

:::::::
resolved

::::::
pipeline

::::::::
(structured

:::
and

::::
naive

::::::
routing)

:::
and

:::
the

::::::::
aggregated

:::::::
baseline,

:::::
which

:::::::::
corresponds

::
to

:::
the

:::::
model

::::::::
introduced

::
by

::::::::::::::::
Kratzert et al. (2019b)

:
.
::::::::
Structured

:::::
routing

:::::::::
outperforms

:::::
naive

::::::
routing,

:::
and

:::::
spatial

::::::::
processing

:::::::::
outperforms

::::::::
aggregated

:::::::::
processing.

::::::
Metrics

::
are

:::::::
reported

::
for

:::
the

:::
best

::
of

:::
ten

::::::
random

::::
seeds

::
in

::::
terms

::
of

::::::
median

:::
NSE

:::::
score.

:::
An

:::::::
extended

:::::
version

::
of

:::
this

::::
table

:::::::
including

::::
KGE

:::::
scores

:::
and

::::::
shorter

::::::
training

::::
times

:::
can

::
be

:::::
found

:
in
:::::
Table

:::
A1.

5.2 Modeling Large Catchments

Figure 4 compares our model and the aggregation baseline , depending on the catchment area and separately
::
Do

::::::
larger

:::::::::
catchments

::::::
benefit

:::::
more

:::::
from

:::::::
spatially

:::::::
resolved

::::::::::
processing

:::
like

:::
we

:::::::::
expected?

::::::
Figure

::
4

:::::
shows

:::
the

::::::
effect

::
of

:::::::::
catchment

::::
size

::
on

::::::::::::
per-catchment

:::::::::::
performance,

::::::::::
comparing

:::
our

::::::::
spatially

:::::::
resolved

::::::
model

::
to

:::
the

::::::::::
aggregated

:::::::
baseline

:
for training and testing

periods. We focus on the test results first (right panel): For aggregated processing, we observe a negative trend between per-430

formance and catchment size, which does not exist for spatially resolved processing. This is expected, as the benefits of
:
.
::::
This

:::::
might

::
be

::::::::
explained

:::
by

:::
the

::::::::::
assumption

:::
that

::::::::
underlies

::::::
spatial

::::::::::
aggregation,

:::::::
namely

:::
the

:::::::::::
homogeneity

::
of

:::
the

:::::::::
aggregated

:::::
area,

:::
not

::::::
holding

:::
for

:::::
large

::::::::::
catchments.

:::::::
Indeed,

:::
the

::::
trend

:::
is

:::::::
reversed

:::
for

:
spatially resolved processingare more pronounced for larger

catchments , which tend to be more heterogeneous,
::::::

where
:::::
larger

::::::::::
catchments

::::::::::
outperform

::::::
smaller

:::::
ones. Our results suggest

that spatially resolved processing should be considered in such situations
:::::::::
particularly

:::::
when

::::::::
modeling

::::
large

::::
and

::::::::::::
heterogeneous435

:::::::::
catchments.

5.3 Inherent Regularization

A comparison between the left and right panel of Figure 4 reveals a substantial performance drop between train and test period.

To a certain degree, this is expected, but
:::::::
normally

::
to
:::

be
::::::::
expected

:::
due

::
to

::::::::::
overfitting.

:::
But

:
the effect is much more pronounced

for the aggregated than for the spatially resolved model. It stands to reason that the neural network in the aggregated baseline440

with its associated reduction of data severely overfits
::::::
overfits

:::::::
severely. This also becomes apparent when looking at the median
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Figure 4. Station-wise
:::::
Effect

::
of

:::::::
catchment

::::
size:

::::
Each

::::
point

:::::::::
corresponds

::
to

:
a
::::::
station’s

:
performance vs.

::
the size of

::
its catchment, for aggregated

baseline (blue) and spatially resolved pipeline (red) on training (left panel) and test (right panel) period.
:::
The

::::::::
individual

:::
data

:::::
points

:::
are

::::
fitted

:::::
linearly

::
to
:::::

show
::
the

:::::
trend.

:
Aggregated processing impairs performance, especially in larger catchments. The trend is more pronounced on

the test dataset, indicating overfitting on the training dataset. Spatially resolved processing is less prone to overfitting and manages to handle

large catchments accurately in a low data setting.

NSE values in training and test datasets. While overall performance drops from 0.86
::
in

:::::::
training

:
to 0.69 in the case of

:::
test

::
for

:
aggregated processing, spatially resolved processing deteriorates more gracefully from 0.90 to 0.77. Spatially resolved

processing, with its shared local stage and overall much more data, seems to have an intrinsic regularization effect.

5.4 Data Efficiency445

The positive effect of spatially resolved training, especially for large catchments, becomes even more pronounced when looking

at modeling in an environment with limited available training data. Figure 5 visualizes the difference in NSE score between

spatial and aggregated processing on a per-catchment level, when training on 25, 15 and six years of training data. While

differences
:::::::::
Differences

:
are positive across all sizes of catchments, meaning spatial processing on average performs better

regardless of the catchment size,
:
.
:::
Yet

:
the positive trend becomes stronger as data becomes more scarce. Spatially resolved450

processing utilizes the available data more efficiently.

5.5 Inductive Bias

Including inductive bias for what we call structured routing leads to slightly better performance than naive routing without the

additional real-world information, with
:::::::
resulting

::
in a median NSE of 0.77 compared to 0.72. Figure A1 contains more detailed

results, but also shows that the performance gain is small. The point we want to make here is that the practical benefit of being455

able to simulate the injection or extraction of quantities of water in routing process does not come at the cost of lowering

performance. As we mentioned before, naive routing on the other hand does remain an important tool in modeling basins
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Figure 5. Station-wise differences in NSE performance between spatial and aggregated training, plotted against the size
::::
Effect

:
of the

::::::
training

:::::
period

:::::
length:

::::
Each

::::
point

:::::::::
corresponds

::
to

:
a
:
station’s catchment. Positive values indicate that spatial processing performs better. The individual

data points are fitted linearly. Colors correspond to
:::
NSE

:::
test

::::::::::
performance

::::
after

::::::
training

:::
for

:
25 years of training data (green), 15 years

(purple), and 6 years (orange). Differences are positive across
:::::
Across all catchment sizes and different amount

::::::
amounts of training data. But

as data becomes scarcer, the trend of spatial processing outperforming
::::::
pipeline

:::
(left

:::::
panel)

:::::::::
outperforms

:::
the

:
aggregated processing in large

catchments becomes
::::::
baseline

:::::
(right

:::::
panel).

:::
The

::::::
latter’s

:::::::::
performance

:::::::::
deteriorates

::::::
quickly

::::
when

::::::
training

:::
data

::
is
:::::
scarce.

::::
The

::::::
spatially

:::::::
resolved

::::::
pipeline

:
is
:::::

much more pronounced
::::
robust

::
in
:::
this

::::::
regard,

:::::::::::
demonstrating

::
its

:::::::
increased

:::
data

::::::::
efficiency.

where catchment delineation information is unavailable or unreliable, or where lateral transport of water inside the bedrock

layer across catchment boundaries is suspected. Whether or not we use inductive bias in the routing layer, our networks are

extremely simple compared to other networks proposed in the literature for routing that we discusses above. Certainly, we460

demonstrate that routing modules do not need to be complex, and river network extraction algorithms are not necessary for

end-to-end routing, e.g. when no catchment boundary information is available.

5.6 Interpretable Internal States

The simple architecture of our model, particularly the shared recurrent layer in
:::::::
Internal

:::::
states

::
of

:::::
neural

::::::::
networks

:::
are

:::::::
usually

:::
not

:::::::::::
interpretable.

::
In

:::
our

:::::
case,

::::::::
however,

:::
the

:::::::::
activations

::
of

:::
the

::::
final

:::::
layer

::
of

:
the local stage and inductive bias and linearity of465

the routing stage, lead to interpretable internal states within the network
:::::
which

::::::
would

::
go

::::
into

:::
the

::::::
routing

:::::::
module

::::
stage

:::
of

:::
the

:::::
model

::::::
appear

::
to

::
be

:::::::::::::
hydrologically

:::::::
plausible. As an illustrating example, Figure 6 displays the activation values after the local

stage and before the routing stage
::::
these

::::::::
activation

::::::
values for two exemplary days in spring and summer. The spatio-temporal

correlation seems to suggest that in the example day in spring, runoff is primarily driven by snow melt in low mountain ranges,

whereas in summer, it seems to be driven by heavy precipitation events. We want to make the point that these activations are470

hydrologically plausible, yet we did not enforce this property during the training process, e.g. by providing additional target

information or training a special readout layer. It
::::
This

:
is a purely data-driven, emergent behavior, resulting from both the end-

to-end training process and the model’s parsimonious design.
::::::::::
Particularly,

::
we

:::::::
attribute

::::
this

:::::::::::
phenomenon

::
to

::
the

::::::
shared

::::::::
recurrent
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::::
layer

::
in

:::
the

:::::
local

::::
stage

::::
and

:::
the

::::::::::
combination

:::
of

::::::::
inductive

:::
bias

::::
and

:::::::
linearity

::
of

:::
the

:::::::
routing

:::::
stage.

:
Unlike more complex neural

network designs which are generally considered black box models, this suggests that our model naturally allows for a certain475

degree of internal control by manipulating the internal states(e.g.
::::
these

::::::
internal

::::::
states,

:::
e.g.

:::
by subtracting or adding quantities

of water to the natural runoff), as well as enabling .
::

It
::::
also

::::::
creates

::::
new

::::::::::
opportunity

:::
for further scientific discovery from large

quantities of data.

Figure 6. Input feature
:::::
Internal

:::::
states

::
of

::
the

:::::
model

:::
are

:::::::::::
hydrologically

::::::::::
interpretable.

::::
This

:::::
figures

:::::
shows precipitation

:::
data

::::
from

::
the

::::
input

:
(left

column) and activation values after the local stage of the model (right column) for two days in March (top row) and August 2006 (bottom

row),
:
.
:::
The

::::
days

::::
were manually selected for illustration purposes. Values are displayed in arbitrary units, with blue signifying more runoff

or precipitation. We included the outline of Germany
::
(©

:::::::::::::
EuroGeographics

:::
for

::
the

:::::::::::
administrative

:::::::::
boundaries) in dotted lines for geographic

reference. For the day in march
:::::
spring (top row), a low spatial correlation between precipitation and runoff together with a pattern of high

runoff values in low mountain ranges suggests that runoff on this day is primarily driven by snow melt in medium-high
:::::::::
intermediate altitudes.

For the day in August
::::::
summer

::::::
(bottom

::::
row) on the other hand, we see runoff that is driven by two clusters of heavy precipitation in the East

:::::
eastern

:::
part

:
of our study area.

3The country boundary information was downloaded from simplemaps.
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5.7 On Human Influence

We conclude this section by discussing a specific negative outlier in terms of station-wise NSE. As explained above, a negative480

NSE values indicates performance below chance level. The only two stations that yield negative NSE values after training -

consistently across all ten random seeds - are Spremberg and Boxberg (GRDC numbers 6340800 and 6340810) located along

small rivers next to large
:::::
brown

::::
coal surface mining operations in the Lusatia region. A potential explanation for these extreme

outliers is that those mining operations have an influence on the overall water balance that is relatively large compared to

the hydrological processes in such catchments. This seems to support our assumption that human influence is one of the main485

obstacles to be overcome by rainfall streamflow models in the densely populated areas of central Europe. We want to emphasize

that the two stations in question only performed very poorly in the validation period, but not in the test period. We hypothesize

that operations might have changed in the meantime or the test period simply lacks substantial events of human influence by

chance. We plan to investigate this phenomenon more closely and explore potential solutions in future work.

6 Summary and Future Directions490

We have successfully trained a neural network in an end-to-end fashion to capture runoff generation in a spatially resolved

manner and on a large scaleand shown the advantage of this approach
::
on

:::::
large

:::::
scale.

:::::::
Training

:::
on

:::
five

::::::
entire

::::
river

::::::
basins

::
in

:::::
central

:::::::
Europe,

:::
we

:::::
have

:::::
shown

::::
that

::::
this

:::::::
approach

::
is
::::::::::::

advantageous especially in large catchments. We have also managed to

simultaneously train a very simple neural network to perform routing in five river basins in central Europe
:::
The

::::::::::::
parsimonious

:::::::
network

:::::
design

:::
of

:::
the

::::::
module

::::
that

:::::::
performs

:::::::
routing

:::::
within

:::::
these

::::
river

::::::
basins

::
is

:::
also

::::::::::
noteworthy. Not only does this approach495

mitigate overfitting and increase data efficiency, but the simplicity of the design and the ability to integrate inductive bias opens

new possibilities to control the inner workings of the model, which is unusual .
::::
This

::
is

:::
not

::::::::
common for neural networks.

Our model reaches a level of performance comparable to that of other benchmark models, both conceptual and statistical.

In future work, we plan to compare our model to other state-of-the art models that are
::::::::::::
state-of-the-art

::::::
models

:
used in science

and operations. The former requires
:::::::
creation

::
of

:
a spatially resolved version of the popular CAMELS dataset to allow for500

direct comparability with much
:::::
would

:::::
make

:::
our

:::::::
model’s

:::::::::::
performance

::::::
directly

::::::::::
comparable

::::
with

::
a
:::::
large

::::::
portion of the neural

networks literature. A direct comparison of our overall pipeline to that of an operational system like LISFLOOD would be

similarly interesting. Another question that needs to be addressed in the future is how the performance of our model decreases

with the forecast horizon. As we discussed before, our model requires
::::
does

:::
not

::::
have

::::::::
predictive

::::::::::
capabilities

::
of

:::
its

::::
own.

:::::::
Instead,

:
it
:::::
relies

:::
on a suitable meteorological forecast as input to generate a forecast of streamflow quantities, and the quality of the505

model’s predictions
::::
thus depends on the quality of the forecast meteorological input. Quantifying this effect is important for

real-world applications.

In this study, we excluded catchments where we suspected
:::
that human influence is too strong based on a simple catchment

area heuristic. Unlike much research in this area, we do not train our model exclusively on catchments with little human

influence. But a more sophisticated strategy, inspired e.g. by Loritz et al. (2024) or Tursun et al. (2024) is needed to identify510

catchments with a large human footprint,
::::::
properly

::::::::
quantify

::::::
human

::::::
impact

:
and thus being able to properly disentangle the
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effects of catchment area and human influence .
::
on

:::::::::::
performance.

:::::::::
Likewise,

:::::
while

:::
we

:::::::
included

::::
day

::
of

:::
the

:::::
week

::::
and

:::
day

:::
of

::
the

::::
year

:::
as

:::::
simple

:::::::::::::
approximations

::
to
::::::
human

:::::::::
influence,

:::
the

::::::::::
effectiveness

:::
of

:::
this

:::::::
measure

:::
can

:::::
only

::
be

:::::::
properly

::::::::
evaluated

::::
with

::
a

::::::
suitable

::::::
ground

:::::
truth.

:

Another big limitation in terms of data availability is the temporal and spatial resolution: The relatively small size of the515

recurrent layer enables our model to process time series at a higher than daily temporal resolution. Because the local stage ,

where most computation happens, is applied in parallel to all input locations, the number of parameters is independent of the

number of inputs, and computational demand grows .
::::
This

::
is
::::::
where

::::
most

:::
of

:::
the

::::::::::
computation

::::::::
happens,

:::
and

:::
its

::::::::::::
computational

:::::::
demands

:::::
grow

::::
only linearly with the number of locations. The weight matrices in the routing stage grow quadratically, but are

much smaller in the first place.520

Another important aspect that we will address in future work is discussed in Klotz et al. (2022), where the authors extend

a model similar to ours by using the outputs as parameters of a distribution. Such distributional predictions could be obtained

from our model in the same way , which is a relevant feature
:::
and

::::::
would

::
be

::
of

:::::
great

::::::
interest

:
for many real-world applications.

Producing genuinely probabilistic forecasts and warnings in this fashion is theoretically more sound than training an ensemble

of more or less different models and combining their predictions.525

As would be expected from the high degree of human activity in our study area, we found evidence that the effect of

human influence is the central obstacle to further improving model performance in such an environment. Yet, a comprehensive

investigation of the extent and impact of this phenomenon is still required. Future research could demonstrate that our neural

network is capable of incorporating simulated human activity, such as water extraction or diversion, into the modeling of

hydrological processes.530

Code and data availability. The data used in this study is publicly available under CC BY-NC-SA license at hydroshare, the code used to

preprocess it is available under Clear BSD license at our repository.
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Figure A1. Station-wise differences in NSE performance between structured and naive routing, plotted against the size of the station’s

catchment on training (left panel) and test dataset
::::
period

:
(right panel). Positive values indicate that structured routing performs better. The

individual data points are fitted linearly. Structured routing marginally outperforms naive routing on the test dataset (indicated by values

greater zero). On the training dataset, naive routing performs better when data is scarce (values below zero for short training period in green),

indicating overfitting.
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Input Processing Routing Train Period median NSE mean NSE NSE < 0 median KGE mean KGE

spatially res. structured long 0.773 0.751 0.000 −0.077
:::::
0.803 −0.092

:::::
0.779

spatially res. naive long 0.719 0.706 0.000 −0.022
:::::
0.791 −0.035

:::::
0.775

aggregated - long 0.691 0.643 0.013 −0.065
:::::
0.731 −0.078

:::::
0.702

spatially res. structured med. 0.739 0.717 0.004 −0.051
:::::
0.775 −0.062

:::::
0.753

spatially res. naive med. 0.735 0.692 0.008 −0.052
:::::
0.776 −0.055

:::::
0.744

aggregated - med. 0.642 0.603 0.013 −0.072
:::::
0.708 −0.097

:::::
0.666

spatially res. structured short 0.687 0.633 0.017 −0.004
:::::
0.752 −0.030

:::::
0.724

spatially res. naive short 0.653 0.605 0.004 −0.023
:::::
0.739 −0.033

:::::
0.709

aggregated - short 0.485 0.318 0.126 −0.056
:::::
0.610 −0.138

:::::
0.513

Table A1. Various performance metrics for the experiments presented in section 5. The metrics were calculated after picking the best out of

ten random seeds for each condition in terms of median NSE.
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Input Processing Routing initial LR median NSE

spatially res. structured 5e-4 0.738

spatially res. naive 5e-4 0.724

aggregated - 5e-4 0.691

spatially res. structured 1e-3 0.745

spatially res. naive 1e-3 0.721

aggregated - 1e-3 0.704

Table A2. Median NSE over 20 seeds for exploratory experiments on the optimal initial learning rate. Performance was evaluated on the

validation period, as this is part of the model selection process.
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