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Abstract. Snow water equivalent (SWE) is a valuable characteristic of global snowpacksnow cover, and it can be 

estimated using passive spaceborne radiometer measurements. The radiometer-based GlobSnow SWE retrieval 

methodology, which assimilates weather station snow depth observations with passive microwave brightness 

temperatures, has improved the reliability and accuracy of SWE retrieval when compared to stand-alone radiometer 

passive microwave (PMW) methods. However, even this assimilation-based method fails to estimate large (> 150 mm) 15 

SWE values as snow changes from a scatterer to an emitter. Correcting for these systematic biases can improve PMW-

based SWE estimates, especially for high SWE magnitudes. Previously, a monthly bias correction using snow course 

observations was applied to the GlobSnow v3 product for February – May. This method reduced the spread in March 

SWE estimated from four gridded products (GlobSnow v3.0, MERRA2, Crocus and Brown snow models forced by 

ERA-Interim). In this research, we use newly available snow course data to update this bias correction and expand it to 20 

cover the months of December through May; we also extend the monthly bias correction to a daily bias correction. The 

new monthly and daily bias corrections are applied to an updated version of the GlobSnow product - Snow CCI v3.1 

product. The Northern Hemisphere climatological snow mass from the Snow CCI v3.1 bias corrected products (daily 

and monthly) is consistent with that from a suite of reanalysis products. This represents a significant improvement for 

the months of April and May compared to the original GlobSsnow v3.0 bias corrected product, as is the provision of 25 

daily bias corrected SWE estimates.   

 

1 Introduction 

Snow water equivalent (SWE), defined as the depth of water that would result if the snowpack were to melt completely, 

plays a pivotal role in water resource management, climate modelling, flood prediction, and ecological studies (Hall et 30 

all, 2008; Magnusson et al., 2020; Derksen and Brown, 2012; Jones et al., 2011). Passive microwave (PMW) 

radiometer observations, which provide near-continuous brightness temperature (Tb) measurements dating back to 

1978, can be used to estimate SWE. PMW SWE retrieval methods rely on the brightness temperature difference 

between two channels. Tb measurements at a frequency insensitive to dry snow (around 19 GHz) serve as a baseline, 

which are compared with Tb measurements at a frequency sensitive to dry snow (around 37 GHz). The latter 35 
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wavelength is closer in scale similar  to the snowpack microstructure grain size, which induces significant volume 

scattering and attenuates signal (Chang et al., 1987; Kelly et al., 2003; Mätzler, 1994). Significant uncertainties limit 

SWE retrievals based solely on radiometer measurements, and their accuracy often fails to meet user accuracy 

requirements in terms of retrieval skill (e.g. Derksen et al. 2022; GCOS 2022) and exhibit poor spatial and temporal 

correlation with other SWE products (such as the NASA Global Land Data Assimilation System version 2 – GLDAS-2; 40 

the European Centre for Medium-Range Weather Forecasts (ECMWF) interim land surface reanalysis – ERA-

Interim/Land and ECMWF Reanalysis version 5 – ERA5 and the Crocus snow model driven by ERA-Interim 

meteorology) (Derksen et al., 2005; Mudryk et al., 2015; and Mortimer et al., 2020). 

Assimilation of in situ snow depth observation can improve the accuracy of PMW-based SWE retrievals (Pulliainen et 

al. 2006). This assimilation approach was used in the European Space Agency (ESA) GlobSnow project, and its 45 

development continues in the ESA Snow CCI+ project. Despite improvements under the Snow CCI+ program 

(Mortimer et al. 2022), the method is still limited by the inability of passive microwave observations to estimate large 

SWE values as the snowpack changes from a scattering medium to a source of emission when the snowpack is deep 

(SWE ~ > 150 mm). This occurs because, at higher frequencies (~37 GHz), snowpack transitions from a scattering 

medium to an emitter when SWE exceeds ~150 mm, reducing sensitivity to further SWE increases. One approach to 50 

overcome this limitation is to apply a bias correction. Pulliainen et al. 2020 demonstrated that the magnitude of the bias 

in SWE estimates from GlobSnow 3.0 (GSv3.0) relative to in situ snow course observations is stable through time but 

exhibits a strong spatial pattern. Correcting for this spatial bias can, therefore, improve the estimation of hemispheric-

scale snow mass. Applying this concept to a suite of four products (MERRA2, Crocus and Brown snow models both 

forced by ERA-Interim), including GlobSnow v3.0, Pulliainen et al. 2020 reduced the spread in March SWE estimated 55 

by these products from 33% to 7.4% (Pulliainen et al., 2020). Pulliainen et al. (2020) applied this concept to four snow 

products: MERRA2, GlobSnow GSv3.0, and the Crocus and Brown snow models, both of which were forced by ERA-

Interim. This reduced the spread in March SWE estimates from 33 % to 7.4 %. 

Although this method has been used to produce monthly bias corrected GlobSnow v3.0 products for February through 

May, only the March SWE time series has been thoroughly evaluated (Pulliainen et al. 2020, Luojus et al. 2021). March 60 

has been the focus of the evaluations as snow mass usually peaks during this month. Furthermore, until now, 

insufficient snow course data precluded bias correction outside these months (Luojus et al. 2021). Given the 

demonstrated success of this method, in this study, we apply the method to the most recent product in the GS/CCI 

product line – Snow CCI v3.1 (SCv3.1). We exploit the availability of additional snow course data, which has been 

made available since GSv3.0, to improve the bias correction and extend it to December and January. Building on 65 

Pulliainen et al. (2020) and Luojus et al. (2021), which limited the evaluation of bias-corrected products to March, we 

analyse the bias corrected SWE estimates for all months from December to May. Finally, to address user needs 

(Derksen et al. 2022, GCOS 2022), we developed a daily bias corrected SCv3.1 product that is based on monthly bias 

correction fields.  

This paper is organised as follows. Section 2 describes the SWE retrieval algorithm and updates to it. Monthly and daily 70 

bias corrections, the reference dataset, and validation and evaluation methods are also discussed in Sect. 2. Section 3 

describes the results and is divided into two subsections: the first focuses on monthly bias correction, and the second 

examines the results of the daily bias correction. Section 4 discusses the results obtained, and conclusions are drawn in 

Section 5. 



3 
 

 75 

2 Data and Methods 

2.1 SWE retrieval 

The PMW SWE retrieval is based on the methodology introduced by Pulliainen (2006) and Takala et al. (2011) and is 

briefly summarised here. The two primary data inputs to the algorithm are vertical passive microwave Tb and daily 

synoptic snow depth (SD) measurements. SD measurements are collected from multiple sources. The main sources for 80 

Eurasia are the European Centre for Medium-Range Weather Forecasts (ECMWF) and the All-Russia Research 

Institute of Hydrometeorological Information - World Data Cente (RIHMI-WDC) (Bulygina and Razuvaev, 2012). 

Global Historical Climatology Network daily (GHCNd) (Menne et al., 2012) by National Oceanic and Atmospheric 

Administration (NOAA) is used as the main dataset for North America.  The satellite Tb data are from the Special 

Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) instruments on board the 85 

Defence Meteorological Satellite Program (DMSP) F-series satellites. Measurements at 37 GHz and 19.40 GHz 

(SSM/I) or 19.35 GHz (SSMIS) are used for SWE retrieval. Both synoptic SD and Tb measurements are filtered before 

the algorithm ingests the data. Filtering is needed to guarantee convergence on a solution during the assimilation 

process, and the filtering process is described in detail in Luojus et al. (2021). Water, complex terrain, and dry snow 

masking are applied to Tb measurements. SWE retrieval is performed only for dry snow; for wet snow, the SWE 90 

estimates are based on the background SD field.  

The four main steps of the SWE retrieval are described shortly here; for more details, see Luojus et al. (2021). Firstly, 

kriging interpolation is used to produce a continuous field of in situ SD and its variance using filtered synoptic SD 

observations for the day under investigation. Then, the effective snow grain size (diameter), 𝑑0, is retrieved for grid 

cells with SD observations (measurements, not interpolated values) by numerical inversion of the multi-layer HUT 95 

(Helsinki University of Technology) (Pulliainen et al., 1999) snow emission model. The model is fitted to PMW Tb 

observations at the locations of SD observations by optimizing the value of 𝑑0. The final 𝑑0 estimate and its standard 

deviation at each SD measurement location is obtained by calculating the average value of the six nearest SD 

measurements. 

Thirdly, a background 𝑑0 field (and its variances) is interpolated from the 𝑑0 effective snow grain size estimates 100 

produced for pixels with SD observations in the previous step. Finally, SWE is retrieved by ingesting observed Tb, 

retrieved effective snow grain sizes, and grain size variances into a numerical inversion of the HUT snow emission 

model. The HUT model estimates are matched to observations numerically by incrementing the SD value. The 

background SD field (produced in the first step) is used to constrain the retrieval. The assimilation procedure adaptively 

weighs the Tb measurements and the background SD field to produce a final SD estimate, which is converted to SWE 105 

using the constant snow density (value of 240 kg m−3 is used for snow density, as this is a reasonable global value given 

by the analysis of Sturm et al. (2010)) and a measure of the statistical uncertainty (variance estimate) for each pixel. 

After these four main steps are performed, snow-free areas are identified using various snow masks and cleared of SWE 

to form final SWE estimate maps.  

 110 

2.12 Snow CCI v3.1 CDR 
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Although the general framework has remained consistent in subsequent versions of the GlobSnow and Snow CCI SWE 

products, modifications have been made to the retrieval algorithm and the input data, that have improved the accuracy 

of the SWE retrieval. Here we outline key differences between the SCv3.1 climate data record (CDR) and the older 

GSv3.0 dataset to which the previous bias correction was applied. First, SCv3.1 uses the NASA MEaSUREs Calibrated 115 

Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR (Brodzik et al., 2016) 

instead of the heritage Nimbus-7 (1979-1987) (Knowles et al., 2000) and SMMR (1988–present) (Armstrong et al., 

1994) Pathfinder Daily EASE-Grid 1.0 Brightness Temperature datasets. The newer recalibrated enhanced resolution 

PMW data allowed SCv3.1 to be generated at a finer spatial resolution (EASE-Grid 2.0 12.5 km re-gridded to 0.1° 

lat/lon) compared to GSv3.0 (EASE-Grid 1.0 25km) and improved the continuity of the SSM/I – SSMIS time series 120 

(Mortimer et al. 2022).  

Second, SCv3.1 utilises spatially and temporally varying snow densities in the retrieval instead of the constant density 

(240 kg m-3) used in GSv3.0. Snow density serves as one of the inputs to the HUT snow model employed in the 

retrieval, aiding in determining effective snow grain sizes and SWE. This change in snow density parameterization 

improved the overestimations of small SWE values and brought the timing of peak SWE closer to that of other gridded 125 

SWE products (Venäläinen et al., 2023).  

Third, the dry snow detection algorithm used in the retrieval has been updated, and the snow masks used to remove 

SWE estimates from snow-free areas during post-production have both been updated. Inside the retrieval, dry snow is 

detected using a modified version of the Hall et al. (2002) algorithm, which was applied in GCv3.0. The updated 

algorithm has different threshold values than the original algorithm, and this improves dry snow detection, especially 130 

during snow accumulation season when the original algorithm often under-detects snow (Zschenderlein et al., 2023). 

The threshold for SD was decreased from 80 mm to 30 mm, the brightness temperature thresholds were changed from 

250 K to 255 K for Tb37V and from 240 K to 250 K for Tb37H. In post-production, SWE estimates are removed from 

snow-free areas using a combination of optical and passive microwave snow extent information. GSv3.0 used a passive 

microwave thresholding approach by Takala et al. (2009) and the JASMES 5 km Snow Extent data product (Hori et al., 135 

2017). The SCv3.1 product replaces the JASMES 5km SE data with CryoClim snow cover extent (Solberg et al., 2014), 

supplemented with data from the passive microwave thresholding approach. 

Finally, extending the time series to include more years will impact the filtered SD data. Before performing spatial 

interpolation and assimilation (Sect. 2.0), the synoptic SD data are filtered to exclude stations with fewer than five years 

of data and those where the mean SWE exceeds 150 mm for half of the recorded period. Since SCv3.1 includes four 140 

more years of data than GSv3.0, this filtering protocol may result in slight differences in the SD data input into the SWE 

algorithm. 

 

2.32 Bias correction 

2.32.1 Monthly bias correction 145 

Assessing and correcting for biases in SWE products requires in situ SWE observations. Snow courses have 

traditionally been the preferred type of in situ data to evaluate coarse resolution gridded SWE products because they 

sample at spatial scales of several hundreds of metres to several kilometres. Unfortunately, snow course observations 
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are infrequent (made every 5 days to just once a month), and their locations are unevenly distributed across the 

Northern Hemisphere. The bias correction method developed by Pulliainen et al. 2020 and applied here is based on the 150 

premise that the bias is stable through time but exhibits a strong spatial pattern.  By exploiting this temporal stability, 

we can minimise the impact of infrequent sampling by pooling the bias at each grid cell over the full observational 

period. In this way, the method addresses systematic spatial biases, but interannual variability in the time series and its 

bias is retained.  

The monthly bias correction strategy is implemented as follows. A mean SWE 𝐵𝐼𝐴𝑆𝑖  (in mm) is calculated relative to 155 

the reference observations at snow course i from all observations of that particular snow course over the period of 

record. All measurements within the same EASE-Grid cell are considered to be from the same snow course location. 

The SWE reference observation is denoted as 𝑅𝐸𝐹𝑖,𝑡, for snow course i at time step t, and 𝐸𝑆𝑇𝑖,𝑡 is the corresponding 

passive microwave-based estimate. We can calculate the bias for snow course i across the whole time series by: 

𝐵𝐼𝐴𝑆𝑖 =  
1

𝑁𝑖
∑ (𝐸𝑆𝑇𝑖,𝑡 − 𝑅𝐸𝐹𝑖,𝑡)

𝑁𝑖
𝑡=1 .    (1) 160 

After the mean bias is calculated for each grid cell with coincident snow course observations, ordinary kriging 

interpolation is used to create a spatially continuous bias field.  

This process is repeated for each month separately, from December through May. Bias fields are not calculated for 

other months as limited reference data are available, and the snow cover extent is relatively small. A single bias field 

(interpolated mean bias from each EASE-Grid cell with snow course observations) is produced for each month. It is 165 

applied to all years in a time series of monthly SWE maps for the corresponding month. For GSv3.0, monthly SWE 

maps are the arithmetic mean of the valid SWE retrievals for each pixel. For SCv3.1, days without valid retrieval are 

first filled with mean estimates from the two closest available retrievals, and then the pixel-wise monthly mean is 

calculated. Filling missing days before calculating monthly values has a minimal effect during mid-winter when most 

days have valid retrievals. In May, filling removesadds little snow to monthly mean values. Bias fields are computed for 170 

all land areas north of 15°N and applied to the snow-covered area. 

 

2.32.2 Daily bias correction 

To expand the usage of the spatial bias correction methodology, we produced daily bias fields and applied them to the 

daily SCv3.0 SWE product. The daily bias maps were interpolated from the monthly maps as a weighted mean between 175 

the 15th of each month. For example, the bias map for 14 January is the weighted mean of December and January maps, 

and the map for 16 January is the weighted mean of January and February maps. The bias map for 15 January is the 

same as the January monthly bias map.  

Weights are calculated for each day i as follows:  

𝑤1,𝑖 =
𝑑𝑏−𝑑𝑖

𝑑𝑏
     (2) 180 

𝑤2,𝑖 =
𝑑𝑖

𝑑𝑏
     (3) 



6 
 

where 𝑤1,𝑖 is the weight of the bias map of the first month for 𝑖𝑡ℎ day, 𝑤2,𝑖 is the weight for the bias correction map of 

the second month for 𝑖𝑡ℎ day, 𝑑𝑏 is the total number of days between the 15th of the first and second month and 𝑑𝑖 is 

the 𝑖𝑡ℎ day from the 15th of the first month. One map is made for each day between 1 December and 31 May.  Daily 

values for the first half of December (1-15 December) and the second half of May (16-31 May) are assigned the 185 

monthly values. These daily bias maps are used to perform bias correction for all years between 1980 and 2022 by 

subtracting the bias in each pixel from the estimated SWE value in the corresponding pixel. 

 

 2.34 Use of in situ snow data within the SWE retrieval  

In this paper, we focus on updates to the bias correction. However, to interpret the results, it is instructive to understand 190 

how and where in situ snow information is used within the retrieval. In situ SWE and snow density information from a 

precursor to Mortimer and Vionnet (2024), with additional snow density information over Finland, areis used to 

parameterise snow density in SCv3.1 and to generate bias maps. Although both the density fields and the bias correction 

rely on snow course data, the observations included, as well as the data aggregation methods, differ slightly. Although 

both the density fields and bias correction use snow course data, they include different observations and employ slightly 195 

different data aggregation methods 

First, not all snow courses report snow density or provide SWE and SD from which bulk snow density can be derived. 

Thus, there are some snow course locations that are included in the bias correction but are not informative for the 

density fields. Second, to increase the spatial and temporal coverage of snow density information, automated snow 

pillows with coincident SD measurements are used. In contrast, SWE information from snow pillows isare not used to 200 

calculate the spatial bias fields.  

Third, data aggregation and interpolation methods vary between density and bias correction. To generate daily snow 

density fields, all density observations within an EASE grid cell over a moving 10-year window are averaged and 

spatially interpolated to create a continuous field, yielding a daily density field for each day over the period of record. In 

contrast, for bias correction, monthly biases between the snow course and SWE estimates are averaged across the entire 205 

period, producing a single bias map for each month over the study period. 

 

2.45 Summary of changes in the reference snow course data 

The availability of snow course data, and, in particular, its spatial distribution, will impact the ability to represent and 

correct for the spatial bias accurately. Since the development of the GSv3.0 of bias fields, more snow course data have 210 

become available. The new bias fields (monthly and daily) are calculated using snow course data from North America 

(Mortimer and Vionnet, 2024), Finland (Haberkorn, 2019), and Russia (Bulygina et al., 2011). Notably, despite the 

addition of a considerable amount of new in situ data, the assumption that the monthly bias at a given location (EASE 

grid containing snow course(s)) is stable through time remains generally valid (Appendix A). 

Figure 1 presents the locations of reference SWE sites from December to May, with new locations in red and the 215 

original in blue. The updated and original snow course datasets have similar locations in Eurasia, except for a few 

changes. The updated dataset contains around 100 new locations and about 3 000 more observations for Finland. 
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Additionally, the Russia dataset was changed from INTAS-SCONE (Kitaev et al., 2002) to RIHMI-WDC (Bulygina et 

al., 2011). The new Russian dataset has about 25 00 more observations than the orginallder dataset for the comparable 

period of February-May 1979-2016.  220 

In North America, the new dataset has expanded the coverage across Alaska and the western and northeastern US. 

There are also several new sites in the northern boreal forest (Quebec and northern Manitoba). As illustrated in Figure 

2, these additional sites have increased the number of SWE observations in all months analysed. The amount of data 

available for bias correction over North America in the lowest (0-50 mm) and highest (150 mm-350 mm) SWE bins has 

increased significantly (by a factor of >3 in the low bins, and there was previously minimal data in the highest bins). As 225 

will be discussed in Sect. 3.1, this additional data in the high SWE bins is responsible for most of the differences in the 

bias fields calculated with the updatednew and originalld data. It is notable that, especially in the new reference dataset, 

the reference SWE covers a much larger range in North America compared to Eurasia, and the mean SWE value is 

larger.  

 230 
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Figure 1: Locations of reference snow courses. UpdatesNew locations are shown in red, and the original ones in blue. Mean 

monthly SWE and values and snow cover extent are also shown in the figure. .  235 
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Figure 2: Monthly distributions of the updatednew (red) and oldoriginal (blue) reference SWE measurements for Eurasia 

(top) and North America (bottom). Monthly mean SWE values [mm] are shown with vertical lines. 

 240 

2.56 Product comparison and evaluation  

We develop and apply monthly and daily bias corrections to the SCv3.1 product from December through May. The 

monthly bias corrected SCv3.1 product is compared to the older GSv3.0 monthly bias corrected product to illustrate 

changes between the products. This comparison incorporates elements of algorithm and input data modifications (Sect 

2.1) as well as updates to the in situ data used to calculate the bias correction fields (Sect. 2.4). First, to isolate the 245 

impact of additional snow course sites on the spatial bias field, bias maps for the monthly GSv3.0 product using both 

the original and updated snow course data are compared. Differences in the bias maps and the corresponding bias-

corrected SWE are interpreted in the context of changes to the reference snow course data. described in Sect. 3.1.  

After assessing the impact of additional reference data on the mean monthly spatial bias of the GSv3.0 product, we 

calculate and apply a monthly bias correction using the updatednew reference data to the SCIv3.1 product. Similar to 250 

the previous comparison, we directly compare the bias maps. In this comparison, differences in the bias fields largely 

reflect changes in the retrieval algorithm and input data, which have been analysed elsewhere (e.g. Mortimer et al. 

2022). To understand changes in the final SWE products, we compare the bias corrected SWE of monthly GSv3.0 and 
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SCv3.1 bias corrected products (both using the updatednew snow course data for bias correction) on a pixel-wise level 

and investigate their respective time series of March continental (North America and Eurasia) and hemispheric SWE.  255 

Table 1: The six different SWE products evaluated and analysed in the results section. 

Product Time resolution SWE retrieval algorithm Bias correction reference 

data 

GSv3.0 Daily Original No bias correction 

GSv3.0 monthly bias 

corrected original 

Monthly (February-May) Original Original 

GSv3.0 monthly bias 

corrected updated 

Monthly (February-May) Original Updated 

SCv3.1 Daily Updated No bias correction 

SCv.3.1 monthly bias 

corrected 

Monthly (December-May) Updated Updated 

SCv.3.1 daily bias 

corrected 

Daily Updated Updated 

 

Finally, we validate SCv3.1 daily bias corrected product. Validation of the daily bias-corrected products is challenging 

because of a lack of independent in situ reference data. Snow course data that would typically be used to validate the 

SWE products (e.g. Mortimer et al. 2020, 2022; Mudryk et al. 2024) are used to derive spatially and temporally varying 260 

snow densities applied in SCv3.1 and to calculate the bias correction fields applied to both GSv3.0 and SCv3.1 (Sect. 

2.3). Various averaging and interpolation steps applied, and in the case of the density fields, additional automated data 

are included., However, averaging and interpolation steps are applied to these data and automated data are included to 

compute the density fields. This means that the individual in-situ samples are not fully correlated with the bias-

corrected (or non-bias-corrected) SCv3.1 estimates, nor are they fully independentwhich mean that the individual in-situ 265 

samples are not fully correlated with the bias-corrected (and non-bias-corrected SCv3.1) estimates but are also not fully 

independent. The impact of the connection between the reference data and the product was demonstrated in the 

evaluation of monthly GSv3.0 (Luojus et al.2021), where the bias of the uncorrected data was shown to be roughly 

equal to the bias-corrected data less the value of the correction field at the points sampled. For these reasons, 

comparison with in -situ snow courses, provided in Appendix D, is not a rigorous assessment of product accuracy and 270 

thus only serves as a guide to illustrate the impact of bias correction.  

Given the lack of independent reference snow courses, we also conduct an evaluation using reference observations from 

airborne gamma SWE estimates available over the US and parts of southern Canada (Carroll, 2001). Figure 3 shows 

locations of gamma SWE measurements for March and April. Locations for January and February are similar to March. 

December, and May contain only a few data points. These data have previously been used to validate gridded SWE 275 

products, including GlobSnow (Cho et al. 2020; Mudryk et al. 2024). Airborne gamma observations are typically 

conducted once per year near peak SWE. Less than one third of site-years have more than one observation. 

Observations are concentrated in February and March (32% and 38% of observations, respectively). Observations in 

December, and May each account for less than 1% of the data. Given the limited spatial (and temporal) coverage of 
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these data, the validation with airborne gamma data are not representative of the hemispheric-scale performance but 280 

nonetheless provides an important independent baseline. Validation metrics, calculated from coincident reference and 

product SWE for SWE < 500 mm and SWE < 200 mm, include root mean squared error (RMSE), mean absolute error 

(MAE), bias, and correlation.  

To increase the coverage of our assessment, we include an intercomparison using ensembles of reanalysis products. 

Pixel-wise comparisons are conducted for the daily CCI bias-corrected product for each month from December to May. 285 

NH Hemispheric SWE is compared to two suites of reanalysis products from the SnowPEx Intercomparison Project 

(Mudryk et al. 2024).  

 

 

Figure 3: Distribution of airborne gamma reference data used for validation for March and April. Mean monthly SWE and 290 
values and snow cover extent are also shown.  

 

3 Results 

3.1 Impact of reference data changes on the bias correction 

The changes to the reference data described in Sect. 2.3 are expected to impact the accompanying bias fields. For 295 

example, a considerable proportion (~ 30 %) of the added data in North America is above the PMW retrieval method 

detection limit (~150 mm, Luojus et al., 2021), resulting in negative biases. It is expected that the bias over North 

America will be more negative, and hence, more SWE will be added to the bias corrected product when calculated 
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using the updatednew reference data compared to the original. In the following, we compare the bias fields for the 

monthly GSv3.0 dataset using both the updatednew and originalld reference snow course data. 300 

Figure 4 shows bias fields for February, March, April, and May calculated using original (top) and updated (middle) 

reference datasets. Bias fields for the SCv3.1 are also shown in the bottom row of Figure 4. SCv.3.1 bias fields for 

December and January can be found in Appendix B. The bias fields calculated with the original and updated snow 

course datasets for GSv3.0 exhibit similar spatial patterns. Both fields have notable negative biases in western North 

America and the province of Quebec, Canada, for all months, consistent with patterns documented elsewhere (Luojus et 305 

al. 2021, Mudryk et al. 2024). Many of the large negative biases occur in areas where the SWE exceeds the algorithm 

detection limit (~150 mm, Sect. 2.1). In Eurasia and central North America, the bias is mainly positive during February 

and March. Previous work has shown that much of this overestimation is due to the constant snow density exceeding 

the true snow density in these regions until mid-March (Mortimer et al. 2022, Venäläinen et al. 2023), leading to an 

overestimation of SWE in these areas. The variable snow density applied in SCv3.1 (Sect. 2.1) reduces much of this 310 

positive bias (Venäläinen et al., 2023). In April and May, the bias is primarily negative across the entire Northern 

Hemisphere.  

 

Figure 4: Monthly bias for February-May calculated for GSv3.0 using the original (top) and updated (middle) reference data, 

and for SCv3.10 (bottom) with the updated reference data for the mean monthly 1980-2018 snow covered area calculated 315 
from the snow extent maps used in SWE retrieval (Sect. 2.1). In practice, the bias correction is applied exclusively to snow-

covered areas. 
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Although the spatial patterns of bias are similar for both versions of GSv3.0, there are some notable differences in the 

bias fields (Appendix C). Overall, changes are most pronounced in February and March, and differences are larger in 320 

North America. A significant amount of new data was added in Alaska, the western and northeastern US mountains, as 

well as parts of Quebec and northern Manitoba (Figure 1). In Alaska, these additional data resulted in a larger 

magnitude and mostly more expansive negative biases for all months except May, when the differences are minimal. 

Positive biases remain visible in parts of Alaska in February and March, and in parts, original bias correction even 

results in more snow. In Quebec, the addition of new data reduced the magnitude of positive bias in the northwest 325 

(along Hudson Bay) in February. In April and May, the magnitude of the negative bias is larger in the updatednew 

fields, whereasbut in March, it is lower.the magnitude is lower in the new bias fields. In central parts of North America, 

positive bias observed in the original bias fields is reduced, even becoming negative in some areas during February and 

March. Finally, despite the addition of new sites in Finland, the bias field remains similar, suggesting that the original 

snow course data adequately sampled the snow conditions across Finland at the scale of the GlobSnow and Snow CCI 330 

products. The high accuracy of SWE retrievals over Finland, due in part to the dense synop SD coverage, may also 

contribute to the small biases (and hence little change in the bias) in this region.  

The impact of the additional reference data is also evident in the regional and hemispheric March snow mass (Figure 5). 

The Northern Hemisphere March (non-mountainous) snow mass is consistently higher with the updated bias correction 

(blue line, original bias correction in black). This increased snow mass is attributed mainly to changes in North America 335 

(larger negative bias in Alaska and smaller positive biases in central parts of the continent), where the snow mass from 

the updated bias correction (blue line) is >100 Gt larger than withwhen calculated the original reference data (black 

line). In Eurasia, the updated bias correction yields marginally higher snow mass estimates (Figure 5).   

 

Figure 5: Mean March snow mass (excluding complex terrain) for the Nnorthern hHemisphere, Eurasia and North America 340 
based of the bias-corrected GSv3.0 (black), updated bias-corrected GSv3.0 (blue) and bias-corrected SCv3.1 (red) products 

with the 5-year running mean (solid lines).  

 

3.2 Impact of changes in SWE retrieval and input data on the bias correction - Snow CCI v3.1 monthly bias 

correction 345 
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Having assessed the impact of altering the snow course dataset on the spatial biases, we apply the updatednew snow 

course dataset to an updated version of the GSv3.0 product – SCnow CCI v3.1. As outlined in Sect. 2.4, observed 

differences in bias fields reflect changes made to the retrieval algorithm and input data described in Section 2.3. In 

general, the magnitude of the bias in SCv3.1 is smaller compared to GSv3.0, particularly across Eurasia and to a lesser 

extent over central North America (Figure 4), consistent with known improvements to the CCI SWE retrieval 350 

(Venäläinen et al., 2023, Mortimer et al., 2022). 

In Eurasia, which saw significant changes to the bias field compared to GSv3.0, SCv3.1 has predominantly negative 

(positive) biases in Western (Eastern) Eurasia during February and March (Figure 4, bottom row). GSv3.0 has a mostly 

positive bias in February and a more varied pattern in March. In North America, positive biases in the centre of the 

continent are reduced during February and March (compared to GSv3.0), even becoming negative in the south-central 355 

snow-covered regions during March. In April and May all biases are mostly negative with few local exceptions. 

Despite improvements to the SWE retrieval and input data, reflected in the smaller biases compared to GSv3.0, there 

are locations and times of the year where the accuracy cannot be improved by tuning parameters because SWE 

consistently exceeds the retrieval’s detection limit (~150-200 mm). In these cases, the bias is consistently negative. This 

issue is exemplified by the persistent large negative biases in Quebec and Ontario (Canada), as well as in the western 360 

US mountains. Many of these areas also had new snow course sites, which further increased the extent and magnitude 

of the negative bias (in GSv3.0 compared to that calculated with the originalold data (Sect 3.1)).   

Applying the updated snow course data for both GSv3.0 and SCv.31, we show, in Figure, 6 shows differences in the 

3940-year mean monthly SWE for each pixel for the bias corrected monthly GSv3.0 and SCv3.1 products (both 

corrected using the updated snow course data, e.g. Figure 4 bottom two rows used for bias correction). Red (blue) 365 

indicates areas where the bias corrected GSv3.0 product has more (less) SWE compared to the bias corrected SCv3.1 

product. Differences are most pronounced, albeit less expansive, in May when the snow extent is smallest. In North 

America, the updated GSv3.0 tends to have more snow along the coast of Hudson Bay and across much of the prairies 

during February and March, as well as along the Alaskan coasts. The SCv3.1 has more snow in eastern North America 

and across much of the boreal forest, with some exceptions. The differences across Eurasia are more mixed. GSv3.0 has 370 

slightly more snow in north-eastern Siberia during February and March, while SCv3.1 has slightly more snow in 

western Eurasia, with some localised exceptions (probably around synop sites or snow course sites). In Eurasia, there 

are localised areas with large differences in SWE, notably around the Kara Sea, which has large positive biases in 

GSv3.0 (both sets of reference data) but not in SCv3.1 and northeast Siberia and around Ural mountains, which have 

large negative biases in both GlobSnow products but negligible biases in Snow CCI product (Figure 3).   375 
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Figure 6: Difference between 39 year mean monthly bias-corrected GSv3.0 and SCv3.1 products, both using the updated 

reference data.  

 

In terms of the time series of March snow mass (Figure 45), when the updated snow course data are used, the SCv3.1 380 

estimates (red line) are consistently lower than those of GSv3.0 (blue line). Most of the hemispheric-scale reduction is 

attributed to lower Eurasia snow. Changes made to the retrieval (see Sect. 2.2, Mortimer et al., 2022; Venäläinen et al., 

2023) reduced the March snow mass in Eurasia by around 100 Gt. Although the bias correction adds snow to Eurasia, 

the bias corrected SCv3.1 still has less snow than the bias corrected GSv3.0 product. In North America the spatial 

differences observed in Figure 6 tend to average out at the continental scale. Except for a few anomalous years (in the 385 

lates 1980s), likely tied to changes in PMW Tb data (see Mortimer et al. 2022), the March North American snow mass 

is similar in GSv3.0 and SCv3.1 (when the same updated reference data are used to calculate the bias).  

To place the monthly bias corrected products into a broader context, we compare their respective climatological snow 

mass to that of reanalysis products analysed in the  SnowPEx project  two suites of reanalysis products, as described in 

Sect. 2.65. The updated bias corrected SCv3.1 product shows a clear improvement compared to the original GSv3.0 390 

bias corrected product (Figure 78). The GSv3.0 bias corrected (Figure 87 red crosses) May snow mass is well outside 

(above) the range estimated by both ensembles and the April snow mass is at the high end of the SnowPEx+ ensemble 

(blue shading). GSv3.0 February snow mass is also near the low end of SnowPEx+ spread. The monthly GSv3.0 

product was only thoroughly evaluated for March (Sect. 1; Pulliainen et al. 2020, Luojus et al. 2021), and, as evidenced 

by Figure 78, the monthly SWE provided for April and May are clearly too high and for February estimate is quite low.  395 

The updatednew monthly bias corrected SCv3.1 product is a clear improvement with its monthly climatological SWE 

(Figure 87, grey square) falling in the middle of the range estimated by the SnowPEex+ product suite. 
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Figure 7: Northern hemisphere climatological snow mass 1980 – 2018, excluding complex terrain. Shading shows the range of 

products included in the SnowPEx (grey) and SnowPEx+ (blue) Intercomparison projects. Crosses indicate values from the 400 
GSv3.0 bias corrected monthly product and squares show SCv3.1 bias corrected monthly product. Dashed line shows the 

daily bias corrected SCv3.1 and solid line is ‘non-bias-corrected’ SCv3.1 product.  

 

 

Figure 6: Difference between 40 year mean monthly bias-corrected GSv3.0 and SCv3.0 products, both using the updated 405 
reference data.  

 

 

3.3 Daily bias correction 

We computed daily bias maps for each day from December through May using the monthly SCv3.1 bias correction 410 

maps (Sect. 2.2.2). These daily bias maps were then used to bias correct SCv3.1 product between 1980-2022. To 

understand the impact of the bias correction on the accuracy of the daily product, we compare the daily SCv3.1 

uncorrected and bias-corrected products to airborne gamma SWE observations (Table 21) and a suite of reanalysis 

products (SnowPEx products, Sect. 2.5). Supplemental evaluation with the same snow course data used to calculate the 

bias maps is provided in Table BD1.  415 
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Table 12: Validation parameter for SWE < 500 mm/SWE < 200 mm for North America for 1980-2022 calculated using 

independent airborne gamma SWE measurements. 

 RMSE [mm] MAE [mm] Bias [mm] Correlation 

Coefficient 

GlobSnow v3.0 51.9/42.3 37.0/31.9 -20.7/-14.7 0.56/0.52 

SnowCCI v3.01 48.7/41.8 35.4/31.7 -18.8/-14.3 0.65/0.60 

SnowCCI v3.10, 

bias corrected 

45.9/43.1 32.0/30.2 

 

-3.3/-0.4 0.68/0.60 

 

Based on comparisons with airborne gamma SWE validation (Table 21), daily bias correction results in a large 420 

improvement in the bias and marginal improvement in the MAE for both upper SWE limits (< 200 mm and < 500 mm). 

For SWE < 500 mm, the RMSE and correlation also improved slightly. For the lower SWE limit (< 200 mm), RMSE 

degraded slightly for the bias-corrected product, and there is no change in the correlation. Importantly, however, the 

airborne gamma SWE data are restricted to the US and parts of southern Canada (Figure 3), so the corresponding 

validation may not be indicative of the product’s hemispheric performance. Notably, it excludes much of the high SWE 425 

areas in the northern boreal forest, which tends to have high SWE and large biases in the uncorrected product (Figure 

4). Most tundra regions and all of Eurasia are also excluded from this validation dataset. Therefore, we also calculated 

validation statistics with the snow course data (Table DB1), despite the aforementioned caveats (Sect. 2.5). Since these 

data are used to perform the bias correction and to inform the snow density used within the retrieval, we expect strong 

agreement between the bias-corrected CCI data and the snow course observations. As expected from Figure 4 and Sect. 430 

2.3-2.5, the impact of the bias correction is greater for North America compared to Eurasia. Further, despite applying a 

bias correction, the RMSE and MAE are still considerably larger in North America. 

To extend our evaluation across the full Northern Hemisphere snow-covered area, we compare the daily SWE fields to 

those of a suite of reanalysis products (Sect. 2.5), as shown in Figure 87. The comparison includes data from all months 

between December and May. Figure 78 also includes a comparison of the bias-corrected and original SCv3.1 products. 435 

It is important to note that while the ensemble of reanalysis products provides reasonable SWE estimates, the ensemble 

does not represent ground truth values. Some differences observed between the reanalysis products and SCv3.1 may 

reflect limitations in the reanalysis datasets. 

Consistent with Figures 3 and 5, the bias correction increases the Northern Hemisphere snow mass compared to the 

original SCv3.1 product, with the largest changes occurring in April and May. Regionally, significant increases are seen 440 

in eastern Canada and in areas bordering the complex topography mask across all months (Figure 78). 

Overall, compared to the reanalysis mean, the bias-corrected product has more snow in North America, arctic regions 

excepted, and less snow in Eurasia, mountainous regions excepted. In detail, bias-corrected SCv3.1 has less snow mass 

across western and northern Eurasia, with some exceptions, and more snow mass in Finland (May excepted), southern 

Eurasia, and in mountainous areas or those bordering the complex topography mask. In North America, there are 445 

notable areas with considerably higher SWE (~40-60 mm higher) than the reanalysis mean in south-west Quebec, 

Canada and in areas bordering the complex topography mask in the west. There is generally less snow mass in the 
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eastern Arctic [North America] and areas bordering Hudson Bay. Elsewhere, the bias-corrected SCv3.1 has higher SWE 

than the reanalysis mean. 

 450 

 

Figure 78. Pixel-wise comparison of the monthly average of the daily bias corrected SCv3.1 and a suite of reanalysis 
and comparison of SCv3.1 and bias corrected SCv3.1 for December to May. Masked complex terrain is shown with 
grey.. 

Finally, although the improvement in product accuracy captured by the comparisons with in situ data is small, there is a 455 

large improvement in the Northern Hemisphere climatological snow mass estimation. The uncorrected SCv3.1 product 

is at the bottom of the SnowPex+ suite and at the low end of the SnowPex1 suite. The bias correction adds (~500 Gt) 

snow mass such that its climatological SWE is in the middle of the reanalysis product spread.  

For the daily bias corrected product (Figure 87, dashed lines), the peak amount of snow is about 500 Gt larger than for 

the non-corrected products. This increase in snow mass brings the peak snow mass closer to the snow mass estimates of 460 

reanalysis products (Mortimer et al. 2022), and as seen in Figure 78, the bias corrected peak snow mass is close to the 

middle of the spread instead of near the lower end. 
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Figure 8: Northern hemisphere climatological snow mass 1980 – 2018, excluding complex terrain. Shading shows the range of 

products included in the SnowPEx (grey) and SnowPEx+ (blue) Intercomparison projects. Crosses indicate values from the 465 
GSv3.0 bias corrected monthly product and squares show SCv3.1 bias corrected monthly product. Dashed line shows the 

daily bias corrected SCv3.1 and solid line is ‘non-bias-corrected’ SCv3.1 product.  

 

4 Discussion 

A key limitation of passive microwave SWE retrievals is their systematic underestimation of large SWE values. These 470 

retrievals rely on differences in measured Tb between frequencies sensitive to snow grain volume scattering and those 

insensitive to snow (Chang et al., 1987; Kelly, 2009; Tedesco et al., 2010). When snow depth is substantial (SWE ~ > 

150 mm), the snowpack transitions from a scattering medium to a source of emission, leading to the underestimation of 

large SWE values. Assimilating in -situ snow depth data, as implemented in the GlobSnow SWE retrieval, partially 

mitigates this issue and enhances estimates of moderate snowpacks (SWE ~< 200 mm) (Mortimer et al., 2020). 475 

However, as illustrated in Figure 6, the underestimation of large SWE values still persists in both GlobSnow SWE and 

updated Snow CCI SWE retrievals. Based on the findings of this study, daily bias correction presents a promising 

approach to address this underestimation problem. 

Daily bias correction adds a notable amount of snow (~500 Gt) to the nNorthern hHemisphere climatological snow 

mass, bringing the bias-corrected values consistent with those of reanalysis and model-based products (Figure 8). This 480 

improvement is important for analysing long-term and large-scale trends in snow mass. Based on validation with 

airborne gamma SWE (Table 1), the estimation of large SWE values is also improved with daily bias correction. This is 

expected because the physics of the retrieval method limits the uncorrected values to shallow and moderate snowpacks. 

In areas of high SWE, in most cases, the applied bias correction adds SWE to bring the estimate closer to the true value.  

Although the Hemispheric SWE is clearly improved, there are notable regional differences, as illustrated through our 485 

comparison with reanalysis data. In the future, comparison with region specific reanalysis data might help to identify 

region where SWE retrieval is most inaccurate.   
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As discussed, global validation of bias corrected products is challenging due to a lack of independent reference data, but 

validation was performed using airborne gamma data available over the US and southern Canada (Table 1). As 

presented in Luojus et al. 2021, when assessed with the same snow courses used to produce the monthly bias correction, 490 

the bias of the uncorrected data is roughly equivalent to that of the corrected product, less the value of the bias 

correction field. Given the dependence of the bias correction on the snow course data, it is not surprising that validation 

statistics obtained using those data outperform those based on the airborne gamma data. For example, central North 

America is well covered by airborne gamma but not by snow courses which are used to develop the bias correction. 

Consequently, the larger errors obtained when assessed with airborne gamma partly reflect the inability of the bias 495 

correction to correct biases in areas with limited in situ information. This highlights the limitations of the bias correction 

in regions with sparse or no in situ data. Unfortunately, since the airborne gamma data do not cover all snow classes or 

the full winter season, we are unable to discern whether the magnitude of the errors obtained with airborne gamma 

apply to other regions 

Additionally, the difference in the timing and SWE distribution of the two validation datasets may also contribute to the 500 

differing accuracies when calculated using snow course and airborne gamma. Previous work (Mortimer et al. 2022 

Figure 6) has shown that errors in the SCv3.1 product increase over the course of the snow season in concert with SWE 

magnitude. Airborne gamma surveys are usually conducted once or twice per year and are concentrated in February and 

March near peak SWE (Sect. 2.6).  Snow courses are conducted more frequently (~ 14 to 30 days in North America (see 

Mortimer et al. 2024)) and tend to cover the full snow season. This means that snow courses are more likely to capture 505 

lower the SWE values of the accumulation season which are often associated with smaller absolute errors (see for 

example, Mortimer et al. 2020). In contrast, the airborne gamma observations are biased towards higher values during 

the middle and end of the snow season which are both associated with larger absolute errors. To demonstrate, Figure E1 

shows that the SWE distribution of the airborne gamma is shifted higher compared to snow courses, although the snow 

course data cover a much larger range. However, we argue that the SWE distribution of the validation dataset may also 510 

contribute to the differing accuracies when calculated using snow course and airborne gamma. The peak of the airborne 

gamma data (~90 mm) distribution is higher than that of the snow courses (~50 mm) (Figure E1). However, the snow 

course data also samples a larger SWE range than the airborne gamma (Figure E1). In addition to sampling different 

locations (Figures 2 and 3), the timing of the surveys is likely a large contributor to these differences in SWE 

distribution. Airborne surveys (usually once or twice per year near peak SWE) compared to snow courses (~ 14 to 30 515 

days in North America (see Mortimer et al. 2024)) mean that snow courses are more likely to capture lower SEW values 

of the accumulation and ablation seasons whereas airborne gamma observations will be biased towards higher values. 

We suggest that the differing distributions partly explain some of the differences in accuracies obtained with the two 

validation datasets. Specifically, the lack of larger SWE values may explain the small improvement (~3 mm) in RMSE 

for SWE < 500 mm using airborne gamma (compared to snow courses, Table D1).  520 

The addition of new reference data has a greater effect on bias in North America than in Eurasia. This is expected as 

more data were added to North America and the Eurasia dataset remained similar, Finland excepted. Additional data 

made the bias more negative in Quebec and Alaska and reduced the extent and magnitude of the positive bias in central 

North America. Together, these changes added ~ 100 Gt to the snow March snow mass (Figure 5). It is notable that in 

Finland, where the GSv3.0 bias is small and a substantial amount of new data were added, the bias remained similar. 525 
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This indicates that the originalld data adequately sampled the snow conditions in this region, which already has very 

accurate SWE retrievals. 

Although the updated reference data had little impact on the Eurasia SWE, there were large changes between the bias-

corrected GSv3.0 and SCv3.1 products (both using the updatednew data). These differences may be attributed to one or 

more factors, outlined below. Changes to the retrieval algorithm, namely the move from a static snow density (240 kg 530 

m-3) to spatially and temporally variable values, decreased the snow mass over much of Eurasia, where the true snow 

density is lower than the static parameter up until March (Venäläinen et al., 2023). This change, which was seen as an 

improvement because products using the static density tended to overestimate SWE in Eurasia, is visible in Figure 4. 

The GSv3.0 bias fields are predominantly positive in Eurasia in February and March, while those of SCv3.1 are slightly 

negative, and the uncorrected March SWE is lower for SCv3.1 compared to GSv3.0. In April and May static snow 535 

density tends to be smaller than the actual snow density and change to dynamic snow density consideration has reduced 

negative bias in these months. 

As detailed in Sect. 2.1, GSv3.0 and SCv3.1 product and bias fields are produced in different resolutions, which can 

influence bias fields. On hemispheric scale, change to finer grid spacing can provides some improvements to 

correlation, RMSE and bias for the SWE retrieval but has minimal effect on hemispheric snow mass (Mortimer et al., 540 

2022). However, on local scale different resolutions can produce clear differences. For example, both GSv3.0 and 

SCv3.1 overestimate SWE around the Kara Sea area in Siberia in March and April, but positive bias is much more 

significant for GSv3.0. There are a handful of snow courses where radiometer-based SWE is systematically 

overestimated, while underestimation is a bigger problem in surrounding locations. The effect of these few locations is 

bigger for the coarser 25 km grid (GSv3.0) than for the finer 12.5 km grid (SCv3.1), though changes in snow density 545 

parameterisation also affect bias in the area. Effects of resolution can also be seen around mountainous areas where 

GSv3.0 SWE tends to be larger (for example near Ural Mountains and mountains in eastern Siberia and western 

Alaska). Complex terrains are masked out from the SWE products, but masks are not identical for the two products. 

Finally, the way the monthly SWE was calculated may also have an impact on the differences in SWE estimates 

between GSv3.0 and SCv3.1, especially during the ablation season in May. GSv3.0 monthly values were calculated as 550 

the arithmetic mean of days with valid SWE observations. This means that days without SWE are not accounted for 

average SWE calculation. We adjusted the method for SCv3.1 to try to better account for missing SWE retrievals as 

outlined in Sect 2.2.1. However, Iin May, most missing days are towards the end of the season and GSv3.0 monthly 

estimate is considerably larger than modelled estimates. SCv3.1 monthly estimate is much closer to expected value, 

partially due to filling missing days and thus reducing the monthly average value. , and filling them with data from the 555 

earlier of the month may artificially increase monthly SWE. 

As the bias correction is based on 40 years of data, it may compromise the local accuracy of SWE estimates. If 

estimates are accurate in some years but inaccurate in others at the same location, bias correction might overcorrect 

estimates in years with initially good estimates. When looking at airborne gamma data, the bias corrected SCv3.1 has a 

higher RMSE value for SWE < 200 mm than the original (uncorrected) product. This is due to bias correction creating 560 

outlier values by overcorrecting SWE estimates. indicates that there might be some outlier values (MAE is slightly 

smaller for the bias corrected product) that bias correction creates. Gamma validation shows that bias correction may 

lead to overestimation of small (< 50 mm) SWE values. Future work could explore temporal or spatial constraints to 

refine when and where the bias correction is applied. Specifically, the SCv3.1 SWE product includes pixel-wise 
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uncertainty information for SWE estimates, offering a possible way to target the bias correction to specific locations. 565 

Excluding small SWE values from the bias correction could also be considered.  

The bias-correction method studied in the paper assumes that snow course data are uniformly distributed throughout 

each month. This assumption generally holds during mid-winter. However, in December and January, observations are 

weighted toward the end of the month, and in May, toward the beginning of the month. This uneven distribution may 

influence the monthly bias correction fields. For instance, if the lack of observations later in May reflects an absence of 570 

snow, the calculated biases may be overestimated. We have tested how sensitive the bias correction method is to the 

distribution of reference data by adjusting the temporal centering of the monthly bins. We tested re-centering the bins 

around the 1st of each month (i.e., using data from the 16th of one month to the 15th of the next). This had little effect 

in mid-winter months like December and February, but a more noticeable impact in May, where the re-centered bias 

correction resulted in increased snow mass, which could be interpreted as a degradation in performance. Additionally, 575 

we have also tested extrapolating bias data into periods with limited observations at the start of December and end of 

May. In December, extrapolation slightly increased snow mass estimates, while in May it led to a decrease. These 

results suggest that while mid-winter bias estimates are robust, bias corrections during the shoulder seasons are affected 

by the uneven distribution and limited availability of reference data. 

In this paper simple mean bias subtraction was used as the focus was on updating an existing and proven method and 580 

expanding it to new months and to a higher temporal frequency (daily instead of the original monthly). Our results 

provide a baseline against which bias correction methods could be studied in the future. For example, King et al., 2020 

studied different SWE bias correction methods at local scales, finding that random forest techniques provided accurate 

results, indicating the potential of machine learning-based approaches for bias correction 

5 Conclusion 585 

In this study, we updated monthly bias correction fields used to improve monthly passive microwave assimilation-based 

SWE retrievals and snow mass estimates. We updated the fields using snow reference data from new sources and 

calculated them for the newest assimilation-based SWE retrieval, SCv3.1. Bias correction was also extended to 

December and January and to a daily time scale. 

Updated reference data had a larger effect on bias in North America than changes in the algorithm did. On the other 590 

hand, Iin Eurasia, the addition of updatednew reference data did not change bias significantly, but changes in the 

algorithm had a clear effect on bias.. On the other hand, updated reference data had a larger effect on bias in North 

America than changes in the algorithm did.  

Daily bias correction added a significant amount of snow to the nNorthern hHemisphere snow mass estimation, 

bringing it closer to reanalysis products. Daily bias correction can also provide moderate improvements to SWE 595 

retrieval but compromise accuracy on a local scale. 

The continued development of the SWE retrieval algorithm remains important. Improvements in uncorrected SWE 

products are also seen in bias corrected products. For example, improved snow mass peak timing of the SCv3.1 product 

is also visible on the bias corrected product. Snow mass estimations based on monthly bias corrected SCv3.1 products 

have improved significantly for April and May in comparison to GSv3.0.  600 
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Appendix A: Evolution of annual bias in SCv3.0 SWE estimates for March. 605 

 

Figure A1. Mean annual bias of snow courses in Eurasia (red) and North America (blue). A very slight negative trend is 

visible for Eurasia (p-value 0.055). For North America trend is more visible but still negligible (p-value 0.94)both areas. 

 

Appendix B: December and January bias maps for SCv3.1 610 

 

 

Figure B1. December and January bias maps for SCv3.1. Bias is small in December for the whole nNorthern hHemisphere. 

In January, both positive and negative biases are visible in North America. 

 615 
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 620 

Appendix C: Comparison of GSv3.0 bias corrected products 

 

Figure C1. The difference in monthly mean SWE values between the two bias corrected GSv3.0 products (origanalld – 

updated). 

 625 

Appendix D: Snow course validation 

 

Table D1. Validation parameter for SWE < 500 mm/SWE < 200 mm for Northern Hemisphere, Eurasia, and North America 

for 1980-2022. 

 RMSE [mm] MAE [mm] Bias [mm] Correlation 

coefficient 

GlobSnow v3.0 50.3/37.3 33.4/27.7 -6.8/0.74 0.64/0.67 

SnowCCI v3.1 46.4/36.2 29.3/24.8 -11.6/-6.4 0.73/0.74 

SnowCCI v3.1, bias 

corrected 

37.7/32.9 25.1/22.9 

 

3.7/6.4 0.83/0.80 

  Eurasia   

GlobSnow v3.0 39.6/33.0 27.7/25.1 1.0/4.8 0.73/0.74 

SnowCCI v3.1 36.8/31.8 23.8/21.7 -6.2/-3.8 0.79/0.79 

SnowCCI v3.1, bias 

corrected 

33.5/29.9 21.9/20.5 3.7/5.3 0.83/0.82 

  North America   

GlobSnow v3.0 77.2/51.1 53.8/38.5 -34.5/-15.7 0.53/0.52 

SnowCCI v3.1 67.0/47.8 45.6/34.9 -27.6/-14.9 0.65/0.60 

SnowCCI v3.1, bias 

corrected 

47.3/40.6 33.7/29.7 3.8/9.2 0.82/0.75 

 630 

 



25 
 

Appendix E: Distribution of reference SWE measurements 

 

 

Figure E1: Normalized distribution of SWE measurements for snow course data from North America (red) and Eurasia 635 
(green) and from gamma ray data from North America (blue). Observations from areas of complex terrain are removed. 

Percentages are calculated for each set individually. Gamma ray dataset has less small SWE values than snow course sets. 

 

 

Code availability. The GlobSnow code is available at: http://www.globsnow.info/swe/archive_v3.0/source_codes/   640 
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