Dear Editor,

Please find enclosed, the revised manuscript entitled "BN-FLEMOA: A Bayesian Network-
based Flood Loss Estimation Model for Adaptation Planning in Ho Chi Minh City,
Vietnam'". All the comments/suggestions raised by the reviewers have been carefully
addressed in the revised version. Below, all our replies are given in bold typeface. Moreover,
all the changes have been highlighted in blue in the revised manuscript.

We would like to take this opportunity to express our appreciation for the work of the
Editor, the anonymous Associate Editor, and two Reviewers who provided very relevant and
constructive comments and suggestions. We have addressed all the requests and amended
the manuscript accordingly. The provided comments and suggestions led us to considerably
improve the manuscript.

¢ Reviewer 1:

The paper presents BN-FLEMOA, a probabilistic flood loss model tailored for residential
buildings in delta cities like Ho Chi Minh City, using empirical survey data and machine
learning. The model employs automatic feature selection and Discrete Bayesian Networks
to capture probabilistic dependencies and provide a probabilistic distribution of losses. The
questions addressed by the paper are relevant and the paper presents a novel interesting
dataset based on a survey study in Ho Chi Minh City. Regarding the pipeline, the authors
should clarify some major points, in particular, related to the feature selection step.

Response: We appreciate Reviewer 1 for her/his valuable comments which helped us
to enhance the quality of the manuscript.

1. The authors use a 10-fold cross-validation for evaluating feature selection, the selection
of the Bayesian Network (BN), and performance evaluation. However, it seems that
they perform an initial 10-fold cross-validation (10FCV) for feature selection, and
a separate one for model evaluation. This is evident from the fact that they select
seven features based on the mean results of the first 10FCV, and also from the fact
that they use Python and R—one for the first phase and one for the second (which
would be acceptable if one could exactly map the splits from one language to the
other). If this is the case, such an approach can lead to information leakage from the
whole dataset (when selecting the features) into the model evaluation phase, since the
feature selection step has effectively “seen” data from all folds. This can often yield
overoptimistic estimates of the model’s true performance on unseen data. The pipeline
should perform feature selection within the same fold in which the model is trained,
or find other ways to prevent information leakage.



Response: We thank the reviewer for her/his detailed and constructive comment.
As the reviewer rightly pointed out, ensuring consistency in the utilized data
across different programming languages and frameworks (i.e., feature selection
and monetary loss estimation) is crucial to avoid overfitting. To address this, we
have already implemented a workflow in the current version, where the indices
of the training/testing samples are stored during the initial phase (i.e., feature
selection) and subsequently used in later phases. Accordingly, we have amended
the manuscript to clarify this, as follows:

Line 219-220: Notably, to ensure consistency across different components of the
proposed workflow, we used the same set of training and testing samples for each
phase.

. Does the dataset have any missing values other than rloss? If so, the authors should
specify how they handle these missing data points when computing the multivariate
linear regression (MLR). MLR, by itself, cannot handle missing values. If the excluded
features have missing values, their inclusion could negatively impact performance if
they are set to a specific value (for example, 0). In general, it is important to clarify
how these particular data points are handled.

Response: Indeed, MLR is not designed to handle missing values, which is why
we have already excluded 467 out of 1530 data records that contained missing
values in the various predictors of flood loss. For clarification, we have explicitly
stated and highlighted this in the '"Household Survey Data'' subsection, lines 89
and following, as follows:

Households were asked to report on two flood events (i.e., the most recent event and
the most serious event in terms of impact within the last 10 years). Out of 1000
households, 530 provided information on both types of events, while the remaining
households reported only one event (in these cases, the recent event was also the
most serious). This resulted in 1530 records of flood loss data. Among these records,
467 contained missing values in one or more of the flood loss predictors (e.g., water
depth, inundation duration) or target variable (rloss). To ensure the integrity of the
analysis, we adopted a complete-case approach by excluding all records with missing
values. Subsequently, 16 loss-influencing variables were selected based on an extensive
literature review and consultations with domain experts in Ho Chi Minh City (Table 1).

. The strategy chosen for feature selection is unusual when combined with Bayesian
networks. The authors evaluate the importance of each individual feature using F-
statistics to measure the relationship between the variable and the target variable. This



univariate approach can overlook the signal from variables that, when combined with
another feature, a Bayesian network (BN) might capture. Moreover, the hyperparameter
k is chosen using a linear model. These choices are not strictly speaking incorrect, but
they may reduce the predictive capacity of the entire pipeline. Additionally, in BNs, it
is possible to reduce the complexity of the model during the structural learning phase
in ways that preserve the multivariate nature of the problem.

Response: The primary goal of the deployed feature selection is to automate
the process of identifying relevant features that influence monetary loss. As
the reviewer indicated, the first phase of feature selection, where the F-statistic
evaluates the dependency of each predictor on the target variable, may overlook
multivariate relationships between subsets of predictors and the target variable.
To address this limitation, we have implemented a second phase in the feature
selection pipeline, where we assess the overall performance of the top % selected
features, ensuring that multivariate relationships are considered. This approach
allows us not only to examine the relationship between individual predictors and
the target variable but also to evaluate the significance of predictor subsets in
estimating loss.

a. The dataset has only 16 variables; is feature selection necessary? BN structural
learning can usually handle this number of variables with an appropriate choice
of algorithms and parameters, without the need for prior selection.

Response: Although the number of input features is 16, some features contain
redundant information that does not contribute to assessing flood loss. As
shown in Figure [T, automatic feature selection significantly enhances both
model interpretability and predictive performance. By focusing on the key
drivers of flood loss, the model’s complexity is reduced, making the resulting
BN structure more transparent. This, in turn, facilitates a better understand-
ing of flood loss processes.

b. Feature selection is part of the pipeline proposed in the paper. The authors should
compare its performance not only with a model trained on the subset of selected
variables but also with models trained on the entire dataset. For example, they
should compare it with a random forest trained on all the features, since RF can
easily handle 16 variables.

Response: We appreciate this suggestion. In fact, during our experiments, we
compared the proposed feature selection approach with standard methods
such as RF. However, as shown in Figure 2, our analysis revealed that the
features selected by RF do not fully align with the physical flood process.



For instance, water depth was not identified as the primary driver of relative
loss, and features such as the number of people in the household appeared
as prominent, while precautionary measures like elevating the house were
deemed less important. Additionally, RF does not automatically determine
the optimal number of features. For these reasons, we decided to exclude
this result from the main manuscript. However, to address the reviewer’s
comment, we have included this result in our response.

. To demonstrate the significance of feature selection, the authors should compare
the pipeline’s performance with BN models trained on all the features, using
appropriate algorithms that can reduce complexity or identify Markov blankets
from the data (see, e.g., Vogel 2018 and the BN literature).

Response: Indeed, similar to the approach in [1], where the authors em-
ployed two types of graphical models, BNs and Markov blankets, to identify
the most relevant variables for flood damage prediction, we also applied
constraint-based methods to construct our proposed BNs using a selected
set of independent variables (as highlighted in blue below). However, the key
distinction between our approach and that of [1] lies in the method of selecting
independent variables. In our study, we utilize an automated feature selection
pipeline that systematically evaluates the impact of each independent variable
on the target variable. In contrast, [1] identified important predictors based
on the frequency of occurrence of each variable across multiple algorithms
and a dataset comprising six distinct flood events. Furthermore, in response
to your subsequent comment regarding the impact of feature selection, we
have compared and discussed the performance of the BN-FLEMOA model
using different sets of features in the corresponding response.

To build the BN-FLEMOA structure, we utilize a data-driven learning approach
in which 500 bootstrap samples are drawn from the data, and various structure
learning algorithms are applied to generate potential Bayesian networks. These
algorithms fall into three primary categories: score-based, constraint-based, and
hybrid methods. In our study, we explore widely used structure learning approaches
from each category [2], [3]]. Specifically, we employ hill-climbing (hc)[4]] as a
score-based approach, incremental association (iamb)[5]] as a constraint-based ap-
proach, and max-min hill climbing (mmhc)[6] along with general 2-phase restricted
maximization (rs2max)[[7]] as hybrid approaches. Applying each method to the boot-
strap samples results in 500 independent networks per algorithm. These realizations
are then averaged, and arcs that appear frequently, based on a quantitative selection
criterion, are retained in the final structure. The quantitative evaluation using mean
absolute error (MAE), root mean squared error (RMSE), and mean continuous



ranked probability score (Mean CRPS) indicates that the structure learned via
the hill-climbing algorithm performs favorably compared to other approaches (see

Figure [3).

d. To better illustrate the impact of feature selection, it would be insightful to include
a plot similar to Figure 2a, but showing the performance of BNs trained with
varying numbers of features. This could also be done for only the best model
identified by the authors. If computational limitations exist, it would be reasonable
to limit the study to a few additional features beyond seven.

Response: We agree that this visualization is insightful. Figure [d| presents
the performance of BN models with varying numbers of predictors, follow-
ing the order determined by the feature selection process. The plot clearly
demonstrates that optimal performance is achieved with a subset of seven
features, while including too many features leads to a decline in performance.
Accordingly, we have added the figure, along with the following information,
to the revised version of the manuscript.

In addition, to evaluate the performance of the proposed BN-FLEMOA under the
influence of different sets of input features, we designed an experiment where
input features were incrementally added following the order determined by the
feature selection process. As shown in Figure {] using only the two initial loss-
influencing variables (Set 2), namely wd and fe, results in poor performance in
terms of RMSE values. In contrast, Set 7, which includes seven identified features
(wd, fe, elev, sew, renov, warn, dur), achieves relatively the best performance
compared to other configurations. We also observe that increasing the number of
independent variables beyond this point does not improve predictive performance,
highlighting the importance of the feature selection phase prior to the estimation
process.

e. It would be insightful to see the error bars with the standard deviation over the
10-fold in Figure 2a.

Response: As suggested, we have updated Figure 2a to include error bars
representing the standard deviation from the 10-fold cross-validation. This
addition offers deeper insight into the variability and robustness of the feature
selection process.

4. Regarding the training, in line 226, they should specify what exact Bayesian algorithm
they are using.



Response: As commented by the reviewer, we have now clarified the specific
Bayesian inference method used for estimating conditional probabilities in the
network. Specifically, we applied Bayesian parameter estimation using the BDeu
score with an exact inference algorithm, as implemented in the bnlearn R
package [8]. The revised version is as follows:

A qualitative assessment further supports this finding, showing that the hc-derived
structure more accurately represents the underlying flood damage process (see Fig-
ure [5). Therefore, we selected the hc algorithm to construct the final BN-FLEMOA
structure. In addition to the network structure, the complete specification of the Bayesian
network requires estimating the conditional probability tables (CPTs) for each node.
For this purpose, we apply Bayesian parameter estimation using the Bayesian Dirichlet
equivalent uniform (BDeu) score with an exact inference algorithm implemented in
the bnlearn R package [[8]. This method is used on the full empirical survey dataset,
or relevant subsets during cross-validation, to ensure robust parameter learning.

. Regarding the dataset, to better present the dataset, it would be useful to include the
number of missing values for each feature, if any, in Table 1 or another section of the

paper.

Response: As mentioned in our response to the second comment raised by the
reviewer, we have already excluded 467 out of 1530 data points that contained
missing values in the various predictors of flood loss. Therefore, the existing
table only represents data records where both the predictors and the target
variable contain no missing information. For clarity, we have already indicated
and highlighted this in the '"Household Survey Data' subsection.

. Regarding the dataset, it would be useful to see the histogram of rloss before the
discretization.

Response: We have now included a histogram of the rloss values (before dis-
cretization) in the revised manuscript (see new Figure [6] in the supplementary
material). This visualization provides insight into the distribution of the target
variable and supports our choice of discretization strategy.

. Besides these issues that need to be addressed, the paper is well-written, and the
overall presentation is sufficiently well-structured. The lookup table provided in the
supplemental material is useful and adequately described.

Response: We thank the reviewer for the positive feedback and are pleased that
the overall presentation was appreciated.
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Fig. 1: The proposed feature selection workflow (a) identifies the optimal number of features
(k) and (b) provides the corresponding scores to each feature. The results are based on the mean
of 10-fold cross-validation.
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Fig. 2: The figure illustrates feature importance as determined by the random forest (RF) model,
which uses the mean decrease in impurity for this process.
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Fig. 3: The quantitative performance of different structure learning algorithms, namely hill-
climbing (hc); incremental association (iamb); max-min hill climbing (mmhc); and general 2-
phase restricted maximization (rs2max), to build the BN-FLEMOA model.
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Fig. 4: The figure illustrates the predictive performance of BN-FLEMOA in terms of RMSE,
with different predictor sets representing the incremental addition of independent variables as
inputs to the model, following the order determined by the feature selection process.
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Fig. 5: The Bayesian networks learned from (a) hc, (b) iamb, (¢) mmhc, and (d) rs2max.
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Fig. 6: The histogram depicts the distribution of relative loss (rloss) values across different data
points.



	References

