
1 

 

A random forest derived 35-year snow phenology record reveals 

climate trends in the Yukon River Basin 

 

Caleb G. Pan1, Kristofer Lasko1, John S. Kimball2, Jinyang Du2, Tate G. Meehan3, Peter B. Kirchner4, and Sean P. Griffin1 

 5 
1Geospatial Research Laboratory, Engineer Research and Development Center, US Army Corp of Engineers, Alexandria, VA, 

22315, USA 
2Numerical Terradynamic Simulations Group, W.A. Franke College of Forestry & Conservation, University of Montana, 

Missoula, MT, 59801, USA 
3Cold Regions Research Engineering Laboratory, Engineer Research and Development Center, US Army Corp of Engineers, 10 

Hanover, NH, 03755, USA 
4Southwest Alaska Inventory and Monitoring Network, National Park Service, Anchorage, AK, 99501, USA 

 

Correspondence to: Caleb G. Pan (caleb.g.pan@erdc.dren.mil) 

Abstract. This study presents a 35-year snow phenology record for the Yukon River Basin (YRB), developed using a Random 15 

Forest (RF) model at a 3.125 km resolution, capturing detailed trends in snowmelt onset and snowoff. The RF model, 

incorporating dynamic daily variables, improves upon traditional threshold-based methods by reducing sensitivity to transient 

thaw events and atmospheric noise. Model evaluation against station observations yielded a mean absolute error (MAE) of 

11.6 days and a root mean square error (RMSE) of 14.9 days for snowmelt onset. For snowoff, the model achieved a MAE of 

18.1 days and an RMSE of 21.3 days. This approach successfully mapped snow phenology across the diverse YRB landscape, 20 

providing valuable insight into how variations in snow cover align with regional climate patterns. Challenges such as sample 

bias due to limited ground-based data coverage highlight the need for expanding in-situ measurements, to improve model 

performance further. Trend analysis segmented by two timeframes, 1988–2005 and 2006–2023, revealed distinct climate 

impacts on snow phenology. During 1988–2005, high snowfall and stable temperatures resulted in hastened snowmelt onset 

and lengthened snowmelt durations, reflecting early-season snow abundance. In contrast, from 2006–2023, warming spring 25 

and summer temperatures corresponded with progressively earlier snowmelt onset and snowoff. These shifts in snowmelt 

patterns align with a lengthened snow-free season, indicating increasing influence of warmer temperatures on the snowpack. 

This RF-derived dataset provides an essential tool for tracking climate-driven snow changes, offering insights into hydrologic 

and ecologic dynamics in the YRB under accelerating climate change. 

1 Introduction 30 

Snow cover and its seasonal progression, or phenology, play a crucial role in regulating the global energy budget and shaping 

ecosystem structure and function (Callaghan et al., 2011). These processes directly drive ecologic and hydrologic responses to 

seasonal variability. In the Yukon River Basin (YRB), regional warming (Ballinger et al., 2023; Rantanen et al., 2022) has 

reduced snow cover (Derksen and Brown, 2012), triggering widespread environmental changes. A warmer and longer snow-

free season has disrupted permafrost, boosted vegetation growth, and increased ecosystem carbon uptake (Ling and Zhang, 35 

2003; Pulliainen et al., 2017), but also enhanced regional drought and fire disturbance (Scholten et al., 2021) and led to a 

decline in plant diversity (Niittynen et al., 2018) and disrupted wildlife movements (Berger et al., 2018; Cosgrove et al., 2021). 

Seasonal snowmelt drives much of the discharge into the Yukon River and its stream networks, and the timing of this melt has 
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significant hydrologic impacts. Earlier snowmelt has heightened flood risks, intensified the spring flood pulse, and accelerated 

river ice breakup (Beltaos and Prowse, 2009; Lesack et al., 2014; Semmens and Ramage, 2013). These changes are reshaping 40 

the region’s geomorphology and directly affecting the communities that rely on stable snow and ice conditions in the Yukon 

for winter travel, recreation, and harvest (Cold et al., 2020). 

 

Enhanced monitoring and understanding of snow phenology’s spatiotemporal variability are essential for assessing risks and 

mitigating potential impacts on Alaskan communities reliant on the Yukon River.  Ground-based observations, like snow water 45 

equivalent (SWE) and snow depth measurements from SNOTEL sites, provide valuable insights into snow phenology. 

However, the vast landscape heterogeneity and limited ground observation locations make it challenging to forecast snow 

phenology reliably across large spatial scales (Bair et al., 2023). Satellite microwave remote sensing offers a valuable 

alternative for mapping snow phenology, especially in remote, high-latitude regions. The moderate frequency (~≤37 GHz) 

retrievals from operational satellite microwave radiometers are sensitive to snow cover conditions and are insensitive to clouds 50 

and low light levels, providing nearly continuous, year-round data. Importantly, the propagation of microwave energy through 

the snowpack is responsive to changes in snow structure, including liquid water content (LWC), grain size and density, which 

are key indicators of snowmelt onset (Tedesco et al., 2015). However, the sampling footprint from the passive microwave 

retrievals can range from ~12-25 km resolution depending on frequency and can be too coarse to capture snow spatial 

heterogeneity, especially in mountain environments. 55 

 

In contrast, Synthetic Aperture Radar (SAR) sensors are sensitive to snow conditions and offer improved spatial resolution 

over microwave radiometers and scatterometers.  C-band SAR data from the European Space Agency (ESA) Sentinel-1 

mission has proven valuable for detecting snowmelt onset using a median minima backscatter approach, often in combination 

with optical-infrared remote sensing imagery (Darychuk et al., 2023; Gagliano et al., 2023; Marin et al., 2020; Nagler and 60 

Rott, 2000). The ability of SAR to detect changes in snowpack structure and LWC makes it particularly effective for identifying 

the onset of snowmelt, as the C-band radar backscatter at VV and VH polarizations decreases when snow transitions from dry 

to wet. The extraction of snowmelt onset using Sentinel-1 missions shows great promise, providing excellent detail with a 

spatial resolution of 10 meters. However, a current limitation of these data is the relatively short temporal record. Sentinel-1A 

began operations in April 2014, followed by Sentinel-1B nearly two years later in April 2016. Unfortunately, Sentinel-1B was 65 

decommissioned in December 2021 due to power issues. While higher-frequency K-band and Ka-band radiometers are limited 

by their coarser spatial resolution, they provide twice-daily acquisitions for polar latitudes from 1988 to the present, offering 

a valuable long-term data record. 

 

Several snow phenology algorithms utilize K- and Ka-band radiometric brightness temperature (Tb) measurements collected 70 

from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) (1987-present) and 

Special Sensor Microwave Imager/Sounder (SSMIS) (2004-present). Various retrieval algorithms using these data to derive 
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snow properties include: 1) the Tb diurnal amplitude variation (DAV) method (Ramage and Isacks, 2002; Tedesco and Miller, 

2007), 2) the Tb differencing approach (K-Ka) (Wang et al., 2013, 2016), 3) the use of a single frequency Tb temporal change 

algorithm coupled with reanalysis surface temperature (Kim et al., 2017), 4) the gradient ratio polarization (GRP) approach 75 

(Dolant et al., 2016; Pan et al., 2018) and 5) a remote sensing and physics-based hybrid method (Dattler et al., 2024). Each 

algorithm leverages the interaction between the surface snowpack, its liquid water content (LWC), and the resulting effect on 

the Tb signal at each band or polarization. Specifically, dry snow conditions lead to volumetric scattering in both K and Ka 

bands, with stronger scattering at higher frequencies. In contrast, when the LWC within the snowpack increases, the microwave 

signal is attenuated, resulting in a decrease in microwave backscatter at both bands (Tedesco et al., 2015). Due to these 80 

interactions, past algorithms have successfully derived snow phenology by analyzing Tb time series using these approaches 

and applying thresholds to identify transitioning snow conditions. 

 

While threshold-based methods have successfully predicted snow phenology, they often fail to fully capture landscape 

variability in snow conditions due to their coarse spatial resolution. Additionally, these methods are susceptible to atmospheric 85 

noise, which can lead to potential false positives. Alternatively, machine learning (ML) offers a flexible empirical modeling 

approach for estimating snow properties from satellite observations and other ancillary data. ML provides the ability to model 

complex interactions across diverse datasets and has been applied widely in cryosphere applications (Campbell et al., 2021; 

Dunmire et al., 2024; Guidicelli et al., 2023; Tedesco et al., 2004; Tsai et al., 2019). Among ML methods, random forest (RF) 

has demonstrated success, often bettering other methods, due to its flexibility, ability to handle high-dimensional data, and 90 

success in handling complex environmental datasets. RF constructs multiple decision trees during training and aggregates their 

outputs, reducing overfitting and increasing robustness in diverse datasets. Furthermore, RF can manage missing data and 

maintain accuracy even with uncorrelated features (Breiman, 2001). 

 

Our study integrates a temporal component into the RF framework, allowing the model to capture seasonal variations in snow 95 

cover. Unlike traditional thresholding methods that rely on fixed values (Pan et al., 2021), the RF model accounts for multiple 

variables and their interactions, producing more nuanced predictions. By incorporating time-series data, our RF model tracks 

the evolution of snow conditions throughout the season (Rittger et al., 2021), improving predictions of snowmelt onset. 

In this paper, we examine the question: How amplified Arctic warming has influenced the timing, duration, and variability in 

snow phenology in the YRB? To address this question, we use an ML framework informed with Tb time series from the K- 100 

and Ka-bands collected from SSM/I(S), along with other complimentary dynamic and static variables, to estimate primary 

spring snowmelt onset and snowoff dates across the YRB from 1988 to 2023. The resulting annual snow phenology maps are 

produced at an enhanced resolution of 3.125 km, offering an improvement over previous records derived directly from passive 

microwave observations and enabling a more detailed delineation of landscape heterogeneity. We then apply the snow 

phenology outputs with other ancillary and in-situ environmental data to: 1) assess model performance and define relative 105 

quality maps, 2) examine YRB snow phenology climatology and compare it with anomalous years, 3) analyze spatiotemporal 
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trends in snow phenology over the period of record, and 4) explore interactions between snow phenology and seasonal snowfall 

and temperature trends. 

2 Study Area 

The YRB constitutes one of North America’s largest river basins (Figure 1). This region experiences six to nine months of 110 

snow cover annually, and spring snowmelt runoff is the main hydrologic contribution to the discharge (Brown et al., 2020). 

The YRB has a mean annual discharge of 6400 m3 s−1 (Brabets et al., 2000), with a drainage area exceeding 853,300 km2 and 

covers 10 degrees of latitude from 59°N to 69°N, extends into the Canadian Yukon and British Columbia territories to the east, 

and the west coast of Alaska before draining into the Bering Sea. The diverse topography, with a median elevation of 617 m 

and extending from sea level to the highest elevations of the Brooks (2735 m) and Alaska (6190 m) Ranges, encompasses a 115 

diversity of northern boreal, arctic, alpine and maritime biomes. Evergreen needleleaf forests are the dominant vegetation 

cover (54%) followed by broadleaf deciduous forests (9%) covering the valley bottoms and into the mid-elevations. The Yukon 

Delta and higher elevations have tall and low shrubs (9%) mixed with some dry and wet herbaceous (9%) tundra as the 

dominant plant community. Permafrost is present to a large extent in the YRB, and comprises several types including sporadic 

(14%), discontinuous (46%) and continuous (16%) and moderately thick to thin permafrost (24%) (Brabets et al., 2000). 120 

Historically the Yukon River served as the main travel corridor of the region and YRB is the ancestral homelands of several 

Native Alaskan culture. Presently, many communities are inextricably linked to and rely upon the Yukon and its tributaries for 

travel, subsistence, and livelihood (Cold et al., 2020). 
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 125 

Figure 1: The Alaska study area, the YRB boundary is delineated by the dashed black polygon and the black upside-down triangles 

indicate climate stations utilized for creating a training and testing dataset for our ML models. 

3 Data 

3.1 Training and Testing Datasets 

We acquired daily in situ snow depth measurements from the Global Historical Climatology Network (GHCNd) (Menne et 130 

al., 2012) to build the RF model training and testing dataset. Filtering stations across Alaska, 77 stations included snow depth 

measurements spanning at least one year between 1988 and 2023. Although many researchers use the day of peak SWE or a 

breakpoint after peak SWE to determine the onset of snowmelt (Darychuk et al., 2023; Gagliano et al., 2023), the lack of SWE 

measurements in the GHCNd led us to use peak snow depth instead. Specifically, for each station and year, we identified 

snowmelt onset by locating the day with the highest snow depth in spring (Mar-May). However, peak snow depth often did 135 

not accurately represent the true onset of snowmelt, as decreases in snow depth can occur due to factors like wind redistribution, 
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sublimation, or compaction, unrelated to snowmelt. For this reason, we could not apply rigid rules to defining snowmelt onset 

using snow depth. 

 

To improve the identification of snowmelt onset, analysts used their best judgment, supported by air temperature data. When 140 

average daily temperatures consistently rose above freezing and snow depth began to steadily decrease from its peak, it became 

easier to pinpoint the onset of snowmelt. Identifying snowoff from snow depth was more straightforward and defined as the 

first day when snow depth reached 0 for at least 10 consecutive days in spring. After analyzing each in situ snow depth time 

series, we compiled 971 observations for snowmelt onset and 933 snowoff observations for RF training and testing. 

3.2 Timeseries Datasets 145 

In this study, we employ a combination of dynamic and static datasets as RF model predictors and for analyzing the model 

snow phenology outputs. The dynamic RF predictors include the Tb-derived indices, Tb Difference (TBD) and Gradient Ratio 

Polarization (GRP), as well as their respective 3-day moving averages (MA_TBD and MA_GRP). We also utilize daily Thaw 

Degree Days (TDD), day of year (DOY), and daily snow cover. Together, these dynamic datasets provide a comprehensive 

basis for capturing both seasonal and interannual variability in snow phenology. 150 

 

We also include several static landscape factors and assess how landscape features influence model sensitivity. Static variables 

include Fractional Water (FW), Fraction Tree Cover (TC), elevation (GTOPO), aspect, and proximity, described by a pixel’s 

proximity to the nearest ocean. These datasets are summarized in Table 1 and a comprehensive table with all datasets used in 

this study are found in Table A1. 155 

 

Table 1: Dynamic and static predictor summary, including their abbreviation, spatial and temporal resolutions. 

Dataset Spatial Resolution Temporal Resolution 

Tb Difference (TBD) 3.125 km daily 

Gradient Ratio Polarization (GRP) 3.125 km daily 

Moving Average TBD (MA_TBD) 3.125 km 3-day moving average 

Moving Average GRP (MA_GRP) 3.125 km 3-day moving average 

Cumulative Thaw Degree Day (TDD) 1 km daily 

Day of Year (DOY)  daily 

Snow covered area 4 km and 3 km daily 

Fraction Water (FW) 1 km static 

Tree Cover (TC) 250 m  static 

Elevation (GTOPO) 1 km static 

Aspect 1 km static 

Proximity 1 km static 
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3.2.1 Passive Microwave Satellite Record 

We acquired K-band (19 GHz) and Ka-band (37 GHz) afternoon Tb retrievals at vertical (V) and horizontal (H) polarizations 

from the MEaSUREs Calibrated Enhanced Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature 160 

ESDR, available from the National Snow and Ice Data Center (NSIDC) (Brodzik and Long, 2016). This Tb record is 

multidecadal and calibrated across multiple sensors and platforms from different frequencies and polarizations from the NOAA 

DMSP SSM/I and SSMIS. Each platform has several sensors, from SSMI/I we selected F08 (1998-1991), F11 (1992-1995), 

F13 (1996-2007) and from SSMIS we used F17 (2007-2016) and F18 (2017-2023). These sensors were selected because their 

equatorial overpass time remained consistent while in commission. Missing temporal observations were gap-filled using a 165 

temporal linear interpolation of adjacent Tb retrievals (Wang et al., 2016). 

 

Native sampling resolution of the combined K and Ka Tb retrievals are ~25 km or coarser, however the MEaSUREs products 

used were processed using the scatterometer image reconstruction (SIR) approach to obtain an enhanced spatial grid resolution 

of 6.25 km (K) and 3.125 km (Ka) from the overlapping Tb antenna patterns (Brodzik et al., 2018; Long and Brodzik, 2016). 170 

We then resampled K-band Tb retrievals to match the Ka resolution of 3.125 km using a nearest neighbor interpolation. 

We then reduce the vertically polarized K and Ka bands into a Tb difference index, henceforth described as TBD,  defined as 

the difference between K and Ka bands (Wang et al., 2013). We also reduce the K and Ka bands into an additional index, the 

GRP by first calculating the Gradient Ratio (GR) at vertical and horizontal polarizations using equation 1 (Grenfell and 

Putkonen, 2008): 175 

𝐺𝑅(𝑝𝑜𝑙(37,19)) =
[𝑇𝑏 (𝑝𝑜𝑙, 37) − 𝑇𝑏 (𝑝𝑜𝑙, 19)] 

[𝑇𝑏 (𝑝𝑜𝑙, 37) + 𝑇𝑏 (𝑝𝑜𝑙, 19)]
 

The GRP is then ratioed using equation 2 (Dolant et al., 2016): 

𝐺𝑅𝑃 =
𝐺𝑅𝑉

𝐺𝑅𝐻
 

Together, both the TBD and GRP provide a source for identifying daily snow conditions such as dry and stable, melting, and 

disappeared (Pan et al., 2020; Wang et al., 2016). 180 

3.2.2 Daily Snow Cover 

We use ancillary daily snow covered area estimates to determine the presence or absence of snow at a given location and time. 

For the period from 1988 to 2023, we relied on two data sources. From 2004 to 2023, we used the Interactive Multisensor 

Snow and Ice Mapping System (IMS) daily snow cover extent record, which has a 4 km resolution. The IMS provides global 

coverage and is informed by expert interpretation of geostationary visible satellite imagery, polar-orbiting multispectral 185 

satellite sensors, PMW sensors, and ground observations (Helfrich et al., 2007).  Although the IMS also provides daily snow 

cover area outputs at a coarser 24 km resolution dating back to 1997, we opted to use alternative higher spatial resolution snow 

https://doi.org/10.5194/egusphere-2024-3608
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

cover estimates from SnowModel (Liston et al., 2020) to fill in the earlier years (1988–2003), as the 24 km resolution IMS 

data is less able to resolve snow cover heterogeneity in complex terrain and does not cover the entire period of interest. 

The SnowModel provides daily estimates of snow properties for the North American domain at a 3 km resolution from 1980 190 

to 2020 (Liston et al., 2023, Liston et al., 2020). Although SnowModel includes several snow variables, we used the modeled 

snow depth to define daily snow presence or absence. Specifically, if the estimated snow depth exceeded 0 on any given day, 

we assigned a value of 1; if snow depth was 0, we assigned a value of 0. 

3.2.3 Daymet 

We calculated daily cumulative thaw degree days (TDD) using the North American Daymet (V4) record (Thornton et al., 195 

2021). We obtained the Daymet data through the Microsoft Planetary Computer STAC, which is produced by the Oak Ridge 

National Laboratory DAAC. Daymet provides 1 km spatial resolution, interpolated from daily weather station temperature 

observations, but with potential bias introduced from the sparse regional weather station network, especially at higher 

elevations. TDD serves as a useful proxy for assessing the amount of incoming solar radiation the snowpack has been exposed 

to at a given location and reflects the seasonal dynamics of anomalous temperatures that influence snowmelt onset. 200 

3.3 Static Datasets 

We also used several static datasets for model training and to examine the influence of land cover on snow phenology 

prediction. We represented elevation using the GTOPO30 dataset at a 1 km resolution and used it to derive terrain aspect. We 

acquired average fractional water inundation (FW) from the global land parameter data record, generated from the Advanced 

Microwave Scanning Radiometer for EOS and the Advanced Microwave Scanning Radiometer 2 records (Du et al., 2017). In 205 

addition to prediction and assessing uncertainty, FW served as a mask to screen model outputs likely affected by water 

contamination. 

 

To represent percent tree cover (TC), we utilized the MODIS MOD44B V005 500m Vegetation Continuous Fields product. 

Additionally, we created a custom dataset, termed ‘proximity,’ which captures the distance of each pixel from the ocean. This 210 

is important because Tb pixels near large water bodies are prone to water contamination and frequent cyclonic events that can 

influence LWC in the regional snowpack (Rees et al., 2010). 

3.4 Ancillary Datasets 

We used an established satellite-based snow phenology dataset for comparison with our ML results. These data include the 

annual timing (DOY) of snowmelt onset and snowoff for the YRB from 1988 to 2018 mapped to a 6.25 km resolution grid 215 

(Pan et al., 2020, 2021). The data were also derived using a similar thresholding approach of the GRP and TBD derived from 

microwave Tb observations. Additionally, a glacier land cover dataset for the YRB was obtained from the Glacier Covered 
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Area for the State of Alaska dataset (Roberts-Pierel et al., 2022), which we used to identify pixels that maintain year-round 

snow cover, as they do not experience a ‘snowoff.’  

4 Methods 220 

4.1 RF Framework 

We implemented a RF classifier to predict snow phenology, specifically focusing on estimating the annual timing (day of year) 

of snowmelt onset and snowoff across the YRB. The RF approach was chosen due to its ability to handle complex, high-

dimensional data, and robustness to overfitting, making it well-suited for cryosphere applications (Breiman 2001, Alifu et al., 

2020; Blandini et al., 2023). Although RF does not inherently model temporal sequences like some other algorithms, temporal 225 

dimensions were incorporated by structuring each day as a sample within a sequential framework. Accordingly, we used the 

RF implementation in scikit-learn (Pedregosa et al., 2011).  

 

In this study, the RF model snow phenology metrics were derived at 3.125 km resolution from 1988-2023, which represents a 

significant spatial and temporal enhancement over other similar snow records developed for the YRB (Pan et al. 2020). 230 

Although the original K-band Tb data resolution was 6.25 km, the 3.125 km resolution of the RF predictions is more consistent 

with the native resolution of the Ka-band Tb record, which are critical for capturing snowpack characteristics. Additionally, 

the 3.125 km resolution is approximate to—or still coarser than—other RF model predictor datasets used, which helps to 

ensure spatial coherence in representing landscape heterogeneity.  

4.1.1 RF Model Setup 235 

To enhance the prediction of snow phenology, we configured the RF model to delineate daily snow conditions. We did this by 

classifying expected snow conditions for each day in a timeseries leading up to the observed snowmelt onset or snowoff day 

in spring as either ‘dry snow’ or ‘present.’  After the observed onset or snowoff day, the conditions are labeled as ‘wet snow’ 

or ‘absent’, respectively. By labeling the timeseries accordingly, we were able to: 1) add a temporal dimension to the RF 

classifier, 2) expand the RF training and testing datasets, and 3) use the day each labeled timeseries changes as the snow 240 

phenology date (Figure 2). 
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Figure 2: Comparison between daily in situ air temperature and snow depth measurements (top plot) taken from Fairbanks 

International Airport in 2012 and collocated brightness temperature derived TBD and GRP (middle plot). The bottom plot shows 

the daily snowmelt onset RF model output. The snowmelt onset, marked by the transition from dry to wet snow, is identified as the 245 
day when the model output changes from 0 to 1. 

To assess daily snow conditions, each model was trained using a set of daily and static predictors. Daily predictors included 

TDD, TBD, GRP, and Day of Year (DOY). Static predictors, representing landscape and environmental characteristics, 

included proximity to oceans, TC, FW, elevation, and aspect. All static variables were scaled from 0 to 1. Table 1 includes 

more detail on the model training datasets. Snowoff included snowmelt onset as a predictor with the intention that this variable 250 

would ensure that snowoff predictions would occur after the snowmelt onset. 

 

We parameterized the RF models using a cross-validated grid search method. This approach systematically evaluates various 

combinations of hyperparameters to identify the best configuration by performing cross-validation. It selects the combination 

of parameters that minimizes the user-defined evaluation metric, such as the cross-validated score (Jääskeläinen et al., 2022). 255 

The grid of adjustable parameters we provided for hyper-tuning included the number of the RF decision trees, the maximum 

depth of each tree, the minimum sample size for node splitting, the minimum sample size for leaf nodes, and the maximum 

number of features considered at each split. In addition to parameter selection, the cross-validated score also helps minimize 

overfitting.  
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 260 

Finally, we identified the timing of snowmelt onset and snowoff from the model outputs by applying a logic that returned the 

first day of 10 consecutive days classified as either ‘wet snow’ or ‘absent.’ 

4.1.2 Assessing Uncertainty and Error 

Model performance was assessed using a bootstrapping approach, with an 80/20 split between training and testing data, with 

replacement, allowing us to evaluate model accuracy and variability. For each bootstrap iteration, performance was evaluated 265 

with the training data by 1) extracting the R² value to quantify the agreement between observed and predicted dates, and 2) 

aggregating the Mean Absolute Error (MAE) across different land cover types. To determine whether differences in model 

error across land cover characteristics were statistically significant, we applied a one-way Analysis of Variance (ANOVA). 

For each iteration, we also calculated feature importance, determining the average importance and standard deviation for each 

feature. 270 

 

The output absolute error from our model bootstrapping was used as the dependent variable in an ordinary least squares (OLS) 

regression, with land cover variables such as FW, TC, elevation, aspect, and proximity serving as the explanatory variables 

(Kim et al., 2011). The goal was to establish a relationship between the observed error and the land cover characteristics to 

identify pixels in the YRB where we may expect lower or higher errors. We then applied the OLS model across the YRB to 275 

predict anticipated error. These values were scaled from 0 to 1, creating a dimensionless quality control (QC) metric. The QC 

metric was further classified into natural breaks, with qualitative labels of ‘Best’, ‘Good,’ ‘Moderate,’ and ‘Low’ to describe 

the relative quality of the model predictions. 

4.2 Trend Analysis 

4.2.1 Snow Phenology 280 

To analyze snow phenology trends over time, we developed snow phenology climatologies for the period 1991–2020. Using 

a natural break classification method, we divided the data into two categories: ‘earlier’ and ‘later’ snow events. These two 

classes represented pixels in the YRB that experienced respective earlier or later snow events in each year of record, relative 

to their climatological mean value for each pixel. Next, for each year, we classified the snow metrics using the same two 

categories derived from the climatology and calculated the annual change in area for each class. If the area of the ‘earlier’ class 285 

decreased, we expected a corresponding increase in the ‘later’ class. To assess the trends over time, we applied a linear 

regression and performed a Mann-Kendall Test (MKT) to evaluate the direction and strength of the annual changes in area. 
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4.2.2 Temperature and Snow Depth 

Seasonal air temperature across the YRB was analyzed using data from GHCNd climate stations. To create a single, 

harmonized air temperature time series, we selected stations with at least 17 years of data for each of the two time periods 290 

(1988–2005 and 2006–2023) from an initial set of 35 stations in the YRB. This selection criterion reduced the set to 8 stations 

for 1988–2005 and 15 stations for 2006–2023. With the selected stations, we then calculated seasonal average temperature 

time series for each period, specifically for winter, spring, summer, and combined spring/summer temperatures. 

We also extracted the snow depth at the day of snowmelt onset across YRB using the GHCNd climate stations. Like 

temperature, we required a station to have recorded at least 17 years of snow depth. We also checked each of these stations, to 295 

determine if the annual snow depth measurements were complete because they are often incomplete. These screening criteria 

resulted in 4 stations selected for 1988-2005 and 13 stations for 2006-2023.  

5 Results 

5.1 RF Model Performance 

The RF model effectively classified daily snow conditions for both snowmelt onset and snowoff, as demonstrated by the 300 

bootstrapped results. For snowmelt onset, the model classified snow conditions as either 'dry snow' or 'wet snow' with high 

accuracy. The model achieved an F1-score, precision, and recall averaging 0.97, indicating a strong ability to balance false 

positives and false negatives. These metrics suggest that the RF model reliably distinguished between dry and wet snow 

conditions leading up to snowmelt onset. Gridsearch results for the RF are found in Table A2. 

Similarly, for snowoff, the RF model successfully classified daily snow conditions as either 'present' or 'absent'. The model 305 

maintained an average F1-score, precision, and recall of 0.96. This consistent performance highlights the model’s ability to 

accurately capture the transition between snow presence and absence throughout the snowoff period, providing dependable 

predictions of snow cover dynamics. 

 

Once the snowmelt onset and snowoff days of year (DOY) were extracted, they were compared against our testing data 310 

generated during bootstrap iterations. In each iteration, an 80/20 (training/testing) split ensured that the testing data represented 

a unique subset of high-quality observations from different years and locations, allowing the model’s generalizability to be 

evaluated across a variety of conditions. The bootstrapped results yielded an R² of 0.72 for snowmelt onset and 0.83 for 

snowoff, demonstrating that the predicted snow DOY metrics closely matched the observed values from the testing data. 

Additionally, the model produced a Mean Absolute Error (MAE) of 5.86 [days] for snowmelt onset and 5.18 [days] for 315 

snowoff, indicating the average deviation between the predicted and observed dates. The Root Mean Square Error (RMSE) 

values of the model results were 8.07 [days] for snowmelt onset and 6.89 [days] for snowoff. Overall, these metrics indicate 

favorable model performance in predicting the timing of these key snow phenology events across the YRB.  
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The final error assigned to the snow phenology dataset is assessed by comparing the RF model outputs on the full YRB dataset 320 

with the additional training dataset derived from the limited number of GHCNd stations within the YRB. From these stations 

we calculated a MAE 11.6 [days] and RMSE of 14.9 [days] to the snowmelt onset product. The model snowoff results showed 

a MAE of 18.1 [days] and RMSE of 21.3 [days] relative to the station observations.  The higher final observed errors compared 

to the bootstrapped errors are likely attributed to the greater variability in land cover, which is not fully represented by the in-

situ ground stations. 325 

5.1.1 Model Feature Importance 

On average, the most influential features for predicting snowmelt onset were DOY, TDD, snow cover presence and TBD, in 

that order (Fig. A3). The snowoff predictions followed a similar pattern, with TDD, DOY, snow cover presence, and TBD 

emerging as the top-ranked features (Fig. A4). In both models, the dynamic, time-series features—such as temperature and 

snow cover presence—played a significantly larger role in the predictions compared to the static features, such as proximity, 330 

elevation, and fractional water cover. Interestingly, the GRP had relatively low importance for the snowoff model, which is 

likely due to its erratic behavior during no snow conditions and vegetation. 

5.1.2 Landcover and Uncertainty 

Mean absolute errors were binned by land cover to assess whether land cover characteristics had a significant influence on 

model performance. Land cover features such as elevation, TC, aspect, proximity, and FW were grouped into four natural 335 

breaks and compared with the corresponding model MAE to identify potential patterns or relationships. Figures 3 and 4 indicate 

that when elevation, proximity and FW decrease, MAE also decreases for both snowmelt onset and snowoff predictions. 

Conversely, as TC increases, MAE also increases, though this is only observable for snowmelt onset predictions. Also notable 

is that higher FW is associated with much higher MAE values for snowmelt onset. Hence, FW may be a major factor behind 

the overall lower model performance, relative to snowoff. Yet, overall, these landcover and error interactions are as anticipated 340 

– error increases with higher surface water cover, coastal proximity, and tree cover.  
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Figure 3: Average snowmelt onset (left) and snowoff (right) MAE aggregated by landcover. Landcover was binned using a Jenks 

classification with lower values on the left and higher values moving to the right. 345 

 

Figure 4: Average snowmelt onset (left) and snowoff (right) MAE aggregated by FW. 

 

The one-way ANOVA results indicate that each land cover characteristic has a significant (p<0.0001) influence on MAE. For 

both snowmelt onset and snowoff, FW had the greatest impact with an F-statistic = 40.63. TC and proximity also showed 350 
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substantial effects on MAE, with F-statistics of 21.34 and 30.18 for TC, and 10.25 and 19.22 for proximity, for snowmelt onset 

and snowoff, respectively. These results support inclusion of the static variables as additional RF predictors, despite their 

relatively low importance. 

5.2 Model Comparisons 

5.2.1 RF and Threshold Comparison 355 

A comparison between the annual median snowmelt onset and snowoff dates derived from the RF model and the previous 

snow phenology record from Pan et al. 2020 is presented in Figure 5. For snowmelt onset, the results show a moderate 

correlation between the two records for the YRB, with an r-value of 0.54 (p<0.05). However, the previous record was derived 

using a Tb thresholding method and consistently predicted earlier snowmelt onset dates, averaging about 3 days earlier than 

our RF model. When compared to the in-situ testing dataset within the YRB, the previous snow record produced a MAE of 11 360 

days and a RMSE of 14.57 days, like our RF model performance. 

 

For snowoff, the two records displayed a stronger correlation, with an r-value of 0.81 (p<0.05). The previous approach still 

predicted earlier snowoff dates, with an average of Day 137, about 5 days earlier than the RF-derived snowoff. Despite the 

stronger correlation, the thresholding approach returned a high MAE of 32 days and an RMSE of 54 days, which is about 365 

double the error derived for the RF method. The RF-derived snowmelt onset and snowoff exhibit significantly lower standard 
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deviations compared to the previous approach, indicating that the ML method is less susceptible to outliers.

 

Figure 5: 1988-2018 annual median dates +/- one standard deviation for snowmelt onset (top) and snowoff (bottom) for the ABoVE 

GRP threshold model (Pan et al. 2020) (black triangles) and the RF model (this study) (grey circles). 370 

5.2.2 Snowoff Model Comparison 

Our snowoff predictions incorporate two different modeled snow cover datasets, IMS and SnowModel, because no dataset 

alone spans our full period of record; both datasets were used as features in the RF model. Specifically, we used the 4 km IMS 

dataset (2004-2023) and the 3 km SnowModel (1988-2003) to calculate annual snowoff using a 10-day moving window. We 

then evaluated these outputs against the YRB training dataset to assess their performance relative to the RF results. For the 375 

period from 1997-2023, the IMS dataset achieved a Mean Absolute Error (MAE) of 15.87 days and a Root Mean Square Error 

(RMSE) of 21 days. During this same period, the RF-based snowoff dataset achieved a MAE of 16.03 days and an RMSE of 

19.2 days. 

 

For the earlier period (1988-1996), the SnowModel dataset produced a MAE of 13.6 days and an RMSE of 16.42 days. In 380 

comparison, the RF snowoff dataset during this period produced a MAE of 18.56 days and an RMSE of 21.2 days. These 

results reflect the performance of each dataset over their respective timeframes and provide insight into the reliability of the 
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RF-based snowoff model across different periods. Both IMS and SnowModel exhibited lower errors, likely due to snow cover 

being ranked third in feature importance within the RF model. 

5.3 QAQC Maps 385 

The QAQC maps provide a discrete qualitative index for assessing model output quality. For the snowmelt onset QAQC map, 

21% of the pixels were classified as ‘Best,’ 38% as ‘Good,’ 32% as ‘Moderate,’ and 9% as ‘Low’ (Figure 6). Quantitatively, 

using the bootstrapped error results, these categories correspond to different error ranges: ‘Best’ has an error of less than 4 

days, ‘Good’ ranges from 4 to 5 days, ‘Moderate’ from 5 to 7 days, and ‘Low’ indicates an error greater than 10 days.  

 390 

The land cover derived QAQC map for snowmelt onset identified the upper headwaters of the YRB as the principal offender 

of model quality. This is likely because of the large lakes in the region as well as the proximity to the ocean, bringing in 

periodic storm systems, introducing LWC to the surface snowpack. 

 

 395 

Figure 6: Snowmelt onset (left) and snowoff (right) QAQC maps were developed to identify regions of relative high to low quality 

classification results in relation to landcover characteristics. 

For snowoff, the error distributions are similar, though the class sizes differ slightly. In the snowoff QAQC map, ‘Best’ covers 

32% of the pixels with an error of less than 4 days, ‘Good’ accounts for 34% with an error between 4 and 6 days, ‘Moderate’ 

includes 22% with an error range of 7 to 11 days, and ‘Low’ comprises 13% of the pixels with an error greater than 11 days. 400 

The snowoff QAQC map also identified the upper headwaters of the YRB as a problematic area for model quality. However, 

lower quality pixels seem to be more focused at higher elevations and ridgelines. Given that snow cover at higher elevations 

can linger extended periods of time and even through the summer months, it is not a surprise that these pixels are ranked as 

‘low.’ The OLS models explained 21% and 27% of the variability in error for snowmelt onset and snowoff, respectively. The 

relatively low explanatory power is likely due to the testing data not fully capturing the landscape heterogeneity across the 405 

YRB. 
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5.4 Snow Phenology Climatology, Anomalies, and Trends 

5.4.1 Climatology of Snowmelt Onset, Snowoff, and Snowmelt Duration 

The climatology of snow phenology metrics—snowmelt onset, snowoff, and snowmelt duration—offers valuable insights into 

seasonal patterns across the YRB, where snow phenology shows later snowmelt onset, snowoff and duration in headwaters 410 

and higher elevations and earlier dates at lower elevations and valley bottoms (Figure 7). On average, snowmelt onset (MMOD) 

occurs around DOY 117 ± 7.4 (~26 April), with the earliest onset recorded on DOY 100 (~9 April) and the latest on DOY 137 

(~16 May). Snowoff typically occurs around DOY 142 ± 4.5 (~21 May), with the earliest snowoff observed around DOY 131 

(~10 May) and the latest on DOY 160 (~7 June). The snowmelt duration, defined as the period between snowmelt onset and 

snowoff, spans approximately 25 ± 4.8 days.  415 

 

Figure 7: Climatologies produced for snowmelt onset (left), snowoff (middle) and snowmelt duration (right) for the years 1991-2020 

on the top row. Middle and bottom row include the snow phenology for the years 2013 and 2016. 

5.4.2 Anomalous Years 

Several anomalous years in snow phenology stand out, deviating from the climatological averages. In 2016, a record-breaking 420 

warm year (Walsh et al., 2017), snowmelt onset occurred ~9 days earlier than average, and snowoff 6 days earlier, lengthening 

snowmelt duration by 4 days beyond the mean. Conversely, in 2013, a cooler year, snowmelt onset was 10 days later and 
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snowoff 5 days later, shortening the snowmelt duration by 4 days. These anomalies likely reflect broader climatic drivers, such 

as temperature fluctuations and abnormal precipitation, affecting snowmelt dynamics in these years. 

5.4.3 Change in Area Over Time 425 

Temporal changes in area for the ‘earlier’ class from 1988–2023 (Fig. A5) showed no significant correlations for any snow 

metric. However, the Mann-Kendall Test test revealed positive and statistically significant (p<0.05) tau values for both snowoff 

and SMD, though these were modest at 0.2 and 0.25, respectively. To further examine potential trends, we segmented the data 

into two periods—1988–2005 and 2006–2023—and performed trend analysis on each segment independently (Figure 8). 

 430 

Annual changes in the snow metric’s ‘earlier’ class during the first half of the data record (1988-2005) identified a strong 

negative trend for snowmelt onset (r = -0.65, p < -0.05, tau=-0.35, p < 0.05). This implies that in the earlier years of this period, 

snowmelt onset was occurring earlier across the YRB relative to later years. Conversely, SMD had a strong positive trend (r = 

0.7, p<0.05, tau = 0.41, p <0 .05), which suggests a longer snowmelt duration during years with earlier snowmelt onset. 

Snowoff exhibited no significant trends during this period, with an r value of -0.15, indicating minimal directional change. 435 

 

In the second half of the data record (2006–2023), annual changes in snowmelt onset displayed a shift to a positive trend, with 

an r value of 0.54 (p < 0.05) and tau of 0.42 (p < 0.05). This shift suggests that snowmelt onset has been occurring progressively 

earlier in recent years. Snowoff during this period also exhibited a positive trend, with an r value of 0.65 (p < 0.05) and tau of 

0.48 (p < 0.05), indicating an earlier occurrence of snowoff as well. Interestingly, SMD did not show any significant trends 440 

during this period due to compensating changes in snowmelt onset and snowoff timing. 
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Figure 8: Annual changes in area between the ‘earlier’ climatology and the ‘earlier’ class for each year. The left plot shows 

decreasing trend for snowmelt onset but little change for snowoff from 1988-2005 while the right plot shows significant increase in 

change in area for both from 2006-2023. 445 

5.5 Temperature and Snowfall Trends Across the YRB 

Seasonal temperatures and annual snowfall in the YRB were analyzed using in-situ measurements from GHCNd stations. For 

the period 1988–2023, no significant trends were identified in Winter, Spring, Summer, or Spring/Summer temperatures, nor 

in annual snowfall totals. In the following sections, we present trend analysis results for annual snowfall and seasonal 

temperatures across the two sub-periods—1988–2005 and 2006–2023—as well as correlations with the annual snow metrics. 450 

5.5.1 Snow depth at snowmelt onset 

Between 1998 and 2005, median snow depth on the day of snowmelt onset exhibited a moderately strong negative correlation 

with time (r = -0.58, p < 0.05; tau = -0.40, p < 0.05), indicating a decrease in snowfall totals during this period (Figure 9). In 

contrast, from 2006 to 2023, median snow depth displayed positive and significant correlations and trends (r = 0.68, p < 0.001; 

tau = 0.40, p < 0.05). We did not examine correlations between snow depth at snowmelt onset and snow phenology metrics, 455 

as these analyses would likely introduce bias due to the use of the DOY of snowmelt onset in both training and testing datasets. 

 

Figure 9: Harmonized median snow depth at day of snowmelt onset across the YRB as measured from GHCNd stations. 

https://doi.org/10.5194/egusphere-2024-3608
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

5.5.2 Seasonal Temperature 

Trends in seasonal temperatures from 1988–2005 identified a significant increase in winter temperatures, with an r value of 460 

0.46 (p < 0.1) and tau of 0.35 (p < 0.05). Winter temperatures were also negatively correlated with snowmelt onset (r = -0.47, 

p < 0.05), indicating that warmer winters were associated with earlier snowmelt. Additionally, snowoff showed a strong 

positive correlation with spring temperatures (r = 0.68, p < 0.01). Summer temperatures during this period were moderately 

correlated with both snowmelt onset and snowoff, with r values of 0.51 and 0.52 (p < 0.1), respectively. 

 465 

From 2006–2023, no seasonal temperatures exhibited significant trends over time. However, winter and spring/summer 

temperatures had positive tau values of 0.33 and 0.32 (p < 0.05), suggesting a slight warming trend. Interestingly, snowmelt 

onset and snowoff were positively correlated with spring/summer temperatures, with r values of 0.48 and 0.67 (p < 0.01), 

respectively. A significant correlation was also identified between spring temperatures and snowmelt onset (r = 0.41, p < 0.1), 

indicating that warmer springs may contribute to earlier snowmelt. 470 

6 Discussion 

6.1 Model Performance and Limitations 

The RF model classified daily snow conditions effectively, achieving high precision and recall scores, underscoring its 

reliability in predicting snowmelt onset and snowoff. This performance is particularly noteworthy in the complex landscape 

of the YRB, where traditional threshold-based methods often struggle due to heterogeneous land cover and atmospheric 475 

conditions (Pan et al., 2021). By incorporating dynamic time-series data, such as cumulative TDD and TBD, the model 

produced favorable predictions of snow phenology events. The inclusion of a temporal dimension within the RF framework 

further enabled the model to track the seasonal evolution of snow cover, enhancing model accuracy in predicting both snowmelt 

onset and snowoff. 

 480 

In comparing bootstrapped performance metrics, the snowoff model outperformed the snowmelt onset model, a result 

anticipated due to the greater variability and influencing factors associated with detecting snowmelt onset. However, errors 

calculated by comparing in-situ observations with full model outputs showed that snowoff predictions had a higher MAE and 

RMSE. Notably, when RF snowoff errors were compared with errors derived from IMS and SnowModel snowoff data, they 

were found to be similar. This suggests that (1) accurately capturing snowoff at a single point location remains challenging 485 

due to high spatial variability at the 3.125 km spatial scale, (2) the RF snowoff model performs on par with other established 

snowoff datasets and (3) the uncertainties and bias in other readily available snow products. 
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The model also faces challenges related to sampling bias, due to the uneven distribution of ground-based snow depth 

measurements used for training and testing (Tedesco and Jeyaratnam, 2016; Tsai et al., 2019). The GHCNd stations are mostly 490 

located in accessible, lower-elevation areas and represent a very small relative area within the grid cell being evaluated. This 

also introduces bias into the modeled predictions for underrepresented regions, such as higher elevations or areas of higher 

FW in the YRB. The scarcity of in-situ observations in these areas further limits the ability of the model to generalize across 

different land cover types and elevations. However, emerging technologies, such as camera traps, have shown promise in 

measuring seasonal snow depth at varying elevations (Breen et al., 2023, 2024). These tools could expand the spatial 495 

distribution of snow measurements while reducing potential spatial bias, offering a valuable enhancement for future snow 

phenology studies. 

 

We found that the RF model predicted snowmelt onset on average 3 days later than an established satellite snow phenology 

record derived from a Tb threshold method (Pan et al., 2020). This earlier onset predicted by the previous record is likely due 500 

to the threshold algorithm misinterpreting seasonal melt events as the main snowmelt onset. Addressing this misinterpretation 

was one of the primary motivations for exploring ML in snowmelt onset detection. The RF model, with its logical structure 

and ancillary data, is likely better equipped to distinguish between seasonal melt events and the true melt onset. Additionally, 

the coarser resolution of the Pan et al. (2020) dataset (6.25 km) may introduce bias by failing to capture landscape 

heterogeneity, particularly at higher elevations. These high-altitude areas, which are a smaller portion of the domain, tend to 505 

exhibit a lag in spring snow metrics compared to lower elevations. 

 

The RF models showed greater uncertainty in certain YRB sub-regions, particularly at higher elevations and in coastal areas. 

These regions likely pose challenges due to their topographic complexity and proximity to large water bodies, which can 

introduce both Tb noise and variability in snowpack LWC (Du et al., 2016; Nagler and Rott, 2000). The QAQC maps, 510 

highlighted areas with higher RF prediction errors, indicate the need for refining model inputs in these regions. Incorporating 

higher-resolution satellite data like SAR or additional variables that account for these specific landscape characteristics would 

likely improve future iterations of the model and address some of the scale dependent uncertainties (Darychuk et al., 2023; 

Gagliano et al., 2023; Marin et al., 2020). 

6.2 Implications of Changes in Snow Phenology 515 

Annual changes in snow phenology are closely tied to current climate conditions, with snowmelt onset and snowoff generally 

occurring later in cooler years and earlier in warmer years. Notably, during warm years, snowmelt occurred earlier—by ~8 

days—while in cooler years, the delay was ~10 days, relative to the climatology. And the difference in snowmelt onset between 

a warm year and cool year could be as much as 26 days. Earlier occurrence in snowmelt onset during warm years also generally 

translated into a longer melt duration, as noted from previous studies (Musselman et al., 2017). 520 
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Our analysis revealed that snowmelt onset trended toward a later date from 1988–2005, a result that might seem 

counterintuitive given the warming temperatures typically observed at northern latitudes. However, during this period, annual 

snowfall was particularly high in the beginning of this period (especially before 1994), and seasonal temperatures showed 

small changes. The deeper snowpack meant that more snow was available for melting earlier in the season, as reflected in the 525 

RF model outputs. This suggests that snowmelt onset is influenced more by the quantity of accumulated snow than by 

temperature alone (Barnett et al., 2005; Frei and Henry, 2022; Trujillo et al., 2012), except in cases of anomalously warm years, 

where elevated temperatures tend to override other factors (Musselman et al., 2017). 

 

With temperatures remaining relatively stable from 1988-2005, snowoff timing followed typical seasonal patterns, explaining 530 

why we observed no significant changes during this period. Here we demonstrated the important role winter snowfall in 

shaping springtime snow phenology, yet trends in snowfall patterns across Alaska are complex. From 1957 to 2021, winter 

snowfall equivalent has increased across Alaska. However, northern and southern regions have seen a decline in snowfall 

during the spring and fall shoulder seasons, effectively shortening the snow cover duration (Ballinger et al., 2023).  

 535 

We also showed an acceleration in both snowmelt onset and snowoff timing during the latter half of the data record (2005-

2023). These changes align with recent trends in average Spring/Summer air temperature measurements in the YRB. Over the 

last century, Alaska has experienced varying increases in temperature across different climate divisions (Bieniek et al., 2014), 

with record-breaking warmth in recent years (Lara et al., 2021; Swanson et al., 2021; Walsh et al., 2017).  

7 Conclusion 540 

This study introduces an application of a RF approach to derive a 35-year snow phenology record across the YRB, delivering 

new insights into the timing and variability of snowmelt onset and snowoff across Alaska’s largest drainage basin. Designed 

for enhanced delineation of spatial and temporal heterogeneity in snow metrics over more established satellite and model data 

records, the RF model effectively classified daily snow conditions, achieving reasonable accuracy in delineating snowmelt 

onset and snowoff across a highly varied landscape. By working with an improved spatial resolution of 3.125 km, the RF 545 

model was able to provide a more detailed representation of landscape features than previous Tb threshold-based snow 

phenology datasets, supporting more precise predictions across the YRB's diverse terrain. The enhanced spatial resolution 

proved especially valuable in depicting snow phenology in the region’s remote, high-latitude environments, allowing the RF 

model to capture nuances in snowmelt timing across varying topographies, elevation ranges, and vegetation covers. 

 550 

One significant advantage of the RF approach over traditional thresholding methods is its reduced sensitivity to transient melt 

events and atmospheric fluctuations, making it more reliable in identifying primary snowmelt onset rather than temporary thaw 

and early melt events caused by brief warming episodes. Additionally, the RF model’s integration of dynamic predictors, 
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including cumulative thaw degree days and snow cover presence, allowed it to capture the seasonal evolution of snow 

conditions, while remaining less prone to errors related to isolated atmospheric warming events. However, certain challenges 555 

emerged, particularly in areas with complex topography, such as in high-elevation and coastal zones, where model prediction 

errors were greater. These challenges likely reflect the model's difficulty in addressing highly localized factors, like changes 

in snowpack liquid water content, or terrain induced microclimate variability. 

 

As with many remote sensing models, sample bias in the RF model due to uneven ground-based data coverage poses a 560 

limitation, as in-situ snow depth measurements are predominantly collected in accessible, lower-elevation regions. This bias 

suggests the need for continuous updates to the in-situ training dataset, particularly by expanding measurements in higher-

altitude and coastal areas within the YRB. Incorporating more extensive in-situ observations would improve the model’s 

accuracy in underrepresented regions, allowing for a more comprehensive understanding of snow phenology across the YRB. 

By overcoming these current limitations and incorporating higher-resolution data sources, such as SAR, future iterations of 565 

the model could further enhance snow phenology monitoring in the YRB, making it a critical tool for understanding snow-

related dynamics in response to climate change. 

 

Finally, this study produced an extended snow phenology record spanning more than 30-years to better distinguish climate 

normals and quantify long-term climate trends in the YRB. By segmenting the 35-year record into two timeframes (1988–570 

2005 and 2006–2023), we were able to detect distinct temporal trends in the spring snow metrics that corresponded with 

changes in seasonal temperatures and snowfall patterns. The analysis revealed that in the earlier years, snowmelt onset tended 

toward later dates, influenced largely by higher snowfall amounts and stable seasonal temperatures. However, in more recent 

years (2006–2023), both snowmelt onset and snowoff timing have advanced significantly, coinciding with rising spring and 

summer temperatures across the YRB. These phenological shifts, along with the lengthening of the snow-free season, align 575 

with observed patterns of earlier spring onset and more frequent anomalous warming events in recent years. The resulting 

snow phenology trends offer valuable insight into the YRB’s changing climate and highlight the increasing influence of 

warming on snowpack dynamics, which hold implications for regional water availability, ecosystem health, and community 

resilience in the face of accelerated climate change. 

8 Appendix A 580 

Table A1. Descriptions of datasets used in this study and their sources. 

Dataset 
Spatial 

Resolution 

Spatial 

Domain 

Temporal 

Resolution 

Period of 

Record 
Use Reference/Source 

19 V and 19 H 

(K-band) 
6.25 km 

Northern 

Hemisphere 
Daily 

1988-

Present 
RF Prediction Brodzik et al. 2018 
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37 V and 37H 

(Ka-band) 
3.125 km 

Northern 

Hemisphere 
Daily 

1988-

Present 
RF Prediction Brodzik et al. 2018 

Daymet 1 km OCONUS Daily 
1980-

Present 
RF Prediction Thornton et al. 1997 

IMS 4 km 
Northern 

Hemisphere 
Daily 

2004-

Present 
RF Prediction Helfrich et al. 2007 

SnowMod 3 km 
Alaska and 

NW Canada 
Daily 1980-2020 RF Prediction Liston et al. 2023 

Fractional 

Water (FW) 
6.25 km Alaska Static 2003-2015 

RF Prediction and 

Uncertainy Analysis 
Du et al. 2017 

Fractional Tree 

Cover (TC) 
250 m Alaska Static 2011 

RF Prediction and 

Uncertainy Analysis 
Carroll et al. 2011 

Elevation 

(GTOPO) 
1 km Alaska Static  

RF Prediction and 

Uncertainy Analysis 
USGS 

Proximity 1 km Alaska Static  
RF Prediction and 

Uncertainy Analysis 
GTOPO 

Aspect 1 km Alaska Static  
RF Prediction and 

Uncertainy Analysis 
GTOPO 

Glaciers vector Alaska/Canada Static  Indicate permanent ice 
Roberts-Pierel et al. 

2022 

GHCNd in situ Alaska Daily 
<1988-

Present 

RF Prediction - 

Testing/Training 
Menne et al. 2012 

MMOD 6.25 km Alaska Annual 1988-2018 RF Comparison Pan et al. 2021 

Snowoff 6.25 km Alaska Annual 1988-2018 RF Comparison Pan et al. 2021 

 

Table A2. Gridsearch results for RF hyper parameters. 

  

Snowmelt 

Onset 
Snowoff 

n_estimators 100 100 

min_samples_leaf 4 4 

max_depth 10 10 

max_features log2  log2 

min_samples_split 5 10 
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 585 

Figure A3. Snowmelt onset variable feature importance with +/- one standard deviation over 20 bootstrap iterations. 

 

Figure A4. Snowoff variable feature importance with +/- one standard deviation over 20 bootstrap iterations. 
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 590 

Figure A5. Snowmelt onset climatology binned into two classes, ‘earlier’ and ‘later.’ This climatology was used to assess annual 

changes in snowmelt onset. 

 

Code and Data availability. Code and datasets produced in this study are available upon request. 
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