
Ice Anatomy: A Benchmark Dataset and Methodology for
Automatic Ice Boundary Extraction from Radio-Echo Sounding
Data
Marcel Dreier1, Moritz Koch2, Nora Gourmelon1, Norbert Blindow2, Daniel Steinhage3, Fei Wu1,
Thorsten Seehaus2, Matthias Braun2, Andreas Maier1, and Vincent Christlein1

1Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
2Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
3Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.

Correspondence: Marcel Dreier (marcel.dreier@fau.de)

Abstract. The measurement of ice thickness is of great importance for the accurate estimation of glacier volume and the de-

lineation of their bedrock topography. In particular, this is a crucial factor in forecasting the future evolution of glaciers in

the context of a changing climate. In order to derive the ice thickness, the travel time of electromagnetic waves in radargrams

acquired by radio-echo sounding (RES) systems is analyzed. This can only be achieved by identifying the ice surface and

underlying ice bottom in corresponding radargrams. Manually identifying these two reflection horizons in RES data is a labo-5

rious and time-consuming process. Consequently, scientists are attempting to automate this task through the use of techniques

such as deep learning. Such automation can significantly reduce the time between a field campaign and the calculation of the

glacier’s ice thickness distribution. In this paper, we present the first benchmark dataset for delineating the ice surface and bot-

tom boundaries in RES data, to facilitate standardized comparisons of deep learning models in the future. The “IceAnatomy”

dataset comprises radargrams and the corresponding manual picks, amounting to a total of over 45,000 km of observations.10

The RES data originates from three sources: FAU, CReSIS, and AWI. The dataset comprises different RES systems as well

as different pre-processing methods. In addition, the data was acquired over a large range of geographical and glaciological

settings, featuring different thermal regimes present in Antarctica and the Southern Patagonian Icefield. This diversity ensures

that the models’ behaviors can be analyzed in different scenarios. We define a standardized train-test split for each source in

the dataset. This allows us to introduce not only a baseline model trained on the entire training set (the “omni” model), but15

also three source-specific baseline models. The source-specific models are trained exclusively on the subset of the training data

acquired by the specified source. The baseline models provide an initial benchmark against which subsequent models can be

compared. The source-specific models demonstrate more accurate results than the omni model. For the FAU, CReSIS, and

AWI test sets, the source-specific models achieve Mean Meter Errors of 2.1m, 23.1m, and 4.9m for the ice surface and 9.1m,

78.2m, and 29.3m for the ice bottom. In relation to the mean measured ice thickness of the test set, these errors equate to20

1.2%, 3.1%, and 0.3% for the ice surface and 4.9%, 10.4%, and 1.5% for the ice bottom. The dataset and implementation are

available at https://zenodo.org/records/14036897 (Dreier et al., 2024) and https://doi.org/10.5281/zenodo.14038570 (Dreier,

2024).
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1 Introduction

Glaciers and ice shelves are key indicators of global climate (Haeberli et al., 2007; IPCC, 2013). Knowing their volume and25

ice thickness distribution is crucial for assessing future cryospheric contributions to sea level rise. Moreover, data on the ice

volume of glaciers and ice sheets is necessary for understanding their response to climate change. Ice thickness measurements

enable the subsequent prediction of the rate and timing of glacier retreat or disappearance using different types of models.

This enables the assessment of a glacier’s contribution to regional hydrological cycles and its subsequent influence on local to

regional scales with associated socioeconomic impacts. (Werder et al., 2020; Ayala et al., 2020; Farinotti et al., 2017). Several30

techniques to determine ice thickness exist, including seismic, gravitational, and magnetic methods, as well as radio-echo

sounding (RES) (Bogorodsky et al., 2012; Kohler et al., 1997). While satellite gravimetry allows for a resolution in the range

of kilometers, its spatial resolution does not allow for the interpretation of detailed subglacial features (Willen et al., 2024).

Seismic measurements offer a high resolution, but widespread use in the Antarctic region is limited by high exploration costs

or logistical unfeasibility (An et al., 2023). For this reason, RES is preferred over other methods when an accurate assessment35

of a subglacial topography is of interest. After pre-processing the RES data, we obtain an image commonly referred to as a

radargram. It depicts the cross-section of the glacier along the flight path. Experts can then interpret the RES data by delineating

the reflections of surfaces or internal glacial structures. Delineating the ice boundary, defined by the ice surface (air to ice

transition) and the ice bottom (ice to ground/water transition), is necessary to obtain the glacier’s thickness at each point in the

radargram. However, it is a time-intensive task, especially with large datasets (Sime et al., 2011). Several automated and semi-40

automated approaches to delineate the layers have been developed (Fahnestock et al., 2001; Gifford et al., 2010; Freeman et al.,

2010; Rahnemoonfar et al., 2017a, b; Kamangir et al., 2018; Rahnemoonfar et al., 2019; Cai et al., 2020, 2022; Liu-Schiaffini

et al., 2022b; Moqadam and Eisen, 2025; Moqadam et al., 2025; Jebeli et al., 2023b). However, these approaches are not

comparable as they have been evaluated on different datasets or a different train-test split of the same dataset. In this paper, we

present a publicly available, standardized benchmark dataset for ice thickness extraction. It is the first of its kind to be directly45

designed for deep learning approaches, with a pre-defined train-test split, fully human-annotated ice bottom labels, and different

recording systems. It comprises radargrams from Antarctica and Patagonia with polythermal, cold-based, or temperate thermal

regimes. The dataset is intended for supervised training and evaluation of deep learning models. Therefore, the dataset includes

depth labels for both the ice bottom and ice surface layer. Together with the dataset, we present a baseline model that delineates

the ice boundary in a given radargram. The model is based on the U-Net architecture (Ronneberger et al., 2015) and serves as a50

reference and a starting point for future improvements. In the following, we highlight two potential areas where our algorithm

could be further extended to impact real-world scenarios in the future. First, once trained, our algorithm can be executed on

virtually any modern laptop in the field. Combined with a pre-processing chain tailored to our approach, this allows for near

real-time analysis of acquired data on-site. Since flight hours are costly and often limited by weather conditions, optimizing

their use is crucial. If data can be processed in the field—e.g., between two flights—flight plans could be dynamically adjusted55

to focus on areas of high interest within the same campaign, e.g. a bedrock ridge beneath a glacier whose extent is greater

than initially assumed or ice inflow from large tributary glaciers into the main valley, which alters the bedrock topography at
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points of conflux more than expected. Second, and perhaps more importantly, the presented method can be further developed

to handle more specialized tasks, such as delineating intraglacial water channel systems or identifying water tables within

existing datasets. This would represent a step toward a comprehensive, quantitative, and standardized approach for interpreting60

interpreting the ice surface and ice bottom in radagrams, ultimately leading to fully automated products that could significantly

benefit the cryospheric research community. In particular, the automated mapping of internal reflection layers remains a critical

knowledge gap – one that deep learning is well – positioned to address (Moqadam and Eisen, 2025).

In summary, our contributions are as follows:

1. A novel benchmark dataset IceAnatomy for deep learning-based extraction of ice boundary from RES data is created.65

2. A baseline deep learning model for the automatic delineation of the ice bottom and the ice surface is proposed.

3. A thorough evaluation of individual models and an omni-model is conducted on the dataset.

The work is structured as follows: Section 2 provides an overview of datasets and algorithms previously used for automatic

ice boundary extraction. Subsequently, Sect. 3 gives insight into the recording and processing of the dataset as well as relevant

geographical and glaciological factors of the study sites. The baseline models are introduced in Sect. 4. An extensive evalu-70

ation of the baseline models and the benchmark dataset is presented in Sect. 5. Lastly, we summarize our research and draw

conclusions in Sect. 6.

2 Related Works

Over the past decades, RES has been widely used in glaciology. A multitude of publications cover the extraction of ice boundary

layers from RES data. In this section, we highlight related RES datasets and layer extraction approaches.75

2.1 Datasets

Numerous RES datasets on glaciers and ice sheets are publicly available. However, most existing datasets do not meet the

requirements necessary for benchmarking models. Common issues include that most datasets are either missing the layer

labels, radargrams, or are not publicly available (Young et al., 2021; Blankenship et al., 2018; Dong et al., 2022; Corr, 2020).

As a result, accurately benchmarking models to extract the ice bottom often becomes unfeasible. From the datasets, where both80

the labels and the radargrams are publicly available, a large portion contains labels that are generated automatically with human

supervision (Corr et al., 2021; CReSIS). While this technique is sufficient for clearly visible layers like the ice surface, the ice

bottom is often too ambiguous for an automatic tracker to capture accurately in its entirety. Thus, the supervising human

would have to intervene in such cases. However, the level of human involvement and the methods to validate the picking

process are rarely specified, creating a level of uncertainty that undermines the reliability of the benchmark dataset. Lastly,85

some datasets also do not satisfy the qualitative standards. While the picking process can often be subjective, errors like a

negative ice thickness are an indication of a lack of accuracy, making them unsuitable for training or evaluating deep learning
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approaches (CReSIS, 2012, 2013). Since listing and evaluating every dataset is virtually impossible, we focus our comparison

on datasets that have been used to extract the ice boundary in previously published work and for which both radargrams and

human-annotated labels are publicly available. These constraints significantly limit the number of related datasets.90

The one RES system that has been used extensively to collect such data is the Multichannel Coherent Radar Depth Sounder

versions 1-5 (MCoRDS) (Allen et al., 2012a), which was used, for example, in NASA’s Operation IceBridge (OIB) program

on a McDonnell Douglas DC-8-72 jetliner (Shi et al., 2010a). The data acquired over Antarctica in 2009 are the most widely

used (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018).

However, also data from different years (Kamangir et al., 2018; Mitchell et al., 2013; Cai et al., 2020; García et al., 2021a, b;95

Cai et al., 2022, 2019; Ghosh and Bovolo, 2022; García et al., 2023; Donini et al., 2022; Ilisei and Bruzzone, 2014, 2015)

and other locations like Greenland (Donini et al., 2022) and the Canadian Arctic Archipelago (Xu et al., 2017, 2018) were

analyzed.

Only very few publications included data from RES systems other than MCoRDS. Gifford et al. (2010) extracted the ice

boundary from data acquired by a predecessor RES system (Lohoefener, 2006) during 2006 and 2007 in Greenland. Dong100

et al. (2022) featured data from the Chinese Academy of Sciences’ Deep Ice Radar acquired during the 29th Chinese Antarctic

Scientific Expedition. Lastly, Liu-Schiaffini et al. (2022a) used algorithm-assisted human-labeled data acquired in the Cana-

dian Arctic and Antarctica by the University of Texas Institute for Geophysics’ high-capability radar sounder (HiCARS). A

major downside of these datasets is that they do not provide standardized training and evaluation splits, making inter-model

comparison challenging. Furthermore, datasets usually only focus on a single area, e. g., Greenland or Antarctica, which makes105

generalization to other areas or glaciological settings difficult to verify. IceAnatomy addresses this issue by including data from

multiple study sites, radar systems, and glaciological settings. It also provides standardized splits for training and evaluation to

allow for an accurate and fair comparison between models. In conclusion, to the best of our knowledge, there is no comparable

benchmark dataset for ice boundary extraction from radio-echo-sounding data.

2.2 Algorithms110

RES has been employed to detect crevasses (Liu et al., 2020; Walker and Ray, 2019; Williams et al., 2012, 2014), the ice

boundary (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018;

Mitchell et al., 2013; Xu et al., 2017, 2018; Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a),

to segment subsurface structures (Cai et al., 2020, 2019; García et al., 2021a, b; Ghosh and Bovolo, 2022; García et al., 2023;

Donini et al., 2022; Ilisei and Bruzzone, 2014, 2015), and to track internal ice and snow layers (Crandall et al., 2012; Karlsson115

et al., 2013; Ibikunle et al., 2020; Rahnemoonfar et al., 2021; Varshney et al., 2020, 2021; Yari et al., 2019, 2020; Dong et al.,

2022). Moqadam and Eisen (Moqadam and Eisen, 2025) provide an overview of the methods used in this domain.

To obtain the ice boundary, one can either directly delineate the ice surface and bottom or first segment different regions such

as ice, bedrock, and air and then extract the two layers during post-processing. Most existing studies (Crandall et al., 2012;

Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018; Mitchell et al., 2013; Xu et al.,120

2017, 2018; Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a) prefer direct extraction. Fewer
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studies (Cai et al., 2020, 2019; García et al., 2021a, b; Ghosh and Bovolo, 2022; García et al., 2023; Donini et al., 2022; Ilisei

and Bruzzone, 2014, 2015) use the segmentation approach. The segmentation approach assigns a semantic class to each pixel

in the radargram, from which the ice boundaries can be derived directly or after post-processing.

In terms of methodology, early studies mainly used classical image processing and machine learning techniques such as125

Hidden Markov Models (Crandall et al., 2012; Berger et al., 2018), Markov-Chain Monte Carlo (Lee et al., 2014), contour

detection (Rahnemoonfar et al., 2017a), the level set approach (Rahnemoonfar et al., 2017b; Mitchell et al., 2013), Markov

Random Fields (Xu et al., 2017), edge-based and active contour methods (Gifford et al., 2010), Kullback-Leibler maps (Ilisei

and Bruzzone, 2014), and Support Vector Machines (Ilisei and Bruzzone, 2015). After 2017, studies turned to Convolutional

Neural Networks (CNNs) (Kamangir et al., 2018; Cai et al., 2020, 2019; García et al., 2021a; Cai et al., 2022; Donini et al.,130

2022; Dong et al., 2022; Liu-Schiaffini et al., 2022a; García et al., 2021b, 2023; Jebeli et al., 2023a, b; Matsuoka et al., 2021;

Moqadam et al., 2025), combinations of CNNs and Recurrent Neural Networks (RNNs) (Xu et al., 2018), and combinations

of CNNs and Transformers (Ghosh and Bovolo, 2022).

In comparison, we rely on the U-Net architecture from (Ronneberger et al., 2015) to evaluate our newly created dataset.

Furthermore, we integrate Atrous Spatial Pyramid Pooling from (Chen et al., 2018) and the ResBlock design from (Esser et al.,135

2020) to improve the performance.

3 Dataset

In this section, we introduce the benchmark dataset “IceAnatomy” which covers several different geolocations and was ac-

quired by multiple radar systems. We divide the dataset into three subsets based on the sources of the data: the AWI (Alfred

Wegener Institute, Helmholtz Centre for Polar and Marine Research), CReSIS (The Center for Remote Sensing and Integrated140

Systems), and FAU (Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Geography) subsets. A summary of the

most important information about the dataset is given in Tab. 1.

Table 1. A summary of details about the IceAnatomy benchmark dataset (Lippl et al., 2019; Shi et al., 2010b; Rückamp and Blindow, 2012;

CReSIS, 2024a; Allen et al., 2012b; Steinhage, 2001, 2015). VR stands for the vertical resolution of the two-way travel.

Study Sites VR Width-Reso. Length Year Main Thermal

Regime

Labeled

Bottom %

James Ross Island 2.5ns pixel−1 2m pixel−1 275km 2017/18 Polythermal 82.5%

FAU Perito Moreno 2.5ns pixel−1 2m pixel−1 145km 2022 Temperate 83.1%

Viedma 2.5ns pixel−1 2m pixel−1 140km 2022 Temperate 46.2%

CReSIS Antarctic Peninsula 105ns pixel−1 12m pixel−1 20400km 2009 Polythermal 63.9%

West Antarctica 105ns pixel−1 12− 30m pixel−1 24400km 2009 Polythermal 78.9%

AWI Antarctic Peninsula 12ns pixel−1 62m pixel−1 1490km 2013 Polythermal 31.7%

East Antarctica 13.33ns pixel−1 66− 79m pixel−1 1015km 1997/99 Cold-based 73.7%
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3.1 Study Sites

3.1.1 Southern Patagonian Icefield

The Southern Patagonian Icefield (SPI) is the largest temperate ice body in the Southern Hemisphere. It is characterized by145

one of the highest mass loss rates in the world (Zemp et al., 2019; Marzeion et al., 2018; Hugonnet et al., 2021) and by its

large outlet glaciers that drain into lakes or the ocean (Aniya, 1999). Two of the largest eastward-flowing outlet glaciers in the

region are the Perito Moreno and Viedma glaciers. The only way to obtain information over large areas about their bedrock

topography is by helicopter-borne RES measurements. This is particularly applicable to the lower parts of the glaciers, which

are surrounded by steep mountain flanks and have heavily crevassed surfaces. As the glaciers are temperate, i. e., most of the150

ice is close to or at the pressure melting point, they contain a relatively high proportion of water (Aristarain and Delmas,

1993; Millan et al., 2019; Strelin et al., 2014; Schaefer et al., 2015). This characteristic, combined with the steep and deep

glacier troughs, often makes analyzing radargrams challenging. Hence, we hypothesize that they pose a significant challenge

to machine learning systems. Figure 1 shows the location of both glaciers on the east of the SPI.

Figure 1. Overview of the Southern Patagonian Inland Icefield. Orange boxes indicate surveyed areas of Perito Moreno Glacier and Viedma

Glacier. Black lines indicate flight paths over the Perito Moreno Glacier. The background is a hillshaded SRTM over ©Google Earth optical

imagery (Consortium, 2017). Maps are rotated by 90 degrees.
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3.1.2 Antarctica155

As depicted in Fig. 2, the Ice-Anatomy dataset offers three major study sites in Antarctica: the Antarctic Peninsula (including

James Ross Island (JRI)), West Antarctica, and East Antarctica.

Figure 2. Flight paths of the AWI and CReSIS campaigns in Antarctica. The background is assembled with help from the Quantarctica QGIS

project (Matsuoka et al., 2021).

The Antarctic Peninsula is the most represented region in the benchmark dataset, as it is present in all three RES subsets. It

exhibits one of the milder climates in Antarctica, with an annual average temperature of −3.2◦C (Morris and Vaughan, 1994).

This is also reflected in the thermal regimes present in the region, as it contains temperate, cold-based, and polythermal ice. The160

temperate portions of the Antarctic Peninsula are frequently near the margins and at lower elevations, while the cold-based ice

regions are generally found at higher elevations. The transition zones between higher and lower elevations commonly contain

polythermal ice (Van Liefferinge and Pattyn, 2013; Macelloni et al., 2019). However, elevation alone is often not sufficient to
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determine the thermal regime. A comparison with the ice velocity maps of Rignot et al. (2011) and Gardner et al. (2022) reveals

that fast-moving ice is present even in higher elevation areas, which is atypical for cold-based areas (Park et al., 2024; Dawson165

et al., 2022). This suggests that there is a significant amount of polythermal ice at higher elevations and that the main thermal

regime is polythermal. Another significant characteristic of the Antarctic Peninsula is its relatively shallow ice sheet compared

to the rest of Antarctica. On average, the ice sheet is estimated to be 610 m thick inland and 300 m in the ice shelves (Drewry

et al., 1982). This results in a generally clearer signal because the signal has to travel through less ice and is less likely to be

distorted by impurities in the glacier.170

West Antarctica is significantly colder than the Antarctic Peninsula, with an annual average temperature of approximately

−28.1◦C and a primarily polythermal thermal regime (Morris and Vaughan, 1994). Polythermal regions only commonly

occur at the margins and the coastline, while cold-based zones are mainly present at higher elevations (Macelloni et al., 2019;

Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). West Antarctica also contains relatively thick ice with inland ice sheets

estimated to be 1780 m thick and ice shelves around 375 m (Drewry et al., 1982).175

The last subregion in Antarctica is East Antarctica. It exhibits the coldest climate of the three areas, with an annual average

temperature of around −59.8◦C and a primarily cold-based thermal regime (Morris and Vaughan, 1994). Temperate areas are

commonly found near the margins, while polythermal zones act as a transitional zone between the cold-based and temperate

areas (Macelloni et al., 2019; Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). East Antarctica is also the region with the

generally thickest ice. On average, its ice sheets are approximately 2630 m thick inland and 400 m in its ice shelves (Drewry180

et al., 1982).

3.2 Dataset Generation

3.2.1 FAU Data

The RES system of FAU is a broadband 25 MHz bi-static monopulse sounder designed as a sling load for helicopter use. It is

a functional replica of the BGR-P30 system (Blindow et al., 2012). The antenna weighs roughly 280 kg and can be attached to185

any helicopter type that allows for the attachment of a sling load and has the required take-off capacity. The system is typically

operated 20 m above ground at a nominal airspeed of 60 km h−1.

The radar time series are collected at a 2.5 ns sampling rate using 256-fold stacking to improve sensitivity and signal-to-noise

ratio. The traces are collected at a rate of 10 Hz, corresponding to approximately a 2-meter spatial sampling rate. The data are

georeferenced by two Leica GS16 multifrequency Global Navigation Satellite System (GNSS) systems. The rover antenna is190

mounted on the radar antenna in a central position, while the base station is installed in proximity to the landing and starting

area. After differential processing of the GNSS data, the positions are matched to the radar traces before further processing

is applied. Then, the RES data is processed in REFLEX v8.5 software, developed by Sandmeier Geophysical Research. The

processing flow comprises the following steps and is applied to subsections of each flight: equidistant trace interpolation, shift

for time zero, subtracting special average, bandpass filter, amplitude regulation by gain function (cold ice) or energy decay195

(temperate ice), 2D migration, and static correction. To apply the 2D migration, it is necessary to derive a velocity model
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comprising an air and an ice layer. For the air layer, the wave travels at the speed of light, while for the ice layer, we assumed

a speed of 0.168 m ns−1 (Johari and Charette, 1975). Especially in temperate ice, the migration helps to focus the scattered

energy to enhance the ice bottom reflections.

The RES data of JRI was acquired during two different airborne ground penetrating radar campaigns in 2017 and 2018 (Lippl200

et al., 2019). Since Gourdon Glacier consists mainly of bare ice, no firn correction was applied for the outer parts of the profile.

For the data on the plateau, a standard correction for firn and snow (+10 m, AWI/BAS Bedmap 1 mission summary) as used

in the British-Argentinian survey was assumed (Lythe and Vaughan, 2001). The RES data of Perito Moreno Glacier and

Viedma Glacier were acquired in March and April 2022. For these study sites in the FAU subset, the ice is thicker than the

radar’s maximum penetration depth of estimated 700 m (Blindow et al., 2011). The original depth of the radargrams is over205

6000 pixels, which equates to over 1300 m on average - the total depth in meters is not constant due to fluctuations in the flight

height of the helicopter. We cut the radargrams to 4096 pixels, which corresponds to an average of about 800 m. This saves

computing power while keeping all the essential information. To restore the full flight traces in the FAU dataset from their

subsampled parts, we reassembled the radargrams according to their trace numbers. Any conflicting depths for the ice surface

and bottom in overlapping parts were smoothened with Gaussian importance weighting. Furthermore, in rare cases, the initially210

labeled ice surface and bottom had small gaps. To avoid such inconsistencies, we filled gaps of eleven pixels or less in the ice

surface and bottom via bicubic interpolation, using the two nearest manually labeled points as a reference.

The initial layer labels were fully-manually annotated by a single interpreter to ensure consistency throughout the dataset.

Surface reflections were generally straightforward to identify; however, in heavily crevassed areas, we increased the resolution

to delineate the air-ice interface as accurately as possible across these features. Bedrock picks were conducted using the215

same approach. In regions with ambiguous reflections, ReflexW (Sandmeier, 2024) software enabled zooming into specific

subsets of the radargrams, thereby enhancing the clarity of features of interest. Additionally, several intersecting profile lines

provided cross-points for internal validation. These intersections were annotated independently by the same interpreter and

subsequently compared. All cross-profile values fell within the expected margin of error, even in areas with steep slopes or

greater depths (i.e., deviations < 10 %). At Glacier Perito Moreno, two control points from previous studies were available for220

comparison (Sugiyama et al., 2011; Stuefer et al., 2007). The first, along the ‘Buscaini’ profile, corresponds to a seismic survey

conducted in 1996, which reported a maximum ice thickness of 720 m. The second, located nearer to the glacier terminus,

corresponds to a borehole drilled in 2010, revealing an ice thickness of 515±5m. Both control points were in close agreement

with our ice thickness estimates.

3.2.2 CReSIS Data225

The CReSIS data was recorded during the 2009 campaign of Operation Ice Bridge in Antarctica, which comprised 21 missions.

Three were sea-ice surveys and thus are not included in the CReSIS dataset. The remaining 18 missions can be split into

two groups: six missions focusing on the Antarctic Peninsula (PEN1, PEN2, PEN3, PEN4, PEN5, and LVISPEN) and 12

missions exploring West Antarctica (PIG1, PIG2, PIG3, PIG4, LVISPIG, LVIS86, GETZ1, ABBOTT1, TSK1, TSK2, TSK3,

and TSK4) (Allen et al., 2012b). All 18 missions employed the Multichannel Coherent Radar Depth Sounder (MCoRDS) flown230
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on a McDonnell Douglas DC-8-72. It has a center frequency of 195 MHz and an eight-channel-chirp signal to accurately assess

the ice (Rodriguez-Morales et al., 2014; Shi et al., 2010b).

To process the recorded data, the standard CReSIS L1B CSARP-mvdr (minimum variance distortionless response) pro-

cessing steps were applied. These include pulse compression via a Tukey and Hanning Window, beam-forming, motion com-

pensation, synthetic aperture radar processing in combination with f-k migration, channel combination, and waveform com-235

bination (CReSIS, 2024b). After the processing, the radargrams had a vertical resolution of the two-way travel time (VR) of

105ns pixel−1 and a width resolution of 12− 30m pixel−1 depending on the mission.

We obtained the fully processed CReSIS subset by downloading the CSARP-mvdr processed L1B product from the CReSIS

website and taking the square root of the amplitudes. Likewise, CReSIS also provides downloads for the annotated ice bottom

and surface layers on their website (CReSIS, 2024a). According to Lee et al. (2014) and Crandall et al. (2012), the rock-bed240

surface is humanly annotated but noisy. Although the noise might pose a problem for certain approaches, we chose not to

alter the labels. The reason for this is that the dataset has been used previously in other publications, and in order to remain

comparable, we use the same labels. However, to provide additional context regarding the quality, CReSIS provides a quality

label for every pick. The label indicates the annotator’s confidence, ranging from one (high) to three (low). We include these

labels in the benchmark dataset for future research. The general picking procedure for CReSIS data is outlined in (CReSIS,245

2024b).

3.2.3 AWI Data

The AWI subset was recorded during campaigns in Dronning Maud Land in 1997 and 1999 (Steinhage et al., 2023b, a) and in

the Antarctic Peninsula in November 2013 (Steinhage, 2015). All three campaigns employed a version of the EMR radar system

with a center frequency of 150 MHz and the toggle mode enabled. The toggle mode alternates the radar’s pulse length between250

60 ns and 600 ns periodically. Thus, the system can achieve a decent VR while capturing deep internal layers of the ice. The

processing of the recorded data was similar for all three campaigns. The data was differentiated, rescaled, high-pass filtered,

and bandpass filtered. To reduce the amount of noise in a radargram, multiple traces were combined into a single trace. In

detail, ten traces were combined for the 1997 and 1999 flights, and seven traces were combined for the 2013 flight (Steinhage,

2001; Nixdorf et al., 1999; Steinhage et al., 2001). Automatic gain control was used to normalize the amplitude values. After255

the processing, the radargrams had a VR of 12− 13.33 ns pixel−1 and a width resolution of 66− 79m pixel−1 depending on

the campaign.

The ice surface and ice bottom were annotated by one person. To ensure consistency, plausibility checks were performed

at crossing points with other profiles from the same or related campaigns. No systematic biases were observed. In the picks,

gaps of eleven pixels or less were filled using bicubic interpolation. Finally, for the radargrams from 1997 and 1999, all data260

below 3600 pixels, which is about 4 km, was discarded because only noise was visible at these depths. The gathered data was

processed with FOCUS, DISCO, LANDMARK, and Python.
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4 Baseline Method

To demonstrate the usability of the dataset, we present a baseline method in this section. The method’s pipeline consists of

preprocessing steps and a deep learning model, elaborated in the following subsections.265

4.1 Preprocessing

The radargrams are given in relative power p to the recorded amplitudes, which we first convert to decibels using the following

formula:

dB = 10 · log10(p) (1)

Next, we apply a z-score normalization, i.e., we subtract the mean and divide by the standard deviation. However, the mean270

and standard deviation are not formed over the entire IceAnatomy dataset because there is a strong divergence in the recorded

spectrum values between the different subsets. This divergence is caused by the large difference in radar systems and data

processing, which represents a domain shift. Therefore, normalization is performed separately for the AWI and CReSIS data

and for the three study sites in the FAU subset.

Then, the normalized radargrams of the entire IceAnatomy dataset are resized to a standard height of 1024 pixels to limit the275

computational cost and simplify processing. Finally, each radargram is cut into patches with a width of 512 pixels and a total

height of 1024 pixels. For trajectories whose width is not divisible by 512, we apply symmetric padding at the end.

4.2 Deep Learning Model

We apply a deep learning model to extract the ice boundary from the radargram. The model’s architecture is depicted in Fig. 3

and is based on the U-Net (Ronneberger et al., 2015), a widely adopted approach for tasks such as ice boundary extraction280

and comparable tasks (He et al., 2019; Jebeli et al., 2023b, a; Donini et al., 2022; Dong et al., 2022; Ghosh and Bovolo,

2022; Moqadam et al., 2025). While more recent architectures, such as the transformer (Vaswani et al., 2017), may offer better

performance, they also come with increased computational costs, larger models, and other practical limitations. The U-Net

consists of three components: an encoder, a decoder, and a bottleneck.

The encoder extracts features from the radargram into a feature map, the decoder utilizes the feature map to make a predic-285

tion, and the bottleneck connects these two components. As the model has to handle large input sizes, the encoder contains five

down-sampling steps to process the input, while the decoder has five up-sampling steps to reconstruct the original size. In the

encoder, each down-sampling step consists of two residual blocks (ResBlocks), while in the decoder, each up-sampling step

consists of three ResBlocks (Esser et al., 2020) (see Appendix B for a detailed summary of its structure). In the bottleneck,

we inserted an Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2018) layer. ASPP processes the same feature map in290

parallel with differently dilated convolutional layers. In contrast to typical convolutional layers, dilated convolutional layers

do not utilize a set of adjacent pixels. Instead, they sample a set of pixels from a grid around a center point, thereby achieving

differently-sized fields of view. The sampling is uniform and based on a dilation rate. The chosen dilation rates in this model
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Figure 3. The architecture of the proposed deep learning model. It receives the normalized amplitudes of a radargram as input and predicts

the ice surface and the ice bottom as two separate outputs. The atrous spatial pyramid pooling contains three dilated convolutional layers,

one convolutional layer with adaptive average pooling, and a 1× 1 convolutional layer. It utilizes the rectified linear unit (ReLU) activation

function which is defined as ReLU(x) =max(x,0).

are 1, 4, and 6. Since the model is based on the U-Net architecture, it also includes skip connections. Skip connections directly

forward the output of each down-sample step in the encoder to the corresponding parts in the decoder via concatenation. The295

increased channel dimensions in the decoder are solved by including an additional ResBlock for channel reduction after each

up-sampling step in the decoder.

To calculate the final prediction of the model, we first forward the feature map computed by the U-Net into two separate

output heads, each consisting of a single ResBlock. Each output head then creates one probability map, resulting in two final

probability maps. The first one represents the probabilistic prediction of the ice surface, while the second one represents the300

probabilistic prediction of the ice bottom. The final prediction of the model is then the highest probable prediction of each

column, which we compute by applying a column-wise argmax-operation.

To train the network, we employ a custom loss, a cost function that gives feedback to the network by measuring the difference

between the prediction and the corresponding labeled ice boundary. The custom loss consists of two parts: a distance-based

(Ldist) loss and a classification (Lclass) loss:305

L= Ldist +Lclass (2)

For both the classification and distance-based losses, the probability maps of the ice surface (Ŷs) and ice bottom (Ŷb) are

treated column-wise, i.e., per trace. The classification loss is a smoothed cross-entropy loss (LCE) where each pixel in a column

is treated as a separate class, and the pixel closest to the ground truth boundary is considered the correct class. The distance-

based loss (LDist) sums up the probabilities in the column, which are weighted with a distance map. The distance map contains310
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the distance to the correct pick for each pixel. Hence, the further away the predicted pick is from the annotated layer, the greater

the loss. Section C provides a more in-depth overview of the loss function.

The annotations in the dataset have discontinuities in the labeled layers where the ice bottom dropped below the radar’s

penetration depth, the receiver flew over the edge of the glacier, or the signal was too ambiguous for experts to interpret. Tracks

for which no pick is available for a layer are not included in the loss calculation and the evaluation.315

5 Evaluation

5.1 Evaluation Metrics

Previous work either directly extracted the ice boundaries or deduced them from an intermediate segmentation, where they

predicted a semantic class for every pixel in the radargram. Depending on the chosen method, the metrics used to assess the

quality of the predictions differ. For segmentation approaches, most of these metrics are based on a confusion matrix that320

measures how accurately the model distinguishes between a chosen positive class and all the other classes, dubbed negative

class. A confusion matrix contains four measurements: true positives (TP) (the number of correctly predicted pixels for the

positive class), true negatives (TN) (the number of correctly predicted pixels for the negative class), false positives (FP) (the

number of wrongly predicted pixels for the positive class), and false negatives (FN) (the number of wrongly predicted pixels for

the negative class). Based on these four measurements, more sophisticated metrics are defined for the segmentation approaches.325

The most commonly employed one is the accuracy
(

TP+TN
TP+FP+FN+TN

)
(García et al., 2021a, b, 2023; Ghosh and Bovolo,

2022; Donini et al., 2022; Ilisei and Bruzzone, 2015). Less commonly used metrics include the Intersection over Union (IoU)(
TP

TP+FP+FN

)
(Cai et al., 2019), precision

(
TP

TP+FP

)
(Ghosh and Bovolo, 2022), recall

(
TP

TP+FN

)
(Ghosh and Bovolo, 2022),

the F1-score
(
2 Precision·Recall
Precision+Recall

)
(Cai et al., 2020; Ghosh and Bovolo, 2022), sensitivity

(
TP

TP+FN

)
(García et al., 2023; Donini

et al., 2022), specificity
(

TN
TN+FP

)
(García et al., 2023; Donini et al., 2022), and the error rate

(
FP+FN

TN+TP+FP+FN

)
(Ilisei and330

Bruzzone, 2014).

For direct extraction approaches, the mean column-wise absolute error also called mean absolute error (MAE) (Crandall

et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al., 2018; Mitchell et al., 2013; Xu et al., 2017, 2018;

Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a) is the most common metric. It measures the average pixel-

wise distance between the annotated layer and the prediction. Other distance-based metrics include the median of the column-335

wise mean absolute error (Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al., 2018; Xu et al., 2017), the mean squared

error (MSE) (Crandall et al., 2012; Mitchell et al., 2013; Dong et al., 2022), the root mean square error (RMSE) (Liu-Schiaffini

et al., 2022a), and the largest under- and over-estimation (Gifford et al., 2010). We can also define confusion matrix-based

metrics on the layer extraction task. In that case, we define each height pixel of the radargram as a separate class, and the

closest pixel in each column to the corresponding layer as the correct class. However, a limitation of confusion matrix-based340

metrics, such as precision, is that they do not account for distance weighting. For example, if a prediction is always one pixel

next to the annotated layer, also known as ground truth (GT), the confusion matrix-based metrics will have the worst possible

value, even though it is a near-perfect prediction. Therefore, some studies (Xu et al., 2017; Gifford et al., 2010; Liu-Schiaffini
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et al., 2022a) have relaxed these confusion matrix-based metrics by considering predictions a few pixels from the ground truth

as still correct.

MAE /
MME

Surface Pred

Bottom Pred

AP 5%Surface GT/ AP 1%

Bottom GT/ AP 1%

Figure 4. A visual representation of the four metrics used in this work. The left side of the figure depicts the MAE and MME respectively as

the difference between prediction and ground truth (GT). Meanwhile, the right side of the figure features the AP-1% and AP-5% respectively

as an interval around the ground truth. Note that the ground truth and the predictions are technically float numbers. However, we thickened

the ground truth by 20 pixels to improve visibility.

345

As metrics for our benchmark framework, we have chosen the MAE, two relaxed Average Precision (AP) metrics, and

introduce the Mean Meter Error (MME). The MAE is calculated as the column-wise difference in pixels between the ground

truth depth of a layer and the predicted depth. Resizing the radargram will change the value of this metric. Therefore, we also

introduce the MME, which approximates the real-world error. We calculate the MME by multiplying the MAE with the product

of the wave velocity in the medium and the VR of the radargram. The wave velocity describes the speed of the electromagnetic350

wave of the radar through a medium. We assume it to be constant with the speed of light (cair = 0.299792458m ns−1) in air

and with cice = 0.168m ns−1 in ice (Johari and Charette, 1975). The VR is the time it takes for the wave to pass through the

physical equivalent of a pixel in the radargram. Since the VR is indirectly proportional to the y-dimension of the radargram, the

MME stays consistent across different heights. Table 1 records the different VRs for radargrams in the IceAnatomy dataset in

their original height and equations 3 and 4 summarize the formula for the MME. Note that the MME is still highly dependent355

on the original VR of the radargram. The MME will be naturally higher for a radargram where every pixel constitutes a 40 m

change in height rather than a 4 m change, as even small mistakes lead to a drastic increase. Thus, we also record the MAE as it
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is more consistent over radargrams of the same image height but with different study sites and radar systems. For more details

on the VR, compare Appendix E.

MMEs(ŷs,ys) =
cair

2|Ŷs|

∑
ŷs∈Ŷs

VR ·MAEs(ŷs,ys) (3)360

MMEb(ŷb,yb) =
cice

2|Ŷb|

∑
ŷb∈Ŷb

VR ·MAEb(ŷb,yb) (4)

MME and MAE both describe the distance between two lines. A disadvantage is that they are not robust to outliers. As an

outlier robust alternative, we also use a relaxed average precision (AP). To standardize the relaxation, we count everything

below a 1 or 5 % error of the total height in pixels of the radargram as a hit (AP-1% and AP-5%). For our chosen height of

1024 pixels, this would mean the AP-1% allows for an error of 10.24 pixels, and the AP-5% allows for an error of 51.2 pixels.365

Tying the average precision to the height of the radargram prevents the metric from drastically changing if future studies resize

the radargrams differently. In addition, relaxing the metric alleviates the problem of uncertainties in the labels. Figure 4 shows

a visualization of the employed metrics.

5.2 Experimental Protocol

Since there are large differences between the subsets of the IceAnatomy dataset, we train one model for each subset, i.e., the370

FAU, CReSIS, and AWI subsets. The model for the AWI data is a special case, as the subset is very small. This would make

the model prone to overfitting. To mitigate this issue, the AWI model is first pre-trained on all three subsets of the IceAnatomy

dataset and then finetuned on the AWI subset. In addition to the specialized models, we train one model on the full IceAnatomy

training dataset and evaluate it on the test subsets separately to contrast it to the subset models.

For the FAU subset, we select one flight from each of the study sites as part of the test set: The third flight over Perito375

Moreno, the second flight over Viedma, and the flights from 2017 for JRI. The remaining flights are used for training and

validation, where the validation set includes the second half of the first flight over Perito Moreno, the third section of the first

flight over JRI, and the traces 5023 to 8077 for the flight over Viedma. For the CReSIS subset, we choose the TSK2, PIG4,

PEN4, and PEN5 missions as the test set. This results in 7 flights in the test set, containing 3 over the Antarctic Peninsula

and 4 over West Antarctica. From the remaining 25 flights, the flights from PEN3, PIG3, and GETZ1 missions are taken for380

the validation set. For the AWI subset, we decided not to pick an exclusive flight for testing as the differences between the

collected radargrams are too big. Instead, we utilized the last 20 % of the 2014 flight over the Antarctic Peninsula and the 1999

flight over East Antarctica as our test set. For training, we picked the entirety of the 1997 flight over East Antarctica, the first

70 % of the flight over the Antarctic Peninsula, and the first 70 % of the 1999 flight over East Antarctica. The remaining 10 %

of the 1999 and 2014 flights were used for validation.385

We assess the model on the validation set after every iteration over the full training set and stop training when the AP-1%

does not improve for 25 subsequent evaluations. We save the model with the highest AP-1% value on the validation set. The

learning rate, a parameter that determines the strength of every network update, is set to 5e−4. As the optimizer, an algorithm
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that updates the network weights based on the loss function, we use AdamW (Loshchilov and Hutter, 2019) with a weight

decay of 0.05 and reduce the learning rate by a factor of 0.5 when AP-1% plateaus for ten subsequent iterations of the entire390

validation set. The batch size, a parameter that determines how many samples are used for every weight update, is 32 for all

models. To increase variety in the data, we randomly modify the training data via data augmentations. In particular, we employ

an additive Poisson noise scaled with Gaussian noise, brightness, contrast, gamma correction, and flipping horizontally.

5.3 Results

Table 2 provides quantitative results on all three subsets for the dataset-specific models and the omni model trained on the full395

dataset. Overall, the results are promising, with high AP-1% and AP-5% values and low MME and MAE values for most

Table 2. Overview of the performance of our presented deep learning model on the different subsets in our benchmark dataset. We distinguish

the layer prediction into two classes: the ice surface (S) and the ice bottom (B). Furthermore, we split our experiments into two parts: The

dataset specific models, which were trained only on a specific subset of the data, and the omni model, which was trained on the entire dataset.

Note that for the AWI subset-specific model, we utilized the weights of the omni model as a starting point to stabilize training. We compare

the model’s performance on the MME, MAE, AP-1%, and AP-5% as defined in Section 5.1. To contextualize the MME, we annotate the

relative error to the mean measured ice thickness of the specified test set study site behind the MME. We conducted the evaluation on the test

set and averaged the results over five runs to minimize statistical errors.

Dataset specific Model Omni Model

Layer MME ↓ MAE ↓ AP-1% ↑ AP-5% ↑ MME ↓ MAE ↓ AP-1% ↑ AP-5% ↑

FAU S 2.1m [1.2%] 2.0 98.8% 100.0% 2.4m [1.3%] 2.3 98.5% 99.9%

B 9.1m [4.9%] 13.1 74.3% 95.8% 19.5m [10.5%] 27.3 68.3% 90.5%

CReSIS S 23.1m [3.1%] 2.5 96.9% 100.0% 20.8m [2.8%] 2.2 97.9% 100.0%

B 78.2m [10.4%] 15.2 87.9% 94.1% 66.5m [8.9%] 12.8 88.6% 94.4%

AWI S 4.9m [0.3%] 0.7 99.3% 100.0% 12.0m [0.6%] 1.7 97.6% 99.4%

B 29.3m [1.5%] 7.4 83.5% 97.6% 39.8m [2.1%] 10.0 75.7% 95.6%

combinations. Still, dataset and model-specific discrepancies exist.

5.3.1 Ice Surface Predictions

The predictions for the ice surfaces are nearly perfect for all subsets and all models. The three subset models even achieve

100 % accuracy for the AP-5%. Hence, the remaining discrepancies are likely significantly influenced by measurement inaccu-400

racies, noise, and general model variance. Therefore, we will only consider the task of ice bottom delineation to assess model

performance.
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5.3.2 Ice Bottom Predictions

For the ice bottom predictions, the differences in the MME between the three subsets are more pronounced than for the MAE,

which can be attributed to the different VRs. The MAE difference between the FAU and CReSIS subsets is small, while the405

MAE on the AWI subset is substantially lower than both. The AP-1% is lower for the FAU subset than for the AWI and CReSIS

subsets. Interestingly, this difference between subsets is relativized for AP-5%. This means that most incorrect predictions for

FAU are in the 1 % to 5 % error range. The same is true for the AWI subset. For the CReSIS data, this effect is not as strong.

Here, the AP only increases from 87.9% for the 1 % error rate to 94.1% for the 5 % error rate.

5.3.3 Omni Model410

The omni model shows persistently higher MME and MAE values and lower AP-1% and AP-5% values for the FAU and AWI

subsets than the dataset-specific models. In detail, it only achieves an MME of 19.5m and 39.8m and an AP-1% of 68.3% and

75.7%, respectively. We attribute the lower performance of the omni model to the substantial domain shift between the three

subsets and the fact that the FAU and AWI subsets are significantly smaller than the CReSIS subset. For the CReSIS subset,

the omni model outperforms the dataset-specific model. In particular, it achieves an MME of 66.5m and an AP-1% of 88.6%.415

These results suggest that there can be a benefit from more training data even with the domain shift. However, the domain shift

makes the generalization to under-represented or new domains difficult.

5.3.4 Influence of Study Sites

Table 3. Overview of the influence of geographical and glaciological factors on the performance in detecting the ice bottom. We differentiate

between the subset, the study site, and the general thermal regime. For the performance analysis, we compare the MME, MAE, AP-1%,

and AP-5% as defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the

specified test set study site behind the MME. Note that for the AWI subset-specific model, we utilized the weights of the omni model as a

starting point to stabilize training. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical

errors. The analyzed models were the subset-specific models.

Study Site Main Thermal Regime MME ↓ MAE ↓ AP-1% ↑ AP-5% ↑

Perito Moreno Temperate 22.1m [8.0%] 26.3 54.9% 91.1%

FAU Viedma Temperate 10.0m [5.0%] 12.0 68.5% 96.8%

James Ross Island Polythermal 3.9m [2.7%] 9.2 84.9% 96.9%

CReSIS Antarctic Peninsula Polythermal 31.6m [4.5%] 5.8 91.5% 97.6%

West Antarctica Polythermal 148.7m [18.0%] 29.4 82.5% 88.8%

AWI Antarctic Peninsula Polythermal 32.7m [9.8%] 8.1 87.3% 96.4%

East Antarctica Cold-based 27.3m [1.0%] 6.9 81.1% 98.3%

Table 3 divides the results of the subset-specific models by study site and thermal regime.
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For the FAU subset, the Perito Moreno and Viedma predictions are quantitatively worse than the ones from JRI. A key420

difference between Perito Moreno, Viedma, and JRI is the thermal regime. The first two are temperate glaciers, while JRI

contains polythermal ice. Besides the higher water content in Perito Moreno and Viedma, both are also substantially deeper

than JRI in most areas. They even have areas with ice thicker than the 700 m maximum penetration depth of the employed

radar system. Viedma and JRI also feature several-meter-thick moraine material on the glacier surface. These rock and debris

deposits are not penetrable by the wavelets and thus create radar shadows below them or substantially decrease the amount of425

reflected energy.

If we look at the associated radargrams, we can mostly see a relatively stable and clear prediction for JRI. On the other

hand, Viedma and Perito Moreno have much stronger differences to the ground truth. Especially in deep and noisy regions, the

models struggle. Figure 5 shows example traces for the three study sites of the FAU subset.

(a) Perito Moreno (b) Viedma

Surface Ground Truth
Bottom Ground Truth

Surface Prediction
Bottom Prediction

(c) James Ross Island

Figure 5. Visualization of the subset-specific model’s performance on the FAU subset. Figure (a) shows trace 3000-5500 of the third flight

over Perito Moreno, Fig. (b) depicts traces 5000-7500 of the second flight over Viedma, and Fig. (c) presents traces 5000-7500 from the first

Section of the 2017 flights over James Ross Island.

Between the Antarctic Peninsula and West Antarctica study sites of the CReSIS subset, there are strong differences in the430

quantitative analysis. The MME and MAE values exhibit a difference of approximately a factor of five, while the AP-1%

and AP-5% are approximately 9% apart. In the qualitative analysis, we can see that the predictions in both regions actually

follow the ground truth closely. However, sometimes the predicted ice bottom layer makes a jump and the actual ice surface
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is predicted to be the ice bottom. We call this “ice boundary collapse”. Examples of this phenomenon can be seen in Fig. 6.

For the AWI subset, the results for East Antarctica are generally more favorable than those for the Antarctic Peninsula. This

(a) Antarctic Peninsula (b) West Antarctica

Surface Ground Truth
Bottom Ground Truth

Surface Prediction
Bottom Prediction

Figure 6. Visualization of the subset-specific model’s performance on the CReSIS subset. Figure (a) presents traces 2000-4500 from

mission PEN4 in the Antarctic Peninsula (PEN4_01_001). Figure (b) presents traces 2000-4500 from mission TSK2 in West Antarctica

(TSK2_07_003).

435

result is consistent with the observation on the FAU subset that the algorithm performs better for colder ice than for warmer ice.

The only exception is the AP-1%, where the Antarctic Peninsula slightly outperformed East Antarctica. This result suggests

that a large majority of the wrong predictions in East Antarctica are between the 1 % and 5 % interval and that our algorithm

struggles to pinpoint the exact location of the ice bottom. We can confirm this behavior in the qualitative analysis, where the

prediction is sometimes slightly above or below the ground truth line but follows it closely overall. Similarly, the predictions440

for the Antarctic Peninsula also appear to be very accurate but contain more occasional outliers. Figure 7 depicts both the

predictions for East Antarctica and the Antarctic Peninsula.

5.3.5 Loss Function

To assess the performance of our combined loss function, we conducted a small ablation study. Specifically, we evaluated two

additional experiments in which we replaced the combined loss with each of its individual components: In the first setup, we445

trained the model with the cross-entropy loss, and in the second setup, we trained it only with the distance loss. We compare

the results of these two configurations with the combined loss in Table 4.

For the FAU subset model, the distance loss improves the MME but not the AP-1%. In contrast, the cross-entropy is better

for the AP-1% but not for the MME. The combination of both losses results in an improved MME while AP-1% remains the

same. The results for the CReSIS subset are less clear. It is evident that the distance loss alone does not enhance the MME or450

AP-1%. However, the combined loss demonstrates the most optimal outcome in relation to the MME, while the AP-1% is only

slightly worse in comparison to CE alone. Similar to the CReSIS results, the distance loss alone does not improve the MME
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(a) Antarctic Peninsula (b) East Antarctica

Surface Ground Truth
Bottom Ground Truth

Surface Prediction
Bottom Prediction

Figure 7. Visualization of the subset-specific model’s performance on the AWI subset. Figure (a) depicts traces 21000-23500 from the 2014

flight in the Antarctic Peninsula. Figure (b) presents traces 7837-9787 from the 1999 flight in East Antarctica.

Table 4. Summary of our ablation study regarding the proposed modifications to the loss function. For every variation of the loss function,

we trained a subset-specific model and compared the performance based on the MME and AP-1% of the ice bottom layer. We conducted the

evaluation on the test set and averaged the results over five runs to minimize statistical errors. To contextualize the MME, we annotate the

relative error to the mean measured ice thickness of the specified test set study site behind the MME. Note that for the AWI subset-specific

model, we utilized the weights of the omni model as a starting point to stabilize training, which was also trained with the specified loss

function.

FAU CReSIS AWI

MME ↓ AP-1% ↑ MME ↓ AP-1% ↑ MME ↓ AP-1% ↑

LCE 13.9m [7.4%] 74.3% 88.0m [11.7%] 88.6% 29.7m [1.6%] 82.5%

LDist 9.9m [5.1%] 72.3% 119.5m [15.9%] 85.5% 33.2m [1.7%] 81.8%

LCE +LDist 9.1m [4.9%] 74.3% 78.2m [10.4%] 87.9% 29.3m [1.5%] 83.5%

compared to the cross-entropy for the AWI subset. However, the combined loss provides the best results with a higher AP-1%

value.

5.4 Discussion and Outlook455

One apparent influence on the quality of the ice bottom prediction is the primary thermal regime of the region. In general,

the warmer the ice, the less reliable the prediction. The reason behind this is probably the influence of water on the signal,

as well as the higher likelihood of a heavily crevassed surface. Temperate ice generally contains water, as most of the ice is

close to or at the pressure melting point. Water absorbs the recorded signal, leading to higher noise with increased depth and

strong attenuation. Hence, the model’s performance naturally decreases as the associated radargrams are more challenging to460
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interpret. Polythermal glaciers, contrary to temperate glaciers, do not exhibit ice at the pressure melting point everywhere.

Instead, elevated temperatures are usually confined to zones of fast flow driven by frictional heating or to marginal areas of the

glacier. Hence, the effects are not as detrimental as for entirely temperate glaciers.

Another interesting observation is the difference between temperate and polythermal ice regarding the AP-1% and AP-5%.

The AP-1% of temperate ice is significantly lower than for polythermal ice. However, the AP-5% is relatively similar for both465

types of ice. While it is natural for the difference to decrease at higher error intervals, the change in this case is still very

drastic. To put this into perspective, the Viedma and James Ross Island were 16.4 percentage points apart on the AP-1%, but

on the AP-5%, only 0.1 percentage points. A possible explanation for this could lie in the meltwater at the base of the ice.

Temperate ice more commonly collects meltwater at its base than polythermal ice. Since water absorbs the signal, the exact

position (AP-1%) becomes difficult to identify. However, the general position (AP-5%) is still clear because the water is only470

at the base. Besides the thermal regime and average depth, the presence of debris usually plays a significant role in radio-echo

sounding. Interestingly, the quantitative results of JRI and Viedma indicate that the presence of debris did not play a major role

in the model’s performance compared to depth and thermal regime. However, we suspect that the numbers do not capture the

effect of debris very well since the debris likely absorbed the signal entirely. Thus, the expert could not create ground truth

labels for these parts, which makes the effect of debris on the model’s performance not accurately measurable with numerical475

methods.

One of the more prominent and recurring phenomena in the CReSIS model’s predictions is the collapse of ice boundaries. In

ambiguous cases, the model shows a bias toward predicting the ice bottom close to the or as the ice surface. One explanation

could be that the CReSIS data is differentiated and thus represents only the change in amplitude. That makes it challenging to

distinguish whether the peak of the ice surface and ice bottom overlap or the ice bottom is not visible. The problem gets further480

amplified by noise and artifacts, such as multiples. They can exhibit similar patterns as the ice bottom, making the model biased

toward predicting the ice bottom as the ice surface when in doubt.

Furthermore, we believe that the influence of the ice boundary collapse is also reflected by the quantitative analysis of the

different CReSIS study sites. As West Antarctica generally contains thicker ice sheets than the Antarctic Peninsula, the average

distance between the ice boundaries significantly increases. Thus, a wrong prediction of the ice bottom as ice surface leads to485

a considerably higher MAE and MME for West Antarctica than the Antarctic Peninsula. However, the ice boundary collapse

is likely not the only reason for this effect as the AP-1% and AP-5% are also lower for West Antarctica than the Antarctic

Peninsula. Hence, thicker ice sheets might be naturally more challenging.

Nonetheless, future research should address ice boundary collapses as they tremendously affect performance. Larger con-

texts, additional post-processing steps, or recurrent neural networks could help stabilize the predictions as they incorporate490

more information. Another interesting problem to explore is the performance drop from subset-specific models to the omni

model. Our results indicate that the domain shift between the subsets is too prominent for a simple omni model to catch up on

all subset-characteristic features. Hence, models cannot utilize the full benefits of a larger dataset when they are recorded and

processed differently. In particular, domain shift techniques could help with this challenge, but also more advanced regulariza-
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tion techniques, e. g., spatial dropout, could prevent the model from focusing too much on a single domain (Tompson et al.,495

2015). In appendix D, we show that a uniform sampling strategy can also help mitigate the domain shift.

We believe that our framework is a step towards a potential fully automated generation of ice thickness maps based on RES

data and that our work represents an advancement toward validating survey data in the field.

6 Conclusions

This paper presents the first benchmark framework for delineating the ice boundary in RES data. The included dataset500

“IceAnatomy” contains hundreds of kilometers of processed, labeled, and georeferenced RES data from three different sources

(FAU, CReSIS, AWI). Since all sources employ a different radar system and processing methods, “IceAnatomy” offers a wide

range of varying amplitude spectrums, vertical resolution of the two-way travel time, and width resolutions, making it appli-

cable to a multitude of settings. Furthermore, it also features different geographical factors, such as study sites and thermal

regimes, allowing for in-depth analysis of the models and their behavior in different geographical scenarios.505

To fairly compare different models in the future, we provide an official train and test split for each source of the dataset. This

enables the development of not only an omni model trained on the entire dataset but also specialized subset-specific models

on one of the three sources. We trained and evaluated a baseline model for each of these scenarios. In our experiments, the

subset-specific models provide the most promising results with MMEs of 2.1m [1.2%], 23.1m [3.1%], and 4.9m [0.3%] for

the ice surface and 9.1m [4.9%], 78.2m [10.4%], and 29.3m [1.5%] for the ice bottom depending on the source.510

Previous work has already demonstrated the effectiveness of automatic approaches for ice boundary extraction but lacked a

common method for accurately comparing models. With this benchmark framework, we hope to address this issue by unifying

and standardizing both training and evaluation schemes. We hope that this benchmark dataset will encourage more scientists to

engage in this challenging and important research area. Deep learning models that extract the ice boundary can greatly speed

up the processing of RES data. As a result, the ice thickness and, consequently, the subglacial topography can be determined515

more quickly after a field survey.

Code and data availability. The dataset is available at https://zenodo.org/records/14036897 (Dreier et al., 2024) and the implementation at

https://doi.org/10.5281/zenodo.14038570 (Dreier, 2024).

Appendix A: Additional Hyperparameters

This section gives an overview of the hyperparameters in our employed U-Net from Chapter 4.2. The input dimension of520

our U-net is (1024,512,1) (H,W,1), which then gets scaled according to the depth level of the encoder or decoder. Inside

the network, we down- and upsample our feature map five times each while scaling the feature dimension according to the

depth-level-dependant value of [8,16,32,64,64,128]. To reduce the risk of overfitting, we also utilize dropout layers inside

the ResBlocks with a probability of 10%. For the loss function, we employed our proposed combined loss function. Since the
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numerical value of the distance loss is significantly higher than that of the classification loss, we had to weigh the individual525

components. In detail, we chose the weights ws_class = 0.5, wb_class = 1.0, ws_dist = 0.05, and wb_dist = 0.1 as they performed

the best in preliminary experiments.

Appendix B: ResBlock Design

To provide a better understanding of the network architecture, this section examines one of its core components: the ResBlock

from (Esser et al., 2020). Its structure, shown in Fig. B1, comprises several components. First, it starts with a group normaliza-530

tion layer (Wu and He, 2018) that normalizes the data in groups of channels to increase stability during training. Next, a swish

activation (Ramachandran et al., 2017) function adds nonlinearity to the ResBlock so the network can learn more complex

patterns. The activation is followed by a two-dimensional convolution layer that processes and combines the visual features

by applying convolutional operations. This is followed by another group normalization and swish activation function before

a regular dropout layer (Hinton et al., 2012) is applied. The dropout layer randomly withholds information during training to535

improve generalization and prevent the model from overfitting – a process in which the model develops a strong bias towards

the training data. After the dropout layer, another two-dimensional convolutional layer is applied. Finally, a residual connec-

tion (He et al., 2016), a shortcut from the start of the ResBlock to the end through a convolution layer, is added to the output of

this sequence of layers to improve the gradient flow in the network.
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Figure B1. Structure of the residual block employed in our deep learning model. The arrangement is based on the design of Esser et al.

(2020)
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Appendix C: Loss Function Details540

The formulas of the classification and distance-based loss are as follows:

LCE =−
∑
c∈C

xc(1− ϵc) log(p(xc))+
ϵc(1−xc) log(p(xc))

|C|
(C1)

Lclass =
ws_class

|Ŷs|

∑
ŷs∈Ŷs

LCE(ŷs)+
wb_class

|Ŷb|

∑
ŷb∈Ŷb

LCE(ŷb) (C2)

Ldist =
ws_dist

|Ŷs|

∑
ŷs∈Ŷs

⟨d(ys),σ(ŷs)⟩+
wb_dist

|Ŷb|

∑
ŷb∈Ŷb

⟨d(yb),σ(ŷb)⟩ (C3)

ws_class, wb_class, ws_dist, and wb_dist are the respective weights for a weighted combination of the single loss parts, ϵc is the545

smoothing factor, C specifies the column, ⟨⟩ is the dot product, σ is the softmax function that converts the model’s outputs into

probabilities, |.| is the cardinality of a set, and d is the function that creates a vector filled with the column-wise distance map

given the respective column of the label.

Appendix D: Additional Experiments

Since the three subsets of IceAnatomy differ in size, we also investigate whether a uniform sampling strategy, where samples550

are drawn equally from each subset, could help the Omni-Model achieve the performance of the domain-specific models on the

AWI and FAU subsets. From our results in Table D1, we can see that a uniform sampling strategy does lead to improvement

for the AWI and FAU subsets. In the case of the AWI subset, the omni model even outperforms the domain-specific model.

However, in the case of the FAU subset, we are still below the domain-specific model. We reason that the domain of the AWI

and CReSIS subsets are significantly closer than the FAU subset as these two subsets contain differentiated radargrams. We,555

therefore, believe that domain shift remains an important area for future research. In addition to the uniform sampling, we also

investigated how different hyperparameter setups regarding learning rate and regularization would affect the benchmark model.

From the results in Table D2 and D3, we can see that different hyperparameter setups favor different subsets of IceAnatomy.

However, there seems to be no universal optimal setup.

Appendix E: Translations of the vertical resolutions560

While the vertical resolution of the two-way travel time approximates the granularity of the specific radargrams, it is challenging

to interpret for a real-world scenario. To simplify interpretation, we provide a simple conversion in Table E1 given a fixed

radargram height of 1024. Although the vertical resolution was fixed for each data source, the ratio of pixels to meters varies

depending on the flight, the original height of the radargram, the chosen radargram height, and between the air and ice layers.

Interestingly, this table also offers an estimate of the lower error bound introduced by discretizing the continuous height565

values into pixels. Since the introduced model does not interpolate between pixels, decimal pixel heights cannot be represented
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Table D1. Overview of the performance of our Omni Model with uniform sampling. We distinguish the layer prediction into two classes: the

ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME, MAE, AP-1%, and AP-5% as defined in Section

5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test set study site behind

the MME. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical errors.

Omni Model

Layer MME ↓ MAE ↓ AP-1% ↑ AP-5% ↑

FAU S 2.0m [1.1%] 1.9 99.3% 100.0%

B 14.0m [7.6%] 19.0 74.1% 94.1%

CReSIS S 23.1m [3.1%] 2.5 97.2% 100.0%

B 75.0m [10.0%] 14.6 87.7% 93.9%

AWI S 3.8m [0.2%] 0.5 99.7,% 100.0%

B 23.9m [1.3%] 6.0 86.1% 98.3%

Table D2. Overview of the performance of our Omni Model with different learning rates and uniform sampling. We distinguish the layer

prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as

defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test

set study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical

errors. Note that for lr = 0.005 we averaged over five runs, as we had those values from previous experiments.

lr = 0.0001 lr = 0.0005 lr = 0.001

Layer MME ↓ AP-1% ↑ MME ↓ AP-1% ↑ MME ↓ AP-1% ↑

FAU S 2.1m [1.1%] 99.0% 2.0m [1.1%] 99.3% 2.1m [1.1%] 99.1%

B 14.1m [7.6%] 73.9% 14.0m [7.6%] 74.1% 14.3m [7.7%] 74.1%

CReSIS S 26.2m [3.5%] 96.7% 23.1m [3.1%] 97.2% 21.9m [2.9%] 97.6%

B 105.4m [14.0%] 87.2% 75.0m [10.0%] 87.7% 94.9m [12.6%] 87.9%

AWI S 4.4m [0.2%] 99.5% 3.8m [0.2%] 99.7,% 3.7m [0.2%] 99.6%

B 26.9m [1.4%] 86.2% 23.9m [1.3%] 86.1% 21.5m [1.1%] 87.8%
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Table D3. Overview of the performance of our Omni Model with different learning rates and uniform sampling. We distinguish the layer

prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as

defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test

set study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical

errors. Note that for dropout= 0.1 we averaged over five runs, as we had those values from previous experiments.

dropout= 0.0 dropout= 0.1 dropout= 0.2

Layer MME ↓ AP-1% ↑ MME ↓ AP-1% ↑ MME ↓ AP-1% ↑

FAU S 2.0m [1.1%] 99.2% 2.0m [1.1%] 99.3% 2.0m [1.1%] 99.3%

B 10.2m [5.5%] 74.2% 14.0m [7.6%] 74.1% 14.3m [7.7%] 73.5%

CReSIS S 22.5m [3.0%] 97.0% 23.1m [3.1%] 97.2% 21.5m [2.9%] 97.6%

B 79.0m [10.5%] 87.8% 75.0m [10.0%] 87.7% 69.2m [9.2%] 88.5%

AWI S 7.3m [0.4%] 99.0% 3.8m [0.2%] 99.7% 3.8m [0.2%] 99.5%

B 26.0m [1.4%] 85.7% 23.9m [1.3%] 86.1% 24.5m [1.3%] 86.6%

accurately. The problem gets further amplified by downscaling the images to a lower resolution, as the pixel-to-meter ratio

rises proportionally.

Table E1. A conversion table that translates pixels to meters given a fixed height of 1024 pixels.

Study Sites 1 pixel to meters in air 1 pixel to meters in ice

James Ross Island 0.7 0.4

FAU Perito Moreno 1.5 0.8

Viedma 1.5 0.8

CReSIS Antarctic Peninsula 9.6− 16.0 5.4− 9.0

West Antarctica 9.6− 16.1 5.4− 9.0

AWI Antarctic Peninsula 7.2 4.0

East Antarctica 7.0 3.9
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