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Abstract. The measurement of ice thickness is of great importance for the accurate estimation of glacier volume and the delin-
eation of their bedrock topography. In particular, this is a crucial factor in forecasting the future evolution of glaciers in the con-
text of a changing climate. In order to derive the ice thickness, the travel time of electromagnetic waves in radargrams acquired
by radio-echo sounding (RES) systems is analyzed. This can only be achieved by identifying the ice surface and underlying ice
bottom in corresponding radargrams. Manually identifying these two reflection horizons in RES data is a laborious and time-
consuming process. Consequently, scientists are attempting to automate this task through the use of techniques such as deep
learning. Such automation can significantly reduce the time between a field campaign and the calculation of the glacier’s ice
thickness distribution. In this paper, we present the first benchmark dataset for delineating the ice surface and bottom boundaries
in RES data, to facilitate straightferward-standardized comparisons of deep learning models in the future. The “IceAnatomy”
dataset comprises radargrams and the corresponding manual picks, amounting to a total of over 45,000 km of observations.
The RES data originates from three sources: FAU, CReSIS, and AWI. The dataset comprises different RES systems as well
as different pre-processing methods. In addition, the data was acquired over a large range of geographical and glaciological
settings, featuring different thermal regimes present in Antarctica and the Southern Patagonian Icefield. This diversity ensures
that the models’ behaviors can be analyzed in different scenarios. We define a standardized train-test split for each source in
the dataset. This allows us to introduce not only a baseline model trained on the entire training set (the “omni” model), but
also three source-specific baseline models. The source-specific models are trained exclusively on the subset of the training data
acquired by the specified source. The baseline models provide an initial benchmark against which subsequent models can be
compared. The source-specific models demonstrate more accurate results than the omni model. For the FAU, CReSIS, and
AWI test sets, the source-specific models achieve Mean Meter Errors of 2.1 m, 23.1 m, and 4.9 m for the ice surface and 9.1 m,
78.2m, and 29.3 m for the ice bottom. In relation to the mean measured ice thickness of the test set, these errors equate to
1.2%, 3.1%, and 0.3 % for the ice surface and 4.9 %, 10.4 %, and 1.5 % for the ice bottom. The dataset and implementation are
available at https://zenodo.org/records/14036897 (Dreier et al., 2024) and https://doi.org/10.5281/zenodo.14038570 (Dreier,
2024).
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1 Introduction

Glaciers and ice shelves are key indicators of global climate (Haeberli et al., 2007; IPCC, 2013). Knowing their volume
and ice thickness distribution is crucial for assessing future cryospheric contributions to sea level rise. Moreover, data on the
ice volume of glaciers and ice sheets is necessary for understanding their response to climate change. Ice thickness mea-
surements enable the subsequent prediction of the rate and timing of glacier retreat or disappearance using different types
of models. FThat-way;-This enables the assessment of a glacier’s contribution to regional hydrological cycles and its subse-
quent influence on local to regional scales with associated socioeconomic impactsean-be-assessed—. (Werder et al., 2020;
Ayala et al., 2020; Farinotti et al., 2017). Several techniques to determine ice thickness exist, including seismic, gravita-
tional, and magnetic methods, as well as radio-echo sounding (RES) (Bogorodsky et al., 2012; Kohler et al., 1997). While
satellite gravimetry allows for a resolution in the range of kilometers, its spatial resolution does not allow for the interpre-
tation of detailed subglacial features (Willen et al., 2024). Seismic measurements offer a high resolution, but widespread
use in the Antarctic region is limited by high exploration costs or logistical unfeasibility (An et al., 2023). For this rea-
son, RES is preferred over other methods when an accurate assessment of a subglacial topography is of interest. After
pre-processing the RES data, a-we obtain an image commonly referred to as a radargram. It depicts the cross-section ;&
so-called-radargramof the glacier ;-becomes—visiblealong the flight path. Experts can then interpret the RES data by delin-
eating the reflections of surfaces or internal glacial structures. Delineating the ice boundary, defined by the air-icetayer-and
iee-ground-tayerice surface (air to ice transition) and the ice bottom (ice to ground/water transition), is necessary to obtain
the glacier’s thickness at each point in the radargram. However, it is a laberious-time-intensive task, especially with large

datasets (Sime et al., 2011). Several automated and semi-automated approaches to delineate the layers have been developed

—(Fahnestock et al., 2001; Gifford et al., 2010; Freeman et al., 2010; Rahnemoonfar et al., 2017a, b; Kamangir et al., 2018; Rahnemoonfas

. However, these approaches are not comparable as they have been evaluated on different datasets or a different train-test split of
the same dataset. In this paper, we present a publicly available, ready-te-use-standardized benchmark dataset for ice thickness
extraction. It is the first of its kind to be directly eonjured-designed for deep learning approaches, with a pre-defined train-test
split, human-annotated labels, and different recording systems. It comprises radargrams from Antarctica and Patagonia with
polythermal, cold-based, or temperate thermal regimes. The dataset is intended for supervised training and evaluation of deep
learning models. Therefore, the dataset includes depth labels for both the ice bottom and ice surface layer. Together with the
dataset, we present a baseline model that delineates the ice boundary in a given radargram. The model is based on the U-Net

architecture (Ronneberger et al., 2015) and serves as a reference and a starting point for future improvements. We envision

further development of this method in two main directions. First, once trained, our algorithm can be executed on virtually
any modern laptop in the field. Combined with a pre-processing chain tailored to our approach, this allows for near real-time
analysis of acquired data on:site. Since flight hours are costly and often limited by weather conditions, optimizing their use is
crucial, If data can be processed in the field—e.g., between two flights—flight plans could be dynamically adjusted to focus on
areas of high interest within the same campaign. Second, and perhaps more importantly, the presented method can be further
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developed to handle more specialized tasks, such as delineating intraglacial water channel systems or identifying water tables
within existing datasets. This would represent a step toward a comprehensive, guantitative, and standardized approach for
interpreting radargrams, ultimately leading to fully automated products that could significantly benefit the cryospheric research
community. In particular, the automated mapping of internal reflection layers remains a critical knowledge gap — one that deep
learning is well - positioned to address (Mogadam and Eisen, 2024).

In summary, our contributions are as follows:

1. A novel benchmark dataset IceAnatomy for deep learning-based extraction of ice boundary from RES data is created.
2. A baseline deep learning model for the automatic delineation of the ice bottom and iee-tayer-the ice surface is proposed.
3. A thorough evaluation of individual models and an omni-model is conducted on the dataset.

The work is structured as follows: Section 2 provides an overview of datasets and algorithms previously used for automatic
ice boundary extraction. Subsequently, Sect. 3 gives insight into the recording and processing of the dataset as well as relevant
geographical and glaciological factors of the study sites. The baseline models are introduced in Sect. 4. An extensive evalu-
ation of the baseline models and the benchmark dataset is presented in Sect. 5. Lastly, we summarize our research and draw

conclusions in Sect. 6.

2 Related Works

Over the past decades, RES has been widely used in glaciology. A multitude of publications cover the extraction of ice boundary

layers from RES data. In this section, we highlight related RES datasets and layer extraction approaches.
2.1 Datasets

RES-data-Numerous RES datasets on glaciers and ice sheets is-abundantly-are publicly available. However, a large portion of
the associated bedrock-ice bottom labels are inaccurate, generated automatically, ertnavattable-unavailable, lack the necessar

transparency in their creation, or do not have associated radargrams (Young et al., 2021; Blankenship et al., 2018; CReSIS; Dong et al., 202

. This makes them unsuitable for training or evaluating deep learning approaches, as they require human-annotated data. Hence,
we focus our comparison on datasets that have been used to extract the ice boundary in previously published work and for which

both radargrams and human-annotated labels are publicly available. These constraints significantly limit the number of related
datasets.

The one RES system that has been used extensively to collect such data is the Multichannel Coherent Radar Depth Sounder
versions 1-5 (MCoRDS) (Allen et al., 2012a), which was used, for example, in NASA’s Operation IceBridge (OIB) program
on a McDonnell Douglas DC-8-72 jetliner (Shi et al., 2010a). The data acquired over Antarctica in 2009 are the most widely
used (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018).
However, also data from different years (Kamangir et al., 2018; Mitchell et al., 2013; Cai et al., 2020; Garcia et al., 2021a, b;



Cai et al., 2022, 2019; Ghosh and Bovolo, 2022; Garcia et al., 2023; Donini et al., 2022; Ilisei and Bruzzone, 2014, 2015)
and other locations like Greenland (Donini et al., 2022) and the Canadian Arctic Archipelago (Xu et al., 2017, 2018) were
90 analyzed.

Only very few publications included data from RES systems other than MCoRDS. Gifford et al. (2010) extracted the ice
boundary from data acquired by a predecessor RES system (Lohoefener, 2006) during 2006 and 2007 in Greenland. Dong
et al. (2022) featured data from the Chinese Academy of Sciences’ Deep Ice Radar acquired during the 29th Chinese Antarctic
Scientific Expedition. Lastly, Liu-Schiaffini et al. (2022a) used algorithm-assisted human-labeled data acquired in the Cana-

95 dian Arctic and Antarctica by the University of Texas Institute for Geophysics’ high-capability radar sounder (HiCARS). A

major downside of these datasets is that they do not provide standardized training and evaluation splits, making inter-model
comparison challenging. Furthermore, datasets usually only focus on a single area, e. g., Greenland or Antarctica, which makes
eneralization to other areas or glaciological settings difficult to verify. IceAnatomy addresses this issue by including data from

multiple study sites, radar systems, and glaciological settings. It also provides standardized splits for training and evaluation to
100 allow for an accurate and fair comparison between models. In conclusion, to the best of our knowledge, there is no comparable

benchmark dataset for ice boundary extraction from radio-echo-sounding data.
2.2 Algorithms

RES has been employed to detect crevasses (Liu et al., 2020; Walker and Ray, 2019; Williams et al., 2012, 2014), the ice bound-
ary (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018; Mitchell
105 etal., 2013; Xu et al., 2017, 2018; Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a), to seg-
ment subsurface structures (Cai et al., 2020, 2019; Garcia et al., 2021a, b; Ghosh and Bovolo, 2022; Garcia et al., 2023; Donini

etal., 2022; Ilisei and Bruzzone, 2014, 2015), and to track internal ice and snow layers (Crandall-et-al; 2012; Karlsson-et-al; 2013 Ihikunle

Crandall et al., 2012; Karlsson et al., 2013; Ibikunle et al., 2020; Rahnemoonfar et al., 2021; Varshney et al., 2020, 2021; Yari et al., 201¢

110 To obtain the ice boundary, one can either directly delineate the ice surface and bottom or first segment different regions such
as ice, bedrock, and air and then extract the two layers during post-processing. Most existing studies (Crandall et al., 2012;
Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018; Mitchell et al., 2013; Xu et al.,
2017, 2018; Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a) to-date-prefer direct extraction.
Fewer studies (Cai et al., 2020, 2019; Garcia et al., 2021a, b; Ghosh and Bovolo, 2022; Garcia et al., 2023; Donini et al., 2022;

115 Ilisei and Bruzzone, 2014, 2015) use the segmentation approach. The segmentation approach assigns a semantic class to each
pixel in the radargram, from which the ice boundaries can be derived directly or after post-processing.

In terms of methodology, early studies mainly used classical image processing and machine learning techniques such as Hid-
den Markov Models (Crandall et al., 2012; Berger et al., 2018), Markov-Chain Monte Carlo (Lee et al., 2014), contour detec-
tion (Rahnemoonfar et al., 2017a), the level set approach (Rahnemoonfar et al., 2017b; Mitchell et al., 2013), Markov Random

120 Fields (Xu et al., 2017), edge-based and active contour methods (Gifford et al., 2010), Kullback-Leibler maps (Ilisei and Bruz-
zone, 2014), and Support Vector Machines (Ilisei and Bruzzone, 2015). After 2017, studies turned to Convolutional Neural Net-



works (CNNs)
Kamangir et al., 2018; Cai et al., 2020, 2019; Garcia et al.

, combinations of CNNs and Recurrent Neural Networks (RNNs) (Xu et al., 2018), and combinations of CNNs and Transform-
125 ers (Ghosh and Bovolo, 2022).

In comparison, we rely on the U-Net architecture from (Ronneberger et al., 2015) to evaluate our newly created dataset.

2021a; Cai et al., 2022: Donini et al., 2022: Dong et al., 2022; Liu-Schiaffini ¢

Furthermore, we integrate Atrous Spatial Pyramid Pooling from (Chen et al., 2018) and the ResBlock design from (Esser et al.,

2020) to improve the performance.

3 Dataset

130 In this section, we introduce the benchmark dataset “IceAnatomy” which covers several different geolocations and was ac-
quired by multiple radar systems. We divide the dataset into three subsets based on the sources of the data: the AWI (Alfred
Wegener Institute, Helmholtz Centre for Polar and Marine Research), CReSIS (The Center for Remote Sensing and Integrated
Systems), and FAU (Friedrich-Alexander-Universitit Erlangen-Niirnberg, Institute of Geography) subsets. A summary of the

most important information about the dataset is given in Tab. 1.

Table 1. A summary of details about the IceAnatomy benchmark dataset (Lippl et al., 2019; Shi et al., 2010b; Riickamp and Blindow, 2012;
CReSIS, 2024a; Allen et al., 2012b; Steinhage, 2001, 2015).

Study Sites Depth-Reso. Width-Reso. Length Year Main Thermal Labeled
Regime Bottom %
James Ross Island 2.5ns pixel ™ 2m pixel ™ 275km  2017/18 Polythermal 82.5%
FAU Perito Moreno 2.5ns pixel ™ 2m pixel ™! 145km 2022 Temperate 83.1%
Viedma 2.5ns pixel ! 2 m pixel ! 140km 2022 Temperate 46.2%
CReSIS  Antarctic Peninsula  105ns pixel ~* 12 m pixel ~* 20400km 2009  Polythermal 63.9%
West Antarctica 105nspixel ™ 12 —30mpixel ' 24400km 2009 Polythermal 78.9%
AWI Antarctic Peninsula 12ns pixel ™ 62 m pixel 1490km 2013 Polythermal 31.7%
East Antarctica 13.33nspixel ' 66 — 79mpixel "' 1015km  1997/99 Cold-based 73.7%

135 3.1 Study Sites
3.1.1 Southern Patagonian Icefield

The Southern Patagonian Icefield (SPI) is the largest temperate ice body in the Southern Hemisphere. It is characterized by
one of the highest mass loss rates in the world (Zemp et al., 2019; Marzeion et al., 2018; Hugonnet et al., 2021) and by its
large outlet glaciers that drain into lakes or the ocean (Aniya, 1999). Two of the largest eastward-flowing outlet glaciers in the

140 region are the Perito Moreno and Viedma glaciers. The only way to obtain information over large areas about their bedrock
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topography is by helicopter-borne RES measurements. This is particularly applicable to the lower parts of the glaciers, which
are surrounded by steep mountain flanks and have heavily crevassed surfaces. The-temperatenature-of-theglaciers;resulting
in-high-water-contentin-the-ieeAs the glaciers are temperate, i. €., most of the ice is close to or at the pressure melting point
they contain a relatively high proportion of water. This characteristic, combined with the steep and deep glacier troughs, often

makes analyzing radargrams challenging. Hence, they pose an-adequatechallenge-to-benchmarknew-a significant challenge to
machine learning systems. Figure 1 shows the location of both glaciers on the east of the SPI.

120w

Figure 1. Overview of the Southern Patagonian Inland Icefield. Orange boxes indicate surveyed areas of Perito Moreno Glacier and Viedma
Glacier. Black lines indicate flight paths over the Perito Moreno Glacier. The background is a hillshaded SRTM over ©Google Earth optical
imagery (Consortium, 2017). Maps are rotated by 90 degrees.

3.1.2 Antarctica

As depicted in Fig. 2, the Ice-Anatomy dataset offers three major study sites in Antarctica: the Antarctic Peninsula (including
James Ross Island (JRI)), West Antarctica, and East Antarctica.

The Antarctic Peninsula is the most represented region in the benchmark dataset, as it is present in all three RES subsets. It
exhibits one of the milder climates in Antarctica, with an annual average temperature of —3.2°C' (Morris and Vaughan, 1994).
This is also reflected in the thermal regimes present in the region, as it contains temperate, cold-based, and polythermal ice. The
temperate portions of the Antarctic Peninsula are frequently near the margins and at lower elevations, while the cold-based ice
regions are generally found at higher elevations. The transition zones between higher and lower elevations commonly contain

polythermal ice (Van Liefferinge and Pattyn, 2013; Macelloni et al., 2019). Howeyver, elevation alone is often not sufficient to
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Figure 2. Flight paths of the AWI and CReSIS campaigns in Antarctica. The background is assembled with help from the Quantarctica QGIS
project (Matsuoka et al., 2021).

determine the thermal regime. H-we-compare-A comparison with the ice velocity maps of Rignot et al. (2011) -we-observe
reveals that fast-moving ice is present even in higher elevation areas, which is atypical for cold-based areas—Thisteads—us
to-the-assumption (Park et al., 2024; Dawson et al., 2022). This suggests that there is a significant amount of polythermal ice
at higher elevations and that the main thermal regime is polythermal. Another noteweorthy-significant characteristic of the
Antaretica-Antarctic Peninsula is its relatively shallow ice sheet compared to the rest of Antarctica. On average, the ice sheet is
estimated to be 610 m thick inland and 300 m in the ice shelves (Drewry et al., 1982). This results in a generally clearer signal
because the signal has to travel through less ice —Henee -the returned-amplitades-are-usually higher-and-are-and is less likely to
be distorted by impurities in the glacier.

West Antarctica is significantly colder than the Antarctic Peninsula, with an annual average temperature of approximately

—28.1°C and a primarily polythermal thermal regime (Morris and Vaughan, 1994). Polythermal regions only commonly
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occur at the margins and the coastline, while cold-based zones are mainly present at higher elevations (Macelloni et al., 2019;
Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). West Antarctica also contains relatively thick ice with inland ice sheets
estimated to be 1780 m thick and ice shelves around 375 m (Drewry et al., 1982).

The last subregion in Antarctica is East Antarctica. It exhibits the coldest climate of the three areas, with an annual average
temperature of around —59.8 °C' and a primarily cold-based thermal regime (Morris and Vaughan, 1994). Temperate areas are
commonly enly-found near the margins, while polythermal zones act as a transitiontransitional zone between the cold-based
and temperate areas (Macelloni et al., 2019; Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). East Antarctica is also the
region with the generally thickest ice. On average, its ice sheets are approximately 2630 m thick inland and 400 m in its ice

shelves (Drewry et al., 1982).
3.2 Dataset Generation
3.2.1 FAU Data

The RES system of FAU is a broadband 25 MHz bi-static monopulse sounder designed as a sling load for helicopter use. It
is a functional elene-replica of the BGR-P30 system (Blindow et al., 2012). The antenna weighs roughly 280 kg and can be
attached to any helicopter type that allows for the attachment of a sling load and has the required take-off capacity. The system
is typically operated 20 m above ground at a nominal airspeed of 60 kmh~1.

The radar time series are collected at a 2.5 ns sampling rate using 256-fold stacking to improve sensitivity and signal-to-noise
ratio. The traces are collected at a rate of 10 Hz, corresponding to approximately a 2-meter spatial sampling rate. The data are
georeferenced by two Leica GS16 multifrequency Global Navigation Satellite System (GNSS) systems. The rover antenna is
mounted on the radar antenna in a central position, while the base station is installed in proximity to the landing and starting
area. After differential processing of the GNSS data, the positions are matched to the radar traces before further processing
is applied. Then, the RES data is processed in REFLEX v8.5 software, developed by Sandmeier Geophysical Research. The
processing flow comprises the following steps and is applied to subsections of each flight: equidistant trace interpolation, shift
for time zero, subtracting special average, bandpass filter, amplitude regulation by gain function (cold ice) or energy decay
(temperate ice), 2D migration, and static correction. To apply the 2D migration, it is necessary to derive a velocity model
comprising an air and an ice layer. For the air layer, the wave travels at the speed of light, while for the ice layer, we assumed
a speed of 0.168 mns~! (Johari and Charette, 1975). Especially in temperate ice, the migration helps to focus the scattered
energy to enhance the bedroek-ice bottom reflections.

The RES data of JRI was acquired during two different airborne ground penetrating radar campaigns in 2017 and 2018 (Lippl
et al., 2019). Since Gourdon Glacier consists mainly of bare ice, no firn correction was applied for the outer parts of the profile.
For the data on the plateau, a standard correction for firn and snow (+10 m, AWI/BAS Bedmap 1 mission summary) as used in
the British-Argentinian survey was assumed (Lythe and Vaughan, 2001). The RES data of Perito Moreno Glacier and Viedma
Glacier were acquired in March and April 2022. For these study sites in the FAU subset, the radargrams-go-deeper-ice is thicker

than the radar’s maximum penetration depth of estimated 700 m (Blindow et al., 2011). The original depth of the radargrams



is over 6000 pixels, which equates to over 1300 m on average - the total depth in meters is not constant due to fluctuations

200 in the flight height of the helicopter. We cut the radargrams to 4096 pixels, which corresponds to an average of about 800 m.
This way,—we-save-saves computing power while keeping all the neeessary-essential information. To restore the full flight
traces in the FAU dataset from their subsampled parts, we reassembled the radargrams according to their trace numbers. Any
conflicting depths for the ice surface and bottom in overlapping parts were smoothened with Gaussian importance weighting.
Furthermore, in rare cases, the initially labeled ice surface and bottom had small gaps. To avoid such inconsistencies, we filled

205 gaps of eleven pixels or less in the ice surface and bottom via bicubic interpolation, using the two nearest manually labeled
points as a reference.

The initial layer labels were annotated by a single interpreter to ensure consistency throughout the dataset. Surface reflections
were generally straightforward to identify; however, in heavily crevassed areas, we increased the resolution to delineate the
air-ice interface as accurately as possible across these features. Bedrock picks were conducted using the same approach.

210 In regions with ambiguous reflections, ReflexW software enabled zooming into specific subsets of the radargrams, thereby
enhancing the clarity of features of interest. Additionally, several intersecting profile lines provided cross-points for internal

validation, These intersections were annotated independently by the same interpreter and subsequently compared. All cross-profile

values fell within the expected margin of error, even in areas with steep slopes or greater depths (i.e., deviations <10 %). At

Glacier Perito Moreno, two control points from previous studies were available for comparison (Sugiyama et al., 2011; Stuefer et al., 2007

215 . The first, along the ‘Buscaini’ profile, corresponds to a seismic survey conducted in 1996, which reported a maximum ice
thickness of 720 m. The second, located nearer to the glacier terminus, corresponds to a borehole drilled in 2010, revealing an
ice thickness of 515 4+ 5 m. Both control points were in close agreement with our ice thickness estimates.

3.2.2 CReSIS Data

The CReSIS data was recorded during the 2009 campaign of Operation Ice Bridge in Antarctica, which comprised 21 missions.
220 Three were sea-ice surveys and thus are not included in the CReSIS dataset. The remaining 18 missions can be split into

two groups: six missions focusing on the Antarctic Peninsula (PEN1, PEN2, PEN3, PEN4, PENS, and LVISPEN) and 12

missions exploring West Antarctica (PIG1, PIG2, PIG3, PIG4, LVISPIG, LVIS86, GETZ1, ABBOTT1, TSK1, TSK2, TSK3,

and TSK4) (Allen et al., 2012b). All 18 missions employed the Multichannel Coherent Radar Depth Sounder (MCoRDS) flown

on a McDonnell Douglas DC-8-72. It has a center frequency of 195 MHz and an eight-channel-chirp signal to accurately assess
225 the groundice (Rodriguez-Morales et al., 2014; Shi et al., 2010b).

To process the recorded data, the standard CReSIS L1B CSARP-mvdr (minimum variance distortionless response) process-
ing steps were applied. These include pulse compression via a Tukey and Hanning Window, beam-forming, motion compen-
sation, synthetic aperture radar processing in combination with f-k migration, channel combination, and waveform combina-
tion (CReSIS, 2024b). After the processing, the radargrams had a depth resolution of 105ns pixel ~! and a width resolution of

230 12— 30mpixel ! depending on the mission.

We obtained the fully processed CReSIS subset by downloading the CSARP-mvdr processed L1B product from the CReSIS

website and taking the square root of the amplitudes. Likewise, CReSIS also provides downloads for the annotated glacier-and
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bedroek-ice bottom and surface layers on their website (CReSIS, 2024a). According to Lee et al. (2014) and Crandall et al.
(2012), the rock-bed surface is humanly annotated but noisy. Although the noise might pose a problem for certain approaches,

we chose not to alter the labels. The reason for this is that the dataset has been used previously in other publications, and in

order to remain comparable, we use the same labels. Nonetheless;-we-also-inctude-the-CReSIS—quality-However, to provide
additional context regarding the quality, CReSIS provides a quality label for every pick. The label indicates the annotator’s

confidence, ranging from one (high) to three (low). We include these labels in the benchmark dataset to-highlight-thepicker’s
confidence-ineachtabelfor future research. The general picking procedure for CReSIS data is outlined in (CReSIS, 2024b).

3.2.3 AWI Data

The AWI subset was recorded during campaigns in Dronning Maud Land in 1997 and 1999 (Steinhage et al., 2023b, a) and
in the Antarctic Peninsula in November 2013 (Steinhage, 2015). All three campaigns employed a version of the EMR radar
system with a center frequency of 150 MHz and the toggle mode enabled. The toggle mode alternates the radar’s pulse length
between 60 ns and 600 ns periodically. Thus, the system can achieve a decent depth resolution while capturing deep internal
layers of the ice. The processing of the recorded data was similar for all three campaigns. The data was differentiated, rescaled,
high-pass filtered, and bandpass filtered. To reduce the amount of noise in a radargram, multiple traces were combined into
a single trace. In detail, ten traces were combined for the 1997 and 1999 flights, and seven traces were combined for the
2013 flight (Steinhage, 2001; Nixdorf et al., 1999; Steinhage et al., 2001). Automatic gain control was used to normalize the
amplitude values. After the processing, the radargrams had a depth resolution of 12 — 13.33 ns pixel ~! and a width resolution
of 66 — 79 m pixel ~* depending on the campaign.

The ice surface and ice bottom were annotated by one person. To ensure consistency, plausibility checks were performed at

crossing points with other profiles from the same or related campaigns. No systematic biases were observed. In the picks, gaps
of eleven pixels or less were filled using bicubic interpolation. Finally, for the radargrams from 1997 and 1999, everything-all

data below 3600 pixels, which is about 4 km, was discarded because only noise was visible at these depths. The gathered data
was processed with FOCUS, DISCO, LANDMARK, and Python.

4 Baseline Method

To demonstrate the usability of the dataset, we present a baseline method in this section. The method’s pipeline consists of

preprocessing steps and a deep learning model, elaborated in the following subsections.
4.1 Preprocessing

The radargrams are given in relative power p to the recorded amplitudes, which we first convert to decibels using the following

formula:

dB =10-log,,(p) (1)

10



Next, we apply a z-score normalization, i.e., we subtract the mean and divide by the standard deviation. However, the mean
and standard deviation are not formed over the entire IceAnatomy dataset because there is a strong divergence in the recorded
265 spectrum values between the different subsets. This divergence is caused by the large difference in radar systems and proeessing
of-the-data-data processing, which represents a domain shift. Therefore, the-normalization is performed separately for the AWI
and CReSIS data and for the three study sites in the FAU subset.
Then, the normalized radargrams of the entire IceAnatomy dataset are resized to a standard height of 1024 pixels to limit the
computational cost and simplify processing. Finally, each radargram is cut into patches with a width of 512 pixels and a total
270 height of 1024 pixels. For trajectories whose width is not divisible by 512, we apply symmetric padding at the end.

4.2 Deep Learning Model

We apply a deep learning model to extract the ice boundary from the radargram. The model’s architecture is depicted in Fig. 3

and is based on the U-Net

275

F-(Ronneberger et al., 2015), a widely adopted approach for tasks such as ice boundary extraction and comparable tasks
He et al., 2019; Jebeli et al., 2023b, a; Donini et al., 2022; Dong et al., 2022

280 such as the transformer (Vaswani et al., 2017), may offer better performance, they also come with increased computational
costs, larger models, and other practical limitations. The U-Net consists of three components: an encoder, a decoder, and a

; Ghosh and Bovolo, 2022). While more recent architectures

2

bottleneck.
The encoder extracts features from the radargram into a feature map, the decoder utilizes the feature map to make a predic-
tion, and the bottleneck connects these two components. As the model has to handle large input sizes, the encoder contains five
285 down-sampling steps to process the input, while the decoder has five up-sampling steps to reconstruct the original size. In the
encoder, each down-sampling step consists of two residual blocks (ResBlocks), while in the decoder, each up-sampling step

consists of three ResBlocks (Esser et al., 2020) -
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Figure 3. The architecture of the proposed deep learning model. It receives the normalized amplitudes of a radargram as input and predicts

the ice surface and the ice bottom as two separate outputs. The atrous spatial pyramid pooling contains three dilated convolutional layers,

one convolutional layer with adaptive average pooling, and a 1 x 1 convolutional layer. It utilizes the rectified linear unit (ReLLU) activation

function which is defined as Re LU (x) = max(x,0).

layers-to-tmprove-the-gradientflow-in-the-network—(see Appendix B for a detailed summary of its structure). In the bottleneck,
we inserted an Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2018) layer. ASPP processes the same feature map in

parallel with differently dilated convolutional layers. In contrast to typical convolutional layers, dilated convolutional layers
do not utilize a set of adjacent pixels. Instead, they sample a set of pixels from a grid around a center point, thereby achieving
differently-sized-differently-sized fields of view. The sampling is uniform and based on a dilation rate. The chosen dilation
rates in this model are 1, 4, and 6. Since the model is based on the U-Net architecture, it also includes skip connections. Skip
connections directly forward the output of each down-sample step in the encoder to the corresponding parts in the decoder via
concatenation. The increased channel dimensions in the decoder are solved by including an additional ResBlock for channel
reduction after each up-sampling step in the decoder.

To calculate the final prediction of the model, we first forward the feature map computed by the U-Net into two separate
output heads, each consisting of a single ResBlock. Each output head then creates one probability map, resulting in two final
probability maps. The first one represents the probabilistic prediction of the ice surface, while the second one represents the
probabilistic prediction of the ice bottom. The final prediction of the model is then the highest probable prediction of each
column, which we compute by applying a column-wise argmax-operation.

To train the network, we employ a custom loss, a cost function that gives feedback to the network by measuring the difference

between the prediction and the corresponding labeled ice boundary. The custom loss consists of two parts: a distance-based
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(Lygist) loss and a classification (Lj,ss) loss:
L= Ldist + Lclass (2)

For both the classification and distance-based losses, the probability maps of the ice surface (YS) and ice bottom layeﬁ(f/b) are

treated column-wise, i-ei.e., per trace(ss). The classification loss is a smoothed cross-entropy loss (Lcg) thatconsiders-where

each pixel in a column G-is treated as a separate classe—The-, and the pixel closest to the eorrespondinglabeled-iee-boundary
layeris-then-ground truth boundary is considered the correct class. The loss-getssmoothed-with-the-smoethingfactore-The

distance-based loss (Lpjy) sums up the probabilities in the column, which are weighted with a distance map. The distance

map contains the distance to the correct pick for each pixel. Hence, the further away the predicted pick is from the annotated

s:+-Section C provides a more

layer, the greater the loss.

in-depth overview of the loss function.
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The annotations in the dataset have discontinuities in the labeled layers where the ice bottom dropped below the radar’s

penetration depth, the receiver flew over the edge of the glacier, or the signal was too ambiguous for experts to interpret. Tracks

for which no pick is available for a layer are not included in the loss calculation and the evaluation.

5 Evaluation

5.1 Evaluation Metrics

Previous work either directly extracted the ice boundaries or deduced them from an intermediate segmentation, where they
predicted a semantic class for every pixel in the radargram. Depending on the chosen method, the metrics used to assess the
quality of the predictions differ. For segmentation approaches, most of these metrics are based on a confusion matrix that
measures how accurately the model distinguishes between a chosen positive class and all the other classes, dubbed negative

class. A confusion matrix contains four measurements: true positives (TP) (the number of correctly predicted pixels for the
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positive class), true negatives (TN) (the number of correctly predicted pixels for the negative class), false positives (FP) (the
number of wrongly predicted pixels for the positive class), and false negatives (FN) (the number of wrongly predicted pixels for
the negative class). Based on these four measurements, more sophisticated metrics are defined for the segmentation approaches.
The most commonly employed one is the accuracy (qﬁ%) (Garcia et al., 2021a, b, 2023; Ghosh and Bovolo,
2022; Donini et al., 2022; Ilisei and Bruzzone, 2015). Less commonly used metrics include the Intersection over Union (IoU)
(ﬁ) (Cai et al., 2019), precision (%) (Ghosh and Bovolo, 2022), recall (%) (Ghosh and Bovolo, 2022),
the F1-score (2%’”5{““”) (Cai et al., 2020; Ghosh and Bovolo, 2022), sensitivity (TPT;_%) (Garcia et al., 2023; Donini

Precisiont Recall
et al., 2022), specificity 2_%) (Garcia et al., 2023; Donini et al., 2022), and the error rate (%) (Ilisei and
Bruzzone, 2014).

For direct extraction approaches, the mean column-wise absolute error also called mean absolute error (MAE) (Crandall
et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al., 2018; Mitchell et al., 2013; Xu et al., 2017, 2018;
Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a) is the most common metric. It measures the average pixel-
wise distance between the annotated layer and the prediction. Other distance-based metrics include the median of the column-
wise mean absolute error (Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al., 2018; Xu et al., 2017), the mean squared
error (MSE) (Crandall et al., 2012; Mitchell et al., 2013; Dong et al., 2022), the root mean square error (RMSE) (Liu-Schiaffini

et al., 2022a), and the largest under- and over-estimation (Gifford et al., 2010). One-problem-with-We can also define confusion

matrix-based metrics like-the-preeisien-on the layer extraction task. In that case, we define each height pixel of the radargram
as a separate class, and the closest pixel in each column to the corresponding layer as the correct class. However, a limitation of
confusion matrix-based metrics, such as precision, is that they are-not-distance-weighted-do not account for distance weighting.

For example, if a prediction is always one pixel next to the annotated layer, also known as ground truth (GT), the confusion
matrix-based metrics will have the worst possible value, even though it is a near-perfect prediction. Therefore, some studies (Xu
etal., 2017; Gifford et al., 2010; Liu-Schiaffini et al., 2022a) have relaxed these confusion matrix-based metrics by considering
predictions a few pixels from the ground truth as still correct.

As metrics for our benchmark framework, we have chosen the MAE, two relaxed Average Precision (AP) metrics, and
introduce the Mean Meter Error (MME). The MAE is calculated as the column-wise difference in pixels between the ground
truth depth of a layer and the predicted depth. Resizing the radargram will change the value of this metric. Therefore, we
also introduce the MME, which approximates the real-world error. We calculate the MME by multiplying the MAE with
the product of the wave velocity in the medium and the depth resolution of the radargram. The wave velocity describes the
speed of the wave-in-the-medium-is-assumed-electromagnetic wave of the radar through a medium. We assume it to be
constant with the speed of light (cz; = 0.299792458 mns—!) for-the—atrtayer-and-in air and with cjee = 0.168mns~! fer
the-ieetayerin ice (Johari and Charette, 1975). The depth resolution is the time it takes for the wave to pass through a-pixelthe
physical equivalent of a pixel in the radargram. Since the depth resolution is indirectly proportional to the y-dimension of the
radargram, the MME stays consistent across different heights. Table 1 records the different depth resolutions for radargrams in

the IceAnatomy dataset in their original height and equation 3 and 4 summarize the formula for the MME. Note that the MME
is still highly dependent on the original depth resolution of the radargram. The MME will be naturally higher for a radareram
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Figure 4. A visual representation of the four metrics used in this work. The left side of the figure depicts the MAE and MME respectively as
the difference between prediction and ground truth (GT). Meanwhile, the right side of the figure features the AP-1% and AP-5% respectively
as an interval around the ground truth. Note that the ground truth and the predictions are technically float numbers. However, we thickened

the ground truth by 20 pixels to improve visibility.

where every pixel constitutes a 40 m change in height rather than a 4 m change, as even small mistakes lead to a drastic increase.
Thus, we also record the MAE as it is more consistent over radargrams of the same image height but with different study sites
and radar systems.

MME; (s, ys) = 26;‘ )" Depth-Reso” - MAE; (4, ys) 3)
| S|yseYS
N Cice % N
MME; (96, ) = oY) E Depth-Reso” - MAE, (4, yp) )
b R ~
€Yy

(* Depth-Resolution after resizing the radargram.)

MME and MAE both describe the distance between two lines. A disadvantage is that they are not robust to outliers. As
an outlier robust alternative, we also use a relaxed average precision (AP). To nermalize-standardize the relaxation, we count
everything below a 1 or 5% error of the total height in pixels of the radargram as a hit (AP-1% and AP-5%). Choosinga
AP-1% allows for an error of 10.24 pixels, and the AP-5% allows for an error of 51.2 pixels. Tying the average precision to the
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height of the radargram prevents the metric from ehanging-when-theradargram-isresizeddrastically changing if future studies
resize the radargrams differently. In addition, relaxing the metric alleviates the problem of uncertainties in the labels. Figure 4

shows a visualization of the employed metrics.
5.2 Experimental Protocol

Since there are large differences between the subsets of the IceAnatomy dataset, we train one model for each subset, i.e., the
FAU, CReSIS, and AWI subsets. The model for the AWI data is a special case, as the subset is very small. This would make
the model prone to overfitting. To eounteract-thatmitigate this issue, the AWI model is first pre-trained on all three subsets of
the IceAnatomy dataset and then finetuned on the AWI subset. In addition to the specialized models, we train one model on
the full IceAnatomy training dataset and evaluate it on the test subsets separately to contrast it to the subset models.

For the FAU subset, we select one flight from each of the study sites as part of the test set: The third flight over Perito
Moreno, the second flight over Viedma, and the flights from 2017 for JRI. The remaining flights are used for training and
validation, where the validation set includes the second half of the first flight over Perito Moreno, the third section of the first
flight over JRI, and the traces 5023 to 8077 for the flight over Viedma. For the CReSIS subset, we choose the TSK2, PIG4,
PEN4, and PENS missions as the test set. This results in 7 flights in the test set, containing 3 over the Antarctic Peninsula
and 4 over West Antarctica. From the remaining 25 flights, the flights from PEN3, PIG3, and GETZ1 missions are taken for
the validation set. For the AWI subset, we decided not to pick an exclusive flight for testing as the differences between the
collected radargrams are too big. Instead, we utilized the last 20 % of the 2014 flight over the Antarctic Peninsula and the 1999
flight over East Antarctica as our test set. For training, we picked the entirety of the 1997 flight over East Antarctica, the first
70 % of the flight over the Antarctic Peninsula, and the first 70 % of the 1999 flight over East Antarctica. The remaining 10 %
of the 1999 and 2014 flights were used for validation.

We assess the model on the validation set after every iteration over the full training set and stop training when the AP-1%
does not improve for 25 subsequent evaluations. We save the model with the highest AP-1% value on the validation set. The
learning rate, a parameter that determines the strength of every network update, is set to 5e~*. As the optimizer, an algorithm
that updates the network weights based on the loss function, we use AdamW (Loshchilov and Hutter, 2019) with a weight
decay of 0.05 and reduce the learning rate by a factor of 0.5 when AP-1% plateaus for ten subsequent iterations of the entire
validation set. The batch size, a parameter that determines how many samples are used for every weight update, is 32 for all
models. To increase variety in the data, we randomly modify the training data via data augmentations. In particular, we employ

an additive Poisson noise scaled with Gaussian noise, brightness, contrast, gamma correction, and flipping horizontally.
5.3 Results

Table 2 provides quantitative results on all three subsets for the dataset-specific models and the omni model trained on the
full dataset. Overall, the results are promising, with high AP-1% and AP-5% values and low MME and MAE values for most

combinations. Still, dataset and model-specific discrepancies exist.
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Table 2. Overview of the performance of our presented deep learning model on the different subsets in our benchmark dataset. We distinguish
the layer prediction into two classes: the ice surface (S) and the ice bottom (B). Furthermore, we split our experiments into two parts: The
dataset specific models, which were trained only on a specific subset of the data, and the omni model, which was trained on the entire dataset.
Note that for the AWI subset-specific model, we utilized the weights of the omni model as a starting point to stabilize training. We compare
the model’s performance on the MME, MAE, AP-1%, and AP-5% as defined in Section 5.1. To contextualize the MME, we annotate the
relative error to the mean measured ice thickness of the specified test set study site behind the MME. We conducted the evaluation on the test

set and averaged the results over five runs to minimize statistical errors.

Dataset specific Model Omni Model

Layer MME | MAE | AP-1% 1 AP-5% 1 MME | MAE| AP-1% 1T AP-5% 1
FAU S 2.1m [1.2%)] 2.0 98.8% 100.0% 2.4m [1.3%] 2.3 98.5% 99.9%
B 9.1m [4.9%)] 13.1 74.3% 95.8% 19.5m [10.5%] 27.3 68.3% 90.5%

CReSIS S 23.1m [3.1%] 2.5 96.9% 100.0% 20.8m [2.8 %) 2.2 97.9% 100.0%
B 78.2m [10.4%]  15.2 87.9% 94.1% 66.5m [8.9 %) 12.8 88.6% 94.4%

AWI S 4.9m [0.3%) 0.7 99.3% 100.0% 12.0m [0.6 %] 1.7 97.6% 99.4%
B 29.3m [1.5%] 7.4 83.5% 97.6% 39.8m [2.1%] 10.0 75.7% 95.6 %

5.3.1 Ice Surface Predictions

The predictions for the ice surfaces are nearly perfect for all subsets and all models. The three subset models even achieve
100 % accuracy for the AP-5%. Hence, the remaining discrepancies are likely significantly influenced by measurement inaccu-
racies, noise, and general model variance. Therefore, we will only consider the task of ice bottom delineation to assess model

performance.
5.3.2 Ice Bottom Predictions

For the ice bottom predictions, the differences in the MME between the three subsets are more pronounced than for the MAE,
which can be attributed to the different depth resolutions. The MAE difference between the FAU and CReSIS subsets is small,
while the MAE on the AWI subset is substantially lower than both. The AP-1% is lower for the FAU subset than for the AWI
and CReSIS subsets. Interestingly, this difference between subsets is relativized for AP-5%. This means that most incorrect
predictions for FAU are in the 1 % to 5 % error range. The same is true for the AWI subset. For the CReSIS data, this effect is

not as strong. Here, the AP only increases from 87.9 % for the 1 % error rate to 94.1 % for the 5 % error rate.

5.3.3 Omni Model

The omni model shows persistently higher MME and MAE values and lower AP-1% and AP-5% values for the FAU and AWI
subsets than the dataset-specific models. In detail, it only achieves an MME of 19.5 m and 39.8 m and an AP-1% of 68.3 % and

75.7 %, respectively. We attribute the lower performance of the omni model to the substantial domain shift between the three
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subsets and the fact that the FAU and AWI subsets are significantly smaller than the CReSIS subset. For the CReSIS subset,
the omni model outperforms the dataset-specific model. In particular, it achieves an MME of 66.5 m and an AP-1% of 88.6 %.
These results suggest that there can be a benefit from more training data even with the domain shift. However, the domain shift

makes the generalization to under-represented or new domains difficult.

5.3.4 Influence of Study Sites

Table 3. Overview of the influence of geographical and glaciological factors on the performance in detecting the ice bottom. We differentiate
between the subset, the study site, and the general thermal regime. For the performance analysis, we compare the MME, MAE, AP-1%,
and AP-5% as defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the
specified test set study site behind the MME. Note that for the AWI subset-specific model, we utilized the weights of the omni model as a
starting point to stabilize training. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical

errors. The analyzed models were the subset-specific models.

Study Site Main Thermal Regime MME | MAE | AP-1% 1 AP-5% 1
Perito Moreno Temperate 22.1m [8.0%] 26.3 54.9% 91.1%
FAU Viedma Temperate 10.0m [5.0%] 12.0 68.5% 96.8%
James Ross Island Polythermal 3.9m [2.7%] 9.2 84.9% 96.9%
CReSIS  Antarctic Peninsula Polythermal 31.6m [4.5%)] 5.8 91.5% 97.6%
West Antarctica Polythermal 148.7m [18.0%]  29.4 82.5% 88.8%
AWI Antarctic Peninsula Polythermal 32.7m [9.8 %) 8.1 87.3% 96.4%
East Antarctica Cold-based 27.3m [1.0%] 6.9 81.1% 98.3%

Table 3 divides the results of the subset-specific models by study site and thermal regime.

For the FAU subset, the Perito Moreno and Viedma predictions are quantitatively worse than the ones from JRI. A neticeable
key difference between Perito Moreno, Viedma, and JRI is the thermal regime. The first two are temperate glaciers, while JRI
contains polythermal ice. Besides the higher water content in Perito Moreno and Viedma, both are also substantially deeper
than JRI in most areas. They even exhibit-have areas with ice too-thickfor-the-thicker than the 700 m maximum penetration
depth of the employed radar systemto-penetrate. Viedma and JRI also feature several-meter-thick moraine material on the
glacier surface. These rock and debris deposits are not penetrable by the wavelets and thus create radar shadows below them
or substantially decrease the amount of reflected energy.

If we look at the associated radargrams, we can mostly see a relatively stable and clear prediction for JRI. On the other
hand, Viedma and Perito Moreno have much stronger differences to the ground truth. Especially in deep and noisy regions, the
models struggle. Figure 5 shows example traces for the three study sites of the FAU subset.

Between the Antarctic Peninsula and West Antarctica study sites of the CReSIS subset, there are strong differences in the
quantitative analysis. The MME and MAE values exhibit a difference of approximately a factor of five, while the AP-1%

and AP-5% are approximately 9 % apart. In the qualitative analysis, we can see that the predictions in both regions actually
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Figure 5. Visualization of the subset-specific model’s performance on the FAU subset. Figure (a) shows trace 3000-5500 of the third flight
over Perito Moreno, Fig. (b) depicts traces 5000-7500 of the second flight over Viedma, and Fig. (c) presents traces 5000-7500 from the first
Section of the 2017 flights over James Ross Island.

follow the ground truth closely. However, sometimes the predicted ice bottom layer makes a jump and the actual ice surface is
predicted to be the ice bottom. We call this “ice boundary collapse”. Examples of this phenomenon can be seen in Fig. 6.

For the AWI subset, the results for East Antarctica are generally more favorable than those for the Antarctic Peninsula;
with-the-exception-of-the-AP-1%—This-euteome-is-in-tine-, This result is consistent with the observation on the FAU subset 5
that the algorithm and-radar-system-performs better for colder ice performs-as-than for warmer ice. Itisnoteworthy-that-the
AﬂmfeﬁePemﬂsu}&exmbﬁs—a—supeﬂePMWAP l%eempafeé%e—}%&sf%ﬂfafe&ea,—yet—&eempamﬁvely
WMMM@W&W&“ Antarctica are not

W

5 % interval and that our algorithm struggles to pinpoint the exact location of the ice bottom. We can confirm this behavior in
the qualitative analysis, where the prediction aligns-closely—with-is sometimes slightly above or below the ground truth in-East

Antareticaline but follows it closely overall. Similarly, the predietion-predictions for the Antarctic Peninsula also appears—te
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Figure 6. Visualization of the subset-specific model’s performance on the CReSIS subset. Figure (a) presents traces 2000-4500 from
mission PEN4 in the Antarctic Peninsula (PEN4_01_001). Figure (b) presents traces 2000-4500 from mission TSK2 in West Antarctica
(TSK2_07_003).

seen-in-Fig—7-appear to be very accurate but contain more occasional outliers. Figure 7 depicts both the predictions for East

Antarctica and the Antarctic Peninsula.

(a) Antarctic Peninsula (b) East Antarctica
W Surface Ground Truth B m m Surface Prediction
Bottom Ground Truth H H H Bottom Prediction

Figure 7. Visualization of the subset-specific model’s performance on the AWI subset. Figure (a) depicts traces 21000-23500 from the 2014
flight in the Antarctic Peninsula. Figure (b) presents traces 7837-9787 from the 1999 flight in East Antarctica.

5.3.5 Loss Function

To validate-assess the performance of our combined loss function, we conducted an-a small ablation study. Specifically, we

trained-a-modelusing-only-one-component-of-evaluated two additional experiments in which we replaced the combined loss
{with each of its individual components: In the first setup, we trained the model with the cross-entropy £cg-and-distanceloss
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Table 4. Summary of our ablation study regarding the proposed modifications to the loss function. For every variation of the loss function,
we trained a subset-specific model and compared the performance based on the MME and AP-1% of the ice bottom layer. We conducted the
evaluation on the test set and averaged the results over five runs to minimize statistical errors. To contextualize the MME, we annotate the
relative error to the mean measured ice thickness of the specified test set study site behind the MME. Note that for the AWI subset-specific

model, we utilized the weights of the omni model as a starting point to stabilize training, which was also trained with the specified loss

function.
FAU CReSIS AWI
MME | AP-1% 1 MME | AP-1% 1 MME | AP-1% 1
Lce 13.9m [7.4%]  74.3% 83.0m[11.7%]  88.6% 29.7m [1.6%] 82.5%
Loia 9.9m [5.1%]  72.3% 119.5m [15.9%]  85.5% 33.2m [1.7%]  81.8%
Leg+ Lo 91m[4.9%]  74.3% 78.2m [10.4%]  87.9% 29.3m [1.5%]  83.5%
+o-and-compare-them-to-loss, and in the second setup, we trained it only with the distance loss. We compare the results of

these two configurations with the combined loss —The-results-are-provided-in Table 4.
For the FAU subset model, the distance loss improves the MME but not the AP-1%. Meanwhileln contrast, the cross-

entropy is better for the AP-1% but not for the MME. The combination of both losses results in an improved MME while
AP-1% remains the same. The results for the CReSIS subset are less clear. It is evident that the distance loss alone does not
enhance the MME or AP-1%. However, the combined loss demonstrates the most optimal outcome in relation to the MME,
while the AP-1% is only slightly worse in comparison to CE alone. Similar to the CReSIS results, the distance loss alone does
not improve the MME compared to the cross-entropy for the AWI subset. However, the combined loss again-delivers-provides
the best results with a higher AP-1% value.

5.4 Discussion and Outlook

One apparent influence on the quality of the ice bottom prediction is the primary thermal regime of the region. In general,
the warmer the ice, the less reliable the prediction. The reason behind this is probably the influence of water on the signal,
as well as the higher likelihood of a heavily crevassed surface. Temperate ice generally contains water, as most of the ice is
close to or at the pressure melting point. Water absorbs the recorded signal, leading to higher noise with increased depth and
strong attenuation. Hence, the model’s performance naturally decreases as the associated radargrams are more challenging to

interpret. Polythermal glaciers, contrary to temperate glaciers, do not exhibit ice at the pressure melting point everywhere.

Instead, elevated temperatures are

usually confined to zones of fast flow erelese-to-the-margins-or-the-glaetersdriven by frictional heating or to marginal areas of
the glacier. Hence, the effects are not as detrimental as for entirely temperate glaciers.

Another striking-interesting observation is the difference between temperate and polythermal ice regarding the AP-1% and
AP-5%. The AP-1% of temperate ice is significantly lower than for polythermal ice. However, this-difference-becomes-atot
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smaller-when-comparing-the-the AP-5% is relatively similar for both types of ice. While it is natural for the difference to
decrease at higher error intervals, the change in this case is still very drastic. To put this into perspective, the Viedma and
James Ross Island were 16.4 percentage points apart on the AP-1%, but on the AP-5%, only 0.1 percentage points. A possible

explanation for this could lie in the meltwater at the base of the ice. Temperate ice more commonly collects meltwater at its
base than polythermal ice. Since water absorbs the signal, the exact position (AP-1%) becomes difficult to identify. However,
the general position (AP-5%) is still clear because the water is only at the base. Besides the thermal regime and average depth,
the presence of debris usually plays a significant role in radio-echo sounding. Interestingly, the quantitative results of JRI and
Viedma indicate that the presence of debris did not play a major role in the model’s performance compared to depth and thermal
regime. However, we suspect that the numbers do not capture the effect of debris very well since the debris likely absorbed the
signal entirely. Thus, the expert could not create ground truth labels for these parts, which makes the effect of debris on the

model’s performance not accurately measurable with numerical methods.

One of the more prominent
and recurring phenomena in the CReSIS model’s predictions is the collapse of ice boundaries. In ambiguous cases, the model

shows a bias toward predicting the ice bottom close to the or as the ice surface. One explanation could be that the CReSIS

data is differentiated and thus represents only the change in amplitude. That makes it challenging to distinguish whether the
peak of the ice surface and ice bottom overlap or the ice bottom is not visible. The problem gets further amplified by noise and
artifacts, such as multiples. They can exhibit similar patterns as the ice bottom, making the model biased toward predicting the
ice bottom as the ice surface when in doubt.

Furthermore, we believe that the influence of the ice boundary collapse is also reflected by the quantitative analysis of
the different CReSIS study sites. As West Antarctica generally contains thicker ice sheets than the Antarctic Peninsula, the
differenee-average distance between the ice boundaries significantly increases. Thus, a wrong prediction of the ice bottom as
ice surface leads to a considerably higher MAE and MME for West Antarctica than the Antarctic Peninsula. However, the ice
boundary collapse is likely not the only reason for this effect as the AP-1% and AP-5% are also lower for West Antarctica than
the Antaretica-Antarctic Peninsula. Hence, thicker ice sheets might be naturally more challenging.

Nonetheless, future research should address ice boundary collapses as they tremendously affect performance. Larger con-
texts, additional post-processing steps, or recurrent neural networks could help stabilize the predictions as they incorporate
more information. Another interesting problem to explore is the performance drop from subset-specific models to the omni
model. Our results indicate that the domain shift between the subsets is too prominent for a simple omni model to catch up on all
subset-characteristic features. Hence, models cannot utilize the full benefits of a larger dataset when they are recorded and pro-

cessed differently. In particular, domain shift techniques could help with this challenge-, but also more advanced regularization

techniques, e. g., spatial dropout, could prevent the model from focusing too much on a single domain (Tompson et al., 2015).

In appendix D, we show that a uniform sampling strategy can also help mitigate the domain shift.
We believe that our framework is the-first-a significant step towards a potential fully automated generation of ice thick-

ness maps based on RES data —Our-presented-work-—could-tay-the foundation—{for-and that our work represents an important

advancement toward validating survey data while-in the field.
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6 Conclusions

This paper presents the first benchmark framework for delineating the ice boundary in RES data. The included dataset
“IceAnatomy” contains hundreds of kilometers of processed, labeled, and georeferenced RES data from three different sources
(FAU, CReSIS, AWI). Since all sources employ a different radar system and processing methods, “IceAnatomy” offers a wide
range of varying amplitude spectrums, depth resolutions, and width resolutions, making it applicable to a multitude of settings.
Furthermore, it also features different geographical factors, such as study sites and thermal regimes, allowing for in-depth
analysis of the models and their behavior in different geographical scenarios.

To fairly compare different models in the future, we provide an official train and test split for each source of the dataset. This
enables the development of not only an omni model trained on the entire dataset but also specialized subset-specific models
on one of the three sources. We trained and evaluated a baseline model for each of these scenarios. In our experiments, the
subset-specific models provide the most promising results with MMEs of 2.1 m [1.2%], 23.1m [3.1%)], and 4.9 m [0.3 %] for
the ice surface and 9.1 m [4.9 %], 78.2m [10.4 %], and 29.3 m [1.5 %)] for the ice bottom depending on the source.

Previous work has already demonstrated the effectiveness of automatic approaches for ice boundary extraction but lacked
a common method for accurately comparing models. With this benchmark framework, we hope to encourage-other-seientists
to—start-werking-address this issue by unifying and standardizing both training and evaluation schemes. We hope that this

benchmark dataset will encourage more scientists to engage in this challenging and important research area. Deep learning
models that extract the ice boundary can greatly speed up the processing of RES data. As a result, ice-depth-the ice thickness

and, consequently, the subglacial topography can be determined more quickly after a field survey.

Code and data availability. The dataset is available at https://zenodo.org/records/14036897 (Dreier et al., 2024) and the implementation at
https://doi.org/10.5281/zenodo.14038570 (Dreier, 2024).

Appendix A: Additional Hyperparameters

This section gives an overview of the hyperparameters in our employed U-Net from Chapter 4.2. The input dimension of
our U-net is (1024,512,1) (H,W,1), which then gets scaled according to the depth level of the encoder or decoder. Inside
the network, we down- and upsample our feature map five times each while scaling the feature dimension according to the
depth-level-dependant value of [8,16,32,64,64,128)]. To reduce the risk of overfitting, we also utilize dropout layers inside
the ResBlocks with a probability of 10 %. For the loss function, we employed our proposed combined loss function. Since the
numerical value of the distance loss is significantly higher than that of the classification loss, we had to weigh the individual
components. In detail, we chose the weights wg cjass = 0.5, Wh_class = 1.0, w;_gise = 0.05, and wy,_gisr = 0.1 as they performed

the best in preliminary experiments.
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Appendix B: ResBlock Design

To provide a better understanding of the network architecture, this section examines one of its core components: the ResBlock
from (Esser et al., 2020). Its structure, shown in Fig. B1, comprises several components. First, it starts with a group normalization

layer (Wu and He, 2018) that normalizes the data in groups of channels to increase stability during training. Next, a swish
activation (Ramachandran et al., 2017) function adds nonlinearity to the ResBlock so the network can learn more complex

atterns. The activation is followed by a two-dimensional convolution layer that processes and combines the visual features

by applying convolutional operations. This is followed by another group normalization and swish activation function before

a regular dropout layer (Hinton et al., 2012) is applied. The dropout layer randomly withholds information during trainin

to improve generalization and prevent the model from overfitting — a process in which the model develops a strong bias

towards the training data. After the dropout layer, another two-dimensional convolutional layer is applied. Finally, a residual

connection (He et al., 2016), a shortcut from the start of the ResBlock to the end through a convolution layer, is added to the

output of this sequence of layers to improve the gradient flow in the network.
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Figure B1. Structure of the residual block employed in our deep learning model. The arrangement is based on the design of Esser et al. (2020

Appendix C: Loss Function Details
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The formulas of the classification and distance-based loss are as follows:

(1 —x.)log(p(w.))

Leg ==Y mo(1—e)log(p(a.)) + c - (C1)
S
Lclass = wsiclass Z LCE(QS) + M Z LCE(?)b) (CZ)
Yl = Yol =
Ys €Y UpEYp

L = wm 3 (), o) + “;Y| 3 (dlyw), (b)) (C3)
ST geey b 3

Ws class,. Wh class, Ws dist, and wy, gise are the respective weights for a weighted combination of the single loss parts, €. is the

smoothing factor, C specifies the column, () is the dot product, o is the softmax function that converts the model’s outputs into

robabilities, |.| is the cardinality of a set, and d is the function that creates a vector filled with the column-wise distance ma

iven the respective column of the label.

Appendix D: Additional Experiments

Since the three subsets of IceAnatomy differ in size, we also investigate whether a uniform sampling strategy, where samples
are drawn equally from each subset, could help the Omni-Model achieve the performance of the domain-specific models on the
AWL and FAU subsets. From our results in Table DI, we can see that a uniform sampling strategy does lead to improvement
for the AWI and FAU subsets. In the case of the AWI subset, the omni model even outperforms the domain-specific model.
However, in the case of the FAU subset, we are still below the domain-specific model. We reason that the domain of the AWI
and CReSIS subsets are significantly closer than the FAU subset as these two subsets contain differentiated radargrams. We,
therefore, believe that domain shift remains an important area for future research. In addition to the uniform sampling, we also
investigated how different hyperparameter setups regarding learning rate and regularization would affect the benchmark model.
From the results in Table D2 and D3, we can see that different hyperparameter setups favor different subsets of IceAnatomy.
However, there seems to be no universal optimal setup.
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Table D1. Qverview of the performance of our Omni Model with uniform sampling. We distinguish the layer prediction into two classes: the
ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME, MAE, AP-1%. and AP-5% as defined in Section
3.1 To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test set study site behind

Layer MMEL  MAE|  AP1%1 APS%1

FAU. S 20m[LI% 19 993%  1000%
B 140m[T6% 190  TA1%  941%
CReSIS S 23dm[31%] 25 972%  100.0%
B 7T50m[100%] 146 STI%  939%
AWL S 38m[02%] 05 9.7.%  1000%
B 239m[13% 60 86.1%  98.3%

Table D2. Overview of the performance of our Omni Model with different learning rates and uniform sampling. We distinguish the layer
prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as
defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test
set study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical

Layr ~ MME,  AP1%1  MME|  AP1%t  MMEJ  AP1%

FAU S 2.1m[1.1% 99.0% 2.0m [1.1% 99.3% 2.1m [1.1% 99.1%

CReSIS S 202m[35%.  967%  23dm[3A%]  972%  219m[29%]  97.6%
B

26.9m [1.4% 86.2% 239m[1.3%]  86.1% 215m[11%  87.8%
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Table D3. Overview of the performance of our Omni Model with different learning rates and uniform sampling. We distinguish the layer
prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as
set study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical
errors. Note that for dropout = 0.1 we averaged over five runs, as we had those values from previous experiments.

dropout = 0.0 dropout = 0.1 dropout = 0.2
Layer, ~ MME]  AP-1% T MME|  AP1%7 MMEJ  AP-1% T
FAU_ S 2.0m [1.1% 99.2% 2.0m [1.1% 99.3% 2.0m [1.1% 99.3%
B 102m[55% 74.2% 14.0m[7.6% 74.1% 14.3m[7.7%]  73.5%
CReSIS S 225mJ[3.0% 97.0% 23.1m [3.1% 97.2% 215m[2.9%]  97.6%
B 79.0m[105%]  87.8% 75.0m [10.0%]  87.7% 69.2m [9.2%]  88.5%
AWL S 7.3m [0.4% 99.0% 3.8m [0.2% 99.7% 3.8m[0.2% 99.5%
B 260m[14% 85.7% 23.9m [1.3% 86.1% 245m[1.3%]  86.6%
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