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Dear Editor and Reviewers,

We thank the reviewers and the editor for their helpful and thoughtful comments. Their time and
effort spent reviewing our manuscript are greatly appreciated. Following their advice, we care-
fully adjusted the manuscript and added additional experiments to the appendix. In detail, we
have:

¢ Expanded and clarified explanations that were previously difficult to grasp.

¢ Improved the coloring of Figs. 1 and 4 to 7.

¢ Added additional experiments to the appendix.

e Improved consistency in terminology and tone.

¢ Added additional citations to related work to give a broader context of previous work.
¢ Clarified claims about the novelty and impact of our work.

¢ Adjusted the technical explanations for a better reading experience.

With these changes, we believe we have significantly improved the quality of our manuscript,
and we hope to meet the expectations of the reviewers.

We are looking forward to hearing from you.

Kind regards,
Marcel Dreier (on behalf of all co-authors)
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The following pages contain a list of editor’s and reviewers’ comments followed by our replies. The comments are sequentially
numbered and associated with the corresponding reviewer. The replies may contain references to changes in the original
manuscript, which are identified by a label consisting of a running number and followed by the label of the original comment
in parentheses. The label links back to the original reviewer’s comment within the manuscript. For instance, the reference
C2 (1.3), which is typeset in the manuscript margin, refers to the second change stemming from the third comment of the first
reviewer. In addition, please note that the reference section is not displayed correctly in this change document, for length and
reference verification as well as correct table and figure numbering please refer to the “manuscript version”.

Comments of the 1st Reviewer:

The choice to standardize all radargrams to a height of 1024 pixels requires further justification, especially given the reduction
in resolution this causes, which could potentially affect the precision of the derived ice boundaries. The manuscript should
provide a more detailed rationale (possibly linked to computational efficiency) for this choice, considering the capabilities of
the U-Net-like to process varying input shapes.

Thank you for this comment. As the reviewer has correctly stated, the U-Net can technically handle any input resolution.
However, having different input resolutions can lead to significant drops in accuracy. It also complicates and slows down
processing as samples within a batch are usually assumed to be the same size. However, there are two common solutions to
this problem. The first is patching, where the image is cut into patches of equal resolution. Since our networks need to view the
full height to make a layer prediction, this method is not applicable to our case. The other option is resizing, where we resize
the input to a standardized resolution. We chose this measure for our experiments. Resizing all radargrams to the maximum
height would avoid inaccuracies due to downscaling but introduces its own issues: potential unnatural artifacts due to upscaling,
a substantial increase in model depth needed to maintain an effective receptive field, and significantly higher computational
costs. Considering all these reasons, we found a standardized height of 1024 pixels a good compromise. We have added a brief
explanation of our reasoning in change 28.

The decision to not use an exclusive flight for the AWI testing subset due to significant variability among the radargrams is
questionable. The inherent variability could, in fact, provide a rigorous real-world test scenario, which is crucial for assessing
the robustness and adaptability of the model to new and varied environments (which should be the eventual goal of any
benchmark dataset and the models developed based on them). A reevaluation of the testing subset choice is recommended to
potentially enhance the findings.

The reviewer raises an excellent point. In theory, we agree that having an exclusive test flight is preferable. However, all three
AWI flights are from different campaigns with slightly different processing and different survey areas, introducing a domain
shift. These changes, combined with the overall smaller size of the subset, make generalizations from one flight to another
challenging without additional advanced techniques to mitigate the domain shift. Since these techniques would have been out
of scope for this work and we still wanted to provide meaningful results for the AWI subset, we did not select an exclusive test
flight for the AWI subset. Please note that generalization between different flights can still be tested with the other subsets.

The omni model shows reduced performance in the FAU and AWI domains, which the authors attribute to domain shifts. Con-
sideration of alternative approaches such as weighting samples by domain frequency or uniformly sampling training examples
across domains could potentially mitigate this issue. An exploration of these methods would be valuable for enhancing model
generalization.

This is an interesting point, which we investigated further with additional experiments in our appendix (see change 13). From
the results, we can see a slight drop in performance for the CReSIS subset but substantial improvements for the AWI and FAU
subsets compared to the original omni model. The model even outperforms its dataset-specific counterpart on the AWI subset.
However, we still see a substantial performance gap in the FAU subset compared to the dataset-specific model. We reason that
the FAU domain is naturally further away from the AWI and CReSIS domains, as it consists of undifferentiated radargrams.
Thus, the uniform sampling strategy does help to mitigate the domain shift but does not fix it entirely when the processing of
the radargrams differs significantly.



454 The proposed U-Net uses two heads to separately predict the ice surface and bottom. Why is it better than a straightforward
approach with one head simultaneously doing both? Softmax can be applied later in the column-wise manner to extract the
boundaries as well, so it should not be a limitation.

» Thank you for your comment. The idea of having a separate head for every task is a common approach for multi-task models
in deep learning across various categories.

50 In our case, it allows every head to focus on a single layer instead of solving both simultaneously. As the reviewer correctly
stated, the task can also be solved with a single head that projects onto multiple output channels depending on the specified
prediction task. However, this also increases the size of the head proportionally to the output channels. In the case of the output
head consisting of a single convolutional layer, the two approaches would be mathematically equivalent.

1.5 The authors write in Section 5.1: "Depending on the chosen method, the metrics used to assess the quality of the predictions
55 differ," which is not really true, as zone predictions are easily convertible to boundaries and vice versa, so there is no problem
to providing the whole set of metrics.

» Thank you for your comment. It is true that we can easily calculate the zones from the boundary prediction. However, a metric
like the IoU does not give precise intel about the layer extraction task. Thus, we did not include it in our evaluation as we
mainly focus on layer extraction.

60 However, going from zone predictions to layer predictions is a lot more difficult. In zone segmentation tasks, the model
decides the zone class of each pixel separately. Hence, the resulting prediction does not need to have clearly identifiable layers.
We give a small example in the figure below. In those cases, layer extraction and defining a corresponding error become
ambiguous. Therefore, these tasks usually rely on segmentation metrics, as we cannot define layer metrics.

Air Layer

. Ice Layer

Bedrock Layer

1.6 The manuscript claims that confusion matrix-based metrics would perform poorly if predictions are, e.g., consistently off by a
65 pixel. However, this statement is misleading as these metrics are typically used for zone predictions, not boundary delineations.
A correction or further explanation is needed to resolve this confusion.
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Thank you, we clarified this paragraph in the revised version of the paper (compare change 31).

In Appendix A, it is stated that the authors used dropout layers inside the ResBlocks. Was it a regular dropout? If not, it should
be specified. If yes, I would suggest also trying something like spatial dropout, as many practitioners found it more helpful in
convolutional networks.

Thank you for the advice. We have utilized a regular Dropout Layer in our implementation. We have not experimented with
spatial Dropout before, but it will be an interesting avenue for further optimizations. We added spatial dropout to future work
and clarified the use of our dropout layer (compare addition 48 and change 11).

Figures 6, 7, and similar graphics are challenging to interpret. I would suggest just plotting four curves—two groundtruths
(surface and bottom) and two predictions on top (e.g. dashed).

Thank you for pointing this out. We adjusted the visualizations accordingly (compare Fig. 4, 5, 6, and 7).

Comments of the 2nd Reviewer:

The manuscript uses varying terminology, such as “the air-ice layer and ice-ground layer” and “ice bottom and ice surface
layer.” Maintaining consistency in terminology throughout the text would improve clarity and readability. ... Line 36: The
phrase “radargram of the glacier” sounds somewhat awkward. Additionally, the manuscript does not always adhere consis-
tently to standard glaciological terminology.

Thank you for this helpful suggestion. We unified our terminology (compare changes 3, 8, 4, 10, 19, and the update to the
caption of Fig. 3).

The manuscript claims to present the first benchmark dataset for ice boundary extraction, yet related datasets such as CReSIS
data have been widely used. The authors should explicitly contrast IceAnatomy with existing datasets and justify why this
dataset is uniquely valuable beyond just being a "benchmark.

Thank you for raising this very important point. As correctly highlighted, IceAnatomy is not the first dataset in this field.
However, it is the first benchmark dataset. Thus, it has to conform to higher standards, unlike previous datasets.

One such standard is reproducibility. While some works use the same dataset, they do not precisely define their training and
testing subsets. Our evaluation on the CReSIS subset demonstrates that the composition of these splits can significantly influ-
ence model performance (see Table 1). For example, if the test set consisted only of radargrams from the Antarctic Peninsula,
the model’s performance would appear substantially better. This emphasizes the necessity of standardized training and testing
splits, such as those provided in a benchmark dataset, to ensure a fair and meaningful comparison between multiple models.

Another important factor is generalization. IceAnatomy provides data spanning multiple campaigns, radar systems, institu-
tions, and diverse glaciological environments. Thus, researchers can evaluate their model in a multitude of scenarios to achieve
good generalization.

Lastly, institutions like CReSIS may provide a large public database for radargrams with an annotated ice bottom layer, but
their label quality is not guaranteed to have human-level accuracy. CReSIS themselves state that they utilize snake trackers,
leading edge detectors, interpolation, and peak detectors based on the judgment of the operator picking the data, making the
quality difficult to judge (compare https://data.cresis.ku.edu/data/rds/rds_readme.pdf). Although most labels are still correct,
neural networks generally learn to imitate the annotation process, so models trained solely on automated labels may learn peak
detection rather than more generalizable features. Thus, we need to have humanly annotated data. This might raise concerns
about whether the CReSIS subset is an appropriate choice for a benchmark dataset. However, CReSIS has been the primary
source of data in this field, and multiple works report human annotations for this specific dataset. Hence, we deem it appropriate
to include it, even though some labels might be noisy.

We adjusted the manuscript to highlight the benefits of our new benchmark dataset (see addition 3).

The radargram visualizations are useful but could benefit from additional annotations. Additionally, the color scheme makes it
difficult to distinguish certain features, and the way different annotations are represented could be improved for better clarity

Thank you for pointing this out. We adjusted the visualizations to make them clearer and easier to grasp (compare the updated
Fig. 4,5, 6, and 7).
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The manuscript is highly technical and may be challenging for a glaciological audience. Since The Cryosphere primarily
targets glaciologists, the extensive use of computer science jargon and technical terminology either requires more thorough
explanations or suggests that a different journal may be a better fit. Ensuring the content is more accessible to the journal’s
primary readership should be a key consideration.

Lines 240-245, 264-271, and other similar sections contain highly technical explanations. These should either be clarified
and simplified for better accessibility to the journal’s audience o, if the technical depth is essential, the choice of journal may
need to be reconsidered.

Thank you for raising this point. The editor initially asked us to add more explanations for the technical terms. As a result, some
parts became a bit more technical than originally intended, as the explanations already require a certain level of expertise. We
try to address this issue by simplifying our explanations and moving the more in-depth explanations in the Appendix. Please,
see deletions 3 and 4, change 30 and the updated Appendix C and B.

The scientific motivation of the study could be further elaborated. This is one of the aspects that might suggest the paper, in its
current form, would be better suited for a more technical journal.

Thank you for pointing that out. We have revised the manuscript to express our motivation and vision for the future more
clearly (see change 1).

The rationale for the baseline model choices (e.g., why U-Net with specific modifications) should be better justified. Why not
test other architectures such as Transformers or hybrid CNN-RNN models?

The U-Net is a widely adopted approach for tasks such as ice boundary extraction and comparable tasks. While more recent
architectures like the transformer or recurrent neural networks may offer better performance, they also come with increased
computational costs, larger models, and other practical limitations. This might hinder the deployment in the field and other
time-critical scenarios. For that reason, we chose the U-Net as our baseline model. We added our reasoning in change 29.

The manuscript states that the dataset consists of manually labeled ice boundaries but does not provide sufficient details
on the annotation process. What steps were taken to ensure label accuracy? Were multiple annotators involved? How was
inter-annotator variability handled?

Thank you for your comment. We have clarified the picking process for the FAU subset in addition 5, for the AWI subset in
addition 6, and added further details and references for the CReSIS picking procedure in change 25.

The inclusion of noisy annotations from CReSIS data is acknowledged, but how does this affect training and evaluation? Have
any data cleaning techniques been applied?

Thank you for this comment. Several works have already pointed out that they consider the labels from the CReSIS subset
noisy. Although CReSIS provided quality ratings for each label, we found several cases where the reasoning behind them was
unclear to us. Below, we provide two example radargrams from the Abbott Ice Shelf. In the first radargram, several parts of
the ice bottom are missing, although the original annotator has high confidence (green) in his labeled ice bottom. In the second
example, the quality rating changes throughout the section between high confidence (green) and medium confidence (yellow)
with no clear indication in the radargram. We included the CReSIS quality labels to stay consistent with the original. However,
we do not think they necessarily reflect the mentioned noise. Thus, we could not evaluate how this noise affects the training or
evaluation process.

The dataset includes different radar systems and processing methods, which may introduce domain shifts. Are these shifts
quantified? How do they impact model performance?

Thank you for this question. As the reviewer has highlighted, the domain shift is a serious problem introduced by different
radar systems, study sites, board electronics, and processing steps. As a result, it is nearly impossible to quantify the domain



shift in a precise mathematical manner. However, we have summarized the most critical processing steps in Section 3.2. From
these steps, we can derive some qualitative characteristics, e.g., the AWI and CReSIS provide differentiated radargrams.
How does this impact the results? From our experiments with the Omni model, we can see that the data from different
155 domains do not necessarily work well together. After conducting follow-up experiments in Appendix 13, we hypothesize that
the issue might be connected to the differentiation of the radargram. However, we must also point out that the domain shift is
very difficult to study as we cannot isolate this variable. We therefore deem it out of scope for this work and leave it to future
studies to investigate this phenomenon in more detail.

2.10 The AP-5% metric relaxes the error bounds, but why were 1% and 5% chosen? Would alternative thresholds (e.g., 2% or 10%)
160 provide additional insights?

» Thank you for this comment. While we agree that offering additional intervals could potentially help us analyze the error better,
adding too many would also make the evaluation and interpretation of the error very confusing. Hence, we chose the AP-1%
and AP-5% as they represent a near-perfect and a good pick.

2.11 The "ice boundary collapse" issue observed in predictions is significant. Could this be mitigated with additional constraints in
165 the loss function or post-processing techniques?

» Thank you for your interest. We believe that modifying the loss function further is unlikely to significantly mitigate the bound-
ary collapse, as our proposed distance-based loss already puts more emphasis on large outliers like the boundary collapse.
However, additional post-processing steps could be an interesting approach for future work. The question here would be how
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to prevent the algorithm from overcorrecting traces when the boundary collapse takes up the majority of the transit. As this
would require more experiments and testing, it is outside the scope of this work. However, we included post-processing as a
potential method for future work to explore (compare addition 10).

The paper does not discuss the impact of hyperparameters in training. How sensitive is the model to learning rate, regulariza-
tion, and architecture modifications?

Thank you for this comment. We believe that the focus of this paper lies in the benchmark dataset rather than the benchmark
model. Accordingly, our ablation study focuses on factors connected to the data such as the study site, the domain shift, and
the thermal regime. For that reason, we chose the hyperparameters like the learning rate close to standard values for this field.
However, we added a small ablation study in addition 14 to investigate two of the hyperparameters more closely. From the
results, we can see that different hyperparameter setups favor different subsets of IceAnatomy. However, there seems to be no
universal optimal setup.

"o

Some terms, such as "depth resolution,” "relative error," and "wave velocity assumptions," need clearer definitions in the main
text rather than just appearing in equations.

... Line 315: The phrase ’pass through a pixel’ is unclear. At times, the radargram are treated as an image, and at other times
as a matrix. However; it is important to note that a wave does not pass through a pixel. .... Line 324: The argument presented
is not compelling.

Thank you for pointing out the need for further clarification. We clarified the definitions of wave velocity and depth resolution
in changes 33 and 32. We also rephrased our argumentation to make it clearer and more compelling. This also allowed us to
further simplify the text and avoid the term relative error (compare change 35).

Some parts of the manuscript have an informal tone.

Thank you for pointing this out. We adjusted several parts of the text to address this issue (see changes 1, 2, 5, 6,7, 9, 4, 14,
18, 21, 20, 36, 37, 41, 42, and 46).

The manuscript overstates the novelty and impact of its contributions. It describes the framework as the "first step" toward
automated ice thickness mapping, despite acknowledging decades of prior research. Similarly, the claim that this work has
"invited other scientists to start working" in this area overlooks longstanding studies. These statements should be revised to
more accurately reflect the field’s history. ...

Line 448: The statement "We believe that our framework is the first step towards a potential fully automated generation of
ice thickness maps based on RES data" could be reworded for accuracy. As noted in the literature review, research in this area
has been ongoing for nearly two decades. While this work is a valuable contribution, positioning it as the first step towards
automation may not fully acknowledge prior advancements in the field.

Line 462: The statement suggesting that this work has "invited other scientists to start working in this research area" may
overstate its impact. Given the examples of previous studies provided by the authors, it would be more accurate to acknowledge
the long-standing research efforts in this field while highlighting how this study builds upon them.

Thank you for pointing this out. Our intention was not to discredit previous research in this area. We adjusted the wording of
the sentences (compare changes 49 and 50)

Line 98: Jebeli et al. 2023 have performed a very similar aim to this work in their study.

Line 88: Mogadam et al. 2024 (DOI: 10.22541/essoar.172987463.39597493/v1) also have done the tracking of internal
layers.

Line 98 — 105 : The manuscript would benefit from citing additional relevant work to provide a more complete context
for readers. For instance, Mogadam and Eisen (https://doi.org/10.5194/egusphere-2024-1674) offers a broad review of prior
research on ice boundary extraction, making it a fitting reference at the end of the literature review.

Line 102: Where the use of CNN for autoamtic tracing of internal layers is mentioned, Jebeli et al. 2023
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(DOI: 10.13140/RG.2.2.23219.20007), Mogadam et al. 2024 (DOI: 10.22541/essoar.172987463.39597493/v1) directly ad-
dresses the application of deep learning to this task and would be valuable citations in the section discussing recent advance-
ments in this area.

Including these references, along with other relevant studies would help situate the manuscript within the broader body of
existing research and provide readers with a more comprehensive view of the field.

Thank you for pointing this out. We included the missing references to previous work in Section 2.

Line 64: The statement, “however, a large portion of ...,” should be supported with evidence. Importantly, the critique of au-
tomatically labeled bedrock seems contradictory, as the study itself aims to achieve this. Clarifying this point would strengthen
the argument.

Thank you for highlighting this, as this is an important point. We do not intend to criticize datasets for utilizing automatic
approaches to label their ice boundaries. However, we do criticize the use of such datasets in the context of training and
evaluating deep learning approaches. Deep learning models essentially learn to imitate the labeling process. If all the labels
are based on a peak detection algorithm, then our model learns peak detection. This defeats the purpose of employing deep
learning models, which is to achieve more accurate predictions. Thus, we should avoid datasets where the labeling process was
significantly automized or lacked the necessary transparency. We rephrased the text and added citations as an example. Please
view changes 2 and 11.

Line 124: not clear what the authors want to say.

Thank you for this comment. We have rephrased the text to make it clearer in change 13.

Line 134 — 137: More references are needed to support the claims

Thank you for pointing this out. We have added further references in this section to support our claim.

Line 141: “Hence, ... “ it is not clear or accurate argument for the clearer signal of the thinner ice. The aim of the sentence
is evident but the sentence should be reformulated.

Thank you for bringing this to our attention. We have slightly adjusted the text in change 16.

Line 148: the sentence seems to be incomplete.

Thank you for bringing this to our attention. We have adjusted the manuscript accordingly in change 17.

Line 181: this process needs to be elaborated.

Thank you for this comment. We have expanded on our explanation in change 22.

Line 226: “the” should be removed.
Line 251: hyphen needed between differently and sized.

Thank you for pointing this out. We have removed the extra "the’ and added the missing hyphen.

Line 381: The sentence needs to be rewritten for clarity.

Thank you for bringing this to our attention. We rephrased the specified sentence in change 38.

Line 311: the authors mention that resizing changes the MAE so they introduce MME. It is not clear why they keep the MAE in
the paper, if MME is a more suitable metric.

Thank you for this comment. We added an explanation in the text (compare addition 8).

Lines 392-399: These sentences need to be rewritten for clarity and flow.

Thank you for bringing this to our attention. We have adjusted the text to improve clarity and flow (compare change 39).
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Line 401: Please provide a more detailed explanation of the ablation study.

Thank you for this comment. We expanded on our explanation of the ablation study in change 40.

Line 401: Please provide a more detailed explanation of the ablation study.

Line 414: the explanation of temperate ice this can appear much earlier in the manuscript

Thank you for pointing this out. We added an earlier explanation in change 12.

line 418: the sentence should be rewritten.

Thank you for pointing this out. We changed the sentence in change 43.

Line 421: It is obvious that the differences decrease when AP-5% is considered, and there is nothing surprising about this
result. Please rewrite this statement or clarify the reasoning behind the argument.

Thank you for mentioning this. You are correct that a decrease in error difference has to be expected, but our point was to
highlight the strong decrease. We rephrased our point to make it clearer. Please view change 44.

Line 430: the sentence does not read well.

Thank you for this comment. We rephrased the sentence (compare change 45).

Line 437: Please provide further explanation. What exactly do you mean, and why is this the case?

Thank you for this comment. We adjusted the sentence to make it clearer (compare change 47). Naturally, the ice surface and
ice bottom are generally further apart in thicker ice.

Line 441: The authors mention that thicker ice is more challenging, but shouldn’t it actually be easier, as less collapse would
occur in thicker ice compared to thinner ice?

While we agree that the presence of shallow ice in the dataset first introduces the ice boundary collapse, once the model picks
up on this characteristic, it also affects the predictions of thicker ice. The problem of the ice boundary collapse ultimately stems
from the nature of differentiated radargrams, where we only visualize the change in amplitude. Here, peaks indicate a change
in amplitude and are usually connected to the ice surface or ice bottom. When there is no or only very shallow ice, the peaks
for the ice surface and bottom start overlapping, and it is often unclear to the model whether the two peaks overlap or whether
it cannot find the peak for the ice bottom. Thus, it develops a bias to predict the ice bottom as the ice surface whenever it cannot
find the second peak corresponding to the ice bottom.

Why does this affect thicker ice more than shallow ice? In thicker ice, the returned signal of the radar system is generally
weaker than in shallow ice due to attenuation and more potential sources of interference. Thus, the depicted peak for the ice
bottom becomes less clear. As a result, the model now faces considerable difficulty in determining whether the weak peak
corresponds to the true ice bottom or if the ice surface and bottom overlap. We also added this explanation to the manuscript
in addition 9.
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Abstract. The measurement of ice thickness is of great importance for the accurate estimation of glacier volume and the delin-
eation of their bedrock topography. In particular, this is a crucial factor in forecasting the future evolution of glaciers in the con-
280 text of a changing climate. In order to derive the ice thickness, the travel time of electromagnetic waves in radargrams acquired
by radio-echo sounding (RES) systems is analyzed. This can only be achieved by identifying the ice surface and underlying ice
bottom in corresponding radargrams. Manually identifying these two reflection horizons in RES data is a laborious and time-
consuming process. Consequently, scientists are attempting to automate this task through the use of techniques such as deep
learning. Such automation can significantly reduce the time between a field campaign and the calculation of the glacier’s ice
285 thickness distribution. In this paper, we present the first benchmark dataset for delineating the ice surface and bottom boundaries

in RES data, to facilitate standardized comparisons of deep learning models in the future. The “IceAnatomy” [ *'¥

dataset comprises radargrams and the corresponding manual picks, amounting to a total of over 45,000 km of observations.
The RES data originates from three sources: FAU, CReSIS, and AWI. The dataset comprises different RES systems as well
as different pre-processing methods. In addition, the data was acquired over a large range of geographical and glaciological
290 settings, featuring different thermal regimes present in Antarctica and the Southern Patagonian Icefield. This diversity ensures
that the models’ behaviors can be analyzed in different scenarios. We define a standardized train-test split for each source in
the dataset. This allows us to introduce not only a baseline model trained on the entire training set (the “omni” model), but
also three source-specific baseline models. The source-specific models are trained exclusively on the subset of the training data
acquired by the specified source. The baseline models provide an initial benchmark against which subsequent models can be
295 compared. The source-specific models demonstrate more accurate results than the omni model. For the FAU, CReSIS, and
AWI test sets, the source-specific models achieve Mean Meter Errors of 2.1 m, 23.1 m, and 4.9 m for the ice surface and 9.1 m,
78.2m, and 29.3 m for the ice bottom. In relation to the mean measured ice thickness of the test set, these errors equate to
1.2%, 3.1%, and 0.3 % for the ice surface and 4.9 %, 10.4 %, and 1.5 % for the ice bottom. The dataset and implementation are
available at https://zenodo.org/records/14036897 (Dreier et al., 2024) and https://doi.org/10.5281/zenodo.14038570 (Dreier,
300 2024).
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1 Introduction

Glaciers and ice shelves are key indicators of global climate (Haeberli et al., 2007; IPCC, 2013). Knowing their volume and
ice thickness distribution is crucial for assessing future cryospheric contributions to sea level rise. Moreover, data on the ice
volume of glaciers and ice sheets is necessary for understanding their response to climate change. Ice thickness measurements

enable the subsequent prediction of the rate and timing of glacier retreat or disappearance using different types of models.

This enables the assessment of a glacier’s contribution to regional hydrological cycles

and its subsequent influence on local to regional scales with associated socioeconomic impacts. (Werder et al., 2020; Ayala
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et al., 2020; Farinotti et al., 2017). Several techniques to determine ice thickness exist, including seismic, gravitational, and
magnetic methods, as well as radio-echo sounding (RES) (Bogorodsky et al., 2012; Kohler et al., 1997). While satellite
gravimetry allows for a resolution in the range of kilometers, its spatial resolution does not allow for the interpretation of
detailed subglacial features (Willen et al., 2024). Seismic measurements offer a high resolution, but widespread use in the
Antarctic region is limited by high exploration costs or logistical unfeasibility (An et al., 2023). For this reason, RES is
preferred over other methods when an accurate assessment of a subglacial topography is of interest.

After pre-processing the RES data, we obtain

an image commonly referred to as a radargram. It depicts the cross-section of the glacier along the flight path. Experts can then

|—C} @.1

interpret the RES data by delineating the reflections of surfaces or internal glacial structures. Delineating the ice boundary,
defined by the ice surface (air to ice transition) and the ice bottom (ice to ground/water

transition), is necessary to obtain the glacier’s thickness at each point in the radargram. However, it is a time-intensive

|—C4 @1

task, especially with large datasets (Sime et al., 2011). Several automated and semi-automated approaches to delineate the
layers have been developed (Fahnestock et al., 2001; Gifford et al., 2010; Freeman et al., 2010; Rahnemoonfar et al., 2017a, b;
Kamangir et al., 2018; Rahnemoonfar et al., 2019; Cai et al., 2020, 2022; Liu-Schiaffini et al., 2022b; Moqadam and FEisen,
2024; Mogadam et al., 2024; Jebeli et al., 2023b). However, these approaches are not comparable as they have been evaluated
on different datasets or a different train-test split of the same dataset. In this paper, we present a publicly available,

standardized benchmark dataset for ice thickness extraction. It is the first of its kind to be directly designed for deep

|—(‘5 (2.14)
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learning approaches, with a pre-defined train-test split, human-annotated labels, and different recording systems. It comprises
radargrams from Antarctica and Patagonia with polythermal, cold-based, or temperate thermal regimes. The dataset is intended
for supervised training and evaluation of deep learning models. Therefore, the dataset includes depth labels for both the ice
bottom and ice surface layer. Together with the dataset, we present a baseline model that delineates the ice boundary in a given
radargram. The model is based on the U-Net architecture (Ronneberger et al., 2015) and serves as a reference and a starting
point for future improvements. We envision further development of this method in two main directions. First, once trained,
our algorithm can be executed on virtually any modern laptop in the field. Combined with a pre-processing chain tailored to
our approach, this allows for near real-time analysis of acquired data on-site. Since flight hours are costly and often limited

by weather conditions, optimizing their use is crucial. If data can be processed in the field—e.g., between two flights—flight

C7 (2.14)
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plans could be dynamically adjusted to focus on areas of high interest within the same campaign. Second, and perhaps more
importantly, the presented method can be further developed to handle more specialized tasks, such as delineating intraglacial
water channel systems or identifying water tables within existing datasets. This would represent a step toward a comprehensive,
quantitative, and standardized approach for interpreting radargrams, ultimately leading to fully automated products that could
significantly benefit the cryospheric research community. In particular, the automated mapping of internal reflection layers
remains a critical knowledge gap — one that deep learning is well — positioned to address (Moqadam and Eisen, 2024). ALES

In summary, our contributions are as follows:
1. A novel benchmark dataset IceAnatomy for deep learning-based extraction of ice boundary from RES data is created.

2. A baseline deep learning model for the automatic delineation of the ice bottom and the ice

surface is proposed. [Cs @

3. A thorough evaluation of individual models and an omni-model is conducted on the dataset.

The work is structured as follows: Section 2 provides an overview of datasets and algorithms previously used for automatic
ice boundary extraction. Subsequently, Sect. 3 gives insight into the recording and processing of the dataset as well as relevant
geographical and glaciological factors of the study sites. The baseline models are introduced in Sect. 4. An extensive evalu-
ation of the baseline models and the benchmark dataset is presented in Sect. 5. Lastly, we summarize our research and draw

conclusions in Sect. 6.

2 Related Works

Over the past decades, RES has been widely used in glaciology. A multitude of publications cover the extraction of ice boundary

layers from RES data. In this section, we highlight related RES datasets and layer extraction approaches.
2.1 Datasets

Numerous RES datasets on glaciers and ice sheets are publicly

available. However, a large portion of the associated ice bottom labels are inaccurate, generated automatically, [7< '

unavailable, lack the necessary transparency in their creation, or do not have associated radargrams_(Young LC“’ @n
et al., 2021; Blankenship et al., 2018; CReSIS; Dong et al., 2022; Corr, 2020; Corr et al., 2020). This makes them unsuitable “—ciu e

for training or evaluating deep learning approaches, as they require human-annotated data. Hence, we focus our comparison —a: ¢

on datasets that have been used to extract the ice boundary in previously published work and for which both radargrams and
human-annotated labels are publicly available. These constraints significantly limit the number of related datasets.

The one RES system that has been used extensively to collect such data is the Multichannel Coherent Radar Depth Sounder
versions 1-5 (MCoRDS) (Allen et al., 2012a), which was used, for example, in NASA’s Operation IceBridge (OIB) program
on a McDonnell Douglas DC-8-72 jetliner (Shi et al., 2010a). The data acquired over Antarctica in 2009 are the most widely



365 used (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018).
However, also data from different years (Kamangir et al., 2018; Mitchell et al., 2013; Cai et al., 2020; Garcia et al., 2021a, b;
Cai et al., 2022, 2019; Ghosh and Bovolo, 2022; Garcia et al., 2023; Donini et al., 2022; Ilisei and Bruzzone, 2014, 2015)
and other locations like Greenland (Donini et al., 2022) and the Canadian Arctic Archipelago (Xu et al., 2017, 2018) were
analyzed.

370 Only very few publications included data from RES systems other than MCoRDS. Gifford et al. (2010) extracted the ice
boundary from data acquired by a predecessor RES system (Lohoefener, 2006) during 2006 and 2007 in Greenland. Dong
et al. (2022) featured data from the Chinese Academy of Sciences’ Deep Ice Radar acquired during the 29th Chinese Antarctic
Scientific Expedition. Lastly, Liu-Schiaffini et al. (2022a) used algorithm-assisted human-labeled data acquired in the Cana-
dian Arctic and Antarctica by the University of Texas Institute for Geophysics’ high-capability radar sounder (HiCARS). A

375 major downside of these datasets is that they do not provide standardized training and evaluation splits, making inter-model
comparison challenging. Furthermore, datasets usually only focus on a single area, e. g., Greenland or Antarctica, which makes
generalization to other areas or glaciological settings difficult to verify. IceAnatomy addresses this issue by including data from
multiple study sites, radar systems, and glaciological settings. It also provides standardized splits for training and evaluation to

allow for an accurate and fair comparison between models. In conclusion, to the best of our knowledge, there is no comparable [™** *?

380 benchmark dataset for ice boundary extraction from radio-echo-sounding data.
2.2 Algorithms

RES has been employed to detect crevasses (Liu et al., 2020; Walker and Ray, 2019; Williams et al., 2012, 2014), the ice
boundary (Crandall et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018;
Mitchell et al., 2013; Xu et al., 2017, 2018; Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a),
385 to segment subsurface structures (Cai et al., 2020, 2019; Garcia et al., 2021a, b; Ghosh and Bovolo, 2022; Garcfia et al., 2023;
Donini et al., 2022; Ilisei and Bruzzone, 2014, 2015), and to track internal ice and snow layers (Crandall et al., 2012; Karlsson
et al., 2013; Ibikunle et al., 2020; Rahnemoonfar et al., 2021; Varshney et al., 2020, 2021; Yari et al., 2019, 2020; Dong et al.,
2022; Mogadam and Eisen, 2024).
To obtain the ice boundary, one can either directly delineate the ice surface and bottom or first segment different regions such
390 as ice, bedrock, and air and then extract the two layers during post-processing. Most existing studies (Crandall et al., 2012; [* *'¥
Lee et al., 2014; Rahnemoonfar et al., 2017a, b; Berger et al., 2018; Kamangir et al., 2018; Mitchell et al., 2013; Xu et al.,
2017, 2018; Cai et al., 2022; Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a) té/dat¥ prefer direct extraction. [ *'
Fewer studies (Cai et al., 2020, 2019; Garcia et al., 2021a, b; Ghosh and Bovolo, 2022; Garcia et al., 2023; Donini et al., 2022;

Ilisei and Bruzzone, 2014, 2015) use the segmentation approach. The segmentation approach assigns a semantic class to each

395 pixel in the radargram, from which the ice boundaries can be derived directly or after post-processing.
In terms of methodology, early studies mainly used classical image processing and machine learning techniques such as
Hidden Markov Models (Crandall et al., 2012; Berger et al., 2018), Markov-Chain Monte Carlo (Lee et al., 2014), contour
detection (Rahnemoonfar et al., 2017a), the level set approach (Rahnemoonfar et al., 2017b; Mitchell et al., 2013), Markov
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Random Fields (Xu et al., 2017), edge-based and active contour methods (Gifford et al., 2010), Kullback-Leibler maps (Ilisei
and Bruzzone, 2014), and Support Vector Machines (Ilisei and Bruzzone, 2015). After 2017, studies turned to Convolutional
Neural Networks (CNNs) (Kamangir et al., 2018; Cai et al., 2020, 2019; Garcfia et al., 2021a; Cai et al., 2022; Donini et al.,
2022; Dong et al., 2022; Liu-Schiaffini et al., 2022a; Garcia et al., 2021b, 2023; Jebeli et al., 2023a, b; Matsuoka et al., 2021;
Mogadam et al., 2024), combinations of CNNs and Recurrent Neural Networks (RNNs) (Xu et al., 2018), and combinations
of CNNs and Transformers (Ghosh and Bovolo, 2022).

In comparison, we rely on the U-Net architecture from (Ronneberger et al., 2015) to evaluate our newly created dataset.
Furthermore, we integrate Atrous Spatial Pyramid Pooling from (Chen et al., 2018) and the ResBlock design from (Esser et al.,

2020) to improve the performance.

3 Dataset

In this section, we introduce the benchmark dataset “IceAnatomy” which covers several different geolocations and was ac-
quired by multiple radar systems. We divide the dataset into three subsets based on the sources of the data: the AWI (Alfred
Wegener Institute, Helmholtz Centre for Polar and Marine Research), CReSIS (The Center for Remote Sensing and Integrated
Systems), and FAU (Friedrich-Alexander-Universitit Erlangen-Niirnberg, Institute of Geography) subsets. A summary of the

most important information about the dataset is given in Tab. 1.

Table 1. A summary of details about the IceAnatomy benchmark dataset (Lippl et al., 2019; Shi et al., 2010b; Riickamp and Blindow, 2012;
CReSIS, 2024a; Allen et al., 2012b; Steinhage, 2001, 2015).

Study Sites Depth-Reso. Width-Reso. Length Year Main Thermal Labeled
Regime Bottom %
James Ross Island ~ 2.5ns pixel ™! 2 m pixel ~* 275km  2017/18 Polythermal 82.5%
FAU Perito Moreno 2.5ns pixel ! 2 m pixel ~* 145km 2022  Temperate 83.1%
Viedma 2.5ns pixel ! 2 m pixel ! 140km 2022 Temperate 46.2%
CReSIS  Antarctic Peninsula 105 ns pixel ™ 12 m pixel ™ 20400km 2009 Polythermal 63.9%
West Antarctica 105ns pixel ! 12 —30mpixel '  24400km 2009 Polythermal 78.9%
AWI Antarctic Peninsula 12ns pixel ~* 62 m pixel ~* 1490km 2013 Polythermal 31.7%
East Antarctica 13.33nspixel ' 66 —79mpixel”! 1015km  1997/99 Cold-based 73.7%

3.1 Study Sites
3.1.1 Southern Patagonian Icefield

The Southern Patagonian Icefield (SPI) is the largest temperate ice body in the Southern Hemisphere. It is characterized by one

of the highest mass loss rates in the world (Zemp et al., 2019; Marzeion et al., 2018; Hugonnet et al., 2021) and by its large outlet



glaciers that drain into lakes or the ocean (Aniya, 1999). Two of the largest eastward-flowing outlet glaciers in the region are
the Perito Moreno and Viedma glaciers. The only way to obtain information over large areas about their bedrock topography is
420 by helicopter-borne RES measurements. This is particularly applicable to the lower parts of the glaciers, which are surrounded
by steep mountain flanks and have heavily crevassed surfaces. T he temperate nature ot the slaciers, resulting in-high-water
~ 1 1n ~ 1 1 < g 3 ¥ . —an< 1 adarors + ohe 1 .Asthe
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glaciers are temperate, i. e., most of the ice is close to or at the pressure melting point, they contain a relatively high proportion

of water. This characteristic, combined with the steep and deep glacier troughs, often makes analyzing radargrams challenging. [7<* ¢*

425 s:Hence, they pose a significant challenge

|—C13 (2.18)

1 735°W

—120°W

—— FAU Dataset flight lines
[ Southern Patgonian Icefield

511°S 50.4°S 49.1°S 49.0°S 48.3°S

Figure 1. Overview of the Southern Patagonian Inland Icefield. Orange boxes indicate surveyed areas of Perito Moreno Glacier and Viedma
Glacier. Black lines indicate flight paths over the Perito Moreno Glacier. The background is a hillshaded SRTM over ©Google Earth optical
imagery (Consortium, 2017). Maps are rotated by 90 degrees.

3.1.2 Antarctica

As depicted in Fig. 2, the Ice-Anatomy dataset offers three major study sites in Antarctica: the Antarctic Peninsula (including
James Ross Island (JRI)), West Antarctica, and East Antarctica.

430 The Antarctic Peninsula is the most represented region in the benchmark dataset, as it is present in all three RES subsets. It
exhibits one of the milder climates in Antarctica, with an annual average temperature of —3.2°C' (Morris and Vaughan, 1994).

This is also reflected in the thermal regimes present in the region, as it contains temperate, cold-based, and polythermal ice. The
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Figure 2. Flight paths of the AWI and CReSIS campaigns in Antarctica. The background is assembled with help from the Quantarctica QGIS
project (Matsuoka et al., 2021).

temperate portions of the Antarctic Peninsula are frequently near the margins and at lower elevations, while the cold-based ice
regions are generally found at higher elevations. The transition zones between higher and lower elevations commonly contain
435 polythermal ice (Van Liefferinge and Pattyn, 2013; Macelloni et al., 2019). However, elevation alone is often not sufficient to

determine the thermal regime.

alA comparison with the ice velocity maps

of Rignot et al. (2011) reveals that fast-moving ice is present even in higher elevation areas, which is atypical for cold-based
440 areas (Park et al., 2024; Dawson et al., 2022). This suggests that there is a significant amount of polythermal ice at higher

elevations and that the main thermal regime is polythermal. Another noteworthysignificant characteristic of the Antarctica [~ '

|—C15 (2.14)

Peninsula is its relatively shallow ice sheet compared to the rest of Antarctica. On average, the ice sheet is estimated to be
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610 m thick inland and 300 m in the ice shelves (Drewry et al., 1982). This results in a generally clearer signal because the
signal has to travel through less ice

and is less likely to be distorted by impurities in the glacier.

|—Clﬁ (2.20)

West Antarctica is significantly colder than the Antarctic Peninsula, with an annual average temperature of approximately
—28.1°C and a primarily polythermal thermal regime (Morris and Vaughan, 1994). Polythermal regions only commonly
occur at the margins and the coastline, while cold-based zones are mainly present at higher elevations (Macelloni et al., 2019;
Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). West Antarctica also contains relatively thick ice with inland ice sheets
estimated to be 1780 m thick and ice shelves around 375 m (Drewry et al., 1982).

The last subregion in Antarctica is East Antarctica. It exhibits the coldest climate of the three areas, with an annual average
temperature of around —59.8°C' and a primarily cold-based thermal regime (Morris and Vaughan, 1994).

Temperate areas are commonly found near

the margins, while polythermal zones act as a transitional zone between the cold-based and temperate areas (Macelloni et al.,

|—('I7 (2.21)

2019; Van Liefferinge and Pattyn, 2013; Rignot et al., 2011). East Antarctica is also the region with the generally thickest ice.

On average, its ice sheets are approximately 2630 m thick inland and 400 m in its ice shelves (Drewry et al., 1982).
3.2 Dataset Generation
3.2.1 FAU Data

The RES system of FAU is a broadband 25 MHz bi-static monopulse sounder designed as a sling load for helicopter use. It
is a functional replica of the BGR-P30 system (Blindow et al., 2012). The antenna weighs roughly 280kg and can be

|—('Ix (2.14)

attached to any helicopter type that allows for the attachment of a sling load and has the required take-off capacity. The system
is typically operated 20 m above ground at a nominal airspeed of 60 kmh~1.

The radar time series are collected at a 2.5 ns sampling rate using 256-fold stacking to improve sensitivity and signal-to-noise
ratio. The traces are collected at a rate of 10 Hz, corresponding to approximately a 2-meter spatial sampling rate. The data are
georeferenced by two Leica GS16 multifrequency Global Navigation Satellite System (GNSS) systems. The rover antenna is
mounted on the radar antenna in a central position, while the base station is installed in proximity to the landing and starting
area. After differential processing of the GNSS data, the positions are matched to the radar traces before further processing
is applied. Then, the RES data is processed in REFLEX v8.5 software, developed by Sandmeier Geophysical Research. The
processing flow comprises the following steps and is applied to subsections of each flight: equidistant trace interpolation, shift
for time zero, subtracting special average, bandpass filter, amplitude regulation by gain function (cold ice) or energy decay
(temperate ice), 2D migration, and static correction. To apply the 2D migration, it is necessary to derive a velocity model
comprising an air and an ice layer. For the air layer, the wave travels at the speed of light, while for the ice layer, we assumed
a speed of 0.168 mns—! (Johari and Charette, 1975). Especially in temperate ice, the migration helps to focus the scattered

energy to enhance the ice bottom reflections.

|—Cl‘) Q2.1
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The RES data of JRI was acquired during two different airborne ground penetrating radar campaigns in 2017 and 2018 (Lippl
et al., 2019). Since Gourdon Glacier consists mainly of bare ice, no firn correction was applied for the outer parts of the profile.
For the data on the plateau, a standard correction for firn and snow (+10 m, AWI/BAS Bedmap 1 mission summary) as used in
the British-Argentinian survey was assumed (Lythe and Vaughan, 2001). The RES data of Perito Moreno Glacier and Viedma
Glacier were acquired in March and April 2022. For these study sites in the FAU subset, the

the ice is thicker than the radar’s maximum penetration depth

of estimated 700 m (Blindow et al., 2011). The original depth of the radargrams is over 6000 pixels, which equates to over [~

1300 m on average - the total depth in meters is not constant due to fluctuations in the flight height of the helicopter. We cut the

radargrams to 4096 pixels, which corresponds to an average of about 800 m.

This saves computing power while keeping all the essential information. To restore the full flight [~

traces in the FAU dataset from their subsampled parts, we reassembled the radargrams according to their trace numbers. Any
conflicting depths for the ice surface and bottom in overlapping parts were smoothened with Gaussian importance weighting.
Furthermore, in rare

cases, the initially labeled ice surface and bottom had small gaps. To avoid such inconsistencies, we filled gaps of eleven pixels

or less in the ice surface and bottom via bicubic interpolation, using the two nearest manually labeled points as a reference.

The initial layer labels were annotated by a single interpreter to ensure consistency throughout the dataset. Surface reflections
were generally straightforward to identify; however, in heavily crevassed areas, we increased the resolution to delineate the air-
ice interface as accurately as possible across these features. Bedrock picks were conducted using the same approach. In regions
with ambiguous reflections, ReflexW software enabled zooming into specific subsets of the radargrams, thereby enhancing
the clarity of features of interest. Additionally, several intersecting profile lines provided cross-points for internal validation.
These intersections were annotated independently by the same interpreter and subsequently compared. All cross-profile values
fell within the expected margin of error, even in areas with steep slopes or greater depths (i.e., deviations < 10 %). At Glacier
Perito Moreno, two control points from previous studies were available for comparison (Sugiyama et al., 2011; Stuefer et al.,
2007). The first, along the ‘Buscaini’ profile, corresponds to a seismic survey conducted in 1996, which reported a maximum
ice thickness of 720 m. The second, located nearer to the glacier terminus, corresponds to a borehole drilled in 2010, revealing

an ice thickness of 515 &+ 5 m. Both control points were in close agreement with our ice thickness estimates.

3.2.2 CReSIS Data

The CReSIS data was recorded during the 2009 campaign of Operation Ice Bridge in Antarctica, which comprised 21 missions.
Three were sea-ice surveys and thus are not included in the CReSIS dataset. The remaining 18 missions can be split into
two groups: six missions focusing on the Antarctic Peninsula (PEN1, PEN2, PEN3, PEN4, PENS, and LVISPEN) and 12
missions exploring West Antarctica (PIG1, PIG2, PIG3, PIG4, LVISPIG, LVIS86, GETZ1, ABBOTTI1, TSK1, TSK2, TSK3,
and TSK4) (Allen et al., 2012b). All 18 missions employed the Multichannel Coherent Radar Depth Sounder (MCoRDS) flown
on a McDonnell Douglas DC-8-72. It has a center frequency of 195 MHz and an eight-channel-chirp signal to accurately assess
the ice (Rodriguez-Morales et al., 2014; Shi et al., 2010b).
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To process the recorded data, the standard CReSIS L1B CSARP-mvdr (minimum variance distortionless response) process-
ing steps were applied. These include pulse compression via a Tukey and Hanning Window, beam-forming, motion compen-
sation, synthetic aperture radar processing in combination with f-k migration, channel combination, and waveform combina-
tion (CReSIS, 2024b). After the processing, the radargrams had a depth resolution of 105ns pixel ~! and a width resolution of
12 — 30 m pixel ! depending on the mission.

We obtained the fully processed CReSIS subset by downloading the CSARP-mvdr processed L1B product from the CReSIS
website and taking the square root of the amplitudes. Likewise, CReSIS also provides downloads for the annotated

ice bottom and surface layers on their website (CReSIS, 2024a). According to Lee et al. (2014) and

|—('24 Q2.1

Crandall et al. (2012), the rock-bed surface is humanly annotated but noisy. Although the noise might pose a problem for
certain approaches, we chose not to alter the labels. The reason for this is that the dataset has been used previously in other
publications, and in order to remain comparable, we use the same labels.

However, to provide additional context regarding
the quality, CReSIS provides a quality label for every pick. The label indicates the annotator’s confidence, ranging from one
(high) to three (Ilow). We include these labels in the benchmark dataset for future research. The general picking procedure for

CReSIS data is outlined in (CReSIS, 2024b).

|—CZS (2.7,2.8)

3.2.3 AWI Data

The AWI subset was recorded during campaigns in Dronning Maud Land in 1997 and 1999 (Steinhage et al., 2023b, a) and
in the Antarctic Peninsula in November 2013 (Steinhage, 2015). All three campaigns employed a version of the EMR radar
system with a center frequency of 150 MHz and the toggle mode enabled. The toggle mode alternates the radar’s pulse length
between 60 ns and 600 ns periodically. Thus, the system can achieve a decent depth resolution while capturing deep internal
layers of the ice. The processing of the recorded data was similar for all three campaigns. The data was differentiated, rescaled,
high-pass filtered, and bandpass filtered. To reduce the amount of noise in a radargram, multiple traces were combined into
a single trace. In detail, ten traces were combined for the 1997 and 1999 flights, and seven traces were combined for the
2013 flight (Steinhage, 2001; Nixdorf et al., 1999; Steinhage et al., 2001). Automatic gain control was used to normalize the
amplitude values. After the processing, the radargrams had a depth resolution of 12 — 13.33 ns pixel ~! and a width resolution
of 66 — 79 m pixel ~* depending on the campaign.

The ice surface and ice bottom were annotated by one person. To ensure consistency, plausibility checks were performed at

crossing points with other profiles from the same or related campaigns. No systematic biases were observed.In the picks, gaps

|—.-\b @7

of eleven pixels or less were filled using bicubic interpolation. Finally, for the radargrams from 1997 and 1999, all

data below 3600 pixels, which is about 4 km, was discarded because only noise was visible at these depths. The gathered data

|—(‘,26 (2.14)

was processed with FOCUS, DISCO, LANDMARK, and Python.
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4 Baseline Method

To demonstrate the usability of the dataset, we present a baseline method in this section. The method’s pipeline consists of

preprocessing steps and a deep learning model, elaborated in the following subsections.
4.1 Preprocessing

The radargrams are given in relative power p to the recorded amplitudes, which we first convert to decibels using the following

formula:
dB = 10-logy,(p) (1

Next, we apply a z-score normalization, i.e., we subtract the mean and divide by the standard deviation. However, the mean
and standard deviation are not formed over the entire IceAnatomy dataset because there is a strong divergence in the recorded
spectrum values between the different subsets. This divergence is caused by the large difference in radar systems and

data processing, which represents a domain shift. Therefore, té normalization is performed separately for the AWI [ @19

and CReSIS data and for the three study sites in the FAU subset. Lm @)
Then, the
normalized radargrams of the entire IceAnatomy dataset are resized to a standard height of 1024 pixels to limit the computa-

tional cost and simplify processing. Finally, each radargram is cut into patches with a width of 512 pixels and a total height of [7<* *»

1024 pixels. For trajectories whose width is not divisible by 512, we apply symmetric padding at the end.
4.2 Deep Learning Model

We apply a deep learning model to extract the ice boundary from the radargram. The model’s architecture is depicted in Fig. 3

and is based on the U-Net (Ronneberger et al., 2015)

, a widely adopted approach for tasks such as ice boundary extraction and comparable tasks (He et al., 2019; Jebeli et al.,

2023b, a; Donini et al., 2022; Dong et al., 2022; Ghosh and Bovolo, 2022). While more recent architectures, such as the

transformer (Vaswani et al., 2017), may offer better performance, they also come with increased computational costs, larger

models, and other practical limitations. The U-Net consists of three components: an encoder, a decoder, and a bottleneck. [T ¢
The encoder extracts features from the radargram into a feature map, the decoder utilizes the feature map to make a predic-

tion, and the bottleneck connects these two components. As the model has to handle large input sizes, the encoder contains

five down-sampling steps to process the input, while the decoder has five up-sampling steps to reconstruct the original size.

In the encoder, each down-sampling step consists of two residual blocks (ResBlocks), while in the decoder, each up-sampling

step consists of three ResBlocks (Esser et al., 2020) (see Appendix B for a detailed summary of its structure). Theé/striltine
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Figure 3. The architecture of the proposed deep learning model. It receives the normalized amplitudes of a radargram as input and predicts
the ice surface and the ice bottom as two separate outputs. The atrous spatial pyramid pooling contains three dilated convolutional layers,
one convolutional layer with adaptive average pooling, and a 1 X 1 convolutional layer. It utilizes the rectified linear unit (ReLU) activation

function which is defined as ReLU (z) = max(z,0).
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1O/ TRApHGN A Ehe [ Akt /AOW fibd ik [aetAubivie/ In the bottleneck, we inserted an Atrous Spatial Pyramid Pooling (ASPP) (Chen [ ¢¥

et al., 2018) layer. ASPP processes the same feature map in parallel with differently dilated convolutional layers. In contrast
to typical convolutional layers, dilated convolutional layers do not utilize a set of adjacent pixels. Instead, they sample a set of

580 pixels from a grid around a center point, thereby achieving differently-sized fields of view. The sampling is uniform and based [™*7 **¥

on a dilation rate. The chosen dilation rates in this model are 1, 4, and 6. Since the model is based on the U-Net architecture,
it also includes skip connections. Skip connections directly forward the output of each down-sample step in the encoder to the
corresponding parts in the decoder via concatenation. The increased channel dimensions in the decoder are solved by including
an additional ResBlock for channel reduction after each up-sampling step in the decoder.

585 To calculate the final prediction of the model, we first forward the feature map computed by the U-Net into two separate
output heads, each consisting of a single ResBlock. Each output head then creates one probability map, resulting in two final

probability maps. The first one represents the probabilistic prediction of the ice surface, while the second one represents the
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probabilistic prediction of the ice bottom. The final prediction of the model is then the highest probable prediction of each
column, which we compute by applying a column-wise argmax-operation.

590 To train the network, we employ a custom loss, a cost function that gives feedback to the network by measuring the difference
between the prediction and the corresponding labeled ice boundary. The custom loss consists of two parts: a distance-based

(Lygist) loss and a classification (Lj,ss) loss:

L= Ldist + Lclass (2)

595

600 For both the classification and distance-based losses, the probability maps of the ice surface
(Ys) and ice bottom (Yb) are treated column-wise, i.e., per trace. The classification loss is a smoothed cross-entropy loss (Lcg)
where each pixel in a column is treated as a separate class, and the pixel closest to the ground truth boundary is considered the
correct class. The distance-based loss (Lp;y) sums up the probabilities in the column, which are weighted with a distance map.

The distance map contains the distance to the correct pick for each pixel. Hence, the further away the predicted pick is from

605 the annotated layer, the greater the loss. Section C provides a more in-depth overview of the loss function. [0 e
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The annotations in the dataset have discontinuities in the labeled layers where the ice bottom dropped below the radar’s
penetration depth, the receiver flew over the edge of the glacier, or the signal was too ambiguous for experts to interpret. Tracks

615 for which no pick is available for a layer are not included in the loss calculation and the evaluation.
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5 Evaluation
5.1 Evaluation Metrics

Previous work either directly extracted the ice boundaries or deduced them from an intermediate segmentation, where they
predicted a semantic class for every pixel in the radargram. Depending on the chosen method, the metrics used to assess the
quality of the predictions differ. For segmentation approaches, most of these metrics are based on a confusion matrix that
measures how accurately the model distinguishes between a chosen positive class and all the other classes, dubbed negative
class. A confusion matrix contains four measurements: true positives (TP) (the number of correctly predicted pixels for the
positive class), true negatives (TN) (the number of correctly predicted pixels for the negative class), false positives (FP) (the
number of wrongly predicted pixels for the positive class), and false negatives (FN) (the number of wrongly predicted pixels for
the negative class). Based on these four measurements, more sophisticated metrics are defined for the segmentation approaches.
The most commonly employed one is the accuracy ( %) (Garcfa et al., 2021a, b, 2023; Ghosh and Bovolo,
2022; Donini et al., 2022; Ilisei and Bruzzone, 2015). Less commonly used metrics include the Intersection over Union (IoU)
(%) (Cai et al., 2019), precision (%) (Ghosh and Bovolo, 2022), recall (Tpi%) (Ghosh and Bovolo, 2022),
the Fl-score (2%’%) (Cai et al., 2020; Ghosh and Bovolo, 2022), sensitivity (TPTJr%) (Garcfa et al., 2023; Donini
etal., 2022), specificity (7y+rp) (Garcfa et al., 2023; Donini et al., 2022), and the error rate (7 x—rpirprry) (lisei and
Bruzzone, 2014).

For direct extraction approaches, the mean column-wise absolute error also called mean absolute error (MAE) (Crandall
et al., 2012; Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al., 2018; Mitchell et al., 2013; Xu et al., 2017, 2018;
Gifford et al., 2010; Dong et al., 2022; Liu-Schiaffini et al., 2022a) is the most common metric. It measures the average pixel-
wise distance between the annotated layer and the prediction. Other distance-based metrics include the median of the column-
wise mean absolute error (Lee et al., 2014; Rahnemoonfar et al., 2017a; Berger et al., 2018; Xu et al., 2017), the mean squared
error (MSE) (Crandall et al., 2012; Mitchell et al., 2013; Dong et al., 2022), the root mean square error (RMSE) (Liu-Schiaffini
et al., 2022a), and the largest under- and over-estimation (Gifford et al., 2010).

We can also define confusion matrix-based metrics on the
layer extraction task. In that case, we define each height pixel of the radargram as a separate class, and the closest pixel in
each column to the corresponding layer as the correct class. However, a limitation of confusion matrix-based metrics, such

as precision, is that they do not account for distance weighting. For example, if a prediction is always one pixel next to the

|—('3I (1.6)

annotated layer, also known as ground truth (GT), the confusion matrix-based metrics will have the worst possible value, even
though it is a near-perfect prediction. Therefore, some studies (Xu et al., 2017; Gifford et al., 2010; Liu-Schiaffini et al., 2022a)

have relaxed these confusion matrix-based metrics by considering predictions a few pixels from the ground truth as still correct.

As metrics for our benchmark framework, we have chosen the MAE, two relaxed Average Precision (AP) metrics, and
introduce the Mean Meter Error (MME). The MAE is calculated as the column-wise difference in pixels between the ground

truth depth of a layer and the predicted depth. Resizing the radargram will change the value of this metric. Therefore, we
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Figure 4. A visual representation of the four metrics used in this work. The left side of the figure depicts the MAE and MME respectively as
the difference between prediction and ground truth (GT). Meanwhile, the right side of the figure features the AP-1% and AP-5% respectively
as an interval around the ground truth. Note that the ground truth and the predictions are technically float numbers. However, we thickened

the ground truth by 20 pixels to improve visibility.

650 also introduce the MME, which approximates the real-world error. We calculate the MME by multiplying the MAE with the

product of the wave velocity in the medium and the depth resolution of the radargram.

The wave velocity describes the speed of the electromagnetic wave of the radar through a medium. We assume it to
be constant with the speed of light (¢, = 0.299792458 m ns~1) in air and with cjce = 0.168 mns ™" in ice (Johari and Charette,
655 1975). The depth resolution is the time it takes for the wave to pass through the physical equivalent of a pixel [ @

in the radargram. Since the depth resolution is indirectly proportional to the y-dimension of the radargram, the MME stays [~¢* @13

consistent across different heights. Table 1 records the different depth resolutions for radargrams in the IceAnatomy dataset in
their original height and equation 6 and 7 summarize the formula for the MME. Note that the MME is still highly dependent on
the original depth resolution of the radargram. The MME will be naturally higher for a radargram where every pixel constitutes
660 a 40 m change in height rather than a 4 m change, as even small mistakes lead to a drastic increase. Thus, we also record the

MAE as it is more consistent over radargrams of the same image height but with different study sites and radar systems. A8 2
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(* Depth-Resolution after resizing the radargram.)
MME and MAE both describe the distance between two lines. A disadvantage is that they are not robust to outliers. As

an outlier robust alternative, we also use a relaxed average precision (AP). To standardize the relaxation, we count

|—(734 (2.13)

everything below a 1 or 5 % error of the total height in pixels of the radargram as a hit (AP-1% and AP-5%).

For
our chosen height of 1024 pixels, this would mean the AP-1% allows for an error of 10.24 pixels, and the AP-5% allows for an
error of 51.2 pixels. Tying the average precision to the height of the radargram prevents the metric from drastically changing

if future studies resize the radargrams differently. In addition, relaxing the metric alleviates the problem of uncertainties in the

|—C35 (2.13)

labels. Figure 4 shows a visualization of the employed metrics.
5.2 Experimental Protocol

Since there are large differences between the subsets of the IceAnatomy dataset, we train one model for each subset, i.e., the
FAU, CReSIS, and AWI subsets. The model for the AWI data is a special case, as the subset is very small. This would make

the model prone to overfitting. To mitigate this issue, the AWI model is first pre-trained on all three subsets of

|—(73f. (2.14)

the IceAnatomy dataset and then finetuned on the AWI subset. In addition to the specialized models, we train one model on
the full IceAnatomy training dataset and evaluate it on the test subsets separately to contrast it to the subset models.

For the FAU subset, we select one flight from each of the study sites as part of the test set: The third flight over Perito
Moreno, the second flight over Viedma, and the flights from 2017 for JRI. The remaining flights are used for training and
validation, where the validation set includes the second half of the first flight over Perito Moreno, the third section of the first
flight over JRI, and the traces 5023 to 8077 for the flight over Viedma. For the CReSIS subset, we choose the TSK2, PIG4,
PEN4, and PENS missions as the test set. This results in 7 flights in the test set, containing 3 over the Antarctic Peninsula
and 4 over West Antarctica. From the remaining 25 flights, the flights from PEN3, PIG3, and GETZ1 missions are taken for
the validation set. For the AWI subset, we decided not to pick an exclusive flight for testing as the differences between the
collected radargrams are too big. Instead, we utilized the last 20 % of the 2014 flight over the Antarctic Peninsula and the 1999
flight over East Antarctica as our test set. For training, we picked the entirety of the 1997 flight over East Antarctica, the first
70 % of the flight over the Antarctic Peninsula, and the first 70 % of the 1999 flight over East Antarctica. The remaining 10 %
of the 1999 and 2014 flights were used for validation.

We assess the model on the validation set after every iteration over the full training set and stop training when the AP-1%
does not improve for 25 subsequent evaluations. We save the model with the highest AP-1% value on the validation set. The

learning rate, a parameter that determines the strength of every network update, is set to 5e~*. As the optimizer, an algorithm
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that updates the network weights based on the loss function, we use AdamW (Loshchilov and Hutter, 2019) with a weight
decay of 0.05 and reduce the learning rate by a factor of 0.5 when AP-1% plateaus for ten subsequent iterations of the entire
validation set. The batch size, a parameter that determines how many samples are used for every weight update, is 32 for all
models. To increase variety in the data, we randomly modify the training data via data augmentations. In particular, we employ

an additive Poisson noise scaled with Gaussian noise, brightness, contrast, gamma correction, and flipping horizontally.
5.3 Results

Table 2 provides quantitative results on all three subsets for the dataset-specific models and the omni model trained on the full

dataset. Overall, the results are promising, with high AP-1% and AP-5% values and low MME and MAE values for most

Table 2. Overview of the performance of our presented deep learning model on the different subsets in our benchmark dataset. We distinguish
the layer prediction into two classes: the ice surface (S) and the ice bottom (B). Furthermore, we split our experiments into two parts: The
dataset specific models, which were trained only on a specific subset of the data, and the omni model, which was trained on the entire dataset.
Note that for the AWI subset-specific model, we utilized the weights of the omni model as a starting point to stabilize training. We compare
the model’s performance on the MME, MAE, AP-1%, and AP-5% as defined in Section 5.1. To contextualize the MME, we annotate the
relative error to the mean measured ice thickness of the specified test set study site behind the MME. We conducted the evaluation on the test

set and averaged the results over five runs to minimize statistical errors.

Dataset specific Model Omni Model

Layer MME | MAE | AP-1% 1T AP-5% 1 MME | MAE | AP-1% 1 AP-5% 1

FAU S 2.1m [1.2%)] 2.0 98.8% 100.0% 2.4m [1.3%] 2.3 98.5% 99.9%
B 9.1m [4.9%)] 13.1 74.3% 95.8% 19.5m [10.5%)] 27.3 68.3% 90.5%

CReSIS S 23.1m [3.1%] 2.5 96.9% 100.0% 20.8m [2.8 %] 2.2 97.9% 100.0%
B 78.2m [10.4 %] 15.2 87.9% 94.1% 66.5m [8.9 %] 12.8 88.6% 94.4%

AWI S 4.9m [0.3 %) 0.7 99.3% 100.0% 12.0m [0.6 %] 1.7 97.6% 99.4%
B 29.3m [1.5%] 7.4 83.5% 97.6% 39.8m [2.1%)] 10.0 75.7% 95.6 %

combinations. Still, dataset and model-specific discrepancies exist.
5.3.1 Ice Surface Predictions

The predictions for the ice surfaces are nearly perfect for all subsets and all models. The three subset models even achieve
100 % accuracy for the AP-5%. Hence, the remaining discrepancies are likely significantly influenced by measurement inaccu-
racies, noise, and general model variance. Therefore, we will only consider the task of ice bottom delineation to assess model

performance.
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5.3.2 Ice Bottom Predictions

For the ice bottom predictions, the differences in the MME between the three subsets are more pronounced than for the MAE,
which can be attributed to the different depth resolutions. The MAE difference between the FAU and CReSIS subsets is small,
while the MAE on the AWI subset is substantially lower than both. The AP-1% is lower for the FAU subset than for the AWI
and CReSIS subsets. Interestingly, this difference between subsets is relativized for AP-5%. This means that most incorrect
predictions for FAU are in the 1 % to 5 % error range. The same is true for the AWI subset. For the CReSIS data, this effect is

not as strong. Here, the AP only increases from 87.9 % for the 1 % error rate to 94.1 % for the 5 % error rate.

5.3.3 Omni Model

The omni model shows persistently higher MME and MAE values and lower AP-1% and AP-5% values for the FAU and AWI
subsets than the dataset-specific models. In detail, it only achieves an MME of 19.5 m and 39.8 m and an AP-1% of 68.3 % and
75.7 %, respectively. We attribute the lower performance of the omni model to the substantial domain shift between the three
subsets and the fact that the FAU and AWI subsets are significantly smaller than the CReSIS subset. For the CReSIS subset,
the omni model outperforms the dataset-specific model. In particular, it achieves an MME of 66.5 m and an AP-1% of 88.6 %.
These results suggest that there can be a benefit from more training data even with the domain shift. However, the domain shift

makes the generalization to under-represented or new domains difficult.

5.3.4 Influence of Study Sites

Table 3. Overview of the influence of geographical and glaciological factors on the performance in detecting the ice bottom. We differentiate
between the subset, the study site, and the general thermal regime. For the performance analysis, we compare the MME, MAE, AP-1%,
and AP-5% as defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the
specified test set study site behind the MME. Note that for the AWI subset-specific model, we utilized the weights of the omni model as a
starting point to stabilize training. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical

errors. The analyzed models were the subset-specific models.

Study Site Main Thermal Regime MME | MAE | AP-1% 1 AP-5% 1
Perito Moreno Temperate 22.1m [8.0%] 26.3 54.9% 91.1%
FAU Viedma Temperate 10.0m [5.0 %) 12.0 68.5% 96.8%
James Ross Island Polythermal 3.9m [2.7%] 9.2 84.9% 96.9%
CReSIS  Antarctic Peninsula Polythermal 31.6m [4.5%)] 5.8 91.5% 97.6%
West Antarctica Polythermal 148.7m [18.0%]  29.4 82.5% 88.8%
AWI Antarctic Peninsula Polythermal 32.7m [9.8 %) 8.1 87.3% 96.4%
East Antarctica Cold-based 27.3m [1.0 %) 6.9 81.1% 98.3%

Table 3 divides the results of the subset-specific models by study site and thermal regime.
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For the FAU subset, the Perito Moreno and Viedma predictions are quantitatively worse than the ones from JRI. A

key difference between Perito Moreno, Viedma, and JRI is the thermal regime. The first two are temperate glaciers, while JRI

|—(:37 (2.14)

contains polythermal ice. Besides the higher water content in Perito Moreno and Viedma, both are also substantially deeper
than JRI in most areas. They even have

areas with ice thicker than the 700 m maximum penetration depth of the employed radar system. Viedma and JRI also feature

|—(f38 (2.24)

several-meter-thick moraine material on the glacier surface. These rock and debris deposits are not penetrable by the wavelets
and thus create radar shadows below them or substantially decrease the amount of reflected energy.

If we look at the associated radargrams, we can mostly see a relatively stable and clear prediction for JRI. On the other
hand, Viedma and Perito Moreno have much stronger differences to the ground truth. Especially in deep and noisy regions, the

models struggle. Figure 5 shows example traces for the three study sites of the FAU subset.

(c) James Ross Island

mmmmmm Surface Ground Truth ® ® m Surface Prediction
Bottom Ground Truth H ® ®m Bottom Prediction

Figure 5. Visualization of the subset-specific model’s performance on the FAU subset. Figure (a) shows trace 3000-5500 of the third flight
over Perito Moreno, Fig. (b) depicts traces 5000-7500 of the second flight over Viedma, and Fig. (c) presents traces 5000-7500 from the first
Section of the 2017 flights over James Ross Island.

Between the Antarctic Peninsula and West Antarctica study sites of the CReSIS subset, there are strong differences in the
quantitative analysis. The MME and MAE values exhibit a difference of approximately a factor of five, while the AP-1%

and AP-5% are approximately 9 % apart. In the qualitative analysis, we can see that the predictions in both regions actually
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follow the ground truth closely. However, sometimes the predicted ice bottom layer makes a jump and the actual ice surface is

predicted to be the ice bottom. We call this “ice boundary collapse”. Examples of this phenomenon can be seen in Fig. 6.
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Figure 6. Visualization of the subset-specific model’s performance on the CReSIS subset. Figure (a) presents traces 2000-4500 from
mission PEN4 in the Antarctic Peninsula (PEN4_01_001). Figure (b) presents traces 2000-4500 from mission TSK2 in West Antarctica
(TSK2_07_003).
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745
For the AWI subset, the results for East Antarctica
are generally more favorable than those for the Antarctic Peninsula. This result is consistent with the observation on the FAU
subset that the algorithm performs better for colder ice than for warmer ice. The only exception is the AP-1%, where the
Antarctic Peninsula slightly outperformed East Antarctica. This result suggests that a large majority of the wrong predictions
750 in East Antarctica are between the 1 % and 5 % interval and that our algorithm struggles to pinpoint the exact location of the
ice bottom. We can confirm this behavior in the qualitative analysis, where the prediction is sometimes slightly above or below
the ground truth line but follows it closely overall. Similarly, the predictions for the Antarctic Peninsula also appear to be
very accurate but contain more occasional outliers. Figure 7 depicts both the predictions for East Antarctica and the Antarctic

Peninsula. |—(:39 (2.26)
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(a) Antarctic Peninsula (b) East Antarctica
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Figure 7. Visualization of the subset-specific model’s performance on the AWI subset. Figure (a) depicts traces 21000-23500 from the 2014
flight in the Antarctic Peninsula. Figure (b) presents traces 7837-9787 from the 1999 flight in East Antarctica.

Table 4. Summary of our ablation study regarding the proposed modifications to the loss function. For every variation of the loss function,
we trained a subset-specific model and compared the performance based on the MME and AP-1% of the ice bottom layer. We conducted the
evaluation on the test set and averaged the results over five runs to minimize statistical errors. To contextualize the MME, we annotate the
relative error to the mean measured ice thickness of the specified test set study site behind the MME. Note that for the AWI subset-specific

model, we utilized the weights of the omni model as a starting point to stabilize training, which was also trained with the specified loss

function.
FAU CReSIS AWI
MME | AP-1% t MME | AP-1% t MME | AP-1% 1
Lcg 13.9m [7.4%)] 74.3% 88.0m [11.7%) 88.6% 29.7m [1.6 %) 82.5%
Lpist 9.9m [5.1%] 72.3% 119.5m [15.9%] 85.5% 33.2m [1.7%] 81.8%
Lee+ Loie 9.1m [4.9%)] 74.3% 78.2m [10.4 %] 87.9% 29.3m [1.5%] 83.5%

5.3.5 Loss Function

4-To assess the performance of our combined loss function, we conducted
a small ablation study. Specifically, we evaluated two additional experiments in which we replaced the combined loss with
each of its individual components: In the first setup, we trained the model with the cross-entropy loss, and in the second setup,

we trained it only with the distance loss. We compare the results of these two configurations with the combined loss in Table 4.

|—c40 (27
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For the FAU subset model, the distance loss improves the MME but not the AP-1%. In contrast, the cross- [~¢4 ¢4
entropy is better for the AP-1% but not for the MME. The combination of both losses results in an improved MME while
AP-1% remains the same. The results for the CReSIS subset are less clear. It is evident that the distance loss alone does not
enhance the MME or AP-1%. However, the combined loss demonstrates the most optimal outcome in relation to the MME,
while the AP-1% is only slightly worse in comparison to CE alone. Similar to the CReSIS results, the distance loss alone does
0 1)

not improve the MME compared to the cross-entropy for the AWI subset. However, the combined loss provides [

the best results with a higher AP-1% value.
5.4 Discussion and Outlook

One apparent influence on the quality of the ice bottom prediction is the primary thermal regime of the region. In general,
the warmer the ice, the less reliable the prediction. The reason behind this is probably the influence of water on the signal,
as well as the higher likelihood of a heavily crevassed surface. Temperate ice generally contains water, as most of the ice is
close to or at the pressure melting point. Water absorbs the recorded signal, leading to higher noise with increased depth and
strong attenuation. Hence, the model’s performance naturally decreases as the associated radargrams are more challenging to

interpret. Polythermal glaciers, contrary to temperate glaciers, do not exhibit ice at the pressure melting point everywhere.

Instead, elevated temperatures are usually confined to zones of fast flow driven by frictional heating or to marginal

areas of the glacier. Hence, the effects are not as detrimental as for entirely temperate glaciers. [[e8 e

Another interesting observation is the difference between temperate and polythermal ice regarding the AP-1% and
AP-5%. The AP-1% of temperate ice is significantly lower than for polythermal ice. However, the AP-5% is relatively similar
for both types of ice. While it is natural for the difference to decrease at higher error intervals, the change in this case is still
very drastic. To put this into perspective, the Viedma and James Ross Island were 16.4 percentage points apart on the AP-1%,

but on the AP-5%, only 0.1 percentage points. A possible explanation for this could lie in the meltwater at the base of the ice. [“* ***

Temperate ice more commonly collects meltwater at its base than polythermal ice. Since water absorbs the signal, the exact
position (AP-1%) becomes difficult to identify. However, the general position (AP-5%) is still clear because the water is only
at the base. Besides the thermal regime and average depth, the presence of debris usually plays a significant role in radio-echo
sounding. Interestingly, the quantitative results of JRI and Viedma indicate that the presence of debris did not play a major role
in the model’s performance compared to depth and thermal regime. However, we suspect that the numbers do not capture the
effect of debris very well since the debris likely absorbed the signal entirely. Thus, the expert could not create ground truth
labels for these parts, which makes the effect of debris on the model’s performance not accurately measurable with numerical
methods.

One of the more prominent and recurring

phenomena in the CReSIS model’s predictions is the collapse of ice boundaries. In ambiguous cases, the model [7¢* ¢V

C46 (2.14)
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shows a bias toward predicting the ice bottom close to the or as the ice surface. One explanation could be that the CReSIS
data is differentiated and thus represents only the change in amplitude. That makes it challenging to distinguish whether the
peak of the ice surface and ice bottom overlap or the ice bottom is not visible. The problem gets further amplified by noise and
artifacts, such as multiples. They can exhibit similar patterns as the ice bottom, making the model biased toward predicting the
ice bottom as the ice surface when in doubt. Thicker ice sheets are particularly affected by ice boundary collapse, as the radar
signal returned from deeper ice is typically weaker than in shallower regions. This is due to increased attenuation and a higher
chance of signal interference. Consequently, the peaks representing the ice bottom in the radargram become less distinct. As a
result, the model encounters significant challenges in discerning whether a weak peak indicates the actual ice bottom or if it is

just noise, and the signals from the surface and bottom overlap.

|—.-\9 2.33)

Furthermore, we believe that the influence of the ice boundary collapse is also reflected by the quantitative analysis of
the different CReSIS study sites.
As West Antarctica generally contains thicker ice sheets than the

Antarctic Peninsula, the average distance between the ice boundaries significantly increases. Thus, a wrong prediction of the

|—(:47 (2.32)

ice bottom as ice surface leads to a considerably higher MAE and MME for West Antarctica than the Antarctic Peninsula.
However, the ice boundary collapse is likely not the only reason for this effect as the AP-1% and AP-5% are also lower for
West Antarctica than the Antarctica Peninsula. Hence, thicker ice sheets might be naturally more challenging.

Nonetheless, future research should address ice boundary collapses as they tremendously affect performance. Larger con-

texts, additional post-processing steps, or recurrent neural networks could help stabilize the predictions as they incorporate

|—A10 (2.11)

more information. Another interesting problem to explore is the performance drop from subset-specific models to the omni
model. Our results indicate that the domain shift between the subsets is too prominent for a simple omni model to catch up
on all subset-characteristic features. Hence, models cannot utilize the full benefits of a larger dataset when they are recorded
and processed differently. In particular, domain shift tech-
niques could help with this challenge, but also more advanced regularization techniques, e. g., spatial dropout, could prevent the
model from focusing too much on a single domain (Tompson et al., 2015). In appendix 13, we show that a uniform sampling

strategy can also help mitigate the domain shift.

|—C48 (1.7

We believe that our
framework is a significant step towards a potential fully automated generation of ice thickness maps based on RES data and

that our work represents an important advancement toward validating survey data in the field.

|—(T49 (2.15)

6 Conclusions

This paper presents the first benchmark framework for delineating the ice boundary in RES data. The included dataset
“IceAnatomy” contains hundreds of kilometers of processed, labeled, and georeferenced RES data from three different sources

(FAU, CReSIS, AWI). Since all sources employ a different radar system and processing methods, “IceAnatomy” offers a wide
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830 range of varying amplitude spectrums, depth resolutions, and width resolutions, making it applicable to a multitude of settings.
Furthermore, it also features different geographical factors, such as study sites and thermal regimes, allowing for in-depth
analysis of the models and their behavior in different geographical scenarios.

To fairly compare different models in the future, we provide an official train and test split for each source of the dataset. This
enables the development of not only an omni model trained on the entire dataset but also specialized subset-specific models

835 on one of the three sources. We trained and evaluated a baseline model for each of these scenarios. In our experiments, the
subset-specific models provide the most promising results with MMEs of 2.1m [1.2%)], 23.1m [3.1%)], and 4.9 m [0.3 %] for
the ice surface and 9.1 m [4.9 %], 78.2m [10.4 %], and 29.3 m [1.5 %] for the ice bottom depending on the source.

Previous work has already demonstrated the effectiveness of automatic approaches for ice boundary extraction
840 but lacked a common method for accurately comparing models. With this benchmark framework, we hope to address this
issue by unifying and standardizing both training and evaluation schemes. We hope that this benchmark dataset will encourage

more scientists to engage in this challenging and important research area. Deep learning models that extract the ice boundary [~ @'

can greatly speed up the processing of RES data. As a result, the ice thickness and, consequently, the subglacial [~¢st @b

topography can be determined more quickly after a field survey.

845 Code and data availability. The dataset is available at https://zenodo.org/records/14036897 (Dreier et al., 2024) and the implementation at
https://doi.org/10.5281/zenodo.14038570 (Dreier, 2024).

Appendix A: Additional Hyperparameters

This section gives an overview of the hyperparameters in our employed U-Net from Chapter 4.2. The input dimension of
our U-net is (1024,512,1) (H,W,1), which then gets scaled according to the depth level of the encoder or decoder. Inside
850 the network, we down- and upsample our feature map five times each while scaling the feature dimension according to the
depth-level-dependant value of [8,16,32,64,64,128]. To reduce the risk of overfitting, we also utilize dropout layers inside
the ResBlocks with a probability of 10 %. For the loss function, we employed our proposed combined loss function. Since the
numerical value of the distance loss is significantly higher than that of the classification loss, we had to weigh the individual
components. In detail, we chose the weights ws cjass = 0.5, Wh_class = 1.0, ws_gist = 0.05, and wy,_gise = 0.1 as they performed

855 the best in preliminary experiments.

Appendix B: ResBlock Design

To provide a better understanding of the network architecture, this section examines one of its core components: the ResBlock
from (Esser et al., 2020). Its structure, shown in Fig. B1, comprises several components. First, it starts with a group normaliza-

tion layer (Wu and He, 2018) that normalizes the data in groups of channels to increase stability during training. Next, a swish
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860 activation (Ramachandran et al., 2017) function adds nonlinearity to the ResBlock so the network can learn more complex
patterns. The activation is followed by a two-dimensional convolution layer that processes and combines the visual features
by applying convolutional operations. This is followed by another group normalization and swish activation function before
a regular dropout layer (Hinton et al., 2012) is applied. The dropout layer randomly withholds information during training to
improve generalization and prevent the model from overfitting — a process in which the model develops a strong bias towards

865 the training data. After the dropout layer, another two-dimensional convolutional layer is applied. Finally, a residual connec-

tion (He et al., 2016), a shortcut from the start of the ResBlock to the end through a convolution layer, is added to the output of

this sequence of layers to improve the gradient flow in the network. A a2
0] 0]
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Figure B1. Structure of the residual block employed in our deep learning model. The arrangement is based on the design of Esser et al.

(2020)

Appendix C: Loss Function Details

The formulas of the classification and distance-based loss are as follows:

-C 1- c 1 c
870 LCE:—ch(l—ec)log(p(xc))+6( ‘ )Cog(p(m ) (@)
ceC ‘ ‘
w%‘ class A~ w class A
Letass = =2 >~ Lee(f) + —== > Lex(ih) (C2)
Yi| ~ Yo
Us €Y S
Ws_di . Whp_di ~
Laie = =53 " {d(ys), 0 () + =525 > (d(p), o (i) (C3)
Y| = Yo| =
Us €Yy U EYp

Ws_class» Wh_class» Ws_dist» and wy,_gist are the respective weights for a weighted combination of the single loss parts, €. is the

smoothing factor, C' specifies the column, () is the dot product, o is the softmax function that converts the model’s outputs into
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probabilities, |.| is the cardinality of a set, and d is the function that creates a vector filled with the column-wise distance map

given the respective column of the label.

|—A12 2.4)

Appendix D: Additional Experiments

Since the three subsets of IceAnatomy differ in size, we also investigate whether a uniform sampling strategy, where samples
are drawn equally from each subset, could help the Omni-Model achieve the performance of the domain-specific models on the
AWTI and FAU subsets. From our results in Table D1, we can see that a uniform sampling strategy does lead to improvement
for the AWI and FAU subsets. In the case of the AWI subset, the omni model even outperforms the domain-specific model.
However, in the case of the FAU subset, we are still below the domain-specific model. We reason that the domain of the AWI
and CReSIS subsets are significantly closer than the FAU subset as these two subsets contain differentiated radargrams. We,

therefore, believe that domain shift remains an important area for future research. In addition to the uniform sampling, we also

|—/\13 (1.3,2.9)

Table D1. Overview of the performance of our Omni Model with uniform sampling. We distinguish the layer prediction into two classes: the
ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME, MAE, AP-1%, and AP-5% as defined in Section
5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test set study site behind

the MME. We conducted the evaluation on the test set and averaged the results over five runs to minimize statistical errors.

Omni Model

Layer MME | MAE|  AP-1%1 AP-5% 1

FAU S 2.0m [1.1%] 1.9 99.3%  100.0%
B 140m[7.6%]  19.0 741%  94.1%
CReSIS S 231m[3.1%] 25 97.2%  100.0%
B 75.0m[10.0%] 14.6 87.7%  93.9%
AWI S 3.8m [0.2%] 0.5 99.7,%  100.0%
B 239m[1.3%] 6.0 86.1%  98.3%

investigated how different hyperparameter setups regarding learning rate and regularization would affect the benchmark model.
From the results in Table D2 and D3, we can see that different hyperparameter setups favor different subsets of IceAnatomy.

However, there seems to be no universal optimal setup.

|—A14 (2.12)
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Table D2. Overview of the performance of our Omni Model with different learning rates and uniform sampling. We distinguish the layer
prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as
defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test
set study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical

errors. Note that for Ir = 0.005 we averaged over five runs, as we had those values from previous experiments.

Ir =0.0001 Ir = 0.0005 Ir =0.001
Layer MME | AP-1% MME | AP-1% MME | AP-1%
FAU S 2.1m [1.1%] 99.0% 2.0m [1.1%] 99.3% 2.1m [1.1%] 99.1%
B 14.1m [7.6 %) 73.9% 14.0m[7.6%]  74.1% 14.3m [7.7%]  74.1%
CReSIS S 26.2m[3.5%]  96.7% 23.1m[3.1%]  97.2% 21.9m[2.9%]  97.6%
B  105.4m[14.0%] 87.2% 75.0m [10.0%] 87.7% 94.9m [12.6%] 87.9%
AWI S 4.4m [0.2%) 99.5% 38m[0.2%]  99.7,% 3.7m [0.2%)] 99.6%
B 26.9m[1.4%]  86.2% 23.9m[1.3%]  86.1% 21.5m[1.1%] 87.8%

Table D3. Overview of the performance of our Omni Model with different learning rates and uniform sampling. We distinguish the layer
prediction into two classes: the ice surface (S) and the ice bottom (B). We compare the model’s performance on the MME and AP-1% as
defined in Section 5.1. To contextualize the MME, we annotate the relative error to the mean measured ice thickness of the specified test
set study site behind the MME. We conducted the evaluation on the test set and averaged the results over three runs to minimize statistical

errors. Note that for dropout = 0.1 we averaged over five runs, as we had those values from previous experiments.

dropout = 0.0 dropout = 0.1 dropout = 0.2
Layer MME | AP-1% 1 MME | AP-1% 1 MME | AP-1% T
FAU S 2.0m [1.1%] 99.2% 2.0m [1.1%)] 99.3% 2.0m [1.1%] 99.3%
B 10.2m [5.5 %] 74.2% 14.0m [7.6 %] 74.1% 143m [7.7%]  73.5%
CReSIS S 22.5m [3.0%] 97.0% 23.1m [3.1%] 97.2% 21.5m[2.9%] 97.6%
B 79.0m [10.5%] 87.8% 75.0m [10.0%] 87.7% 69.2m [9.2%] 88.5%
AWI S 7.3m [0.4 %] 99.0% 3.8m [0.2 %) 99.7% 3.8m [0.2 %) 99.5%
B 26.0m [1.4 %) 85.7% 23.9m [1.3%)] 86.1% 24.5m [1.3%] 86.6%
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