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Abstract. This study investigates the spatial variability of surface freeze/thaw (F/T) cycles in low arctic tundra retrieved from 

multisensor SAR backscatter time series. To increase the temporal resolution of SAR observations, we combined 

measurements from Sentinel-1 and RADARSAT-2. An incidence angle normalization was applied to the backscatter time 

series to remove the influence of the acquisition angle on backscatter. A seasonal threshold algorithm (STA) was used to detect 15 

F/T transitions and applied to HH, HV and HH+HV polarization datasets. The classification threshold was optimized using 

soil temperature measurements from spatially distributed sites. A detection accuracy of over 93% was calculated with an 

optimized classification threshold of 0.62 for the HH+HV time series on those sites. We created surface F/T day of the year 

(DOY) maps of the study area for the 2018 and 2019 freezing transitions, and for the 2019 thawing transition using the HH+HV 

time series with the optimized classification threshold. Those maps were combined with a terrestrial ecosystem (ecotype) map 20 

to investigate the impact of ecotypes on the F/T transitions. Three generalized least squares (GLS) models were fitted on the 

coupling of the maps. Differences of about 2–3 days were observed between ecotype classes. Based on these differences, we 

hypothesize that differences during the freezing transition were probably due to the underlying soil moisture and during the 

thawing transition, to the influence of vegetation. Our study demonstrates the power of merging two C-band SAR time series 

to create near-daily F/T maps over arctic environment to allow for better understanding of surface F/T processes happening at 25 

small spatial scale in arctic environments. 

1 Introduction 

Over the last four decades, important signs of climate change have been observed across the Arctic (Dai et al., 2019) amplified 

by enhanced warming due to positive climate feedback (Serreze and Barry, 2011). The observed increase in surface 

temperatures at two to three times the rate observed elsewhere on the planet has significant impacts on the cryosphere and 30 

arctic ecosystems. Increased air temperature across the Arctic influences several cryosphere-related phenomena, such as the 
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precipitation type and phase (Il Jeong and Sushama, 2018; Langlois et al., 2017), the snow cover accumulation and distribution 

(Derksen and Brown, 2012), the spatial and temporal evolution of vegetation cover (Bjorkman et al., 2018; Martin et al., 2017), 

and the soil thermal regime (Smith et al., 2010), including permafrost temperature and active layer depth.  

 35 

The permafrost active layer refers to the soil surface layer which undergoes an annual freeze and thaw (F/T) cycle. This cycle 

impacts the surface energy budget (Schuur et al., 2015), hydrological and carbon cycles (Wang et al., 2009), vegetation 

growing seasons (Kim et al., 2012), underlying permafrost state and active layer thickness (ALT; Yi et al., 2018). Snow 

strongly influences those processes because of its low thermal conductivity and its high albedo that regulate ground 

temperatures (Domine et al., 2019; Zhang et al., 2018). As such, snowpack properties like total depth, density, and 40 

microstructure influence the F/T cycles of the underlying soil (Prince et al., 2019). However, one of the most significant 

consequences of a warming Arctic is a reduction in snow cover duration with the snow cover forming later in the fall and 

melting early in the spring (Derksen and Brown, 2012; Brown et al., 2017). Furthermore, tundra vegetation, which modulates 

snow distribution through trapping effects (Barrere et al., 2018; Busseau et al., 2017; Royer et al., 2021), is also changing 

significantly (Bjorkman et al., 2018; Martin et al., 2017). Royer et al. (2021) suggested that changes in the snowpack 45 

microstructure and distribution patterns, linked to the increase of vegetation height and coverage, could further amplify 

permafrost warming (Callaghan et al., 2011). 

 

Several studies have developed F/T detection algorithms using satellite passive microwave (PMW) measurements (Chen et 

al., 2019; Derksen et al., 2017; Kim et al., 2011; Prince et al., 2018; Rautiainen et al., 2016; Roy et al., 2015, 2020; Xu et al., 50 

2016; Zheng et al., 2017). The potential of using low-frequency passive microwave data for developing F/T cycle detection 

algorithms have increased due to the available L-Band satellite missions (e.g., Aquarius, SMOS, SMAP). Despite the clear 

potential for detecting and monitoring soil F/T cycles, the strong landscape heterogeneity within the coarse grid spacing of 

these datasets (~25 km) leads to a misrepresentation of the spatial variability, biases, and uncertainty in the F/T retrievals 

(Ponomarenko et al., 2019; Prince et al., 2019).  55 

 

Satellite Synthetic Aperture Radar (SAR) measurements fill this gap, because of their much finer spatial resolution: typically, 

from 1 m to 100 m. The SAR backscatter signal (sigma nought; σ0) depends on the dielectric (e.g., moisture and water phase) 

and geometric (e.g., roughness) properties of the target, leading to a strong sensitivity to dielectric contrasts during soil surface 

phase transition seasons (i.e., freezing and thawing). Given the very high dielectric constant of water in the microwave 60 

spectrum, the dielectric constant for dry or frozen soil is small compared to that of wet or thawed soils (Ulaby et al., 1986). 

SAR backscatter information can thus help to detect changes in the dielectric constant of the soil surface during F/T cycles for 

different ecosystems (Baghdadi et al., 2018; Chen et al., 2018; Chen et al., 2019; Cohen et al., 2021; Jagdhuber et al., 2014; 

Park et al., 2011). C-Band SAR observations generally allow to get the signal from the soil top layer with a limited penetration 

depth of about 5 cm depending on the properties of the soil (Ulaby et al., 1986). The easy access to PMW data and its daily 65 
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temporal coverage have favoured their use compared to SAR data in the detection of F/T cycles (Park et al., 2011). However, 

constellations such as Sentinel-1 (since 2016; Bourbigot et al., 2016) and the RADARSAT Constellation Mission (RCM; since 

2019) allow improved temporal coverage of σ0 data, thus increasing the potential for daily observations across the Arctic.  

 

This study aims to retrieve surface F/T cycle onset in a low arctic tundra environment using SAR backscatter time series. This 70 

paper thus aims to (1) create a near-daily multisensor C-band normalized backscatter time series, and (2) evaluate those time 

series’ potential to retrieve surface F/T cycles, using a simple seasonal classification algorithm and a study site in a low arctic 

environment. This case study relies on a unique ecotype map created from unsupervised classification of 2011 WorldView-2 

multispectral imagery (Ponomarenko et al., 2019) based on the Canadian arctic-subarctic Biogeoclimatic Ecosystem 

Classification (CASBEC) defined in McLennan et al. (2018). 75 

2 Study site and data 

2.1 Overview of the study area 

This study focuses on the Intensive Monitoring Area (IMA) north of the Greiner Lake watershed, near Cambridge Bay, Victoria 

Island, NU, Canada (Figure 1). The site is instrumented with a meteorological station and characterized by low and sparse 

vegetation, low annual precipitation, and flat topography, typical of arctic tundra environments. The IMA region was chosen 80 

due to the availability of a unique high-resolution detailed ecotype map (section 2.2.3) which will be used for the small-scale 

spatial variability case study. The mean annual air temperature is around -10 ºC, and rarely goes above 18 ºC during the warm 

season or below -41 ºC during the cold season. For our study, we used daily soil temperature data derived from a spatially 

distributed network of i-Buttons deployed across the IMA over 2018‒2019, in the most dominant ecotypes (Ponomarenko et 

al., 2019) present in the area (Figure 1)  85 
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Figure 1: Study site of the IMA (red) and the extent covered by the F/T maps created in this study referred to as the IMA+ (black) 

near Cambridge Bay, Victoria Island, NU, with the ecotypes as a base map and i-Button locations. Legend of the ecotypes only 

includes dominant classes.   90 

2.2 Data Description 

2.2.1 Soil and air temperature 

We developed and validated the F/T detection algorithm based on reference soil (Tsoil) and air (Tair) temperature data 

(Figure 2.). 

Soil Temperature: Tsoil was measured using low-cost sensors (i-Buttons) deployed within the IMA over two years from July 95 

2018 to mid-July 2019 in ten sites; and from mid-July 2019 to August 2020 in seven of the ten previous sites. The i-Buttons 

measured the soil temperature every three hours and have been placed at three depth ranges in the soil: from 2 cm to 4 cm; 

from 10 cm to 20 cm and from 20 cm to 30 cm in the following sites (IPX): Hydric sedge fen (IP2), Sedge fen (IP7, IP8 and 

IP14), Productive sedge fen (IP6 and IP11), Subhygric communities (IP5 and IP10), Turfy mountain avens—Curly sedge (open 

<25%) (IP15), and Unvegetated (open >90%) (IP13) as detailed in McLennan et al. (2018). Only the i-Buttons located at the 100 
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surface (first 4 cm of the soil) were used in the study, since C-band measurements are sensitive to changes near the surface 

and show limited soil penetration (Rowlandson et al., 2018). A fixed uncertainty of 0.5 ºC was considered on the data since 

the observed biases are within the manufacturer’s precision (Prince et al., 2019). Soil temperatures were averaged daily since 

daily soil temperature variability is of the order of the i-Buttons uncertainty. The surface was considered frozen when Tsoil 

≤0.5 ºC and thawed when Tsoil >0.5 ºC according to i-Button data, considering its accuracy and the clear zero curtain observed 105 

around 0 ºC during the freezing in fall (Figure 2). The zero curtain refers to the extended period during the freezing or thawing 

of the soil where the temperature stays around 0 ºC due to the release of the residual latent heat or water in the soil (Domine 

et al., 2018). Surface freezing (Dfr) and thawing (Dth) reference transition day of the year (DOY) were derived from the daily 

mean Tsoil. Dfr(soil) was defined as the first day of a series of 7 consecutive days when the surface was considered frozen for 

every i-Buttons, and Dth(soil), as the first day of a series of 7 consecutive days considered thawed.  110 

Air temperature: Average daily Tair data for 2018 to 2019 were obtained from the Environment and Climate Change Canada 

meteorological station (ECCC, https://climat.meteo.gc.ca/historical_data/search_historic_data_f.html) located at the 

Cambridge Bay airport, about 15 km from the IMA. Global reference transition DOY (Dth(air) and Dfr(air)) were calculated from 

Tair as the first day of a series of 7 consecutive days classified as frozen (Tair ≤0 ºC) or thawed (Tair >0 ºC). Since Tair is 

considered constant over the study site, reference transition seasons were derived as +/- 30 days around Dth(air) and Dfr(air) (grey 115 

area in Figure 2). 

 

 

Figure 2: Tsoil for the 10 reference sites (IP) and Tair from ECCC for the study period of August 2018 to December 2019 

with the transition seasons (in grey) for freezing in 2018 and 2019 and thawing in 2019. 120 
 

2.2.2 Synthetic Aperture Radar (SAR) dataset 

In this study, we used the C-band (5.405 GHz) SAR backscatter obtained from the sensors of two satellite missions, namely 

the Sentinel-1A-1B constellation (available since 2016), and RADARSAT-2 (made available for this study between August 
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2018 to December 2019). Therefore, this study focuses on the period spanning from August 2018 to December 2019, where 125 

the overlap between both data source allows for quasi-daily revisit time in the transition seasons of Fall 2018 (F-2018), Spring 

2019 (S-2019) and Fall 2019 (F-2019). Using both sensors, the average revisit times are respectively 1 day for F-2018 and F-

2019, and approximately 2 days for S-2019 (see Table 2 in 3.1). Both datasets were preprocessed independently with a 

standardized processing chain (Section 3.1) and resampled to a standard 50 m × 50 m grid to be combined into one multisensor 

time series.  130 

Sentinel-1A-1B: We used 270 Level-1 GRD Extra Wide Swath (EW) images from Sentinel-1A-1B in dual polarization (HH, 

HV) with a grid spacing of 40 m × 40 m. Due to the combination of measurements from multiple orbits, the acquisition 

incidence angles ranged from 20º to 46º. Descending/ascending scenes were used together. 

RADARSAT-2: We used 200 ScanSAR wide SAR Georeferenced Fine product (SGF) RADARSAT-2 images in dual 

polarization (HH, HV) with a 50 m × 50 m grid spacing. We also used multiple orbits with an acquisition incidence angle 135 

ranging from 20º to 49º, including both descending and ascending scenes.  

 

2.2.3 Ecotypes map 

This study also presents a case study relying on a unique ecotype map created from unsupervised classification of 2011 

WorldView-2 multispectral imagery (Ponomarenko et al., 2019) based on the Canadian arctic-subarctic Biogeoclimatic 140 

Ecosystem Classification (CASBEC) defined in McLennan et al., 2018. The CASBEC classification is based on terrestrial 

ecosystems (i.e., ecotypes) and includes vegetation characteristics, as well as the soil moisture regime (SMR). The ecotypes 

are mapped for Greiner Lake’s watershed at a spatial resolution of 10 m and contain 19 map units regrouping 21 ecotypes. 

Resampling the 10 m × 10 m map to a 50 m × 50 m grid allowed to match the SAR imagery time series resolution. The analysis 

only included the pixels where 90% of the original 10 m x 10 m pixels within a 50 m x 50 m pixel have the same ecotype 145 

value. Waterbodies and ecotype classes with pixel count smaller than 20 were also excluded from the case study analysis. 

Table 1 present the number of pixels left from the resampling for the remaining ecotype classes. More details on the ecotypes 

can be found in Ponomarenko et al. (2019) from which a summary of the key characteristics relevant to this study are presented 

in Table 1: the soil moisture regime (SMR) and the maximal vegetation height. The soil moisture regime is defined by a scale 

ranging from 0 to 9, where 0 is very xeric and 9 is aquatic. 150 

 

 

 

 

 155 
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Table 1: Ecotypes classes found in the IMA+ and used inside the spatial analysis of F/T onset with soil moisture regime 

(SMR) and average vegetation height (Ponomarenko et al., 2019).  

Classes Soil moisture regime Average vegetation height 

Number of valid 

pixels 

Lithic mountain avens—Curly sedge (open 75‒90%) 2.5 5 cm 23 

Lithic mountain—Curly sedge (open 25‒75%) 3 5 cm 43 

Turfy mountain avens—Curly sedge (open <25%) 4 5 cm 79 

Subhygric communities 5 8 cm 80 

Shrub—Sedge—Mountain avens 5.75 30 cm 37 

Productive sedge fen 6.75 30 cm 326 

Hydric sedge fen 8 30 cm 135 

3 Methods 160 

3.1 SAR processing 

Both SAR datasets were preprocessed independently using a common chain (Figure 3), which includes radiometric calibration, 

speckle filtering, orthorectification and incidence angle normalization. First, we applied a radiometric calibration to the 

backscatter coefficient (σ0). The calibration removed the dependency of the observation to the sensor characteristics; allowing 

us to combine the datasets from both sensors. To decrease spatial noise in each image, we then applied a Lee speckle filter 165 

with a window of 7 × 7 pixels. Finally, to allow the combination of dataset, images were then orthorectified to a fixed grid of 

50 m × 50 m using a cubic interpolation method.  
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Figure 3: Flowchart of the SAR imagery (i.e., Sentinel-1 and RADARSAT-2) preprocessing. 

Since this study focuses on dual polarization (i.e., horizontally transmitted, horizontally or vertically received), the total 170 

measured power in horizontal polarization (referred to as Total H power or HH+HV) then corresponds to the sum of both 

intensities (Woodhouse, 2006). The Total H power was calculated as one new time series and was used in the ecotype analysis 

(Section 3.4). The three time series (i.e., HH, HV and HH+HV) were then converted to decibels (dB). 

Radar backscatter values were normalized for the different incidence angles of the various orbits used in this study. A linear 

regression between the backscatter coefficient (σ0; in dB) and the incidence angle (𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒; in degrees) was calculated for 175 

each pixel independently such as 

𝜎°(𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒) = 𝛼 ∗ 𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽 (1) 

where α represents the slope of the relation and β, the intercept (Chen et al., 2019; Makynen et al., 2002; Widhalm et al., 2018). 

During the thawed season, important changes in biomass and soil moisture levels influence the signal evolution. Therefore, 

the relationship between the incidence angle and the backscatter is less significant than in winter, where those changes are less 180 

likely to impact the backscatter between acquisitions (Chen et al., 2019). The α calculated from the regression using the 

backscatter during frozen period was then used to explain the year-round angular dependency for the datasets. The slope (α) 

was then calculated for each pixel independently for periods when the surface is considered completely frozen (DOY 1–60 for 

Sentinel-1, and DOY 305–365 and 1–60 for RADARSAT-2) for the combination of 2018, 2019 and 2020 when available. The 
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temporal periods for both sensors were chosen to get similar sample sizes for the same period. The time series were normalized 185 

at the median incidence angle of 34 º as: 

𝜎°
34 = 𝜎° −  𝛼 ∗ (𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 − 34𝑜) (2) 

Sentinel-1 and RADARSAT-2 time series were then combined to create a multisensor time series with a quasi-daily mean 

temporal resolution for all three transition seasons (Table 2). 

 190 

Table 2: Mean temporal resolution (in days) of the combined Sentinel-1/RADARSAT-2 normalized datasets for three 

transition seasons and for the whole time series (2018‒2019).  
 F-2018 S-2019 F-2019 2018–2019 

Sentinel-1 2.2 3.2 1.9 2.2 

RADARSAT-2 1.9 3.5 1.8 2.5 

Multisensor 1.0 1.8 1.0 1.3 

 

3.2 F/T detection algorithm 

This study applies an empirical detection algorithm to identify the surface F/T state, using the same approach as the SMAP L3 195 

EASE-Grid Freeze/Thaw State product (Derksen et al., 2017). The algorithm uses seasonal reference values to calculate a scale 

factor that is then classified into frozen or thawed state using a defined threshold (Rautiainen et al., 2016, 2014). Based on the 

work of Roy et al. (2015), using passive microwave data, we compared three methods to calculate seasonal reference values 

(Section 4.2.1). The first method (‟average”) uses the average backscatter coefficients for a period during which, based on soil 

and air temperature measurements, the soil is completely frozen (December 1, 2018, to April 1, 2019; 𝜎fr) or completely thawed 200 

(July 1, 2019, to September 1, 2019; 𝜎th). The second method (‟median”) uses the median backscatter coefficients over the 

same periods. Finally, the third method (‟average-5”) uses the average of the five lowest backscatter observations during the 

frozen period, and the average of the five highest backscatter values during the thawed period. Frozen (𝜎fr) and thawed (𝜎th) 

seasonal reference values are calculated for every pixel independently, and subsequently used to calculate the seasonal scale 

factor (∆) for every observation at time t as: 205 

∆(𝑡) =  
𝜎(𝑡) − 𝜎𝑓𝑟

𝜎𝑡ℎ − 𝜎𝑓𝑟
 (3)  

where 𝜎(𝑡) is the backscattering coefficient for one pixel at time t. Each standardized ∆(𝑡) values are then classified as frozen 

or thawed with a defined threshold (T) such that: 

{
∆(𝑡)  ≤ 𝑇 → 𝐹𝑟𝑜𝑧𝑒𝑛
∆(𝑡)  > 𝑇 → 𝑇ℎ𝑎𝑤𝑒𝑑

 (4) 

The threshold (T) was optimized by calculating the accuracy of the classification for threshold values ranging between 0 and 1, 210 

at an increment of 0.01 using Eq. 5 on the ten reference sites. Dth-fr(sol) and Dth-fr(air) were used as reference values to calculate 

the amount of good observation (#good observation) for the classification with every increment of thresholds (Section 4.2.2).  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
#𝑔𝑜𝑜𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

#𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 x 100 (5) 

3.3 Case study 

3.3.1 Surface F/T maps 215 

The optimized threshold, defined with the ten reference sites, was then used to create the surface F/T maps covering the IMA 

and its surroundings (IMA+; Figure 1.). The algorithm was applied on a cell-by-cell basis to retrieve the transition onset for 

F-2018, F-2019 and S-2019. We applied a hydrographic mask to remove any non-terrestrial pixel. Pixels with equal or higher 

frozen than thawed reference values (𝜎𝑓𝑟 ≥  𝜎𝑡ℎ) were also discarded. The temporal evolution of the backscatter in those cases 

did not allow for the detection of the dielectric discontinuity between soil state during the transition seasons, potentially linked 220 

to the presence of rocks of higher rugosity inside the pixels. Also, since Tair was considered constant across our study area, 

detected freezing and thawing dates falling outside the 60-day periods defined around Dth(air) and Dfr(air) were considered false 

detections, and were therefore discarded during the creation of the surface F/T maps. We chose to use the Total H power for 

the creation of the F/T maps to decrease the impact of the target orientation (e.g., vegetation distribution). Furthermore, by 

using this approach, we also increased the signal-to-noise ratio (SNR; Entekhabi et al., 2014), linked to the increase in signal 225 

quantity.  

 

3.3.2 Ecotypes analysis 

To analyze the impact of ecotypes on the surface F/T DOY, we compared the surface F/T maps derived from HH+HV to the 

resampled ecotypes map, and calculated the mean surface and standard deviation of surface F/T DOY per ecotype. A 230 

generalized least square model (GLS) was used to estimate values of surface freezing and thawing DOY per ecotype class with 

standard error. We created 3 models, one per transition season (freezing transition 2018 and 2019 and thawing transition 2019) 

for the Total H power dataset. A variance and spatial autocorrelation structure were defined in the models.. F/T transition DOY 

derived from the models were used to establish if the differences of the timing in transition DOY between ecotype class were 

statistically significant. 235 

4 Results 

4.1 Incidence angle normalization 

Figure 4 compares the temporal evolution of backscatter with the same Sentinel-1 (Figure 4a, b) and RADARSAT-2 

(Figure 4c, d) pixel, after the basic preprocessing (e.g., before incidence angle normalization) and after the incidence angle 

normalization. The incidence angle normalization decreases the noise in the temporal signature by reducing the impact of 240 

multiple orbits for a given pixel. It reduces the incidence angle dependency of each observation, allowing a greater distinction 

between freeze and thaw signals. For winter months, we found that the normalization, on average, decreased the signal standard 
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deviation by 39%, 46% and 33% for HH, HV and HH+HV polarizations for Sentinel-1 respectively, and by 37%, 84% and 

37% for RADARSAT-2 at the ten reference sites. For summer months, that decrease was 48%, 88% and 46% for Sentinel-1, 

and 37%, 69% and 36% for RADARSAT-2. 245 

 

 

Figure 4: Examples of the backscatter time series for one pixel of Sentinel-1 and RADARSAT-2 data for the study 

period after basic preprocessing (yellow) and incidence angle normalization (green). 

 250 

4.2 F/T detection algorithm development 

As mentioned earlier, we evaluated three different methods to deduce the seasonal reference value for the algorithm 

(Section 4.2.1). A threshold optimization was conducted from the calculation of accuracy for increments of threshold between 

0 and 1 (Section 4.2.2).  

 255 

4.2.1 Comparison of the 𝜎fr and 𝜎th reference value 

The two reference values 𝜎fr and 𝜎th were calculated independently for each of the reference sites. Table 3 shows that for the 

combination of the reference sites, the performance of the algorithm is not impacted by the approach used to determine the 

reference values over the complete study period, with a difference of less than 0.5% in detection accuracy. The same 

similarities were observed when calculating the accuracy per transition season for each reference value method. Those 260 

similarities between methods confirm that C-band signal can easily discern the two thermodynamic stages of the soil 

independently from the method chosen. Even though we observed close to no difference, the ‟average-5” method could be 
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more sensitive to the presence of residual noise or outlier backscatter measurements left in the time series, just as the ‟average” 

method could be. Therefore, we used the ‟median” method for the following analysis. 

 265 

Table 3: Multisensor F/T detection highest accuracy (%) calculated with Tsoil reference data, for the three reference 

values definitions of σfr and σt for the time series of 2018 to 2019. 
   σfr and σth definition 

    Average Median Average-5 

All 2018–2019 

HH 96.9 96.9 96.9 

HV 97.5 97.5 97.4 

HH+HV 97.2 97.2 97.4 

 

4.2.2 Threshold optimization 

Figure 5 shows the accuracy of the detection algorithm as a function of the threshold between 0 and 1 (at a 0.01 increment) on 270 

HH, HV and HH+HV datasets. The accuracy is calculated for the ten reference sites combined, with Tsoil (solid line) and Tair 

(dashed line) reference values over a) the entire time series; b) the freezing transition periods for 2018 and 2019 combined; 

and c) the thawing transitions for 2019. The algorithm applied over the entire time series (Figure 5a) suggests high accuracy 

(>95%) for threshold values ranging between 0.40 and 0.65 for all polarizations and temperature datasets. This overall 

classification accuracy provides a good initial assessment of the detection accuracy, but fails to assess the threshold behaviour 275 

during the surface F/T transition periods. Since the accuracy for classification values during summer and winter are close to 

100% for a threshold close to 1 (i.e., summer) or 0 (i.e., winter). The number of ‟good” observations is thus increased, which 

decreases the weight of each individual value in the accuracy calculation (Eq. 5). Therefore, the data from August 11 to 

October 10, 2018, and August 21 to October 20, 2019, (i.e., freezing seasons) and May 11 to July 10, 2019 (i.e., thawing 

season) was extracted from the time series to evaluate the behaviour of the algorithm during those key periods of freezing and 280 

thawing. Figure 5b and c show the difference in the retrieval accuracy along the increment of thresholds during the freezing 

and thawing periods respectively. Results show that a clear threshold value maximizing the accuracy exists between 0.50 and 

0.65 for the classification of the freezing period (Figure 5b) for all datasets. For the thawing transition, multiple threshold 

values across a larger range yield a high accuracy (Figure 5c). The signal classification during the thawing transition is largely 

insensitive to the threshold over a wide range of increments, where the accuracy remains mostly stable (0.2 to 0.6 for HH, 0.3 285 

to 0.7 for HV and 0.2 to 0.7 for HH+HV polarization). A common threshold for both transition periods could then be considered 

for the surface F/T detection. Figure 5c also suggests that in the classification accuracy, the soil temperature performs better 

by almost 10% when compared to air temperature over the range of thresholds presented. We therefore chose the optimized 

threshold from the best accuracy compared to Tsoil measurements for the combination of both transition seasons. A threshold 

of 0.56 was defined as maximizing the accuracy of transition seasons for HH polarization and of 0.53 for HV polarization 290 

(Table 4).  
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Figure 5: Accuracy of the seasonal algorithm over 0.01 increments on the threshold for (a) the entire time series of 2018 

to 2019, (b) the freezing transition of 2018 and 2019, and (c) the thawing transition of 2019. 295 

 

Since both polarizations show similar accuracy results for the F/T detection, the combination of the two polarizations also 

gives similar high results. The same threshold optimization was done on the Total H power time series and a threshold of 0.62 

was found to optimize the accuracy of detection (Table 4).  

 300 

Table 4: Accuracy for the combined transition period (F-2018, S-2019 and F-2019) with optimized threshold. 

 Threshold 
Accuracy of transition 

period 

HH 0.56 93.1% 

HV 0.53 93.8% 

HH+HV 0.62 93.6% 

 

4.3 Case study: impact of ecotype on surface F/T for a low arctic environment 

We created surface F/T maps with the optimized threshold of 0.62 using the Total H power over the three transition seasons, 

yielding three maps (Fig. 6) for the IMA+, one for each transition season. Depending on the transition season, between 74% 305 

and 81% of the original area appear in those maps after applying the masks (see Section 3.3). Table 5 shows the mean DOY 

for freezing and thawing transition seasons from 2018 and 2019 with the standard deviation calculated from the maps. For 

average DOY detected, S-2019 shows a higher standard deviation than F-2018 and F-2019. Overall, we can see that in 2019, 

the soil froze around ten days later than in 2018.   

 310 
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Table 5: Mean transition day of year (DOY) for the IMA+ with standard deviation in brackets for the three transition 

seasons. 315 

  Transition DOY 

Freezing transition 
2018 253.7 (2.6) 

2019 265.0 (2.1) 

Thawing transition 2019 167.3 (3.9) 

 

 

Figure 6: Freeze and thaw DOY maps for the IMA + area using HH+HV for F-2018 (a), S-2019 (c) and F-2019 (d). 

Areas without data appear in white. The ecotype data extent for the Greiner Lake watershed is shown in (b) with the 

F/T map extent in red.  320 

 

We investigated potential relationships between surface F/T DOYs and ecotypes, given that different ecotypes have different 

soil and vegetation moisture levels (i.e., thermal conductivity) implying consequences on the surface F/T cycles. Table 6 shows 

the mean and standard deviation of freezing and thawing DOY defined with HH+HV over the three transition seasons per 

ecotype class. The range, which is quite small for all seasons, represents the difference between the mean surface F/T DOY of 325 

the first and the last ecotype to transition for each season. 
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Table 6: Mean and standard deviation of surface F/T DOY for each ecotype class using Total H power (HH+HV) for 

the three transition seasons. Ecotypes appear according to their soil moisture regime (SMR) from subxeric to hydric 

(i.e., dry to wet). 330 

SMR Ecotype F-2018 T-2019 F-2019 

Subxerix Lithic mountain avens—Curly sedge (open 75‒90%) 252.9 (3.1) 168.5 (3.3) 266.4 (4.1) 

Submesic Lithic mountain—Curly sedge (open 25‒75%) 253.2 (1.9) 168.1 (3.7) 265.2 (2.2) 

 Turfy mountain avens—Curly sedge (open <25%) 253.8 (1.2) 166.6 (4.7) 265.4 (2.5) 

Subhygric Subhygric communities 254.2 (2.6) 166.2 (4.4) 264.9 (0.8) 

Hygric Shrub—Sedge—Mountain avens 253.5 (1.8) 165.3 (2.0) 264.9 (0.5) 

 Productive sedge fen 254.3 (1.0) 167.4 (2.8) 264.8 (0.7) 

Hydric Hydric sedge fen 255.2 (2.1) 166.7 (3.8) 264.9 (0.4) 

 Range                2.4               3.2               1.7 

 

Three GLS models were created to establish if a statistical difference exists between the surface F/T DOY of each ecotype 

classes per transition seasons. Fig. 7 shows the model estimates values for freezing (Fig. 7a, c) and thawing (Fig. 7b) transition 

seasons along with standard deviation. For F-2018, drier ecotypes tend to freeze sooner than hydric ecotypes, and for F-2019, 

only the class Lithic Mountain avens—Curly sedge (Open 75‒90%) shows no overlap with the other classes. For the thawing 335 

transition season for 2019 (Fig. 9b), no clear trend is visible between the ecotypes but there is a clear difference between Lithic 

mountain—Curly sedge (Open 25‒75%) and Lithic Mountain avens—Curly sedge (Open 75‒90%) when compared with the 

other classes. Those drier and lower vegetation ecotypes (average 5 cm typical vegetation height) thaw later than the other 

more hydric and higher vegetation ecotypes (average 30 cm typical vegetation height).  

 340 

 

Figure 7: Estimated transition DOY from GLS models for 2018 freezing (a), 2019 thawing (b), and 2019 freezing (c) 

seasons with standard deviation per ecotypes classes. 
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5 Discussion 345 

This study combined C-band SAR observations from Sentinel-1 and RADARSAT-2 sensors to create a quasi-daily time series, 

which delivers a spatially detailed surface F/T detection capacity and precision across an arctic tundra environment. The 

seasonal threshold algorithm was effective in classifying SAR backscatter observation into frozen or thawed states. The 

influence of the snow cover on the freezing transition and the differences between the freezing and thawing detection ability 

are now discussed, along with the impact of the low arctic environment ecotypes on the transition onset for the case study 350 

region.  

5.1 Evaluation of the seasonal F/T algorithm 

5.1.1 Impact of snow on freezing transition 

The temporal evolution of Tsoil for the reference sites is quite different for F-2018 and F-2019 due to different meteorological 

conditions during those freezing transitions. Fig. 8a and b show the temporal evolution of Tsoil at two locations (IP8 and IP13) 355 

along with Tair. We chose the site IP8 and IP13 to illustrate the difference between moist and dry ecotypes respectively. The 

site IP8 is composed of a Sedge fen ecotype, which is a hydric ecosystem characterized as very moist to wet (McLennan et al., 

2018). The clear zero-curtain effect in higher moisture ecotype is highlighted during F-2018 in IP8 (Sedge fen), with the soil 

temperature remaining close to 0 ºC over a longer period, before freezing completely (Domine et al., 2018). This is different 

compared to the drier IP13 site located in the Unvegetated (open >99%) ecotype. In addition to the difference due to soil 360 

moisture, we examined snow cover information from the IMS Daily Northern Hemisphere Snow and Ice Analysis (U.S. 

National Ice Center, 2008). This dataset provides information at 1 km to determine the snow onset (>40% coverage of 1 km) 

for these two transition seasons. We found that snow arrived almost one month later in 2019 (October 9, 2019) than in 2018 

(September 11, 2018). The zero-curtain period is increased when snow covers the ground and isolates the soil from the cold 

air temperatures (Yi et al., 2018). We observed this with the soil temperature of the Sedge fen ecotype during F-2018 (Fig. 8a) 365 

when compared to the same location during F-2019 (Fig. 8b). On the other hand, the absence of snow cover increases cooling 

of the soil from the air, leading to a more direct freeze for both ecotypes (Fig. 8b).  This is illustrated in Fig. 8b, when both i-

Buttons freeze concurrently with Tair falling below freezing in F-2019. A clearer distinction between states is reflected in the 

C-band signal with a faster and greater decrease of backscatter between thawed and frozen soil in the F-2019 time series for 

both the Sedge fen and the unvegetated ecotype as shown in Fig. 8d compared to Fig. 8c. Interestingly, despite the difference 370 

in the soil moisture regime between the two sites, the backscattering trends are similar, with slightly higher σ0 at IP13 in winter, 

probably related to the lower fraction of ice in the soil. 

 

Furthermore, Fig. 8a shows that the decrease in the backscatter signal agrees with the start of the zero-curtain effect as 

measured at 2 cm in the soil. This result highlights that even though Tsoil is not below zero, like for F-2018, the microwave 375 

signal decreases following the dielectric discontinuity of the soil surface when Tsoil is close to 0 ºC, as observed in Rowlandson 
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et al., 2018, thus making the C-Band signal sensitive to the beginning of the zero curtain. Since the signal at C-band frequency 

is sensitive to the soil surface, we hypothesis that, at the beginning of the zero curtain and around 0 ºC, a thin frozen layer (i.e., 

a change in the water phase) appears at the very top of the soil, creating a dielectric discontinuity and thus resulting in a 

backscatter decrease. Also, we chose the i-Buttons location to be representative of a homogeneous patch of land cover. 380 

However, the SAR pixels cover a soil surface of 2 500 m2. During F-2018, the start of the gradual backscatter decrease 

observed before Tsoil reached 0 ºC could be explained by the averaging of the soil contribution inside the pixels. Indeed, the 

punctual measurements of Tsoil do not represent the full extent covered by the pixels especially when isolating snow is present 

on the ground, increasing the zero-curtain effect for higher ground moisture (Domine et al., 2018). 

 385 

 

Figure 8: Surface soil temperature for two i-Buttons sites (IP8 and IP13) and air temperature (top) with HH+HV 

backscatter multisensor time series (bottom) for Sedge fen (IP8) site. Presence of snow on the ground is shown in grey 

for 2018 (left) and 2019 (right) freezing periods. 

 390 

As for the detection capacity of the algorithm, the faster decrease in the signal, showing a clearer distinction between surface 

states, resulted in higher accuracies for F-2019 classification (Fig. 9), meaning less uncertainty in the detection, than for F-

2018 for every threshold increment. Nonetheless, the C-band signal was sensitive to the freezing onset of the surface with a 
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decrease of 3‒4 dB for the two fall seasons, with an accuracy higher than 93% independently from the presence of snow 

compared to Tsoil reference values.  395 

 

 

Figure 9: Accuracy, for every increment of threshold for HH+HV time series, for F-2018 and F-2019 independently. 

 

5.1.2 Difference between freeze and thaw detection accuracy 400 

Dividing the signal into freezing and thawing transition seasons during the threshold optimization showed a clear difference 

between the signal behavior for those two seasons, linked to the different processes driving those transitions. Regardless, 

Fig. 5b and 5c showed that we could use a common threshold definition for both transition seasons since, for the thawing 

classification, the accuracy is nearly independent from the change in threshold. This can be explained by the behavior of the 

signal during the thawing season, for which we observe a clear difference in backscatter between frozen and thawed surface. 405 

Generally, it is expected that the surface thaw onset happening under wet snow would be difficult to monitor, because wet 

snow is mostly opaque to microwave (i.e., surface scattering) (Ulaby et al., 1986). The dielectric properties of snow are defined 

in two distinct phases: (1) dry snow, having a low dielectric constant related to the absence of liquid water within it; and (2) 

wet snow, having a high dielectric constant related to the presence of liquid water in the air-ice mixture (Langlois et al., 2007). 

The C-band signal would then decrease with the presence of wet snow on the ground (Tsai et al., 2019), which decreases the 410 

penetration depth and increases the surface scattering of the air and snow interface as air temperatures rise above zero in the 

spring. In fact, in the SAR temporal series, the backscattering coefficient decreases when air temperature rises above 0 °C. 

However, that decrease is rather small because the backscatter of frozen tundra soil is already low. This signal intensity 

decrease is followed by a sharp increase of the order of 3‒5 dB related to ground surface thawing. Hence, the increase in Tair 

during spring matches the start of snowmelt. However, our results show a strong agreement of this increase with soil 415 

temperature rising above 0 °C, suggesting, that the sharp backscatter increase is an indication of wet snow turning into exposed 

thawed soil. Even though the C-band signal is affected by the presence of wet snow on the ground, the fact that the wet snow 
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signal and the thawed soil seem to happen almost at the same time, could indicate that the detection of soil surface thawing 

during the spring using C-band SAR observations is possible considering the strong agreements obtained with the soil surface 

temperature in the Arctic’s tundra environment. Nevertheless, to fully understand the thawing signal in such environment, the 420 

used of a more comprehensive dataset that include snow depth, snow temperature and snow liquid water content for different 

conditions (years and area) would be necessary. Studies using ground-based radar could also help to better understand the 

processes leading to the thawing signal in spring for arctic environments (King et al., 2018, Rowlandson et al., 2018). 

5.2 Case study : Ecotypes effects on F/T DOY 

The Total H power allows removal of the polarization dependency of the signal to the target. The modelled differences between 425 

ecotypes classes for the three transition seasons would therefore be due to the impact of different ecotypes on the surface 

thermal regime.  

 

Freeze DOY: As discussed in Section 5.1.1, the presence of snow on the ground increased the zero curtain during fall. It creates 

a bigger gap between freezing DOY from different moisture level soil during F-2018, and in contrast, the absence of snow on 430 

the ground during F-2019 leads to a more homogeneous freeze across all ecotypes (Table 6) as detected. The estimated value 

from the GLS models for the F-2019 dataset shows that the difference between classes is not significant for almost all classes, 

except for the class Lithic mountain avens—Curly sedge (Open 75‒90%). Once again, considering the sensitivity of the signal 

to the water phase change at the soil surface, those similarities could be linked to the absence of snow on the ground, making 

the soil surface more sensitive to the cooling of air temperature, regardless of the soil moisture level or ecotype. For F-2018, 435 

as shown earlier in Fig. 9a, the difference between ecotype in freezing DOY is strongly linked to the moisture level of the soil. 

As discussed earlier, a higher moisture soil tends to freeze later than a drier soil due to the presence of more latent heat linked 

to the presence of water, and this difference is increased by the presence of an insulating snowcover.  

 

Thaw DOY: For the thawing transition, the model estimated that drier ecotypes with lower vegetation thaw later than ecotypes 440 

with higher moisture and vegetation. Higher vegetation increases trapping of the snow, resulting in deeper snow cover (Sturm 

et al., 2001, 2005) which insulates the ground more effectively from the cooling of the air. Furthermore, the presence of higher 

vegetation increases the creation of depth hoar, which is an even more insulative snow cover (Domine et al., 2016). Sturm et 

al. (2005) suggested that deeper snow cover result in higher soil temperature throughout winter. Moreover, Domine et al. 

(2021) found that the branches buried in the snow cover absorb solar radiation under the snow and conduct heat to the ground, 445 

resulting in earlier thaw for vegetated areas. That could explain the faster thaw observed for higher vegetation ecotypes. We 

could then hypothesize that the difference observed in the thawing DOY is linked to vegetation.  
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6 Conclusion 

In this study, we applied C-band SAR data from multiple sensors to develop an algorithm to estimate freezing and thawing 

onset of the soil surface in an arctic environment near Cambridge Bay, NU. To analyze the potential of C-band SAR quasi-450 

daily time series for soil surface F/T onset detection in the low arctic tundra, we used the seasonal threshold algorithm defined 

in Derksen et al. (2017) and Rautiainen et al. (2016) with an optimized threshold. As a case study, we then evaluated the impact 

of ecotypes on the surface F/T DOY onset across the study site by comparing the surface F/T maps created from the Total H 

power (i.e., HH+HV) time series to ecotypes maps created by McLennan et al. (2018).  

 455 

Normalizing the incidence angle of the signal for both sensors helped to minimize noise in time series that combinesmultiple 

orbits of observation, and therefore provides an improved distinction between soil states. Likewise preprocessing the Sentinel-

1 and RADARSAT-2 imagery allowed to combine the two datasets to create a multisensor time series with a revisit time of 

just above one day for the key transition seasons of late 2018 and 2019. Since earlier studies have already suggested the spatial 

heterogeneity of the soil F/T, we had hypothesized that the spatial resolution (i.e., 50 × 50 m) of the SAR imagery would 460 

notably improve the retrieval of the spatial variability for the F/T onset transition when compared to passive microwave 

approaches. Parameterizing the seasonal threshold algorithm using Tsoil reference data from multiple sites produced an overall 

detection accuracy of over 96% for the whole time series, and over 91% for every transition period. To create surface F/T 

onset maps of the IMA+, we used the threshold defined with the accuracy optimization on surface Tsoil for the reference sites. 

Giving that soil type, moisture level and vegetation height directly impact the soil thermal regime, we hypothesized that the 465 

ecotype classes influence the soil surface F/T onset according to their characteristics. Results from the coupling of the surface 

F/T DOY maps with the ecotypes maps showed that differences between some ecotype classes are linked to moisture levels 

during freezing and to the presence of vegetation during thawing.  

 

Overall, this study demonstrated the capacity of C-band SAR backscatter intensity to detect surface F/T in the tundra 470 

environment. Note that the signal of wet snow limits accurate thawing transition detection. For future use of the algorithm, 

backscatter reference values (𝜎fr and 𝜎th) used inside the seasonal threshold algorithm could be updated by adding the new data 

for each year to decrease the impact of individual seasons. Also, average snow depth per ecotypes could help to validate if the 

retrieved thaw DOY is more linked to the presence of vegetation or snow cover. The surface F/T product created from this 

study demonstrates how, on one hand, the SAR backscatter can be used for surface F/T detection in low vegetation and shallow 475 

snow-covered terrain, and on the other hand, how it could be used as complementary data to improve modelling of the soil 

thermal regime.  

 

 

 480 
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