

1 **Impacts of Atmospheric Dynamics on Winter-Spring Sea-Ice and Snow**
2 **Thickness at a Coastal Site in East Antarctica**

4 Diana Francis^{1*}, Ricardo Fonseca¹, Narendra Nelli¹, Petra Heil^{2,3,4} Jonathan D. Wille⁵, Irina V.
5 Gorodetskaya⁶, Robert A. Massom^{2,3,7}

7 ¹ Environmental and Geophysical Sciences (ENGEOS) Lab, Earth Sciences Department, Khalifa
8 University, Abu Dhabi, 127788, United Arab Emirates

9 ² Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water,
10 Kingston, Tasmania, Australia

11 ³ Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of
12 Tasmania, Hobart, Tasmania, Australia

13 ⁴ Institute Snow and Avalanche Research, Swiss Federal Institute for Forest, Snow and Landscape
14 Research, Davos, Switzerland

15 ⁵ Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

16 ⁶ Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal

17 ⁷ The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania,
18 Australia

19 *Correspondence to: diana.francis@ku.ac.ae

20 **Abstract:**

21 Antarctic sea ice and its snow cover play a pivotal role in regulating the global climate system
22 through feedback on both the atmospheric and the oceanic circulations. Understanding the intricate
23 interplay between atmospheric dynamics, mixed-layer properties, and sea ice is essential for
24 accurate future climate change estimates. This study investigates the relationship between the
25 atmospheric conditions and sea-ice and snow characteristics at a coastal East Antarctic site using
26 *in-situ* measurements in winter-spring 2022. The observed sea-ice thickness peaks at 1.16 m in
27 mid-late October and drops to 0.06 m at the end of November, following the seasonal solar cycle.
28 On the other hand, the snow thickness variability is impacted by atmospheric forcing, with
29 significant contributions from precipitation, Foehn effects, blowing snow, and episodic warm and
30 moist air intrusions, which can lead to changes of up to 0.08 m within a day for a field that is in
31 the range 0.02-0.18 m during July-November 2022. A high-resolution simulation with the Polar
32 Weather Research and Forecasting model for the 14 July atmospheric river (AR), the only intense
33 AR that occurred during the study period, reveals the presence of AR rapids and highlights the
34 effects of katabatic winds from the Antarctic Plateau in slowing down the low-latitude air masses

35 as they approach the Antarctica coastline. The resulting convergence of the two air flows, with
36 meridional wind speeds in excess of 45 m s^{-1} , leads to precipitation rates above 3 mm hr^{-1} around
37 coastal Antarctica. The unsteady wind field in response to the passage of a deep low pressure
38 system with a central pressure that dropped to 931 hPa triggers satellite-derived pack ice drift
39 speeds in excess of 60 km day^{-1} , and promotes the opening up of a polynya in the Southern Ocean
40 around $64^\circ\text{S}, 45^\circ\text{E}$ from 14 to 22 July. Our study highlights the fact that AR events don't lead to a net
41 snow accumulation all times as evidenced by the in-situ measurements. This depends on wind and
42 temperature conditions at the surface. Our findings contribute to a better understanding of the complex
43 interactions between the atmosphere and the cryosphere, contributing to a better understanding of
44 the surface mass balance processes and hence providing valuable insights for improved climate
45 modeling and future projections

46

47 **Keywords:**

48 Sea Ice, Snow Thickness, PolarWRF, Atmospheric River, Katabatic winds, Foehn Effects,
49 Antarctica

50

51 **1. Introduction**

52 Sea ice, which forms from the freezing of seawater and covers 3-6% of the total surface area
53 of the planet, plays multiple crucial roles in the Earth's climate system and high-latitude
54 ecosystems (Thomas, 2017; Eayrs et al., 2019). Changes in the formation and melt rates, extent,
55 seasonality and thickness of Antarctic sea ice - both in the form of drifting pack ice and less
56 extensive stationary near-shore landfast ice (fast ice) attached to coastal margins, sea floor and
57 grounded icebergs (Fraser et al., 2023) - substantially impact the heat and salinity content of the
58 ocean, and hence the oceanic circulation (e.g., Haumann et al., 2016; Li and Fedorov, 2021). At
59 the same time, breaks in the sea ice such as leads and recurrent and persistent polynyas (Barber
60 and Massom, 2007; Francis et al. 2019, 2020; Fonseca et al., 2023) act as a thermal forcing, with
61 the exposure of ice-free ocean water leading to sensible heat fluxes that can exceed 2000 W m^{-2}
62 and heat up the atmosphere aloft (Guest, 2021), directly impacting the atmospheric flow (Trusel
63 et al., 2023; Zhang and Screen, 2021). Both oceanic and atmospheric forcing directly affect sea
64 ice and its spatial extent, seasonality and thickness (Wang et al., 2020; Yang et al., 2021), within
65 a finely-coupled interactive ocean-sea ice-atmosphere system. At the same time, decreases in sea-
66 ice thickness (SIT), sea-ice extent (SIE), and its snow cover have strong potential to impact low-
67 latitude weather patterns (England et al., 2020), disrupt the global surface energy balance (Riihelä
68 et al., 2021), and amplify climate warming at high southern latitudes (Williams et al., 2023),
69 leading to increased sea-ice loss that is likely to be further accelerated by poorly-understood ocean-
70 ice-snow-atmosphere feedback mechanisms (Goosse et al., 2023).

71

72 The Antarctic sea ice-snow system is particularly impacted by two atmospheric processes: (1)
73 strong katabatic winds that cascade seawards off the ice sheet and promote sublimation of the sea

74 ice and its snow cover (Elvidge et al., 2020; Francis et al., 2023); and (2) a number of more
75 ephemeral but influential extreme atmospheric events in the form of atmospheric rivers (ARs;
76 Wille et al., 2025). Foehn effects are an important trigger of surface melting around Antarctica, as
77 the adiabatic compression of the downslope flow can lead to a marked increase in surface
78 temperature in excess of 15 K (Bozkurt et al., 2018), while the strong winds can promote iceberg
79 calving events (Miles et al., 2017). An AR is a narrow and highly elongated band of moisture-rich
80 air that originates in the tropics and subtropics and propagates polewards into the mid- and high-
81 latitudes (Wille et al., 2019; Gorodetskaya et al., 2020). ARs are associated with increased
82 humidity and cloudiness, leading to an enhancement of the downward longwave radiation flux
83 while still allowing some of the Sun's shortwave radiation to reach the surface (Djouma and
84 Holland, 2021). The resulting increase in the surface net radiation flux gives a warming tendency
85 and promotes surface melting (Gorodetskaya et al., 2013; Francis et al., 2020; Ghiz et al., 2021).
86

87 There are several examples of ARs triggering ice and snow melt around Antarctica: e.g. in the
88 Weddell Sea in 1973 and 2017 (Francis et al., 2020); off the Antarctic Peninsula in March 2015
89 (Bozkurt et al., 2018) and February 2022 (Gorodetskaya et al., 2023); around the Amery Ice Shelf
90 in September 2019 (Francis et al., 2021), in West Antarctica (Francis et al., 2023); and in the Ross
91 Sea (Fonseca et al., 2023). The recent study of Liang et al. (2023) highlights that the largest impact
92 of ARs on sea ice is found on the marginal ice zone, where the SIE reduction may exceed 10%
93 day⁻¹. Reduced coastal offshore SIE may also foster a deeper penetration of the low-latitude air
94 onto the inland ice sheet, as is the case in the March 2022 “heat wave” in East Antarctica (Wille
95 et al., 2024a,b). While ARs themselves are relatively rare and short-lived in coastal Antarctica,
96 with a frequency of ~3 days year⁻¹ at any given location, the warm and moist air masses they
97 transport can make a substantial contribution to the surface mass balance (SMB) and are linked to
98 extreme precipitation events (Massom et al., 2004; Wille et al. 2021, 2025). For example, in East
99 Antarctica, a series of ARs delivered an estimated 44% of the total mean-annual snow
100 accumulation to the high interior ice sheet over an 18-day period in the austral summer of 2001/2
101 (Massom et al., 2004), and AR-associated rainfall has exceeded 30% of the total annual
102 precipitation (Mclennann et al. 2022, 2023). These studies highlight the impacts of extreme
103 weather events on the coupled Antarctic ocean-ice-snow-atmosphere system and stress the need
104 to better understand the role of low-latitude air incursions on the SMB and state of both the
105 Antarctic Ice Sheet and its surrounding sea-ice cover - and how these may change in a warming
106 climate.

107
108 Here, we investigate the impact of atmospheric dynamics on variability in both SIT and snow
109 thickness (ST) state through analysis of high-resolution *in-situ* measurements obtained by an
110 autonomous Snow Ice Mass Balance Array (SIMBA) buoy (Jackson et al., 2013), combined with
111 atmospheric reanalysis and modeling products. The SIMBA buoy was deployed from July to
112 November 2022 at a coastal fast ice site close to Mawson Station in East Antarctica (67.5912°S,
113 62.8563°E), which will be denoted as “Khalifa SIMBA site on fast ice off Mawson Station”

114 throughout the manuscript. This station is selected as it has amongst the highest AR frequency in
115 the continent, also with a statistically significant positive trend in AR frequency and intensity
116 during 1980-2020 (Wille et al., 2025). The overall aim of this study is to further our understanding
117 of the temporal evolution of the thickness and vertical structure of coastal sea ice and its snow
118 cover in East Antarctica, and over a six-month period spanning austral winter through late spring,
119 when ARs are more frequent in the region (Wille et al., 2025). The motivation is to provide new
120 observations and process information that will aid numerical-modelling efforts to more accurately
121 simulate the annual cycle of the Southern Ocean sea ice, and observed trends and variability in its
122 distribution (and ultimately thickness; c.f. Eayrs et al., 2019). Such an advance is crucial to helping
123 rectify present low confidence in model projections of future climate and Antarctic sea-ice
124 conditions that currently diverge for different models and scenarios (Roach et al., 2020). This study
125 is also timely given the precipitous downward trend in Antarctic sea ice extent (SIE) since 2016
126 (Parkinson, 2019), an extraordinary record-low annual minimum in February 2023 and a sudden
127 departure to major sea-ice deficits through the winters of 2023 and 2024 (Reid et al., 2024). This
128 turn of events suggests that Antarctic sea ice has abruptly shifted into a new low-extent regime
129 (Purich and Doddridge, 2023; Hobbs et al., 2024) due to complex changes in the coupled ocean-
130 ice-snow-atmosphere system that are far from well understood. Much less well known - though no
131 less important - are the thicknesses of the ice and its snow thickness (ST) and whether these are
132 changing. Obtaining more accurate and complete information on the Antarctic SIT distribution
133 and its ST and precipitation rates - and the factors and processes controlling them - is a critical
134 high priority in climate science, particularly in light of climate variability and change (Webster et
135 al., 2018; Meredith et al., 2021).

136
137 Accurate knowledge of SIT, SIE and concentration is needed to estimate sea-ice volume, a field
138 that is more sensitive to climate change than SIE and SIT alone (Liu et al., 2020) and is also directly
139 parameterized in numerical models (Massonnet et al., 2013; Zhang, 2014; Schroeter and Sandery,
140 2022). Current large uncertainties in these quantities prevent proper model evaluation and
141 undermine confidence in model predictions of future Antarctic sea-ice conditions and global
142 weather and climate (Maksym et al. 2008, 2012). Satellite radar and laser altimeters hold the key
143 to large-scale estimation and monitoring of both SIT (e.g., Fonseca et al., 2023) and ST (Kacimi
144 and Kwok, 2020). Kurtz and Markus (2012) used the measurements collected by the Ice, Cloud,
145 and land Elevation Satellite (ICESat) to estimate the ice thickness around Antarctica. A
146 comparison with ship-based observations revealed a mean difference of 0.15 m for the period
147 2003-2008, with a typical SIT of 1-1.5 m. Kacimi and Kwok (2020), using both laser (ICESat-2)
148 and radar (CryoSat-2) altimeter estimates for the period 1 April to 16 November 2019, found the
149 thickest sea ice in the western Weddell Sea sector (predominantly multi-year sea ice), with a mean
150 thickness of 2 m, and the thinnest ice around polynyas in the Ross Sea and off the Ronne Ice Shelf.
151 Coincident use of laser and radar altimetry also enables basin-scale estimates of ST. The thickest
152 snow was again observed in the western Weddell Sea (0.228 ± 12.4 m in May) and the coastal
153 region of the Amundsen-Bellingshausen seas sector (0.314 ± 23.1 m in September), while the

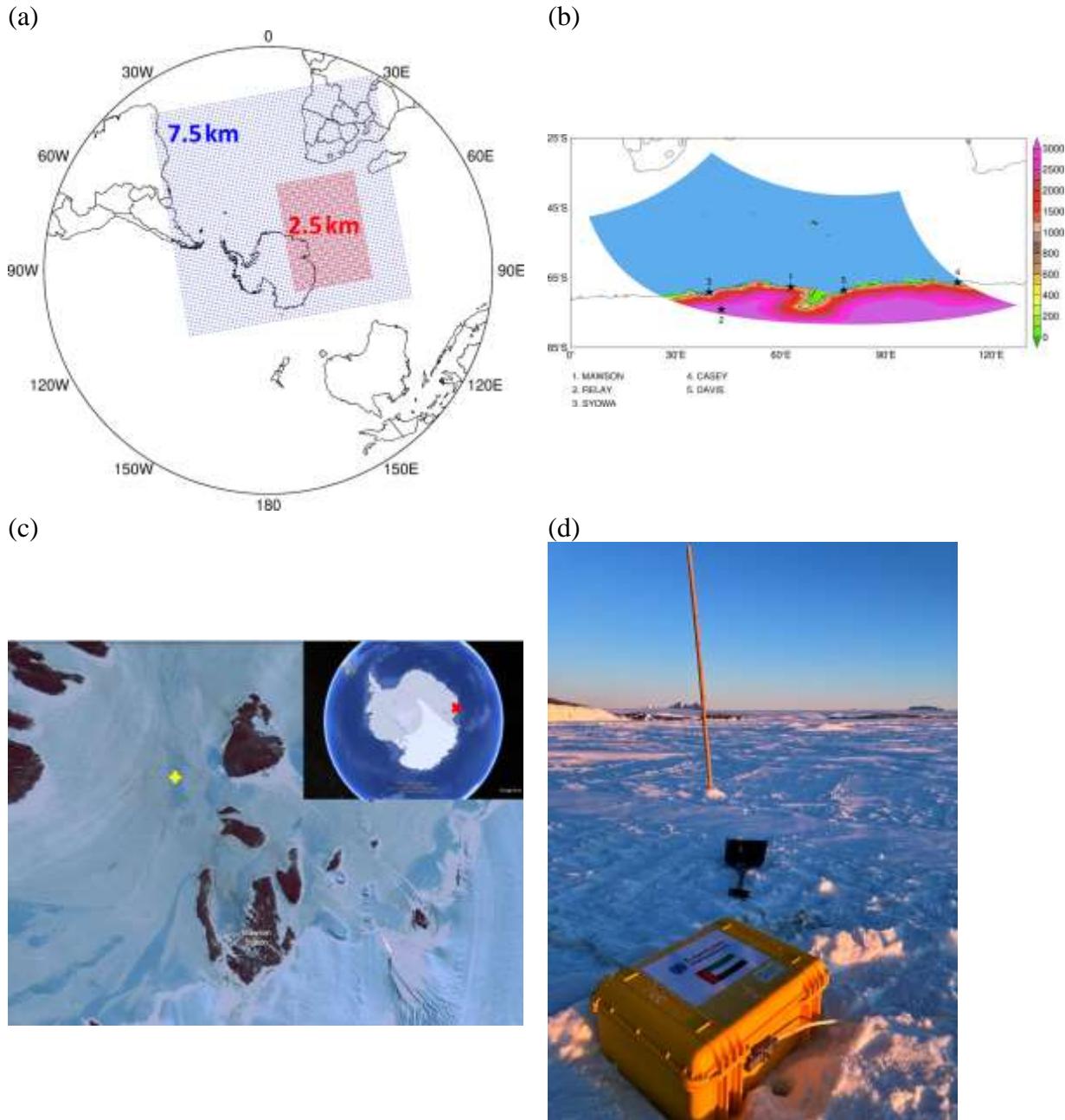
154 thinnest was in the Ross Sea (0.0735 ± 4.30 m in April) and the eastern Weddell Sea
155 (0.0821 ± 5.81 m in June) (Kacimi and Kwok, 2020). These studies focussed on pack ice, but a
156 similar range of values has been estimated for the thickness of fast ice, such as off Mawson (Li et
157 al., 2022) and Davis (Heil, 2006) stations in East Antarctica. The SIMBA buoy provides high-
158 resolution measurements at a given location of the vertical temperature profile through the air-
159 snow-ice-upper ocean column, from which ST and SIT can be derived and monitored (Jackson et
160 al., 2013). Time series of such point observations provide invaluable gap-filling information on
161 the temporal evolution and state of the snow-sea ice system and its response to atmospheric and
162 oceanic variability. They also provide crucial information with which to both (1) calibrate the key
163 satellite SIT and ST data products, and (2) evaluate and improve numerical idealized column and
164 weather forecasting models (Hu et al., 2023; Plante et al., 2024; Sledd et al., 2024; Wang et al.,
165 2024a).

166

167 While there are a number of studies on *in-situ* SIT and ST measurements around Antarctica
168 (e.g., Worby et al., 2011; Xie et al., 2011; Liao et al., 2022), the area of East Antarctica around
169 Mawson Station, where extreme precipitation events in the form of ARs have become more
170 frequent and intense in the recent decades (Wille et al., 2025), has not been sampled. In addition,
171 these works do not delve deep into the processes responsible for the observed changes in SIT and
172 ST, which is a necessary step for refining Antarctic climate projections. The objectives of this
173 study are twofold: (1) to identify the mechanisms behind the variability of the *in-situ* measured
174 SIT and ST at Mawson Station during July-November 2022, and compare the measured values
175 with those estimated from remote sensing assets; and (ii) to perform high-resolution numerical
176 simulations for selected periods during the measurement campaign, in particular during extreme
177 weather events, to gain further insight into the role of atmospheric forcing on the SIT and ST. This
178 study will therefore contribute to further our understanding on the variability of the SIT and ST in
179 coastal Antarctica and the respective driver processes.

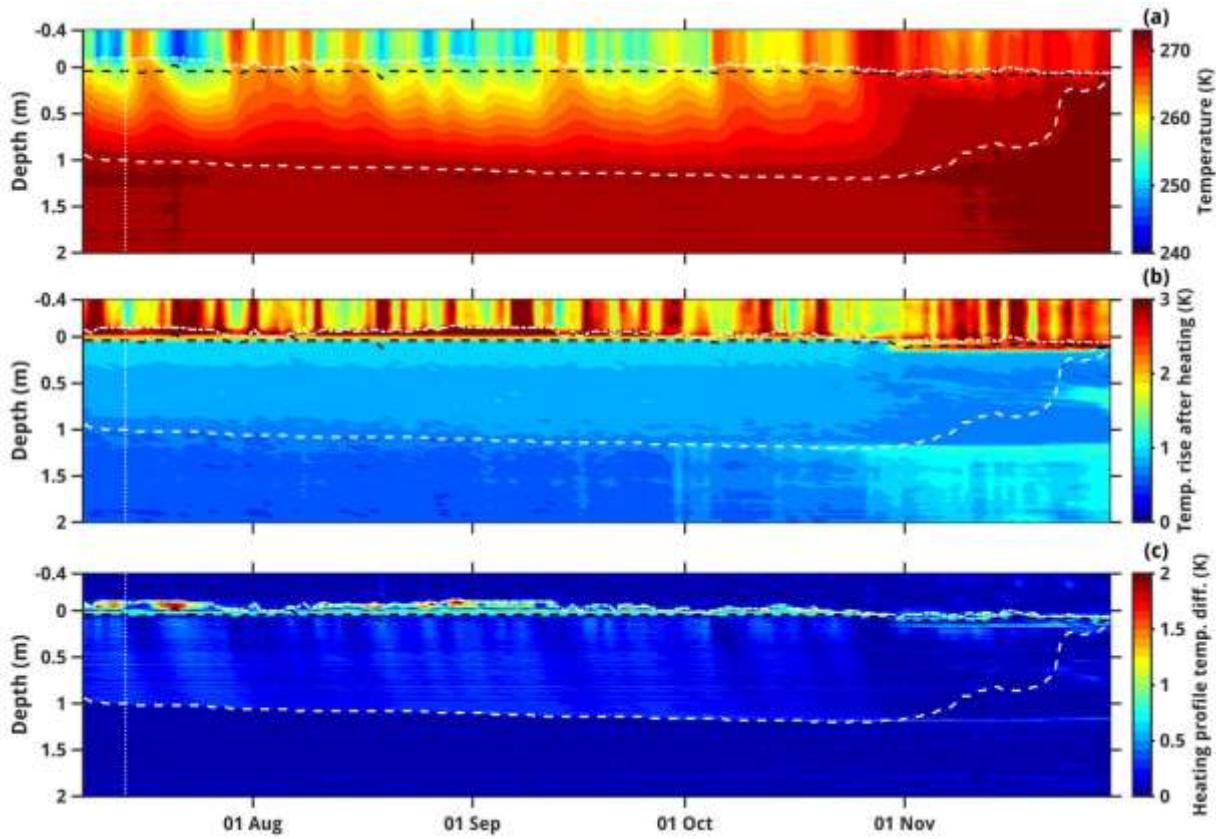
180

181 This paper is structured as follows. The observational datasets and model outputs and products
182 considered, and analysis techniques used, are described in Section 2. The measurements of SIT
183 and ST, including their variability and the mechanisms behind them, are discussed in Section 3.
184 Section 4 provides a case-study analysis of the period 11-16 July 2022, while in Section 5 the main
185 findings of the work are outlined and discussed.


186 **2. Methodology & Diagnostics**

187 **2.1. In-Situ Measurements at Khalifa SIMBA site off Mawson Station**

188 *In-situ* measurements of SIT and ST are obtained using a sea-ice mass-balance (SIMBA) unit
189 (Jackson et al., 2013). This SIMBA is deployed on landfast ice offshore from Mawson Station at
190 67.5912°S , 62.8563°E (Fig. 1c) on 7 July 2022, and remained *in-situ* until 7 December 2022. The


191 SIMBA unit consists of a 5 m-long thermistor string with a 0.02 m sensor spacing, a barometer for
192 surface air pressure, and an external sensor for near-surface ambient air temperature (Jackson et
193 al., 2013). During deployment, manual measurements of SIT and ST, as well as freeboard, are
194 recorded. The positions of the sensors relative to the interfaces are noted to establish the initial
195 state (on 7 July 2022). The measured SIT upon deployment is 0.988 m, the ST on top of the sea
196 ice is 0.156 m, and the sea-ice freeboard is 0.046 m. No manual validation or calibration is
197 conducted during the measurement period of 7 July - 7 December 2022.

198

Figure 1: PolarWRF Simulation: (a) Spatial extent of the 7.5 km (blue) and 2.5 km (red) PWRF grids used in the numerical simulations. (b) Spatial extent and orography (m) of the 2.5 km PWRF grid. The stars highlight the location of the five weather stations considered in this work. (c) SIMBA deployment site (yellow cross) on the fast ice about 1.8 km off Mawson Station. Image source: Landsat 8 acquired on 19 November 2022. The red cross in the inset image, taken from Google Earth Pro, shows where Mawson Station is located in Antarctica. (d) SIMBA instrument prior to deployment. Image credit: Peter Caithness.

199
200 The accuracy of the bus-addressable digital temperature sensing integrated circuit is ± 0.0625 K. A
201 resistor is mounted directly underneath each thermistor sensor. A low voltage power supply (8 V)
202 is connected to each sensor, to gently heat the sensor and its immediate surroundings. In this study,
203 heating is applied to the sensor chain for durations of 30 s and 120 s once per day, with four vertical
204 temperature profiles without heating also recorded daily. In this study, SIMBA data from 8 July to
205 30 November 2022 are used to assess the evolution of SIT and ST at the site. The measurements
206 are shown in Fig. 2. For the sensors 6 through 126, the actual temperature and the temperature rise
207 after 120 s heating are given in Fig. 2a and 2b, respectively, with Fig. 2c showing the difference
208 between the measurements of two adjacent temperature sensors after applying the heating.
209
210 The vertical temperature gradients in the air above the surface and in the water below the ice
211 bottom are generally very small (Jackson et al., 2013; Hoppmann et al., 2015; Liao et al., 2018).
212 After 120 s of heating, the rise in temperature is approximately 10 times higher in air than in ice
213 and water (Jackson et al., 2013). For any two adjacent sensors in the ice, and following the
214 algorithm detailed in Liao et al. (2018) based on a physical model applied to the SIMBA
215 measurements, the temperature difference should be ≤ 0.1875 K, whereas for two adjacent sensors
216 in snow, the temperature difference should be ≥ 0.4375 K. These thresholds are applied to the
217 temperature differences between adjacent sensors in the heating profile to identify the air-snow
218 and snow-ice interfaces (Jackson et al., 2013; Hoppmann et al., 2015; Liao et al., 2018). The ice-
219 water interface is identified using a statistical approach based on Liao et al. (2018). A section of
220 the thermistor string, spanning from the top of the sea ice to a few sensors below the water, is
221 selected. The seawater temperature near the ice bottom remains stable around the freezing point
222 (T_f). The temperature readings from this section are analyzed as a time series, and the most frequent
223 value is identified as T_f . Scanning from bottom up, the last sensor close to T_f is identified as the
224 ice bottom. The allowed temperature difference is 1.5 times the thermistor resolution of 0.0625 K.
225 The temporal evolutions of the three interface locations are plotted in Figs. 2a-c.

Figure 2: SIMBA measurements: (a) Temperature (K) evolution from the top of the chain through the ice down into the water (the zero line on the y-axis is at the snow-ice interface). (b) Temperature rise (K) after heating for 120 s. (c) Temperature difference (K) between adjacent sensors after applying the heating for 120 s. The vertical white dotted line indicates the day of AR occurrence at the site, 14 July. The horizontal dotted white line, black dashed line, and white dashed line give the air-snow (AS), snow-ice (SI), and ice-water (IW) interfaces, respectively.

226

227 **2.2. Observational and Reanalysis Datasets**

228 In addition to *in-situ* SIT and ST measurements, three observational datasets are considered in
 229 this work: (i) satellite-derived SIE and sea-ice velocity; (ii) ground-based observations at five
 230 weather stations, namely Mawson, Syowa, Relay, Casey, and Davis (Fig. 1b); and (iii) twice daily
 231 sounding profiles at the Mawson, Syowa, Casey, and Davis stations (stations #1 and 3-5 in Fig.
 232 1b). Data from the fifth generation of the European Centre for Medium Range Weather Forecasting
 233 reanalysis (ERA-5; Hersbach et al., 2020) are used to investigate the large-scale circulation and
 234 SMB during the study period. ERA-5 is regarded as one of the best reanalysis products currently

235 available over Antarctica and the Southern Ocean (Gossart et al., 2019; Dong et al., 2020). All of
236 these products are listed in Table 1.

237

Dataset	Specifications
In-situ Sea-Ice Thickness and Snow Thickness	SIT and ST measurements just offshore of Mawson Station (67.5912°S, 62.8563°E) using a SIMBA unit; data available from 7 July to 7 December 2022
Sea-Ice Extent	Satellite-derived daily SIE at 3.125 km resolution; data available from June 2002 - Present
Sea-Ice Velocity	Satellite-derived daily sea-ice velocity at 62.5 km resolution; data available from December 2009 - Present
Weather Station Data	Ground-based observations at Mawson (67.6017°S, 62.8753°E; January 1954 - Present), Relay (74.017°S, 43.062°E; November 2021 - Present), Syowa (69.0053°S, 39.5811°E; January 1994 - Present), Casey (66.2825°S, 110.5231°E; February 1989 - Present), and Davis (68.5744°S, 77.9672°E; January 1957 - Present) Stations
Sounding Profiles	Twice daily at Mawson (67.6017°S, 62.8753°E; January 1954 - Present), Syowa (69.0053°S, 39.5811°E; January 2021 - Present), Casey (66.2825°S, 110.5231°E; February 1989 - Present), and Davis (68.5744°S, 77.9672°E; January 1957 - Present) Stations
ERA-5 reanalysis	Hourly products at $0.25^{\circ} \times 0.25^{\circ}$ (~ 27 km) spatial resolution; available from January 1940 - Present

238

239 **Table 1: Observational and Reanalysis Datasets:** List of observational and reanalysis datasets used in
240 this study.

241

242 Daily SIE is derived from the measurements of sea-ice concentration collected by the
243 Advanced Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E) onboard the
244 National Aeronautics and Space Administration (NASA) Aqua satellite from June 2002 to October
245 2011, and from the observations taken by the AMSR2 onboard Japan Aerospace and Exploration
246 Agency's Global Change Observation Mission - Water (GCOM-W) satellite from July 2012 to
247 present (Spreen et al., 2008). Sea-ice velocity vectors, on the other hand, are obtained from the
248 measurements collected by the Special Sensor Microwave Imager/Sounder onboard the United
249 States Air Force Defense Meteorological Satellite Program, the Advanced Scatterometer onboard
250 the European Space Agency's Meteorological Operational satellite, and the GCOM-W AMSR2
251 (Lavergne et al., 2010). Both the SIE and sea-ice velocity products are used to gain insight into
252 the effects of the warm and moist air intrusions on the sea-ice state around Mawson Station, as

253 performed in previous studies for other parts of Antarctica (e.g., Francis et al., 2021; Fonseca et
254 al., 2023).
255

256 *In-situ* observations at multiple Automatic Weather Stations (AWSs) are used in the analysis
257 and model evaluation (Fig. 1b). These include: (i) 1-minute 2-m air temperature and humidity, 10-
258 m horizontal wind velocity, and sea-level pressure (SLP) observations at the Australian Antarctic
259 stations of Mawson, Casey, and Davis; (ii) 1-minute measurements of meteorological parameters
260 (2-m air temperature, SLP, 10-m horizontal wind velocity, and 2-m relative humidity) and
261 radiation fluxes (surface upward and downward and shortwave and longwave) at the coastal Syowa
262 Station; and (iii) 10-minute SLP, horizontal wind velocity, and 2-m air temperature and relative
263 humidity observations at the inland Relay Station. Also analyzed are data from atmospheric
264 sounding profiles acquired twice daily (at 00 and 12 UTC) at the Mawson, Syowa, Casey, and
265 Davis stations.

266 **2.3. Numerical Models**

267 Here we use version 4.3.3 of the Polar PWRF (Weather Research and Forecasting) model, a
268 version of the WRF model (Skamarock et al., 2019) optimized for the polar regions (Bromwich et
269 al., 2013; Hines et al., 2021; Xue et al., 2022; Zou et al., 2023), to simulate and investigate the AR
270 that impacted the Mac Robertson Land region on 14 July 2022. The model is run in a nested
271 configuration, with a 7.5km horizontal resolution grid domain comprising Antarctica, the Southern
272 Atlantic Ocean, southern Africa and the southwestern Indian Ocean, and a 2.5 km horizontal
273 resolution grid domain extending from the Southern Ocean just south of South Africa around 30°E
274 into coastal East Antarctica as far east as approximately 120°E (Fig. 1a). The choice of resolution,
275 in particular the 2.5 km grid that covers the bulk of the AR and associated warm and moist air
276 intrusion into East Antarctica, reflects the findings of Box et al. (2023) and Francis et al. (2024).
277 These studies stressed the need to properly resolve the fine-scale structure of an AR due to the
278 possible presence of AR rapid-like features embedded in the convective region, which can generate
279 copious amounts of precipitation and hence have a substantial impact on the SMB of the ice. AR
280 rapids are narrow (5-15 km wide), elongated (100-200 km long) and shallow (~3 km deep) linear
281 features within the AR that propagate at high speed ($>30 \text{ m s}^{-1}$) and last for more than 24 h. They
282 have been reported for an AR that impacted Greenland in September 2017 (Box et al., 2023) and
283 another that wreaked havoc in the Middle East in April 2023 (Francis et al., 2024). AR rapids are
284 distinct from mesoscale convective systems (MCSs; Houze, 2004; Feng et al., 2021; Nelli et al.,
285 2021), which propagate at a slower speed ($10-20 \text{ m s}^{-1}$), typically do not last as long (6-10h), and
286 generate broader (as opposed to linear) precipitation structures.

287 PWRF is run from 10 July 2022 at 00 UTC to 17 July 2022 at 00 UTC, comprising the only AR
288 that impacted the site during July-November 2022, with the first day regarded as spin-up and the
289 output discarded. The hourly outputs of the 7.5 km and 2.5 km grids are used for analysis. The
290 physics schemes selected, listed in Table 2, reflect the optimal model configuration for Antarctica

292 and the Southern Ocean (Zou et al. 2021a, 2021b, 2023). In order to prevent the large-scales in the
 293 model from drifting from the forcing fields, spectral nudging (Attada et al., 2021) is employed in
 294 both grids for spatial scales $\gtrsim 1,000$ km above ~ 800 hPa and excluding the boundary layer. Fields
 295 nudged include the horizontal wind components, the potential temperature perturbation, and the
 296 geopotential height. In the vertical, 60 levels are considered, with the lowest level above the surface
 297 at ~ 27 m and roughly 20 levels in the range of ~ 1 -6 km. The higher resolution in the low- to mid-
 298 troposphere is crucial to correctly representing the fine-scale variability of the warm and moist air
 299 masses impacting the site, and associated cloud processes (Rauber et al., 2020; Finlon et al., 2020).
 300

Physics Scheme	Option Selected
Cloud Microphysics	Two-moment Morrison-Milbrandt P3 (Morrison and Milbrandt, 2015), with Vignon adjustment to improve the simulation of mid-level mixed-phase clouds over the Southern Ocean (Hines et al., 2021; Vignon et al., 2021)
Planetary Boundary Layer	Mellor-Yamada-Nakanishi-Niino level 1.5 (MYNN; Nakanishi and Niino, 2006)
Radiation	Rapid Radiative Transfer Model for Global Circulation Models (Iacono et al., 2008) for shortwave and longwave radiation
Cumulus	Kain-Fritsch (Kain, 2004) with subgrid-scale cloud feedbacks to radiation (Alapaty et al., 2012) only in 7.5 km grid
Land Surface Model (LSM)	Noah LSM (Chen and Dudhia, 2001; Tewari et al., 2004)
Sea Surface Temperature (SST)	6-hourly ERA-5 SSTs + Zeng and Beljaars (2005) surface skin temperature scheme

301
 302 **Table 2: WRF Experimental Setup:** Physics scheme used in the WRF simulation.
 303
 304 PWRF is driven by 6-h ERA-5 data, with the SSTs and SIE used in the simulations taken from
 305 ERA-5. Due to the lack of availability of SIT in ERA-5, the model's default SIT value of 3 m is
 306 used in all sea-ice covered grid-boxes. The sea-ice albedo is parameterized as a function of air and
 307 skin temperature following Mills (2011), with the model explicitly predicting ST on sea ice. A
 308 sensitivity experiment is performed in which a more realistic representation of SIE and SIT is
 309 considered. In particular, satellite-derived values are used for SIE, extracted from the 3.125 km-
 310 resolution daily product available at the University of Bremen website (UoB, 2024), while the SIT
 311 estimates at Mawson are employed at all sea-ice covered pixels. A similar model performance is
 312 obtained with respect to the *in-situ* observations (not shown). Therefore, and for consistency with

313 the atmospheric forcing, the ERA-5's SIE and the PWRF's default SIT values are used in the
314 model runs.

315

316 The moisture sources that contributed to the AR during 11-16 July 2022 are diagnosed based
317 on 96-h back-trajectories obtained with the Hybrid Single-Particle Lagrangian Integrated
318 Trajectory (HYSPLIT; Stein et al., 2015) model driven by ERA-5 reanalysis data.

319 **2.4. Diagnostics and Metrics**

320 The performance of the PWRF model is assessed with the verification diagnostics proposed
321 by Koh et al. (2012) outlined in Supplement Section S1. In addition to the model bias, the two key
322 skill scores are (1) the normalized bias μ , defined as the ratio of the bias to the standard deviation
323 of the discrepancy between the model forecasts and observations; and (2) the normalized error
324 variance α , which accounts for both phase and amplitude errors. When $|\mu| < 0.5$ the model biases
325 can be regarded as not significant, while when $\alpha < 1$, the model forecasts are deemed to be
326 practically useful.

327 ARs are identified based on the Integrated Vapour Transport (IVT; $\text{kg m}^{-1} \text{s}^{-1}$), which is the
328 column integral of the water-vapour flux advected by the horizontal wind. It is quantified as

329
$$IVT = \sqrt{\left(\frac{1}{g} \int_{1000 \text{ hPa}}^{200 \text{ hPa}} q u \, dp\right)^2 + \left(\frac{1}{g} \int_{1000 \text{ hPa}}^{200 \text{ hPa}} q v \, dp\right)^2} \quad (1)$$

330 In equation (1), g is the gravitational acceleration (9.80665 m s^{-2}), q is the specific humidity (kg kg^{-1}), u is the zonal wind speed (m s^{-1}), v is the meridional wind speed (m s^{-1}), and dp is the
331 pressure difference between adjacent vertical levels (hPa). The criteria of Wille et al. (2021)
332 applied to ERA-5 data are used here to identify ARs. In particular, IVT has to exceed the 98th
333 percentile extracted for 1979-2022 at a given grid-box, and a minimum latitudinal extent of 20° is
334 required for the feature to be considered an AR. During the July to November 2022 study period,
335 the Khalifa SIMBA site on fast ice off Mawson Station is affected by one AR, on 14 July. This
336 event is selected for more in-depth analysis and modeling in Section 4. Large-scale circulation
337 patterns that favour ARs, including the presence of blocking and interaction with tropopause polar
338 vortices (TPVs), are also explored. Further details regarding the metrics used to diagnose them are
339 given in Supplementary Sections S2-S3.

340

342 The extratropical circulation can be modulated by tropical forcing, such as thermal (heating
343 and cooling) anomalies (Hoskins and Karoly, 1981; Hoskins et al., 2012). In order to explore
344 whether this occurs during the case study, the stationary wave activity flux that indicates the
345 direction of the anomalous stationary Rossby wave propagation, defined in Takaya and Nakamura
346 (2001), is derived equations (2a-b) and plotted.

347
$$W_X = \frac{p \cos(\phi)}{2|u|} \left\{ \frac{u}{a^2 \cos(\phi)^2} \left[\left(\frac{\partial \psi'}{\partial \lambda} \right)^2 - \psi' \frac{\partial^2 \psi'}{\partial \lambda^2} \right] + \frac{v}{a^2 \cos(\phi)} \left[\frac{\partial \psi'}{\partial \lambda} \frac{\partial \psi'}{\partial \phi} - \psi' \frac{\partial^2 \psi'}{\partial \lambda \partial \phi} \right] \right\} \quad (2a)$$

348

349
$$W_Y = \frac{p \cos(\phi)}{2|u|} \left\{ \frac{u}{a^2 \cos(\phi)} \left[\frac{\partial \psi'}{\partial \lambda} \frac{\partial \psi'}{\partial \phi} - \psi' \frac{\partial^2 \psi'}{\partial \lambda \partial \phi} \right] + \frac{v}{a^2} \left[\left(\frac{\partial \psi'}{\partial \phi} \right)^2 - \psi' \frac{\partial^2 \psi'}{\partial \phi^2} \right] \right\} \quad (2b)$$

350 In equations (2a-b), p is the ratio of the pressure level at which the W-vector is computed and
 351 1000 hPa, ϕ is the latitude, λ is the longitude, u and v are the zonal and meridional climatological
 352 wind speeds, respectively, $|u|$ is the climatological mean wind speed, and ψ' is the streamfunction
 353 anomaly.

354

355 Variability in the ST, and perhaps to a lesser extent the SIT, is directly related to the SMB,
 356 which can be expressed as

357
$$SMB = P - Q_{sfc} - M - Q_{snow} - D \quad (3)$$

358 where P is the precipitation rate (mostly snowfall), Q_{sfc} is the surface evaporation/sublimation
 359 rate, M is the surface melt and runoff rate, Q_{snow} is the blowing snow sublimation rate, and D is
 360 the blowing snow divergence rate term, all with units of mm w.e. hr^{-1} . Blowing snow refers to
 361 unconsolidated snow moved horizontally across the ice surface by winds above a certain threshold
 362 speed (Massom et al., 2001). As detailed in Francis et al. (2023), the P and M terms are directly
 363 extracted from ERA-5, for which the reanalysis values are in close agreement with satellite-derived
 364 estimates over Antarctica, while the remaining three (Q_{sfc} , Q_{snow} , D) are calculated using
 365 parameterization schemes, described in Supplement Section S4. The hourly PWRF output is also
 366 used to estimate the SMB for the 11-16 July 2022 case study, with M given by the decrease in ST
 367 when the air temperature is above freezing after accounting for the other processes. Positive values
 368 of SMB indicate an accumulation of snowfall at the site, while negative values represent a
 369 reduction due to melting, sublimation or wind erosion processes, or a combination of the three. It
 370 is also important to note that, following the convention of Dery and Yau (2002) adopted by Francis
 371 et al. (2023), positive values of Q_{sfc} indicate deposition while negative values indicate
 372 sublimation. For Q_{snow} , on the other hand, positive values indicate sublimation and negative
 373 values indicate deposition.

374 **3. Sea-Ice and Snow Thickness Variability**

375 In Figs. 3e-f, the derived values of ST and SIT from 8 July to 30 November 2022 at the Khalifa
 376 SIMBA site on fast ice off Mawson Station are plotted. The uncertainty, which is estimated to be
 377 7% for ST and 2% for SIT (Liao et al., 2018), is highlighted by the blue shading. The SIT exhibits
 378 a gradual increase starting on 8 July, peaking at 1.14-1.16 m from 19-24 October, followed by
 379 a steady decline to 0.06-0.10 m at the end of November. These values are comparable to those
 380 estimated for this region and time of year using satellite-derived products, which are typically in
 381 the range 0.50-1.50 m (Kacimi and Kwok, 2020). The ST on top of the ice, on the other hand,

382 exhibits pronounced day-to-day variations as high as 0.08 m, peaking in mid-August to early
383 September, and with values not exceeding 0.10 m from mid-September to the end of November.
384 These values are also in the range of those derived from satellite altimeter data for that coastal
385 region (Kacimi and Kwok, 2020).

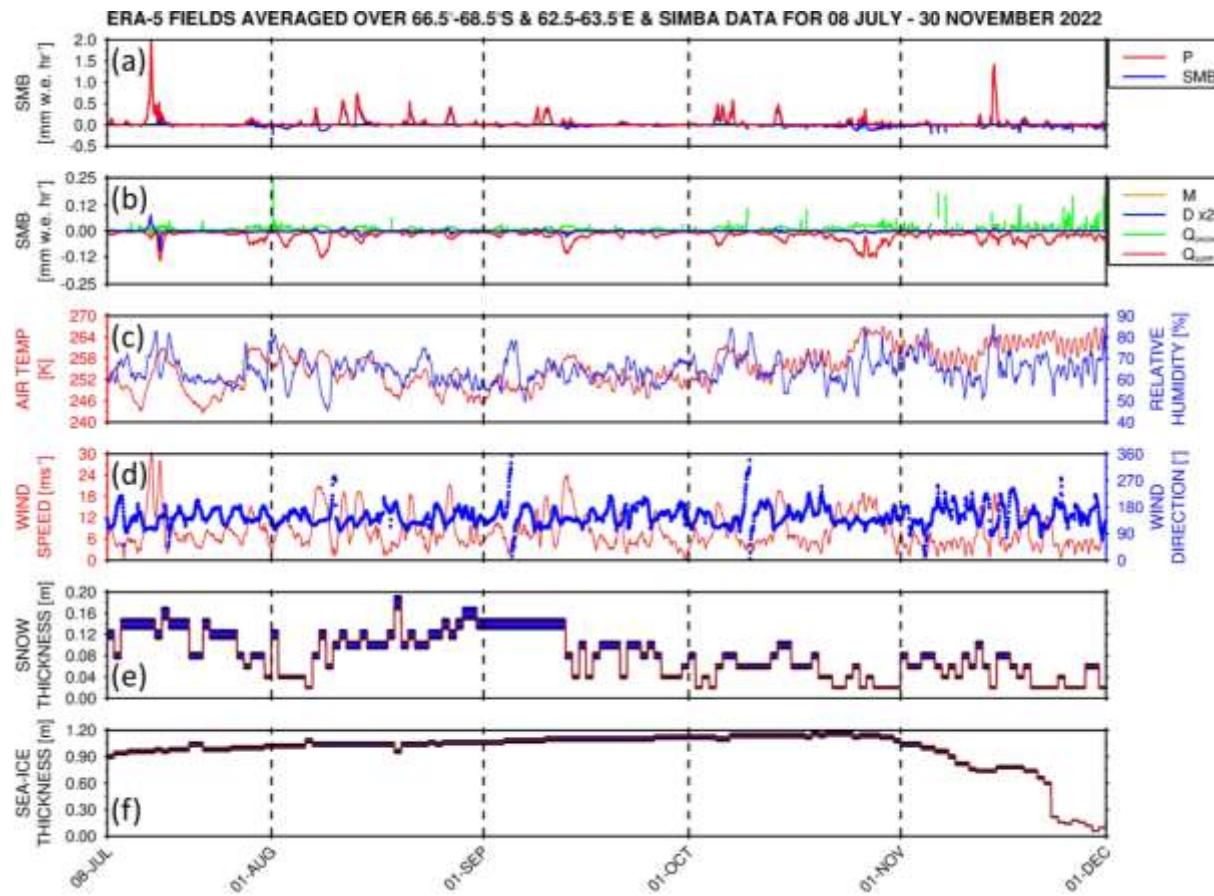
386

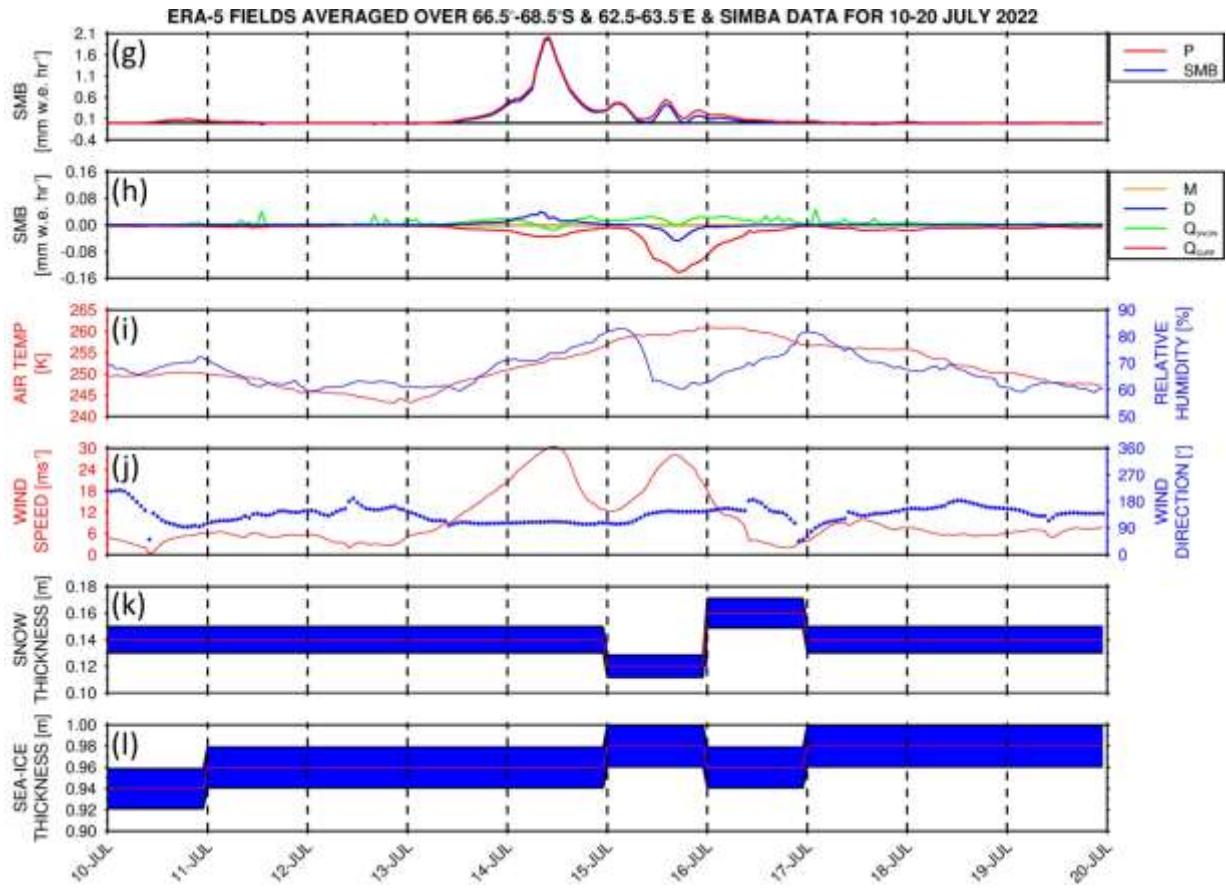
387 In order to explore whether atmospheric forcing could have played a role in the observed
388 variability in SIT and ST, the local SMB is estimated around the Khalifa SIMBA site on fast ice
389 off Mawson Station using ERA-5 data. An analysis of Figs. 2 and 3 reveals that the SIT appears
390 to be mostly driven by the growth (increase in SIT) and melting (decrease in SIT) at the ice bottom
391 which, on top of the oceanic heat flux (Heil et al., 1996; Haas, 2017), depends on the conductive
392 heat flux driven by the atmospheric forcing. The annual SIT decrease that initiates in late October
393 coincides with the time when the air temperature climbs above 265 K (Fig. 2a; Fig. 3c) and there
394 is increased solar insolation (note the strong diurnal variation in air temperature in Fig. 3c) at the
395 site. On the other hand, a comparison of the ST observations and the SMB estimated from ERA-5
396 (equation 3) reveals a good correspondence between the two (cf. Figs. 3a-b with 3e). In particular,
397 instances of positive SMB values (based on ERA-5) are typically associated with and followed by
398 an increase in the measured ST at the site (e.g., in early July, mid-August, early and mid-October
399 and mid-November), while negative SMB values from ERA-5 are accompanied by a decrease in
400 the observed ST (e.g., in late July-early August and in late September-early October). Besides
401 precipitation (snowfall) events, which can lead to an increase in ST by up to 0.06 m, Foehn winds
402 also modulate ST. These correspond to episodes when the wind direction is offshore (typically
403 southerly to southeasterly), with an increase in wind speed and air temperature and a decrease in
404 relative humidity. Several of these occurrences are seen during the study period, such as in mid-
405 July, early August, mid-September and late October, leading to a reduction in ST of up to 0.08 m
406 in a day (cf. Figs. 3c-e). This is not surprising, as the Khalifa SIMBA site on fast ice off Mawson
407 Station is exposed to katabatic winds flowing seaward off the interior plateau (Dare and Budd,
408 2001), which experience adiabatic compression as they descend towards coastal areas. Blowing
409 snow, albeit less frequently, also affects the variability of ST: e.g., at the beginning of August,
410 there is a 0.08 m decrease in ST during a blowing snow sublimation episode (Q_{snow} reaches 0.25
411 mm w.e. hr^{-1}) followed by a Foehn event (Figs. 3b-e). Blowing snow divergence, D , on the other
412 hand, plays a much-reduced role in the SMB, being of a larger magnitude during the passage of
413 the AR on 14 July that brought wind speeds in excess of $30 m s^{-1}$ (Figs. 3b-e). Surface melting is
414 unlikely to be a major driver of ST, as evidenced by the zero values of M during the measurement
415 period (Fig. 3b). This is because during July-November 2022, the surface and air temperatures at
416 the site remained below freezing (Figs. 2a and 3c).

417

418 Figs. 3g-1 zoom-in during 11-16 July, when an AR impacted the site. On 14 July, heavy
419 precipitation ($>2 mm w.e. hr^{-1}$) and strong easterly to southeasterly winds ($> 30 m s^{-1}$) occurred in
420 association with the AR, with a steady increase in air temperature from around 245 K on 13 July
421 to 256 K at the beginning of 15 July (Figs. 3g and 3i-j). On the following day, Foehn effects

422 occurred, as evidenced by the decrease in relative humidity from ~83% to 60%, the increase in
423 wind speed from 12 to 28 m s^{-1} with a shift from an easterly (96°) to a southeasterly (156°)
424 direction, and a further 4 K increase in air temperature, Figs. 3i-j. The negative Q_{sfc} , which
425 indicates surface sublimation, plays the largest role in the SMB during Foehn periods, Figs. 3g-h,
426 in line with Francis et al. (2023). The 0.02 m drop in ST from 15 to 16 July, Fig. 3k, can be
427 attributed to Foehn effects, while the absence of an increase in ST during the AR may be explained
428 by the strong winds that blow the snow away and prevent it from accumulating at the instrument's
429 location (note the positive blowing snow divergence, D , during the precipitation event, Fig. 3h).
430 In fact, it has been reported that strong katabatic winds have blown the snow away as quickly as it
431 falls on nearshore fast ice near the Mawson (Dare and Budd, 2001) and Syowa (Kawamura et al.,
432 1995) stations, resulting in very low accumulation close to the coast. ERA-5 predicts some
433 precipitation on 16 July, Fig. 3g, even though at much reduced levels compared to 14 July.
434 However, the fact that the wind speed is much lower on this day, dropping below 2 m s^{-1} (Fig. 3j),
435 allows for snow accumulation at the Khalifa SIMBA site on fast ice off Mawson Station that
436 contributes to the observed 0.04 m increase in ST. The 0.02 m variations in SIT during 15-16 July
437 (Fig. 3l) are within the uncertainty range and hence can be ascribed to uncertainties in the
438 methodology used for its estimation. It is important to note that a longer measurement period that
439 comprises multiple AR passages would be needed for a robust link between ARs and their effects
440 on ST and SIT to be established.


441


442 Figure 4a gives the Pook Blocking Index, defined in Equation S6, for the study period. It
443 reveals a few blocking events east of the site around 120°E in late July-early August, 150°E in mid-
444 September, and around the Dateline in mid- to late-November. Zoomed-in plots around the time
445 of the Mawson AR passage highlight the occurrence of blocking around the Dateline and 60°W
446 (Fig. 4d). The latter actually coincided with the passage of three consecutive ARs west of the
447 Antarctic Peninsula (Fig. 4f), with the air temperature climbing above freezing (Fig. 4e). Wille et
448 al. (2024c) and MacLennan et al. (2023) stressed that the occurrence of blocking can lead to the
449 development of an “AR family” (or multi-AR) event, with the counterclockwise flow around the
450 high-pressure and subsequent poleward advection of warm and moist low-latitude air masses
451 leading to a marked rise in temperature. This is evident in particular around 120°E in late July-
452 early August and mid-September, and around 150°E in late November (Figs. 4a-c). At the Khalifa
453 SIMBA site on fast ice off Mawson Station, on the other hand, blocking did not occur, as evidenced
454 by the small values of the Pook Blocking Index (Fig. 4a). During the case study in mid-July (Figs.
455 4d-f), the presence of a ridge east of Mawson led to a second warm and moist air intrusion around
456 $70^\circ\text{-}90^\circ\text{E}$ on 16 July. The passage of the AR at Mawson on 14 July coincided with an increase in
457 air temperature by more than 15 K in a couple of days (Fig. 4e), consistent with the observed rise
458 in air temperature of ~18 K at the site (Fig. 2a).

459
460

461 The results in Figure 4 highlight the role of atmospheric dynamics in modulating the ST at the
462 Khalifa SIMBA site on fast ice off Mawson Station, with the SIT largely controlled by the oceanic
463 and conductive heat flux and the seasonal variability in the incoming solar radiation.

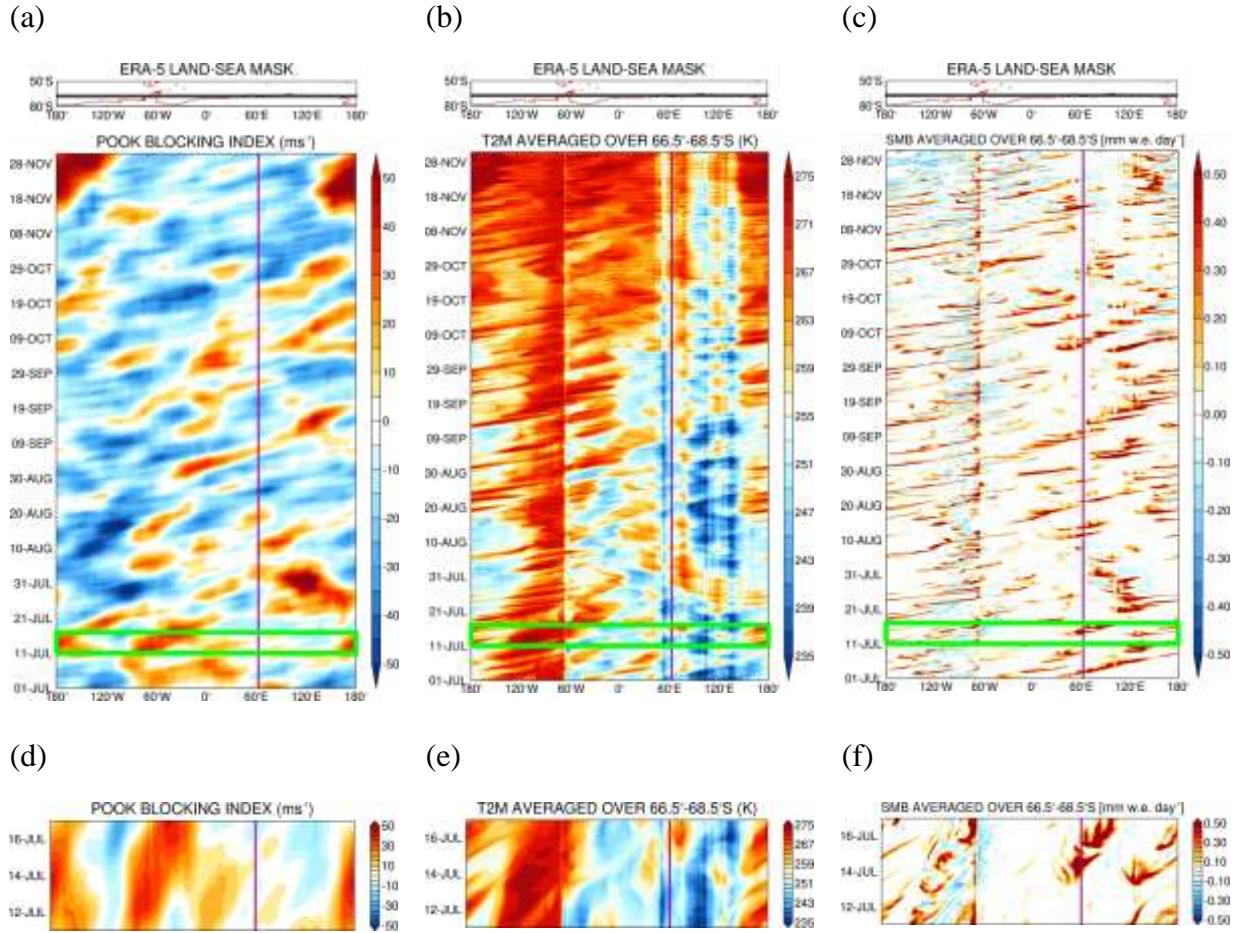
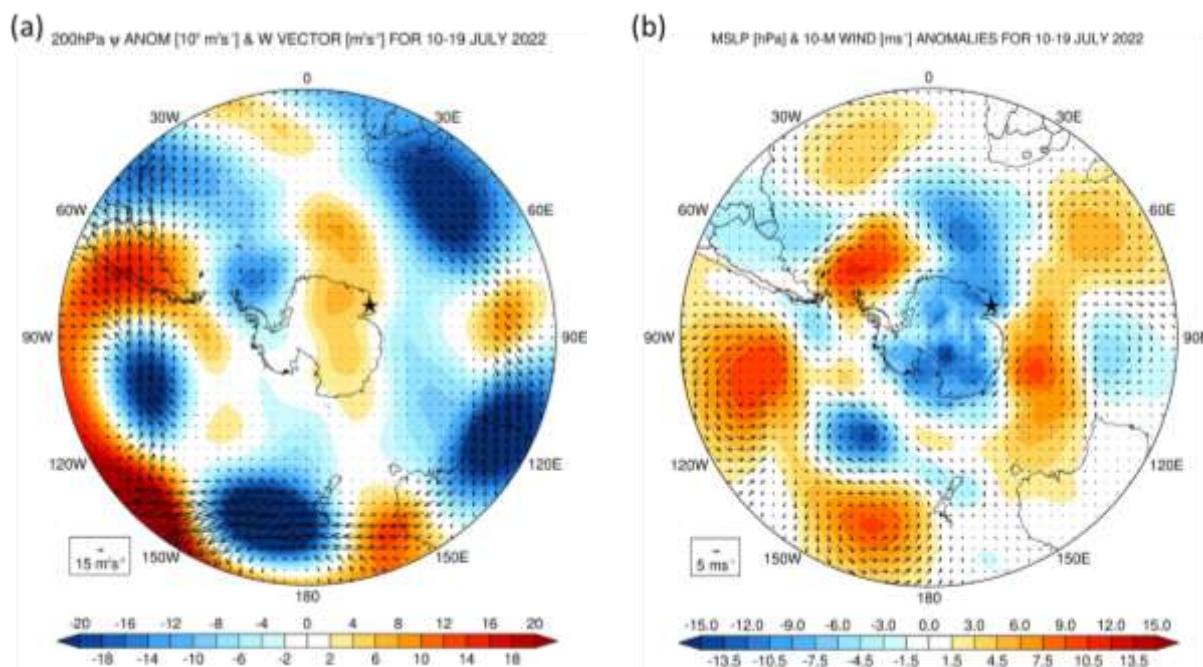
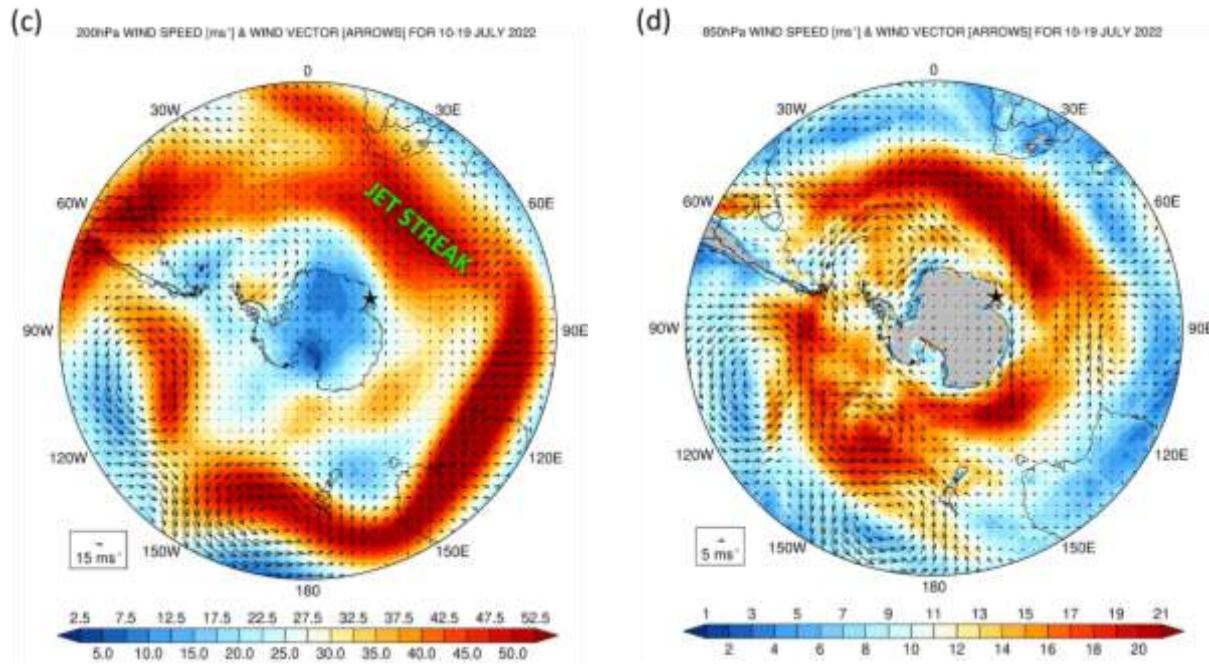

464
465

Figure 3: Surface Mass Balance and SIMBA Observations: ERA-5 hourly (a)-(b) surface mass balance (mm w.e. hr^{-1}), (c) air temperature (red; K) and relative humidity (blue; %), and (d) horizontal wind speed (red; m s^{-1}) and direction (blue; $^{\circ}$) averaged over 66.5° - 68.5° S and 62.5° - 63.5° E for the period 08 July and 30 November 2022. The local SMB terms plotted are the SMB (blue) and precipitation (red; P) in (a), and the snowmelt (orange; M), surface sublimation (red; Q_{sfc}), blowing snow sublimation (green; Q_{snow}), and blowing snow divergence (blue; D) in (b). No snowmelt occurred during the measurement period, and the D term is multiplied by two for visualization purposes. (e)-(f) give the ST (m) and SIT (m) from the SIMBA measurements, respectively. The red line shows the observed value while the blue shading gives the uncertainty, which is estimated as 7% for ST and 2% for SIT (Liao et al., 2018). (g)-(l) are as (a)-(f) but for 10-20 July 2022. No scaling is applied to the D term.

466
467
468
469
470
471
472
473
474
475
476
477

Figure 4: Atmospheric dynamics and thermodynamics during the Observational Period: (a) Pook blocking index (m s^{-1}) for July-November 2022. The vertical purple line gives the approximate longitude of the measuring site. Regions where the index exceeds 40 m s^{-1} , an indication of a high degree of blocking, are stippled. The green rectangles indicate the period when an AR impacted the site 11-16 July. Above the Hovmöller plot, the land-sea mask as seen by ERA-5 is plotted in red and the averaging region is highlighted with a black rectangle. (b) and (c) are as (a) but for air temperature (K) and the SMB, defined in equation (3), respectively, averaged over $68.5^{\circ}\text{-}66.5^{\circ}\text{S}$. The sharp transition in the temperature field around 60°W arises due to the presence of the Antarctic Peninsula (landmass), while the stipple in (b) indicates regions and times when the temperature is above freezing (273.15 K). (d)-(f) are as (a)-(c) but zooming in for 11-16 July 2022.


478 4. Case Study: 11-16 July 2022


479 An AR impacted the site during July-November 2022 on 14 July. In Section 4.1, the large- and
 480 regional-scale environment that promoted the development of the AR is investigated, while in
 481 Section 4.2 the results of the PWRF simulations are discussed.

482 **4.1 Large-Scale Atmospheric Patterns**

483 The period 10-19 July 2022 is characterized by a strong wavenumber 3 pattern along the
484 Southern Hemisphere polar jet at about 60°S and a wavenumber 5 pattern along the subtropical jet
485 at about 30°S (Fig. 5a), projecting onto the positive phase of SAM (Fig. 5b). The stationary wave
486 activity flux vectors in Fig. 5a show little wave propagation from the tropics into the Southern
487 Hemisphere mid-latitudes, with a prevailing zonal propagation within the wavenumber #5 pattern.
488 This is also evidenced by the strong westerly flow around Antarctica (Fig. 5d). One of the reasons
489 for the positive SAM is the La Niña that was taking place at the time, the third consecutive La
490 Niña year after the 2018-2019 El Niño (NOAA/NWS, 2024).

491

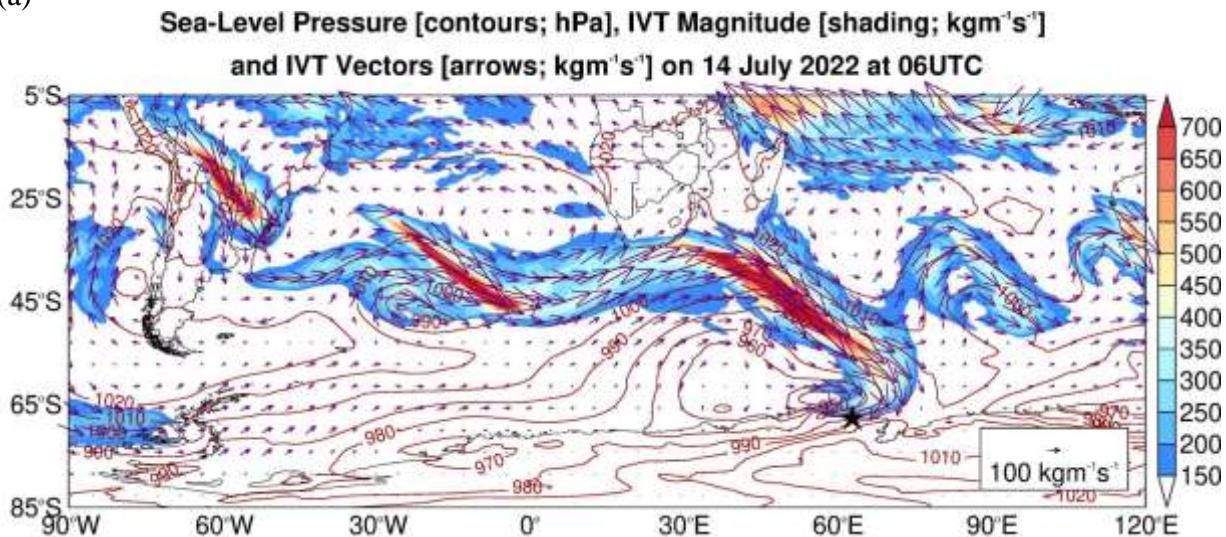
Figure 5: Large-Scale Circulation during 10-19 July 2022: (a) 200 hPa stream-function anomalies (shading; $10^6 \text{ m}^2 \text{ s}^{-1}$), with respect to the hourly 1979-2021 climatology, and stationary W vectors (Takaya and Nakamura, 2001; equations (2a) and (2b); arrows; $\text{m}^2 \text{ s}^{-2}$) averaged over 10-19 July 2022. (b) Sea-level pressure (shading; hPa) and 10-m wind vectors (arrows; m s^{-1}) anomalies for the same period. (c) and (d) show the 200 hPa and 850 hPa wind speed (shading; m s^{-1}) and vectors (arrows) averaged over the same period. The jet streak referred to in the text is highlighted in (c). In all panels, the star gives the location of Mawson Station (67.5912°S , 62.8563°E).

492
493

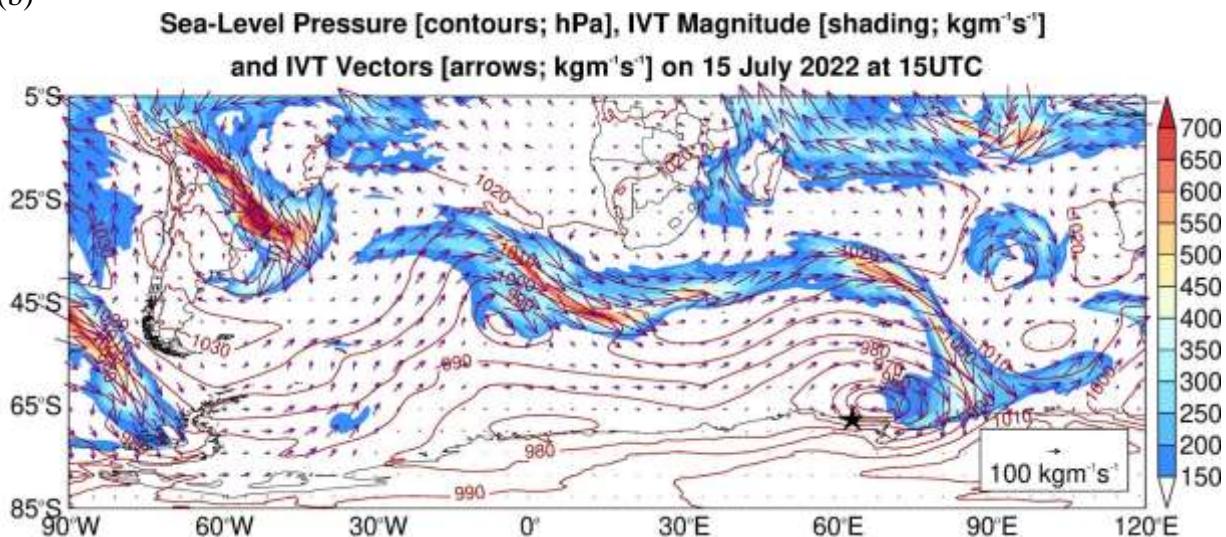
494 North of Mawson Station, a pressure dipole is present around 40° - 65°S (Fig. 5b), with a ridge to
495 the east and a trough to the west. This pattern favours the poleward propagation of warm and moist
496 low-latitude air into the Khalifa SIMBA site on fast ice off the Mawson Station in East Antarctica,
497 and is conducive to the development of ARs (Francis et al., 2022b; Gorodetskaya et al., 2023).
498 The interaction between the subtropical jet and polar jet led to the development of a jet streak (Fig.
499 5c), a localized maximum in the strength of the flow. The low pressure associated with the AR
500 (Fig. 5a) is located to the south of the jet entrance, in an area favourable for cyclogenesis (Wallace
501 and Hobbs, 2006). Despite its slow eastward movement and anomalous high strength, the
502 meridional extent of the ridge from East Antarctica to southeastern Madagascar may explain why
503 it is not detected by the Pook Blocking Index, Fig. 4a and Equation S6, as the westerly flow at 35° -
504 40°S and 65° - 70°S is also weaker. The AR that developed on 14 July 2022 is particularly
505 remarkable, extending from the southwestern Indian Ocean into the Southern Ocean and East
506 Antarctica, and having its primary origin in South America (Figs. 6a-b). The wavetrain extending
507 from South America to the southeastern Pacific Ocean comprises a ridge over southern parts of
508 Chile and Argentina, and a low over northern Argentina to the west of South Atlantic subtropical
509 high (Figs. S1b, S1d and S1f). The pressure gradient between the latter two systems leads to a
510 strengthening of the South American low-level jet (Marengo et al., 2004; Montini et al., 2019),

511 which advects moisture from equatorial South America into the subtropics and helps to feed
512 convection east of the Andes (Figs. S1a, S1c, and S1e). The moist outflow coming out of South
513 America and the latent heat release from the convection strengthen the low pressure to the
514 southwest of South Africa that is tracking southeastwards, and promote the development of the
515 AR that impacted the Khalifa SIMBA site on fast ice off Mawson Station on 14 July. After a first
516 landfall on 14 July around Mawson Station, Fig. 6a, the AR made a second landfall around 75°-
517 90°E, Fig. 6b, impacting a wide swath of East Antarctica from about 45°E to 100°E. Here, the air
518 temperature anomalies generally exceeded 10 K, with some parts of East Antarctica having near-
519 surface temperatures in the top 1% of the 1979-2021 climatological distribution (Fig. 6d). The IVT
520 at 06 UTC on 14 July exceeds $156 \text{ kg m}^{-1} \text{ s}^{-1}$ around the Khalifa SIMBA site on fast ice off Mawson
521 Station and $800 \text{ kg m}^{-1} \text{ s}^{-1}$ further north along the AR (Fig. 6b), with the hourly IVT on this day
522 being in the top 0.5% of the climatological distribution (Fig. 6c), an attestation to the extreme
523 nature of this event. A back-trajectory analysis performed with HYSPLIT forced with ERA-5 data
524 revealed tropical and subtropical moisture sources contributed to the 14 July 2022 AR (Fig. S2a).
525 While at lower levels the moisture came from the Southern Ocean, with specific humidity values
526 generally below 2 g kg^{-1} and air temperatures generally below freezing, at 2250 m it originated in
527 the subtropics just south of South Africa with specific humidity values in excess of 6 g kg^{-1} and
528 air temperatures around 280-290 K (Figs. S2b-e). The latter air mass ascended from roughly 200
529 m to 2250 m just north of Mawson Station, when it encountered the colder and drier katabatic
530 airflow (Fig. S2a). Several studies report on ARs impacting Antarctica being fed by subtropical
531 moisture, such as the February 2011 (Terpstra et al., 2021) and the November-December 2018
532 (Gorodetskaya et al., 2020) ARs over East Antarctica, and the February 2022 AR over the
533 Antarctica Peninsula (Gorodetskaya et al., 2023).

534
535 The AR and attendant cyclone also had an important effect on the sea ice in the region. As seen in
536 Figs. S3a-b, there was a considerable reduction in SIE from 12 to 16 July both around coastal
537 Antarctica and upstream, with an open-ocean polynya developing well northwest of Mawson
538 Station around $65^{\circ}\text{S}, 45^{\circ}\text{E}$ on 14 July and disappearing on 22 July. The role of ARs and the surface
539 divergent flow associated with the attendant cyclone in opening up polynyas has been reported at
540 multiple sites around Antarctica (Francis et al. 2019, 2020). The low-pressure system northwest of
541 Mawson reached a minimum value of 944 hPa on 12 July over the Southern Ocean, with the
542 secondary low that formed on 14 July reaching 933 hPa on this day at 06 UTC just off the Khalifa
543 SIMBA site on fast ice off Mawson Station (Fig. 6a), and deepening further to 931 hPa late on 15
544 July just to the northeast of the site (Fig. 6b). These systems are stronger than those that played a
545 role in the opening up of the Weddell Sea Polynya in September 1973 and 2017 (Francis et al.,
546 2020), and the Maud Rise Polynya in September 2017 (Francis et al., 2019). The sea-ice vectors
547 in Figs. S3c-d show an equatorward movement north of Mawson Station from 12-14 July (prior to
548 the event) at speeds in excess of 40 km day^{-1} , and a southward movement from 14-16 July (post
549 event) at speeds in excess of 20 km day^{-1} . These sea-ice drift velocities, which are associated with
550 the changing wind field in response to the shift in the position of the mid-latitude weather systems

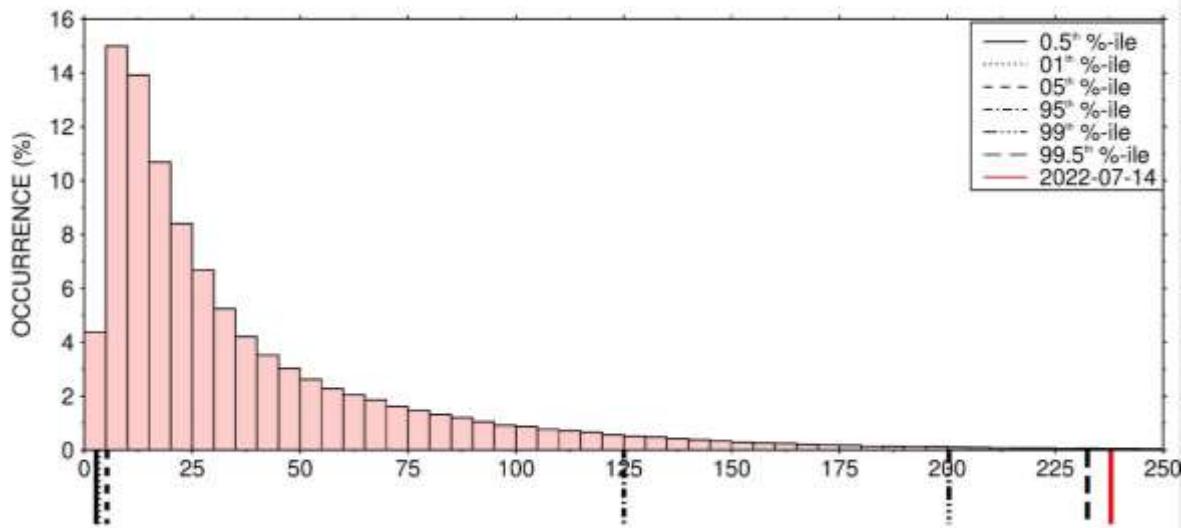

551 in the region (Figs. 6a-b, 6d and 7) are higher than those observed in the western Ross Sea in late
552 April 2017 (Fonseca et al., 2023), and comparable to those estimated in the region in September
553 2017 (Francis et al., 2019).

554

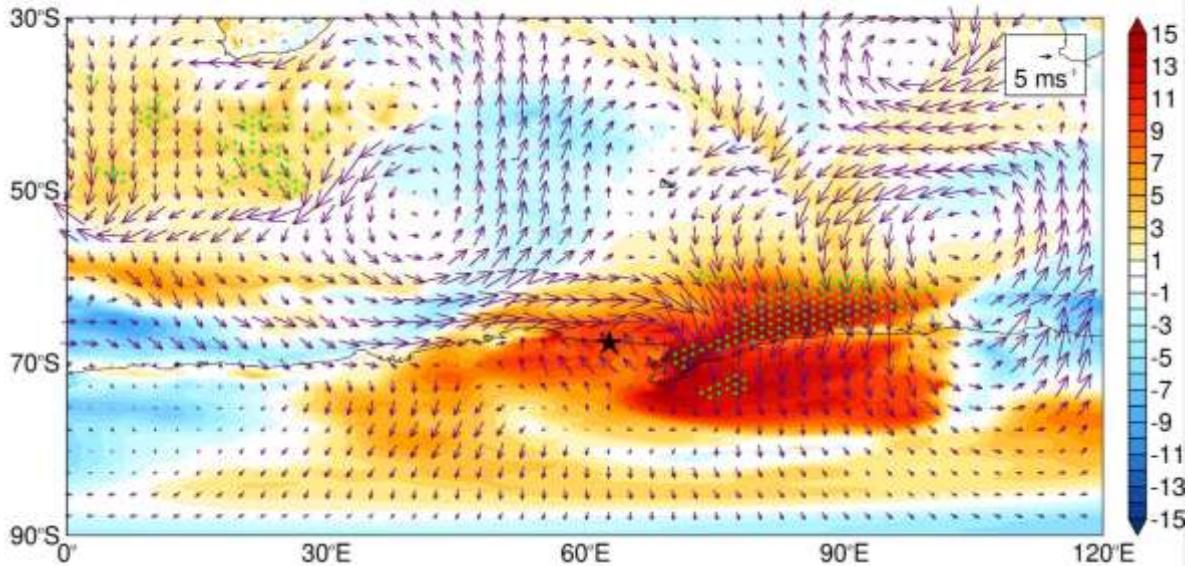

555

556

(a)



(b)


(c)

MAXIMUM OF HOURLY IVT ($\text{kg m}^{-1} \text{s}^{-1}$) OVER 68.5°-66.5°S & 62.5°-63.5°E FOR 1979-2021

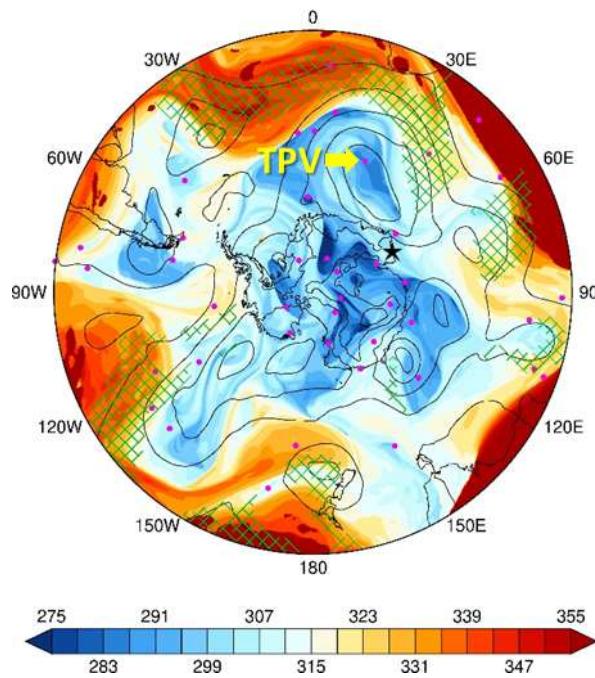
(d)

AIR TEMPERATURE [K] & 10-M WIND [ms^{-1}] ANOMALIES ON 16-JUL-2022 @ 00UTC
GREEN STIPPLE: AIR TEMPERATURE IN TOP 1% OF 1979-2021 CLIMATOLOGY

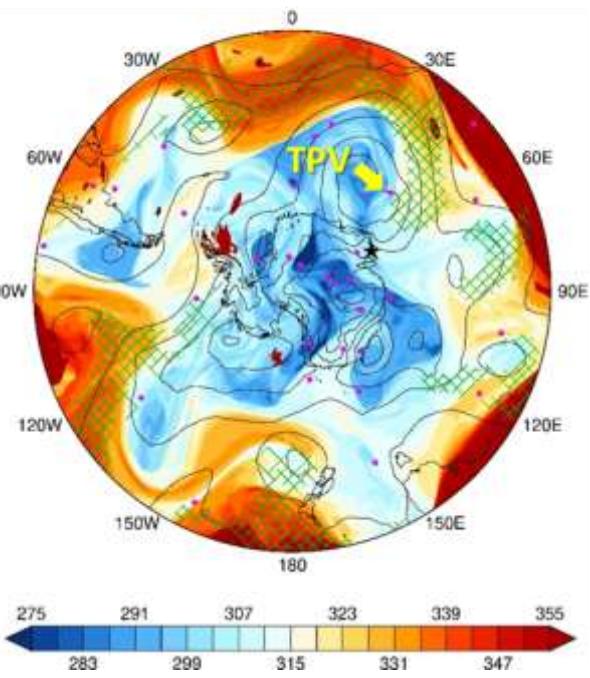
Figure 6: Atmospheric River on 14 July 2022: (a) Sea-level pressure (contours; every 10 hPa), Integrated Vapour Transport (IVT) magnitude (shading; $\text{kg m}^{-1} \text{s}^{-1}$) and vectors (arrows; $\text{kg m}^{-1} \text{s}^{-1}$) on (a) 14 July 2022 at 06 UTC and (b) 15 July 2022 at 15 UTC from ERA-5. The star gives the location of the Mawson station. (c) Histogram of the maximum hourly IVT around the Mawson station (68.5°-66.5°S and 62.5°-63.5°E) for 1979-2021. The solid, dotted, dashed, dotted-dashed, dashed-dotted-dotted and long dashed lines give the 0.5th, 1st, 5th, 95th, 99th and 99.5th percentiles, respectively, while the red line indicates the maximum hourly values on 14 July 2022. (d) air temperature (shading; K) and 10-m wind vectors (arrows; m s^{-1}) anomalies with respect to 1979-2021 climatology on 16 July 2022 at 00 UTC. The green stipple indicates regions where the air temperatures are in the top 1% of the 1979-2021 climatological distribution.

558 Figures 5-6 provide a summary of the weather conditions during 10-19 July 2022, with Fig. 6
559 focusing on the AR event that impacted Mawson Station on 14 July. In order to gain insight into
560 this AR event, it is important to assess the temporal evolution of the atmospheric circulation prior
561 to and during the event itself. This is achieved in Fig. 7, which shows multiple fields from 13 July
562 at 06 UTC to 15 July at 18 UTC. At 06 UTC on 13 July (Fig. 7a), a broad low-pressure system is
563 centered northwest of the site, coincident with a TPV (highlighted in the figure), with a ridge to its
564 east. The TPV helps the surface low to intensify, together with the jet streak at upper levels (Fig.
565 5c), with the central pressure dropping to around 944 hPa on 12 July at 12 UTC. The pressure
566 dipole promotes the southward advection of a warmer and moist low-latitude air mass into the
567 Southern Ocean, as noted by the hatching that highlights regions where the IVT exceeds $250 \text{ kg m}^{-1} \text{ s}^{-1}$.
568 A secondary low, which develops later on 13 July (highlighted in Fig. 7c, also noted by the
569 additional sea-level pressure contour), is not co-located with a TPV. Instead, the secondary low is
570 driven by the interaction of the warm and moist air mass from the west and northwest around the
571 low pressure with that from the northeast around the ridge. Closer to the Antarctic coast, the
572 aforementioned low-level convergence is reinforced by the drier and colder katabatic flow blowing
573 from the continent. The maximum Eady growth rate, a measure of baroclinicity (Hoskins and
574 Valdes, 1990), at 850 hPa exceeded 3 day^{-1} on 14 July (not shown), indicating a highly baroclinic
575 environment.

576

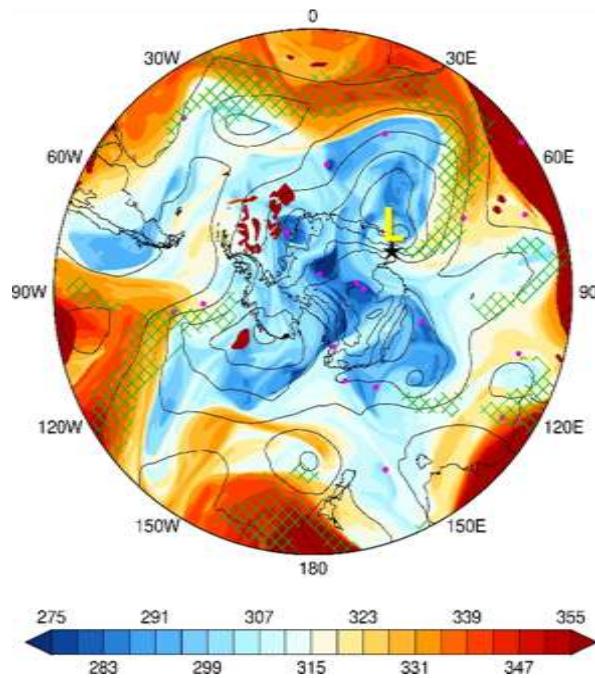

577 Figures 7b-d show cyclonic Rossby wave breaking, with the secondary low exhibiting little
578 eastward movement owing to the presence of a ridge to the east (Figs. 6a-b), and instead shifting
579 southwards towards Antarctica. The incursion of the higher low-latitude potential temperature
580 values into East Antarctica (Figs. 7b-d) is consistent with the warmer (Fig. 6d) and more moist
581 (Figs. 6a-c) conditions in the region. The warm and moist air intrusion shifted eastwards from 14
582 to 15 July (Figs. 7c-d) and penetrated deeper into East Antarctica on 15-16 July (Figs. 7d and 6d),
583 with air temperatures more than 15 K above climatology in some parts (Fig. 6d). Fig. 7 shows more
584 than one episode of intrusion of low-latitude air masses into Antarctica. For example, on 14-16
585 July a warm and moist air intrusion reached the Antarctic Peninsula (Figs. 7c-d). Such occurrences
586 are more common in an amplified pattern and can be aided by TPVs that act to strengthen the
587 attendant cyclone (Wille et al., 2024c).

588

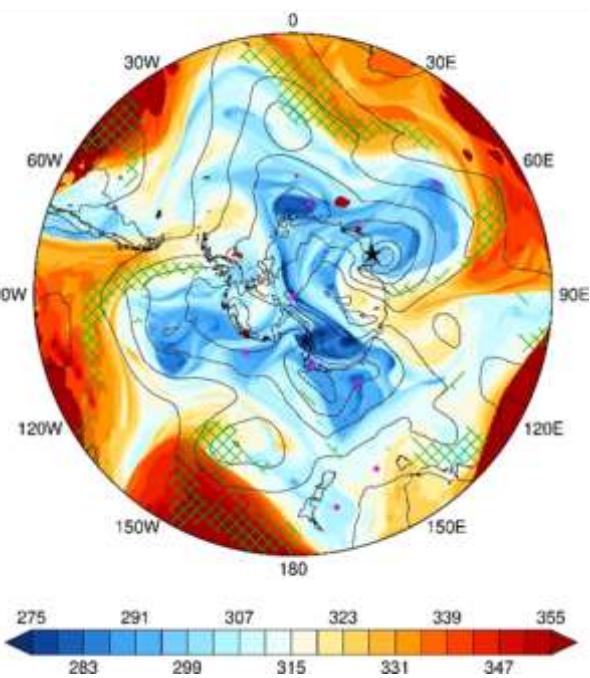

(a)

(b)

13 JULY 2022 @ 06 UTC



13 JULY 2022 @ 18 UTC


(c)

14 JULY 2022 @ 06 UTC

(d)

15 JULY 2022 @ 18 UTC

Figure 7: Evolution of Atmospheric State during 13-15 July 2022: Potential temperature (θ ; shading; K) on the dynamical tropopause (PV = -2 PVU), sea-level pressure (black contours; every 15 hPa starting at 900 hPa) and integrated vapour transport (IVT; hatching if $> 250 \text{ kg m}^{-1} \text{ s}^{-1}$) on 13 July at (a) 06 UTC

and (b) 18 UTC, (c) 14 July at 06 UTC, and (d) 15 July at 18 UTC. The purple dots indicate the location of tropopause polar vortices (TPV) at the respective times. The TPV and the secondary low pressure discussed in the text are highlighted in panels (a)-(b) and (c), respectively.

589

590 **4.2 PolarWRF Simulation**

591 In this subsection, the focus is on the modeling experiments. In Section 4.2.1, the PWRF
592 predictions are evaluated against *in-situ* measurements at the five stations in East Antarctica given
593 in Fig. 1b, while in Section 4.2.2 the emphasis is on the additional insight the higher-resolution
594 model data gives on the mid-July 2022 AR event.

595 **4.2.1 Evaluation of PolarWRF**

596 The PWRF simulations for 11-16 July 2022 are evaluated against *in-situ* meteorological
597 observations at the Mawson, Syowa, Relay, Davis and Casey stations, in addition to surface
598 radiation fields at Syowa Station. Fig. 8 shows the time-series of hourly data for the Mawson and
599 Syowa stations, with the corresponding time series for the other two stations given in Fig. S4. A
600 quantitative assessment of the model performance for all stations and variables is presented in
601 Table 3.

602

603 PWRF simulates the weather conditions well at the Mawson (Figs. 8a-f), Syowa (Figs. 8g-1
604 and S4a-f), Relay (Fig. S4g-1), Davis (Fig. S4m-r) and Casey (Fig. S4s-x) stations for 11-16 July
605 2022. In particular, the observed variability in sea-level pressure is well replicated, with the model
606 correctly capturing the time of passage and strength of the secondary cyclone on 14-15 July at
607 Mawson (Figs. 7c-d; Fig. 8c) and on 15 July at the Davis (Fig. 7d; Fig. S4p) Stations. Moreover,
608 the warmer, more moist and windier conditions on 12-14 July at Syowa Station (Figs. S4a-c and
609 S4f), on 14-15 July at Mawson (Fig. 8a-c and 8e) and Relay (Fig. S4g-i and S4l) Stations, and on
610 15-16 July at Davis (Fig. S4m-o and S4r) and Casey (Fig. S4s-u and S4x) Stations are predicted
611 by the model. Also, the model captures the increase in the downward long-wave radiation flux by
612 up to 80 W m^{-2} at Syowa Station (Fig. 8k) in association with the warm and moist air intrusion on
613 13-14 July. An inspection of Table 3 reveals that, and except mainly for the air temperature and
614 surface pressure, the normalized bias μ is smaller than 0.5, indicating the biases can be regarded
615 as not significant, while the normalized error variance α does not exceed 1 for all fields and stations
616 (except for the wind vector at the higher-elevation Relay and coastal Davis Stations), indicating
617 that the PWRF predictions can be regarded as trustful. The performance of PWRF for this event is
618 comparable to that for the McMurdo Station in early January 2016 (Hines et al., 2019), for West
619 Antarctica in early to mid-January 2019 (Bromwich et al., 2022), and for the Antarctic Peninsula
620 for May-June 2019 and January 2020 (Matejka et al., 2021). This reflects the improvements made
621 to PWRF by the model developers, with the aim of optimizing its performance and skill over
622 Antarctica (e.g., Hines et al., 2021).

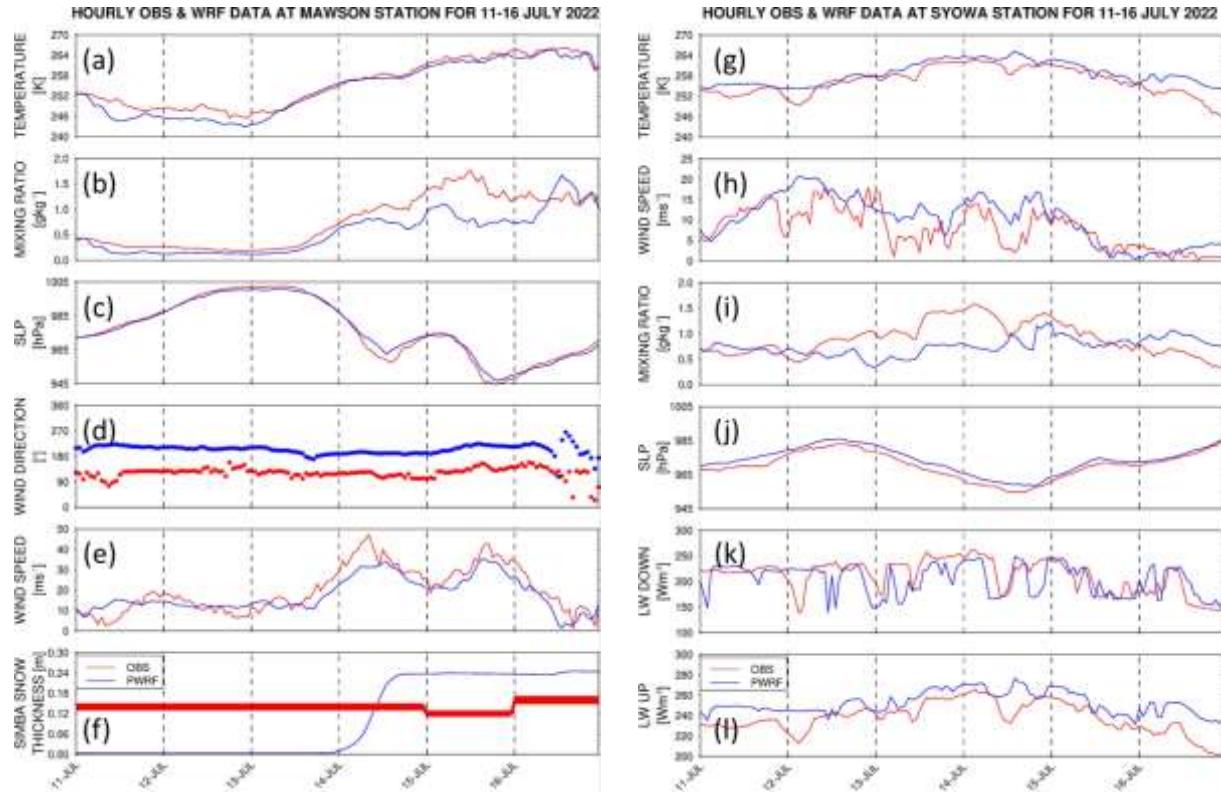
623

624 A closer inspection of Figs. 8 and S4 and Table 3 reveals some discrepancies in the PWRF
625 predictions. For example, at Syowa Station, the model has a tendency to over-predict the air
626 temperature by ~1-3 K. This may explain the overestimation of the upward longwave radiation
627 flux by about 14.3 W m^{-2} (Fig. 8l), which can also arise from an overprediction of the observed
628 surface emissivity. The downward longwave radiation flu (Fig. 8k), on the other hand, is
629 underestimated by roughly 7.7 W m^{-2} , likely related to the reduced atmospheric moisture content
630 in the model by about $\sim 0.16 \text{ g kg}^{-1}$. At all four coastal Antarctica stations, the predicted wind
631 direction is generally shifted clockwise by 45° - 90° compared to that observed (Figs. 8d, S4e, S4q
632 and S4w), with this mismatch at times reaching 180° at the Relay Station (Fig. S4k) located on the
633 Antarctic plateau more than 3,000 m above sea-level (Fig. 1b). This discrepancy can be attributed
634 to an incorrect representation of the surface topography which exhibits a complex spatial
635 heterogeneity in the region (Lea et al., 2024). Despite these issues, both the magnitude and
636 variability of the observed wind speed are generally well represented by PWRF (Figs. 8e, S4f, S4l,
637 S4r, and S4x). The more offshore wind direction at the coastal Antarctica stations reflect a stronger
638 katabatic wind regime that acts to slow the poleward movement of the low-latitude air mass, which
639 is consistent with the dry bias of up to 0.2 g kg^{-1} . The positive mixing ratio bias at the Relay Station
640 occurs primarily on 15-16 July (Fig. S4h), and is associated with increased but still rather low
641 (generally below 0.1 g kg^{-1}) moisture levels advected from the interior of Antarctica. At all stations
642 except Mawson, PWRF exhibits a warm bias (Figs. 8a, 8g, S4g, S4m, and S4s), with the near-
643 surface wind speed being underestimated at Mawson (Fig. 8e) and overestimated at the other
644 stations (Figs. S4f, S4l, S4r, and S4x). Together with the dry bias, this suggests a tendency for
645 excessive boundary layer mixing in the model compared to observations, which has been reported
646 in a number of PWRF studies (e.g., Wille et al. 2016, 2017; Vignon et al., 2019). An optimized
647 PBL scheme, which at least partially corrects for the excessive mixing, and/or a more sophisticated
648 land surface model that more accurately represents the boundary layer and surface processes, have
649 to be considered to address the aforementioned biases. Despite this, PWRF captures the effects of
650 the AR as seen in observations, most notably the increase in air temperature and water vapour
651 mixing ratio, and the strengthening of the near-surface wind in particular at the more impacted
652 Mawson (Figs. 8a-e) and Davis (Figs. S4m-r) stations.
653

654 The SMB analysis performed using ERA-5 data is repeated using the hourly PWRF predictions.
655 PWRF gives a similar estimate of the different terms of the SMB with respect to the reanalysis
656 dataset (cf. Figs. S5a-b with 3g-h), with the roughly 30% higher surface sublimation on 15 July
657 arising from the drier (~10% lower relative humidity; cf. Figs. S5c with 3i) and windier (~10%
658 higher wind speed; cf. Figs. S5d with 3j) near-surface conditions in the model. The fact that ERA-
659 5 captures Foehn effects at this site and for this event, suggests that it can be used for the wider
660 analysis of Foehn events around East Antarctica, as has been done over West Antarctica (Francis
661 et al., 2023) and the Antarctica Peninsula (Laffin et al., 2021). The up to $\sim 2 \text{ mm w.e. hr}^{-1}$
662 precipitation rate (Figs. S5a and 3g), $\sim 5 \text{ K}$ air temperature increase (Fig. S5c and 3i), and 30 m s^{-1}
663 wind speeds (Fig. S5d and 3j) associated with the passage of the AR on 14 July are simulated by

664 PWRF, with the cold bias in the model also seen in comparison with *in-situ* measurements at
665 Mawson Station (Table 3).

666


667 Fig. 8f shows a comparison of the observed and simulated snow depth at the Khalifa SIMBA site
668 on fast ice off Mawson Station. The ST in PWRF is initialized to zero, and hence the discrepancy
669 with respect to the observed values during 11-13 July (the observed ST is equal to 0.14 m during
670 10-14 July). PWRF predicts around 0.24 m of snowfall in association with the passage of the AR
671 on 14 July, and the weaker wind speeds in the model, at times by more than 20 m s^{-1} , likely allow
672 for snow to accumulate at the site instead of it being blown away by the wind. The model fails to
673 capture the observed decrease of 0.02 m in ST on 15 July in response to Foehn effects, which can
674 be attributed to less favourable conditions for Foehn events in the model, both with respect to the
675 wind direction (west-southwesterly in PWRF as opposed to southeasterly in observations) and
676 speed (lower by as much as 20 m s^{-1}). A higher spatial resolution of at least 1 km would probably
677 be needed for a more accurate simulation of the interaction of the AR with the complex Antarctic
678 topography including the Foehn effects (Gilbert et al., 2025). The increase in ST on 16 July due to
679 snowfall is simulated by PWRF, even though its magnitude is underestimated by the model (0.01
680 m in PWRF as opposed to 0.04 m in observations), possibly because of the drier environment
681 brought on by a more offshore wind direction (Figs. 8b, 8d-e, and S5b-d).

682

683 Besides ground-based observations, sounding data are available at the Mawson, Syowa, Davis,
684 and Casey stations every 12 h and can be compared with the hourly PWRF predictions (Figs. S6
685 and S7). The model captures the timing of the arrival of the warm and moist air mass at Mawson
686 on 14-15 July, as evidenced by the higher values of θ_E (270-280 K; Figs. S6a and S6e) and relative
687 humidity (60-90%; Figs. S6b and S6f). However, the katabatic wind flow is stronger in the model
688 as seen by the offshore wind direction (Fig. S6h) and drier conditions (Figs. S6b and S6f), and also
689 evident in the ground-based observations (Figs. 8d and 8b), with a strong low-level jet (mostly
690 below 700 hPa) on 14 and 16 July (Fig. S6g). At Syowa, the PWRF and observed profiles are in
691 closer agreement than at the Mawson Station (cf. Figs. S6a-h with S6i-p). Here, the main
692 discrepancy between the observed and modelled profiles is the dry bias (Figs. S6j and S6n), which
693 is more pronounced on 13-14 July, and is also evident in the near-surface data (Fig. 8i). The arrival
694 of the low-latitude air mass at Davis on 15 July is seen in both the PWRF and observed profiles
695 (Figs. S7a-h), with a less pronounced katabatic regime in the model compared to that at Mawson
696 Station (cf. Figs. S6e-h with S7e-h). At Casey (Figs. S7i-p), PWRF simulates the more moist
697 conditions on 14 July and the drier conditions on 15-16 July. The analysis of the sounding profiles
698 reveals, however, that PWRF tends to overestimate the strength of the katabatic flow over coastal
699 East Antarctica during 11-16 July. Vignon et al. (2019) attribute such overestimates to more stable
700 boundary layers over the Antarctic Plateau and, to a lesser extent, steeper synoptic land-ocean
701 pressure gradients in the model.

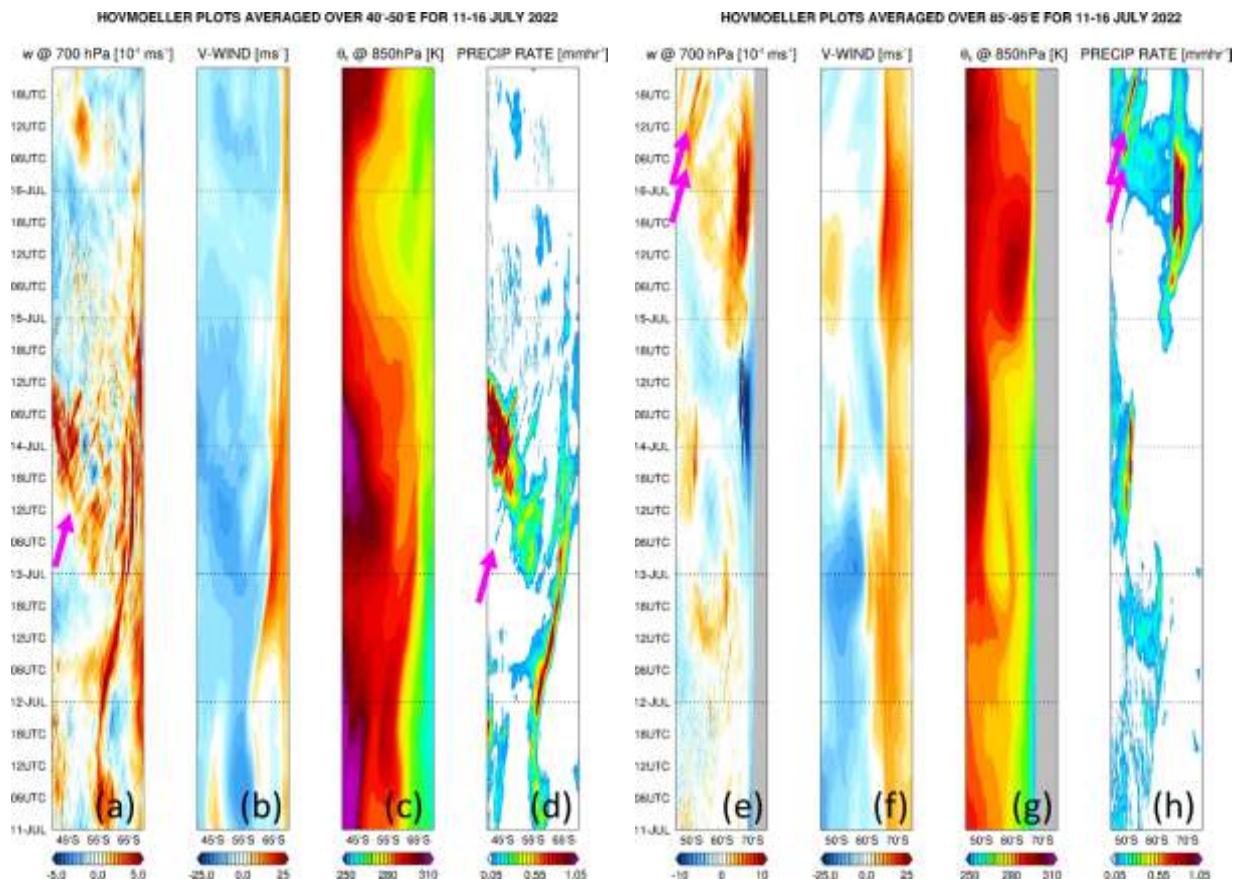
702

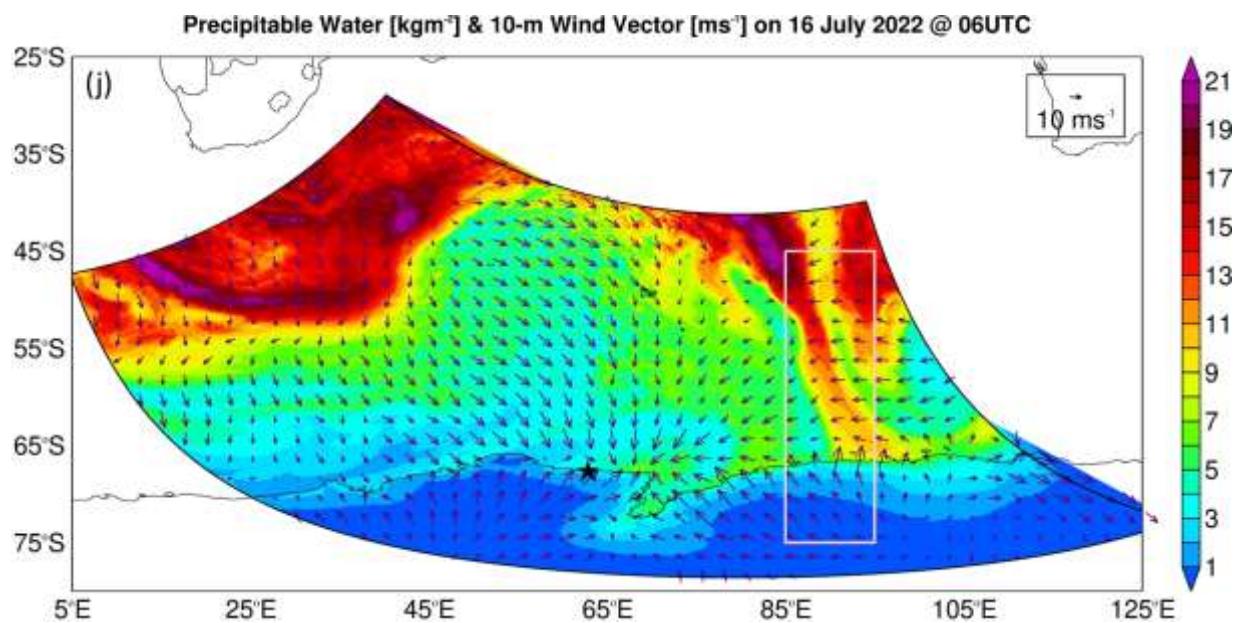
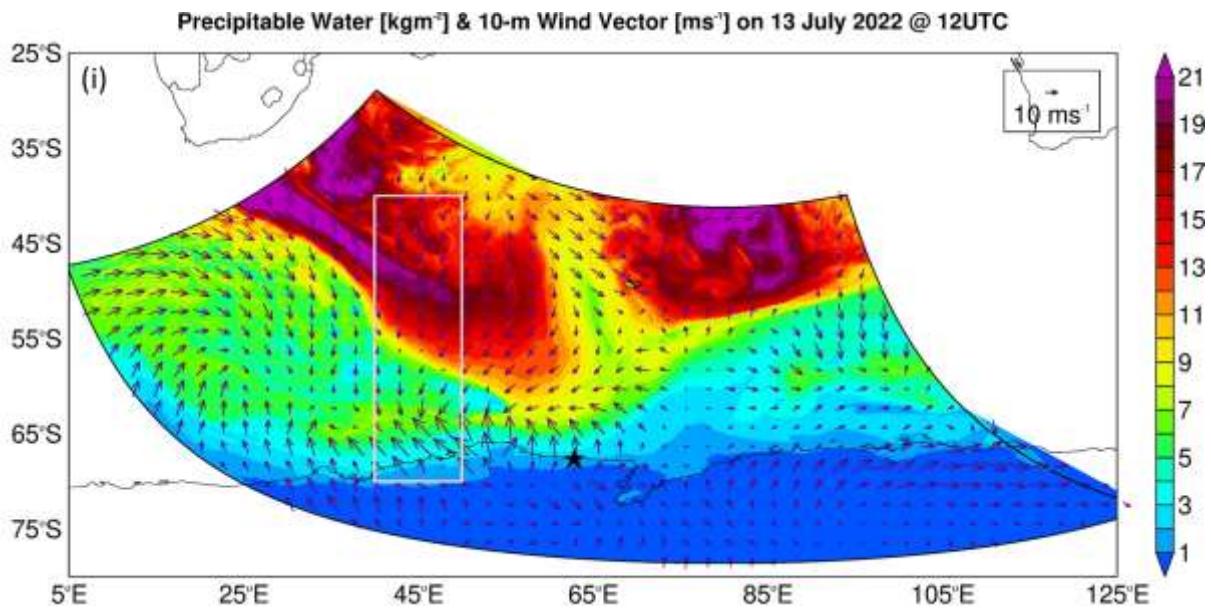
703 The results in Figs. 8, S4-S7, and Table 3 reveal a reasonably good PWRF performance in the
 704 study area for the period 11-16 July 2022. In the next subsection, the model simulations are used
 705 to gain further insight into the dynamics of the 14 July AR event.
 706

707 **Figure 8: Evaluation of PolarWRF against ground-based observations:** Hourly (a) air temperature
 708 (°C), (b) water vapour mixing ratio (g kg^{-1}), (c) sea-level pressure (SLP; hPa), and horizontal wind (d)
 at Mawson Station. (e) shows the daily observed (red) and hourly PWRF-predicted (blue) ST (m)
 at the Khalifa SIMBA site on fast ice off Mawson Station, the former with the estimated 7% uncertainty.
 (g)-(l) is as (a)-(f) but for the hourly air temperature (K), horizontal wind speed (m s^{-1}), water vapour
 mixing ratio (g kg^{-1}), sea-level pressure (SLP; hPa), and surface downward and upward longwave
 radiation fluxes (W m^{-2}), respectively at Syowa Station. The wind fields at Syowa Station are shown in
 Figs. S4e-f. The location of the stations is given in Fig. 1b.

Variable	Station	Bias	μ	ρ	η	α
Air Temperature	Mawson	-1.42 K	-0.92	0.98	~1.0	0.02
	Syowa	2.15 K	1.08	0.87	0.98	0.14
	Relay	2.51 K	0.65	0.90	~1.0	0.10

	Davis	3.11 K	1.30	0.98	0.97	0.05
	Casey	2.66 K	1.22	0.75	0.97	0.27
Water Vapour Mixing Ratio	Mawson	-0.21 g kg ⁻¹	-0.82	0.86	0.98	0.16
	Syowa	-0.16 g kg ⁻¹	-0.45	0.05	0.82	0.96
	Relay	0.01 g kg ⁻¹	0.69	0.75	0.99	0.25
	Davis	-0.09 g kg ⁻¹	-0.28	0.97	0.94	0.08
	Casey	-0.02 g kg ⁻¹	-0.12	0.61	0.92	0.43
Wind Vector (Bias and μ are for wind speed)	Mawson	-2.39 m s ⁻¹	-0.48	0.27	0.96	0.74
	Syowa	2.36 m s ⁻¹	0.61	0.39	~1.0	0.61
	Relay	2.02 m s ⁻¹	1.82	-0.60	~1.0	1.60
	Davis	1.40 m s ⁻¹	0.36	-0.30	0.99	1.29
	Casey	0.79 m s ⁻¹	0.24	0.08	0.98	0.93
Surface Pressure	Mawson	-3.78 hPa	-1.72	0.99	~1.0	0.01
	Syowa	3.08 hPa	2.35	0.99	~1.0	0.01
	Relay	2.53 hPa	3.16	0.99	0.99	0.02
	Davis	-0.74 hPa	-0.50	~1.0	~1.0	0.01
	Casey	-2.48 hPa	-2.16	~1.0	0.99	0.01
Downward LW	Syowa	-7.71 W m ⁻²	-0.24	0.47	~1.0	0.53
Upward LW	Syowa	14.26 W m ⁻²	1.54	0.79	0.95	0.25


710 **Table 3: Verification diagnostics with respect to station data:** Bias, normalized bias (μ), correlation (ρ),
711 variance similarity (η), and normalized error variance (α) for air temperature, water vapour mixing ratio,
712 horizontal wind vector and sea-level pressure for Mawson, Syowa, Relay, Davis, and Casey Stations for
713 11-16 July 2022. For Syowa Station, the scores are also given for the surface downward and upward
714 longwave radiation fluxes at the bottom of the table. The model values are those at the closest grid-point to
715 the location of the station, and the evaluation is performed for hourly data. The correspondent time-series
716 are given in Figs. 8 and S4.

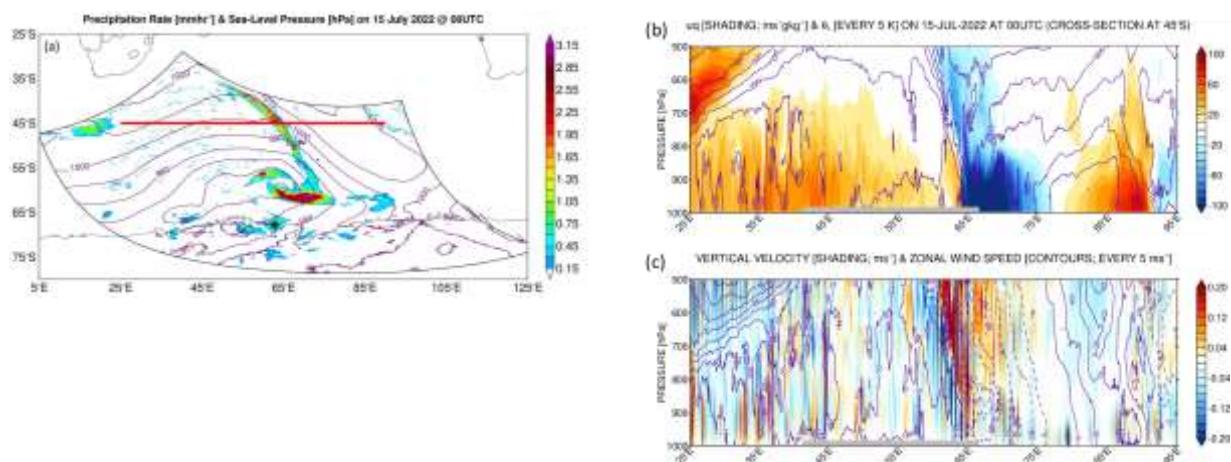


717

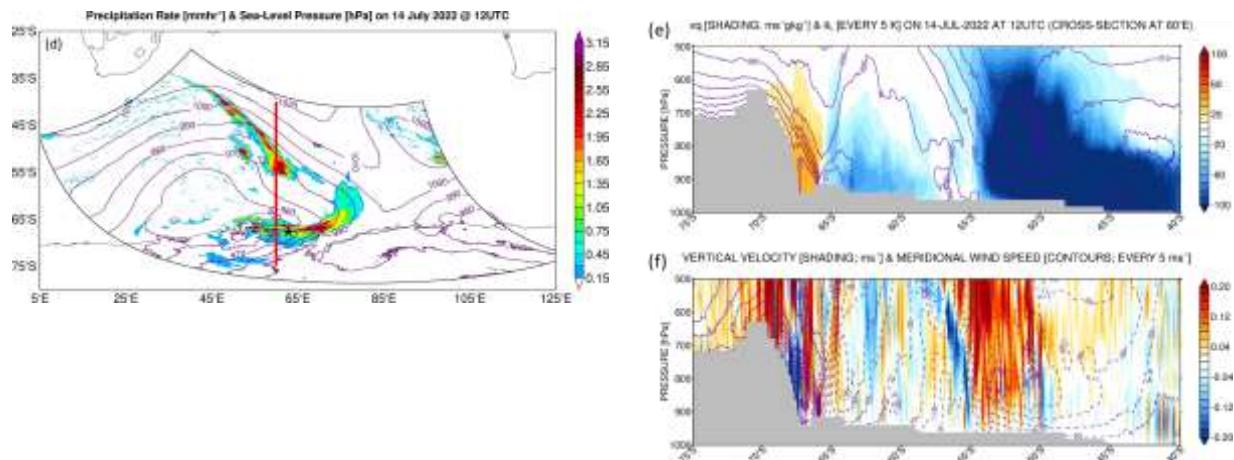
718 4.2.2 Insights into the Dynamics and Effects of the AR

719 One of the motivations for implementing the high-resolution (2.5 km) innermost grid is to
720 check for the presence of AR rapids (Box et al., 2023; Francis et al., 2024). Figs. 9a-d show a
721 hovmoeller plot of the vertical velocity at 700 hPa, 10-m meridional wind speed, 850 hPa
722 equivalent potential temperature (θ_E), and precipitation rate averaged over 40°-50°E, a latitude
723 band that comprises the bulk of the AR (Figs. 6a, 7a-c and 9i). It reveals AR rapids, in particular
724 one on 13-14 July between 40°-60°S (pink arrows in Figs. 9a and 9d), which is embedded within
725 the AR, as seen on 13 July at 12 UTC when it is located at 40°-50°S (Fig. 9i). No AR rapids are
726 seen in the vertical profiles at the coastal Antarctic stations (Figs. S6 and S7), suggesting they are
727 confined to the Southern Ocean. The linear structure propagating from ~55°S late on 11 July to
728 65°S early on 13 July does not correspond to an AR rapid. Instead, the heavy precipitation (>1 mm
729 hr^{-1} ; Fig. 9d) arises from the interaction of the low-latitude air mass with the katabatic wind regime
730 originating from the Antarctic Plateau, as it is placed at the interface between the two flows (cf.
731 Figs. 9a-b with 9d). The low-level convergence of these two air masses can be seen in Fig. 9i
732 around 65°S. The katabatic flow is characterized by southerly winds (Fig. 9b) and low θ_E values
733 (260-270 K, compared to 290-300 K for the low-latitude air mass; Fig. 9c), extending from the
734 Antarctic Plateau to the Southern Ocean. Figs. 9e-h are as Figs. 9a-d but the fields are averaged
735 over 85°-95°E. The low-latitude air mass reaches this part of East Antarctica on 15-16 July, when
736 precipitation rates exceed 1.8 mm w.e. hr^{-1} . The maximum precipitation rate in coastal Antarctica
737 and averaged over 85°-95°E is about 66% higher than that averaged over 40°-50°E (1.81 vs. 1.09
738 mm w.e. hr^{-1}). This can be explained by (1) the higher moisture levels (maximum longitudinally-
739 averaged θ_E values of 297.9 K vs. 289.7 K), as the low-latitude air mass penetrates further
740 polewards due to a more favourable synoptic pressure pattern, and (2) a stronger katabatic flow
741 off the Antarctic Plateau (maximum longitudinally-averaged meridional wind speed of 22 ms^{-1} vs.
742 19 ms^{-1}). Around 45°-55°S on 16 July, AR rapids are present in the plots averaged over 85°-95°E
743 (pink arrows in Figs. 9e and 9h), when the low-level air intrusion was in the area (Fig. 9j). The
744 fact that these structures have been identified in modelling products in the Southern Ocean in this
745 study, around Greenland in Box et al. (2023), and in the Middle East in Francis et al. (2024),
746 stresses the need for high spatial and temporal resolution three-dimensional radar observations
747 along the ARs to check whether they actually exist or are just model artefacts.

748

Figure 9: Hovmöller Plots: Hovmöller of hourly (a) 700 hPa vertical velocity (10^2 m s^{-1}), (b) 10-m meridional wind speed (m s^{-1}), (c) 850hPa equivalent potential temperature (θ_E ; K), and (d) precipitation rate (mm hr^{-1}) for 11-16 July 2022 averaged over 40° - 50°E . The pink arrows highlight AR rapids. (e)-(h) are as (a)-(d) but averaged over 85° - 95°E . The grey shading in (e) and (g) highlights latitudes for which the 700 hPa and 850 hPa pressure levels, respectively, are below topography. (i) Precipitable water (shading; kg m^{-2}) and 10-m wind vector (arrows; m s^{-1}) at 12 UTC on 13 July. The star indicates the


location of Mawson Station. The fields given in (a)-(d) are averaged over the longitude band of the pink box (40° - 50° E) and plotted over its latitude range. (j) is as (i) but at 06 UTC on 16 July, with the pink box also giving the latitude range over which the fields in (e)-(h) are plotted, and its longitude band (85° - 95° E) that used for averaging to generate the hovmoeller plots.


749

750 On top of surface evaporation from the subtropics (Fig. S2), the convergence of the flow
 751 around the low-pressure system to the west and the ridge to the east helped feed the AR and
 752 associated warm and moist air mass (Fig. 7). This can be seen in Figs. 10a-c. The zonal moisture
 753 transport in Fig. 10b highlights the convergence of the westerly flow at 5 - 10 $m\ s^{-1}$ associated with
 754 θ values of 290 - 295 K, with the easterly flow around the high with zonal wind speeds of 20 - 25 m
 755 s^{-1} and θ_E values of 300 - 305 K, as this air mass comes directly from the tropics. At about 65° E,
 756 where the AR is located (Fig. 10a), the vertical velocity peaks in the mid-troposphere around 600 -
 757 800 hPa with speeds up to $0.3\ m\ s^{-1}$ (Fig. 10c). The vertical structure of the updrafts, with a peak in
 758 the low-to-mid troposphere, and the updraft speeds are comparable to the AR rapids reported by
 759 Box et al. (2023) over Greenland on 14 September 2017. Precipitation rates in excess of $3\ mm\ hr^{-1}$
 760 are simulated by the model at 12 UTC on 14 July (Fig. 10d) and at 00 UTC on 15 July (Fig. 10a)
 761 along the AR. As the moisture plume moved closer to the Antarctic coast, it interacted with the
 762 katabatic wind regime. This is evident in Figs. 10e-f, with the colder, drier ($\theta_E \sim 260$ - 265 K) and
 763 strong (meridional wind speeds in excess of $45\ m\ s^{-1}$) airflow from Antarctica, which descends the
 764 steep slopes with downward vertical velocities up to $-0.6\ m\ s^{-1}$, converging with the slower (35 - 40
 765 $m\ s^{-1}$) and more moist ($\theta_E \sim 275$ - 280 K) flow from lower-latitudes with vertical velocities in the
 766 bottom 5 km reaching $+0.3\ m\ s^{-1}$. This convergence led to precipitation rates in excess of $3\ mm\ hr^{-1}$
 767 around Mawson Station (Fig. 10d).

768 The results in Figs. 9 and 10 suggest that it can be difficult for ARs and associated warm and moist
 769 air intrusions to reach this region of East Antarctica owing to the interaction with the strong
 770 katabatic flow. This factor has been highlighted for other regions of East Antarctica (e.g., Terpstra
 771 et al., 2021; Gehring et al., 2022).

772

Figure 10: Precipitation mechanisms in the Southern Ocean: (a) Precipitation (shading; mm hr^{-1}) and sea-level pressure (contours; hPa) at 00 UTC on 15 July 2022, from PWRF's 2.5 km grid. Vertical cross-section at 45°S, red line in (a), of (b) zonal mass transport (shading; $\text{m s}^{-1} \text{g kg}^{-1}$) and equivalent potential temperature (θ_E ; contours; every 5 K), and (c) vertical velocity (shading; 10^{-2} m s^{-1}) and zonal wind speed (contours; every 5 m s^{-1}), at the same time. Regions below the orography are shaded in grey. (d)-(f) are as (a)-(c) but at 12 UTC on 14 July. The cross-section is at 60°E, with the meridional mass transport and meridional wind speed in (e) and (f) plotted instead of their zonal counterparts, respectively.

773

774 **5. Discussion and Conclusions**

775 Sea ice is a critically important component of the climate system, modulating atmosphere-
 776 ocean interactions and ultimately the global climate (Raphael et al., 2011; Goosse et al., 2023).
 777 Antarctic SIE has abruptly dropped from 2016 to 2019 (Eayrs et al., 2021; Yang et al., 2021) with
 778 an all time-record low in 2023, driven by a complex and as yet poorly-understood combination of
 779 oceanic and atmospheric processes (Wang et al., 2024b). Climate model projections indicate major
 780 changes in the atmospheric circulation driven by the projected reduction in Antarctic sea ice in a
 781 warming climate: the Polar Cell and the katabatic flow off the coast of Antarctica are projected to
 782 strengthen, with a marginal weakening of the Ferrel and Hadley cells, and an equatorward shift in
 783 the position of the Polar Jet (Tewari et al., 2023). This stresses the need for a much-improved
 784 understanding of the observed variability of sea-ice properties, such as the SIE and SIT that are
 785 highly heterogeneous around Antarctica, in order to increase confidence in future climate-change
 786 projections.

787

788 The SIT at the Khalifa SIMBA site on fast ice off Mawson Station largely follows the annual
 789 seasonal cycle, with a gradual increase during winter to mid-to-late October followed by a steady
 790 decline in late spring. The maximum values of ~1.1-1.2 m are in the 0.50-1.50 m range estimated
 791 from satellite altimeter products for fast ice in the region around the Mawson Station (Li et al.,
 792 2022) and are also comparable to the thickness of pack ice around Antarctica (Kurtz and Markus,
 793 2012; Kacimi and Kwok, 2020). The ST, on the other hand, is highly variable, with values in the

range 0.02-0.18 m; these are also consistent with the estimates from satellite altimetry. In contrast to SIT, the temporal variability of ST is strongly linked to atmospheric forcing, in particular to precipitation (snowfall), Foehn effects, blowing snow, and episodic warm and moist air intrusions, which can lead to variations of up to ± 0.08 m in a day. During July-November 2022, an AR impacted the site on 14 July. It led to an 18 K increase in air temperature within 24 h, and a variation of up to 0.04 m in ST due to Foehn effects and snowfall (the 0.02 m change in SIT is within the estimated uncertainty range). These changes occurred within one day of the AR's arrival, followed by a recovery to pre-AR levels in the following 1-2 days. However, it is important to stress that a longer observational period would be needed to establish more robust and statistically significant links between atmospheric phenomena such as Foehn effects, blowing snow, and incursions of warm and moist low-latitude air and the coastal ST (and potentially SIT). In addition, having measurements for at least a full year would allow for the quantification of the potential role of surface melting in ST and SIT, which is more likely in the summer months but may occur at other times in a warming climate. Simulations with coupled ocean-atmosphere-sea-ice models should also be considered to further explore the role of atmospheric forcing in ST and SIT. In addition, refined methods to extract SIT and ST are desirable, as in particular for SIT, the variation during weather events such as the passage of the AR is within the uncertainty range, preventing a clear signal from being extracted from the data.

The 14 July AR is particularly intense, with the highest IVT around the Khalifa SIMBA site on fast ice off Mawson Station of ~ 156 kg m $^{-1}$ s $^{-1}$, which is in the top 0.5% of the climatological distribution. This AR has its origins in South America, where a wavetrain coming from the Pacific Ocean leads to an intensification of the South American Low Level Jet and increased moisture outflow into the South Atlantic Ocean. The period 10-19 July 2022 is characterized by a wavenumber #5 pattern along the subtropical jet and a wavenumber #3 along the polar jet in the Southern Hemisphere, the latter projecting into the positive SAM phase, which is expected given the ongoing La Niña. A pressure dipole, with a low to the west and a ridge to the east, promotes the advection of warm and moist low-latitude air across Mawson Station. A back-trajectory analysis indicates contributions from evaporation both in the subtropics and the Southern Ocean to the precipitation event on 14 July 2022. A more in-depth analysis reveals that a secondary low formed just northwest of the site on 13 July, driven by high baroclinicity arising from the interaction of the warmer low-latitude air masses with the cold katabatic winds that prevail around Mawson Station. At the same time, a TPV and a jet streak at upper-levels contributed to an intensification of the primary low. The changing wind field in response to the passage of the deep cyclone, which had a central pressure as low as 931 hPa, also has an impact on the sea-ice dynamics. In particular, maximum pack-ice drift velocities north of Mawson Station exceeded 40 km day $^{-1}$ from 12-14 July and 20 km day $^{-1}$ from 14-16 July with the opening of a polynya in the Southern Ocean northwest of Mawson Station around 65°S, 45°E from 14 to 22 July. These pack-ice drift speeds are comparable to those estimated during the opening of the Maud Rise Polynya in September 2017 (Francis et al., 2019).

834

835 A high-resolution simulation with PWRF down to 2.5 km is conducted to gain further insight
836 into this event. An evaluation against *in-situ* observations indicates a good performance for both
837 coastal and inland stations in the target region. A dry bias at coastal sites is attributed to an
838 excessive offshore wind direction in the model and/or too much boundary layer mixing. An
839 evaluation of the simulated vertical profiles against those observed at four coastal sites reveals a
840 stronger katabatic flow in PWRF, which is consistent with the drier near-surface conditions.
841 This is reported by other studies (e.g., Vignon et al., 2019), which attributed it to more stable
842 boundary layers over the Antarctic Plateau and steeper land-sea synoptic pressure gradients. The
843 overestimation of the surface upward longwave radiation flux may be a reflection of higher surface
844 temperatures and/or a too high surface emissivity in PWRF. This suggests the need to optimize the
845 land surface properties in the model, as has been highlighted by other studies (Hines et al., 2019).
846 Ingesting a more realistic representation of the SIE and SIT does not translate into higher skill
847 scores for this particular event. This indicates that improvements to the boundary layer dynamics
848 and/or land/ice processes, noted by Wille et al. (2016, 2017) and Vignon et al. (2019), and at least
849 for this case study, are probably more important than having a more accurate sea-ice representation
850 in the model. Besides calibrating surface parameters, future PWRF studies should explore other
851 physics schemes and/or optimize the tunable parameters defined inside the selected ones, in
852 particular in the PBL and land surface model as done for other regions (e.g., Quan et al., 2016;
853 Chinta and Balaji, 2020), in an attempt to improve the model performance. The high-resolution
854 PWRF simulation revealed the presence of AR rapids, with a similar vertical structure and
855 propagation speed as those reported in Box et al. (2023) over Greenland in September 2017. The
856 model simulation also highlighted the effects of the katabatic wind regime in slowing down and
857 weakening the low-latitude warm and moist air incursions as they approach the Antarctic coast. It
858 is this interaction that triggers precipitation rates in excess of 3 mm hr^{-1} around Mawson Station
859 during 14 July AR.

860

861 The SIMBA deployment at a fast ice site off Mawson Station during July-November 2022
862 enabled a better understanding of the spatial and temporal variability of SIT and ST in that part of
863 coastal East Antarctica. Such measurements should also be conducted at other sites given the
864 marked regional differences in sea-ice properties in the Southern Ocean (Parkinson and Cavalieri,
865 2012). This will also help to evaluate and improve the ST, SIE and SIT estimates derived from
866 satellite remote sensing and numerical models. Besides ocean dynamics and thermodynamics, the
867 findings of the study stress the role of atmospheric forcing in driving the variability of ST in
868 particular. Long-term measurements are needed to further explore and quantify how Foehn effects,
869 blowing snow, warm and moist air intrusions, and surface melting modulate SIT and ST, and how
870 they respond to seasonal and inter-annual variations in the atmospheric and oceanic state. This is
871 a crucial step to improving the quality and confidence of future climate-change projections and
872 medium- and long-range weather forecasts owing to the global influence of sea-ice variability on
873 the climate system.

874

875 **Acknowledgements**

876 This work was funded by Khalifa University Polar Research Center. The authors wish to
877 acknowledge the contribution of Khalifa University's high-performance computing and research
878 computing facilities to the results of this research. The SIMBA deployment at a fast ice site the
879 Mawson Station, *in-situ* measurements and the technical assistance were supported under
880 Australian Antarctic Science [AAS] Project #4506 (CI: P. Heil). The work of P. Heil and R.
881 Massom was supported by the Australian Antarctic Division. For R. Massom, this work was also
882 supported by the Australian Research Council Special Research Initiative the Australian Centre
883 for Excellence in Antarctic Science (Project Number SR200100008). PH acknowledges support
884 from the AAS Program (AAS4496, AAS4506, AAS4625) and grant funding from the International
885 Space Science Institute (Switzerland; Project 405) and the Swiss Federal Research Fellowship
886 program. For P. Heil and R. Massom, this work contributes to Project 6 of the Australian Antarctic
887 Program Partnership (ASCI000002) funded under the Australian Government's Antarctic Science
888 Collaboration Initiative program. We are also grateful for the Byrd Polar and Climate Research
889 Center at The Ohio State University for developing and maintaining PolarWRF and making it
890 freely available to the scientific community. We greatly appreciate the support of the Automatic
891 Weather Station Program and the Antarctic Meteorological Research Center for the weather station
892 data used in this study (National Science Foundation grants numbers ARC-0713843, ANT-
893 0944018, and ANT-1141908). The authors also gratefully acknowledge the National Oceanic and
894 Atmospheric Administration Air Resources Laboratory for the provision of the Hybrid Single-
895 Particle Lagrangian Integrated Trajectory (HYSPLIT) transport and dispersion model used in this
896 work. We would like to thank the editor and two anonymous reviewers for their insightful and
897 constructive comments and suggestions that helped to substantially improve the quality of this
898 work.
899

900 **Code/Data availability**

901 The sea-ice and snow thickness measurements at the Khalifa SIMBA site on fast ice off Mawson
902 Station for July-November 2022 are available upon request from the corresponding author (Diana
903 Francis; diana.francis@ku.ac.ae). The remaining observational and the reanalysis datasets used in
904 this study are freely available online: (i) ERA-5 reanalysis data were downloaded from the
905 Copernicus Climate Data Store website (Hersbach et al., 2023a,b); (ii) Automatic Weather Station
906 (AWS) data at the Mawson, Davis, and Casey Stations can be requested at the Australian Antarctic
907 Data Center website (AADC, 2022); (iii) AWS and surface radiation data for Syowa Station were
908 obtained from the World Radiation Monitoring Center - Baseline Surface Radiation Network
909 website (AWI, 2024); (iv) AWS data for the Relay Station was extracted from the Antarctic

910 Meteorological Research Center & Automatic Weather Stations Project (Lazzara, 2024); (v) sea-
911 ice velocity vectors from the low resolution sea-ice drift product are available at the European
912 Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice
913 Satellite Application Facility (EUMETSAT, 2024); (vi) sea-ice concentration maps derived from
914 the measurements collected by the Advanced Microwave Scanning Radiometer (AMSR) for Earth
915 Observing Systems instrument onboard the National Aeronautics and Space Administrations
916 (NASA) Aqua satellite and the AMSR-2 instrument onboard the Japan Aerospace and Exploration
917 Agency Global Change Observation Mission 1st-Water “Shizuku” satellite from January 2013 to
918 present, were obtained from the University of Bremen website (UoB; 2024); (vii) twice daily
919 atmospheric sounding profiles at the Mawson, Syowa, Davis, and Casey stations were accessed at
920 the University of Wyoming website (Oolman, 2025). The Hybrid Single-Particle Lagrangian
921 Integrated Trajectory (HYSPLIT) transport and dispersion model is downloaded from the National
922 Aeronautic and Space Administration Air Resources Laboratory website (NOAA ARL, 2024). The
923 PolarWRF model version 4.3.3 is available at the Byrd Polar and Climate Research Center at The
924 Ohio State University website (PWRF, 2024). The figures presented in this manuscript have been
925 generated with the Interactive Data Language (IDL; Bowman, 2005) and MATLAB (Mathworks,
926 2024) software.

927

928 Competing interests

929

930 One co-author is a member of The Cryosphere editorial board.

931

932 Author Contributions: CRediT

933 **DF**: Conceptualization of the study, Interpretation and validation of the results, Writing the draft,
934 Funding Acquisition; **RF**: Formal analysis, Data processing and analysis of the results, Writing
935 the draft; **NN**: Data acquisition, processing and analysis, Interpretation of the results, Inputs to the
936 manuscript; **PH**: Interpretation of the results, Inputs to the manuscript; **JDW**: Interpretation of the
937 results, Inputs to the manuscript; **IVG**: Interpretation of the results, Inputs to the manuscript;
938 **RAM**: Interpretation of the results, Inputs to the manuscript. All authors interpreted the results and
939 provided input to the final manuscript.

940

941

942 **References**

943 AADC (2022) Antarctic Climate Data Collected by Australian Agencies. Australian Antarctic Data Center
944 [Dataset]. Accessed on 22 April 2024, available online at [Australian Antarctic Data Centre \(aad.gov.au\)](https://www.aad.gov.au/).

945

946 Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., Kain, J. S., Dudhia,
947 J. (2012) Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate
948 modeling. *Geophysical Research Letters*, 39, L24809. <https://doi.org/10.1029/2012GL054031>

949

950 Attada, R., Kunchala, R. K., Dasari, H. P., Sivareddy, S., Yesubabu, V., Knio, O., Hoteit, I. (2021)
951 Representation of Arabian Peninsula summer climate in a regional atmospheric model using spectral
952 nudging. *Theoretical and Applied Climatology*, 145, 13-30. <https://doi.org/10.1007/s00704-021-03617-w>

953

954 AWI (2024). WRMC-BSRN: World Radiation Monitoring Center - Baseline Surface Radiation Network
955 [Dataset]. Accessed on 15 April 2024, available online at <https://bsrn.awi.de/>.

956

957 Barber, D. G., Massom, R. A. (2007) The Role of Sea Ice in Arctic and Antarctic Polynyas. In W. O. Smith
958 and D. G. Barber (Editors), *Polynyas: Windows to the World's Oceans*, pp. 1-54. Elsevier. Amsterdam.

959

960 Bowman, K. P. (2005) An Introduction to Programming with IDL: Interactive Data Language [Software].
961 Academic Press, 304 pp.. ISBN-10: 012088559X, ISBN-13: 978-0120885596.

962

963 Box, J. E., Nielsen, K. P., Yang, X., Niwano, M., Wehrle, A., van As, D., Fettweis, X., Koltzow, M. A. O.,
964 Palmason, B., Fausto, R. S., van den Broeke, M. R., Huai, B., Ahlstrom, A. P., Langley, K., Dachauer, A.,
965 Noel, B. (2023) Greenland ice sheet rainfall climatology, extremes and atmospheric river rapids.
966 *Meteorological Applications*, 30, e2134. <https://doi.org/10.1002/met.2134>

967

968 Bozkurt, D., Rondanelli, R., Marin, J. C., Garreaud, R. (2018) Foehn event triggered by an atmospheric
969 river underlies record-setting temperature along continental Antarctica. *Journal of Geophysical Research: Atmospheres*, 123, 3871-3892. <https://doi.org/10.1002/2017JD027796>

970

971

972 Bromwich, D. H., Otieno, F. O., Hines, K. M., Manning, K. W., Shilo, E. (2013) Comprehensive evaluation
973 of polar weather research and forecasting model performance in the Antarctic. *Journal of Geophysical
974 Research: Atmospheres*, 118, 274-292. <https://doi.org/10.1029/2012JD018139>

975

976 Bromwich, D. H., Powers, J. G., Manning, K. W., Zou, X. (2022) Antarctic data impact experiments with
977 Polar WRF during the YOPP-SH summer special observing period. *Quarterly Journal of the Royal
978 Meteorological Society*, 148, 2194-2218. <https://doi.org/10.1002/qj.4298>

979

980 Chen, F., Dudhia, J. (2001) Coupling an Advanced Land Surface-Hydrology Model with the Penn State -
981 NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. *Monthly Weather Review*,
982 129, 569-585. [https://doi.org/10.1175/1520-0493\(2001\)129<0569:CAALSH>2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2)

983

984 Chinta, S., Balaji, C. (2020) Calibration of WRF model parameters using multiobjective adaptive surrogate
985 model-based optimization to improve the prediction of the Indian summer monsoon. *Climate Dynamics*,
986 55, 631-650. <https://doi.org/10.1007/s00382-020-05288-1>

987

988 Dare, R. A., Budd, W. F. (2001) Analysis of Surface Winds at Mawson, Antarctica. *Weather and*
989 *Forecasting*, 16, 416-431. [https://doi.org/10.1175/1520-0434\(2001\)016<0416:AOSWAM>2.0.CO;2](https://doi.org/10.1175/1520-0434(2001)016<0416:AOSWAM>2.0.CO;2)

990

991 Djoumna, G., Holland, D. M. (2021) Atmospheric rivers, warm air intrusions, and surface radiation balance
992 in the Amundsen Sea Embayment. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD034119.
993 <https://doi.org/10.1029/2020JD034119>

994

995 Dery, S. J., Yau, M. K. (2002) Large-scale mass balance effects of blowing snow and surface sublimation.
996 *Journal of Geophysical Research*, 107, 4679. <https://doi.org/10.1029/2001JD001251>

997

998 Dong, X., Wang, Y., Hou, S., Ding, M., Yin, B., Zhang, Y. (2020) Robustness of the Recent Global
999 Atmospheric Reanalyses for Antarctic Near-Surface Wind Speed Climatology. *Journal of Climate*, 33,
1000 4027-4043. <https://doi.org/10.1175/JCLI-D-19-0648.1>

1001

1002 Eayrs, C., Holland, D. M., Francis, D., Wagner, T. J. W., Kumar, R., Li, X. (2019) Understanding the
1003 seasonal cycle of Antarctic sea ice extent in the context of long-term variability. *Reviews of Geophysics*,
1004 57, 1037-1064. <https://doi.org/10.1029/2018RG000631>

1005

1006 Eayrs, C., Li, X., Raphael, M. N., Holland, D. M. (2021) Rapid decline in Antarctic sea ice in recent years
1007 hints at future change. *Nature Geosciences*, 14, 460-464. <https://doi.org/10.1038/s41561-021-00768-3>

1008

1009 Elvidge, A. D., Munneke, K., King, P., Renfrew, I. A., Gilbert, E. (2020) Atmospheric drivers of melt on
1010 Larsen C Ice Shelf: Surface energy budget regimes and the impact of foehn. *Journal of Geophysical*
1011 *Research: Atmospheres*, 125, e2020JD032463. <https://doi.org/10.1029/2020JD032463>

1012

1013 England, M. R., Wagner, T. J. W., Eisenman, I. (2020) Modeling the breakup of tabular icebergs. *Science*
1014 *Advances*, 6, 51. <https://doi.org/10.1126/sciadv.abd1273>

1015

1016 EUMETSAT (2024) Ocean and Sea Ice Satellite Application Facility. Accessed on 12 August 2024,
1017 available online at <https://osi-saf.eumetsat.int/products/osi-405-c>

1018

1019 Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze, R. A. Jr., Li, J., Hardin, J. C., Chen, D., Guo, J. (2021) A
1020 global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface
1021 precipitation, and tracking. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD034202.
1022 <https://doi.org/10.1029/2020JD034202>

1023

1024 Finlon, J. A., Rauber, R. M., Wu, W., Zaremba, T. J., McFarquhar, G. M., Nesbitt, S. W., Schnaiter, M.,
1025 Jarvinen, E., Waitz, F., Hill, T. C. J., DeMott, P. J. (2020) Structure of an atmospheric river over Australia
1026 and the Southern Ocean: II. Microphysical evolution. *Journal of Geophysical Research: Atmospheres*, 125,
1027 e2020JD032514. <https://doi.org/10.1029/2020JD032514>

1028
1029 Fons, S., Kurtz, N., Bagnardi, M. (2023) A decade-plus of Antarctic sea ice thickness and volume estimates
1030 from CryoSat-2 using a physical model and waveform fitting. *The Cryosphere*, 17, 2487-2508.
1031 <https://doi.org/10.5194/tc-17-2487-2023>

1032
1033 Fonseca, R., Francis, D., Aulicino, G., Mattingly, K., Fusco, G., Budillon, G. (2023) Atmospheric controls
1034 on the Terra Nova Bay polynya occurrence in Antarctica. *Climate Dynamics*, 61, 5147-5169.
1035 <https://doi.org/10.1007/s00382-023-06845-0>

1036
1037 Francis, D., Eayrs, C., Cuesta, J., Holland, D. (2019) Polar cyclones at the origin of the reoccurrence of the
1038 Maud Rise Polynya in austral winter 2017. *Journal of Geophysical Research: Atmospheres*, 124, 5251-
1039 5267. <https://doi.org/10.1029/2019JD030618>

1040
1041 Francis, D., Fonseca, R., Bozkurt, D., Nelli, N., Guan, B. (2024) Atmospheric River Rapids and Their Role
1042 in the Extreme Rainfall Event of April 2023 in the Middle East. *Geophysical Research Letters*, 51,
1043 e2024GL109446. <https://doi.org/10.1029/2024GL109446>

1044
1045 Francis, F., Fonseca, R., Mattingly, K. S., Lhermitte, S., Walker, C. (2023) Foehn winds at Pine Island
1046 Glacier and their role in ice changes. *The Cryosphere*, 17, 3041-3062. <https://doi.org/10.5194/tc-17-3041-2023>

1048
1049 Francis, D., Fonseca, R., Nelli, N., Bozkurt, D., Picard, G., Guan, B. (2022a) Atmospheric rivers drive
1050 exceptional Saharan dust transport towards Europe. *Atmospheric Research*, 266, 105959.
1051 <https://doi.org/10.1016/j.atmosres.2021.105959>

1052
1053 Francis, D., Mattingly, K. S., Lhermitte, S., Temimi, M., Heil, P. (2021) Atmospheric extremes caused high
1054 oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice
1055 Shelf. *The Cryosphere*, 15, 2147-2165. <https://doi.org/10.5194/tc-15-2147-2021>

1056
1057 Francis, D., Fonseca, R., Mattingly, K. S., Marsh, O. J., Lhermitte, S., Cherif, C. (2022b) Atmospheric
1058 triggers of the Brunt Ice Shelf calving in February 2021. *Journal of Geophysical Research: Atmospheres*,
1059 127, e2021JD036424. <https://doi.org/10.1029/2021JD036424>

1060
1061 Francis, D., Mattingly, K. S., Temimi, M., Massom, R., Heil, P. (2020) On the crucial role of atmospheric
1062 rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. *Science Advances*, 6.
1063 <https://doi.org/10.1126/sciadv.abc2695>

1064
1065 Fraser, A. D., Wongpan, P., Langhorne, P. J., Klekociuk, A. R., Kusahara, K., Lannuzel, D., Massom, R.
1066 A., Meiners, K. M., Swadling, K. M., Atwater, D. P., Brett, G. M., Corkill, M., Dalman, L. A., Fiddes, S.,
1067 Granata, A., Guglielmo, L., Heil, P., Leonard, G. H., Mahoney, A. R., McMinn, A., van der Merwe, P.,
1068 Weldrick, C. K., Wiencke, B. (2023) Antarctic landfast sea ice: A review of its physics, biogeochemistry
1069 and ecology. *Reviews of Geophysics*, 61, e2022RG000770. <https://doi.org/10.1029/2022RG000770>

1070

1071 Gehring, J., Vignon, E., Billault-Roux, A. C., Ferrone, A., Protat, A., Alexander, S. P., Berne, A. (2022)
1072 Orographic flow influence on precipitation during an atmospheric river event at Davis, Antarctica. *Journal*
1073 *of Geophysical Research: Atmospheres*, 127, e2021JD035210. <https://doi.org/10.1029/2021JD035210>.

1074

1075 Ghiz, M.L., Scott, R. C., Vogelmann, A. M., Lenaerts, J. T. M., Lazzara, M., Lubin, D. (2021) Energetics
1076 of surface melt in West Antarctica. *The Cryosphere*, 15, 3459-3494. <https://doi.org/10.5194/tc-15-3459-2021>

1077

1078

1079 Gilbert, E., Pishniak, D., Torres, J. A., Orr, A., Maclennan, M., Wever, N., Verro, K. (2025) Extreme
1080 precipitation associated with atmospheric rivers over West Antarctic ice shelves: insights from the
1081 kilometre-scale regional climate modeling. *The Cryosphere*, 19, 597-618. <https://doi.org/10.5194/tc-19-597-2025>

1083

1084 Goosse, H., Contador, A., Bitz, C., Blanchard-Wrigglesworth, C. M., Eayrs, E., Fichefet, C., Himmich, T.,
1085 Huot, K., Klein, P.-V., Marchi, F., Massonnet, S., Mezzina, F., Pelletier, B., Roach, C., Vancoppenolle, L.,
1086 van Lipzig, N. P. M. (2023) Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice
1087 processes and feedbacks with the ocean and the atmosphere. *The Cryosphere*, 17, 407-425.
1088 <https://doi.org/10.5194/tc-17-407-2023>

1089

1090 Gorodetskaya, I. V., Duran-Alarcon, C., Gonzalez-Herrero, S., Clem, K. R., Zou, X., Rowe, P., Imazio, P.
1091 R., Campos, D., Leroy-Dos Santos, C., Dutrievoz, N., Wille, J. D., Chyhareva, A., Favier, V., Blanchet, J.,
1092 Pohl, B., Cordero, R. R., Prak, S.-J., Colwell, S., Lazzara, M. A., Carrasco, J., Gulisano, A. M., Krakovska,
1093 S., Ralph, F. M., Dethinne, T., Picard, G. (2023) Record-high Antarctic Peninsula temperatures and surface
1094 melt in February 2022: a compound event with an intense atmospheric river. *Npj Climate and Atmospheric*
1095 *Science*, 6, 202. <https://doi.org/10.1038/s41612-023-00529-6>

1096

1097 Gorodetskaya, I. V., Silva, T., Schmithusen, H., Hirasawa, N. (2020) Atmospheric river signatures in
1098 radiosonde profiles and reanalyses at the Dronning Maud Land Coast, East Antarctica. *Advances in*
1099 *Atmospheric Sciences*, 37, 455-476. <https://doi.org/10.1007/s00376-020-9221-8>

1100

1101 Gorodetskaya, I. V., Van Lipzig, N. P. M., Van den Broeke, M. R., Mangold, A., Boot, W., Reijmer, C. H.
1102 (2013) Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East
1103 Antarctica: Analysis of two contrasting years. *Journal of Geophysical Research: Atmospheres*, 118, 1700-
1104 1715. <https://doi.org/10.1002/jgrd.50177>

1105

1106 Gossart, A., Helsen, S., Lenaerts, J. T. M., Vanden Broucke, S., van Lipzig, N. P. M., Souverijns, N. (2019)
1107 An Evaluation of Surface Climatology in State-of-the-Art Reanalyses over the Antarctic Ice Sheet. *Journal*
1108 *of Climate*, 32, 6899-6915. <https://doi.org/10.1175/JCLI-D-19-0030.1>

1109

1110 Guest, P. S. (2021) Inside katabatic winds over the Terra Nova Bay polynya: 2. Dynamic and
1111 thermodynamic analyses. *Journal of Geophysical Research: Atmospheres*, 126, e2021JD034904.
1112 <https://doi.org/10.1029/2021JD034904>

1113

1114

1115 Haas, C. (2017) Sea ice thickness distribution. In: Sea Ice, D. N. Thomas (Ed.). Blackwell Science.
1116 <https://doi.org/10.1002/9781118778371.ch2>

1117

1118 Haumann, F. A., Gruber, N., Munnich, M., Frenger, I., Kern, S. (2016) Sea-ice transport driving Southern
1119 Ocean salinity and its recent trends. *Nature*, 537, 89-92. <https://doi.org/10.1038/nature19101>

1120

1121 Heil, P. (2006) Atmospheric conditions and fast ice at Davis, East Antarctica: A case study. *Journal of
1122 Geophysical Research*, 111, C05009. <https://doi.org/10.1029/2005JC002904>

1123

1124 Heil, P., Allison, I., Lytle, V. I. (1996) Seasonal and interannual variations of the oceanic heat flux under a
1125 landfast Antarctic sea ice cover. *Journal of Geophysical Research*, 101(C11), 25741-25752.
1126 <https://doi.org/10.1029/96JC01921>

1127

1128 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J., Nicolas, J., Peavey, C.,
1129 Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thepaut, J.-N. (2023a) ERA5 hourly
1130 data on single levels from 1940 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate
1131 Data Store (CDS). Accessed on 22 April 2024, available online at <https://doi.org/10.24381/cds.adbb2d47>

1132

1133 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J., Nicolas, J., Peavey, C.,
1134 Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thepaut, J.-N. (2023b) ERA5 hourly
1135 data on pressure levels from 1940 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate
1136 Data Store (CDS). Accessed on 22 April 2024, available online at <https://doi.org/10.24381/cds.bd0915c6>

1137

1138 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peavey, C.,
1139 Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellana, X., Balsamo, G., Bechtold, P., Biavati,
1140 G., Bidiot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Fleming,
1141 J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M.,
1142 Keeley, S., Laloyaux, P., Lopez, P., Lulu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume,
1143 S., Thepaut, J.-N. (2020) The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological
1144 Society*, 146, 1999-2049. <https://doi.org/10.1002/qj.3803>

1145

1146 Hines, K. M., Bromwich, D. H., Silber, I., Russell, L. M., Bai, L. (2021) Predicting frigid mixed-phase
1147 clouds for pristine coastal Antarctica. *Journal of Geophysical Research: Atmospheres*, 126,
1148 e2021JD035112. <https://doi.org/10.1029/2021JD035112>

1149

1150 Hines, K. M., Bromwich, D. H., Wang, S.-H., Silber, I., Verlinde, J., Lubin, D. (2019) Microphysics of
1151 summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model
1152 (WRF) an the Antarctic Mesoscale Prediction System (AMPS). *Atmospheric Chemistry and Physics*, 19,
1153 12431-12454. <https://doi.org/10.5194/acp-19-12431-2019>

1154

1155 Hobbs, W., Spence, P., Meyer, A., Schroeter, S., Fraser, A. D., Reid, P., Tian, R. T., Wang, Z., Liniger, G.,
1156 Doddridge, E. W., Boyd, P. W. (2024) Observational Evidence for a Regime Shift in Summer Antarctic
1157 Sea Ice. *Journal of Climate*, 37, 2263-2275. <https://doi.org/10.1175/JCLI-D-23-0479.1>

1158

1159 Hoppmann, M., M. Nicolaus, P. A. Hunkeler, P. Heil, L.-K. Behrens, G. König-Langlo, R. Gerdes (2015)
1160 Seasonal evolution of an ice-shelf influenced fast-ice regime, derived from an autonomous thermistor chain.
1161 *Journal of Geophysical Research: Oceans*, 120, 1703–1724, <https://doi.org/10.1002/2014JC010327>.

1162

1163 Hoskins, B., Fonseca, R., Blackburn, M., Jung, T. (2012) Relaxing the Tropics to an ‘observed’ state:
1164 analysis using a simple baroclinic model. *Quarterly Journal of the Royal Meteorological Society*, 138, 1618–
1165 <https://doi.org/10.1002/qj.1881>

1166

1167 Hoskins, B. J., Karoly, D. J. (1981) The Steady Linear Response of a Spherical Atmosphere to Thermal
1168 and Orographic Forcing. *Journal of Atmospheric Sciences*, 38, 1179–1196. [https://doi.org/10.1175/1520-0469\(1981\)038<1179:TSLROA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2)

1169

1170

1171 Hoskins, B. J., Valdes, P. J. (1990) On the Existence of Storm-Tracks. *Journal of Atmospheric Sciences*,
1172 47, 1854–1864. [https://doi.org/10.1175/1520-0469\(1990\)047<1854:OTEOST>2.0.CO;2](https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2)

1173

1174 Houze, R. A. Jr. (2004) Mesoscale convective systems. *Reviews of Geophysics*, 42, RG4003.
1175 <https://doi.org/10.1029/2004RG000150>

1176

1177 Hu, H., Zhao, J., Heil, P., Qin, Z., Ma, J., Hui, F., Cheng, X. (2023) Annual evolution of the ice-ocean
1178 interaction beneath landfast ice in Prydz Bay, East Antarctica. *The Cryosphere*, 17, 2231–2244.
1179 <https://doi.org/10.5194/tc-17-2231-2023>

1180

1181 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008)
1182 Radiative forcing by long-lived greenhouse gasses: Calculations with the AER radiative transfer models.
1183 *Journal of Geophysical Research*, 113, D13103. <https://doi.org/10.1029/2008JD009944>

1184

1185 Jackson, K., J. Wilkinson, T. Maksym, D. Meldrum, J. Beckers, C. Haas, and D. Mackenzie (2013) A Novel
1186 and Low Cost Sea Ice Mass Balance Buoy. *Journal of Atmospheric and Oceanic Technology*, 30, 2676–
1187 2688. <https://doi.org/10.1175/JTECH-D-13-00058.1>

1188

1189 Kacimi, S., Kwok, R. (2020) The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow
1190 depth, and ice thickness. *The Cryosphere*, 14, 4453–4474. <https://doi.org/10.5194/tc-14-4453-2020>

1191

1192 Kain, J. S. (2004) The Kain-Fritsch convective parameterization: An update. *Journal of Applied
1193 Meteorology*, 43, 170–181. [https://doi.org/10.1175/1520-0430\(2004\)043<0170:tkcpau>2.0.co;2](https://doi.org/10.1175/1520-0430(2004)043<0170:tkcpau>2.0.co;2)

1194

1195 Kawamura, T., Takizawa, T., Ohshima, K. I., Ushio, S. (1995) Data of sea-ice cores obtained in Lutzow-
1196 Holm Bay from 1990 to 1992 (JARE-31, -32) in the period of Japanese Antarctic climate research. *JARE
1197 Data Rep.* 204 (Glaciol. 24), 42 pp., National Institute of Polar Research, Tokyo.

1198

1199 Koh, T.-Y., Wang, S., Bhatt, B. C. (2012) A diagnostic suite to assess NWP performance. *Journal of
1200 Geophysical Research*, 117, D13109. <https://doi.org/10.1029/2011JD017103>

1201

1202 Kurtz, N. T., Markus, T. (2012) Satellite observations of Antarctic sea ice thickness and volume. *Journal*
1203 of *Geophysical Research*, 117, C08025. <https://doi.org/10.1029/2012JC008141>

1204

1205 Lavergne, T., Eastwood, S., Teffah, Z., Schuberg, H., Breivik, L.-A. (2010) Sea ice motion from low-
1206 resolution satellite sensors: an alternative method and its validation in the Arctic. *Journal of Geophysical*
1207 *Research: Oceans*, 115, C10032. <https://doi.org/10.1029/2009JC005958>

1208

1209 Laffin, M. K., Zender, C. S., Singh, S., Van Wessem, J. M., Smeets, C. J. P. P., Reijmer, C. H. (2021)
1210 Climatology and evolution of the Antarctic Peninsula fohn wind-induced melt regime from 1979-2018.
1211 *Journal of Geophysical Research: Atmospheres*, 126, e2020JD033682.
1212 <https://doi.org/10.1029/2020JD033682>

1213

1214 Lazzara, M. (2024) Antarctic Meteorological Research Center & Automatic Weather Stations Project
1215 [Dataset]. Accessed on 12 May 2024, available online at <https://amrc.ssec.wisc.edu/>.

1216

1217 Lea, E. J., Jamieson, S. S. R., Bentley, M. J. (2024) Alpine topography of the Gamburtsev Subglacial
1218 Mountains, Antarctica, mapped from ice sheet surface morphology. *The Cryosphere*, 18, 1733-1751.
1219 <https://doi.org/10.5194/tc-18-1733-2024>

1220

1221 Li, H., Fedorov, A. V. (2021) Persistent freshening of the Arctic Ocean and changes in the North Atlantic
1222 salinity caused by Arctic sea ice decline. *Climate Dynamics*, 57, 2995-3013.
1223 <https://doi.org/10.1007/s00382-021-05850-5>

1224

1225 Li, X.-Q., Hui, F.-M., Zhao, J.-C., Zhai, M.-X., Cheng, X. (2022) Thickness simulation of landfast ice
1226 along Mawson Coast, East Antarctica based on a snow/ice high-resolution thermodynamic model.
1227 *Advances in Climate Change Research*, 13, 375-384. <https://doi.org/10.1016/j.accre.2022.05.005>

1228

1229 Liang, K., Wang, J., Luo, H., Yang, Q. (2023) The role of atmospheric rivers in Antarctic sea ice variations.
1230 *Geophysical Research Letters*, 50, e2022GL102588. <https://doi.org/10.1029/2022GL102588>

1231

1232 Liao, Z., Cheng, B., Zhao, J., Vihma, T., Jackson, K., Yang, Q., Yang, Y., Zhang, L., Li, Z., Qiu, Y., Cheng,
1233 X. (2018). Snow depth and ice thickness derived from SIMBA ice mass balance buoy data using an
1234 automated algorithm. *International Journal of Digital Earth*, 12(8), 962-979.
1235 <https://doi.org/10.1080/17538947.2018.1545877>

1236

1237 Liao, S., Luo, H., Wang, J., Shi, Q., Zhang, J., Yang, Q. (2022) An evaluation of Antarctic sea-ice thickness
1238 from the Global Ice-Ocean Modeling and Assimilation System based on it situ and satellite observations.
1239 *The Cryosphere*, 16, 1807-1819. <https://doi.org/10.5194/tc-16-1807-2022>

1240

1241 Liu, Y., Key, J. R., Wang, X., Tschudi, M. (2020) Multidecadal Arctic sea ice thickness and volume derived
1242 from ice age. *The Cryosphere*, 14, 1325-1345. <https://doi.org/10.5194/tc-14-1325-2020>

1243

1244 Maksym, T., Markus, T. (2008) Antarctic sea ice thickness and snow-to-ice conversion from atmospheric
1245 reanalysis and passive microwave snow depth. *Journal of Geophysical Research*, 113, C02S12.
1246 <https://doi.org/10.1029/2006JC004085>

1247

1248 Maksym, T., Stammerjohn, S., Ackley, S., Massom, R. (2012) Antarctic sea ice – A polar opposite?
1249 *Oceanography* 25, 140-151. <https://doi.org/10.5670/oceanog.2012.88>

1250

1251 Marengo, J. A., Soares, W. R., Saulo, C., Nicolini, M. (2004) Climatology of the Low-Level Jet East of the
1252 Andes as Derived from the NCEP-NCAR Reanalyses: Characteristics and Temporal Variability. *Journal of*
1253 *Climate*, 17, 2261-2280. [https://doi.org/10.1175/1520-0442\(2004\)017<2261:COTLJE>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2)

1254

1255 Marshall, G. J. (2003) Trends in the Southern Annular Mode from Observations and Reanalyses. *Journal*
1256 *of Climate*, 16, 4134-4143. [https://doi.org/10.1175/1520-0442\(2003\)016<4134:TITSAM>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2)

1257

1258 Massom, R.A., H. Eicken, C. Haas, M.O. Jeffries, M.R. Drinkwater, M. Sturm, A.P. Worby, X. Wu, V.I.
1259 Lytle, S. Ushio, K. Morris, P.A. Reid, S. Warren, and I. Allison. (2001) Snow on Antarctic sea ice. *Reviews*
1260 *of Geophysics*, 39(3), 413-445. <https://doi.org/10.1029/2000RG000085>

1261

1262 Massom, R. A., Pook, M. J., Comiso, J. C., Adams, N., Turner, J., Lachlan-Cope, T., Gibson, T. T. (2004)
1263 Precipitation over the interior East Antarctic Ice Sheet related to mid-latitude blocking-high activity.
1264 *Journal of Climate*, 17, 1914-1928. [https://doi.org/10.1175/1520-0442\(2004\)017%3C1914:POTIEA%3E2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017%3C1914:POTIEA%3E2.0.CO;2)

1265

1266

1267 Massonnet, F., Mathiot, P., Fichefet, T., Goosse, H., Beatty, C. K., Vancopenolle, M., Lavergne, T. (2013)
1268 A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980-2008 using data
1269 assimilation. *Ocean Modeling*, 64, 67-75. <https://doi.org/10.1016/j.ocemod.2013.01.003>

1270

1271 Matejka, M., Laska, K., Jeklova, K., Hosek, J. (2021) High-Resolution Numerical Modeling of Near-
1272 Surface Atmospheric Fields in the Complex Terrain of James Ross Island, Antarctic Peninsula.
1273 *Atmosphere*, 12, 360. <https://doi.org/10.3390/atmos12030360>

1274

1275 Mathworks (2024) Math. Graphics. Programming [Software]. Accessed on 18 March 2024, available online
1276 at <https://uk.mathworks.com/products/matlab.html>

1277

1278 McLennan, M. L., Lenaerts, J. T. M., Shields, C. A., Hoffman, A. O., Wever, N., Thompson-Munson, M.,
1279 Winters, A. C., Pettit, E. C., Scambos, T. A., Wille, J. D. (2023) Climatology and surface impacts of
1280 atmospheric rivers on West Antarctica. *The Cryosphere*, 17, 865-881. <https://doi.org/10.5194/tc-17-865-2023>

1281

1282

1283 McLennan, M. L., Lenaerts, J. T. M., Shields, C., Wille, J. D. (2022) Contribution of atmospheric rivers to
1284 Antarctic precipitation. *Geophysical Research Letters*, 49, e2022GL100585.
1285 <https://doi.org/10.1029/2022GL100585>

1286

1287 Meredith, M. P., Stammerjohn, S. E., Ducklow, H. W., Leng, M. J., Arrowsmith, C., Brearley, J. A.,
1288 Venables, H. J., Barham, M., van Wessem, J. M., Schofield, O., Waite, N. (2021) Local- and large-scale
1289 drivers of variability in the coastal freshwater budget of the Western Antarctic Peninsula. *Journal of*
1290 *Geophysical Research: Oceans*, 126, e2021JC017172. <https://doi.org/10.1029/2021JC017172>

1291

1292 Miles, B. W. J., Stokes, C. R., Jamieson, S. S. R. (2017) Simultaneous disintegration of outlet glaciers in
1293 Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. *The Cryosphere*, 11, 427-442.
1294 <https://doi.org/10.5194/tc-11-427-2017>

1295

1296 Mills, C. M. (2011) Modification of the Weather Research and Forecasting Model's treatment of sea ice
1297 albedo over the Arctic Ocean. WRF3.3.1 Code Submission Doc., 2 pp. Accessed on 19 August 2024,
1298 available online at
1299 http://publish.illinois.edu/catrinmills/files/2012/10/Mills_WRFIceAlbedoProj_Summary.pdf

1300

1301 Montini, T. L., Jones, C., Carvalho, L. M. V. (2019) The South American low-level jet: A new climatology,
1302 variability, and changes. *Journal of Geophysical Research: Atmospheres*, 124, 1200-1218.
1303 <https://doi.org/10.1029/2018JD029634>

1304

1305 Morrison, H., Milbrandt, J. A. (2015) Parameterization of Cloud Microphysics Based on the Prediction of
1306 Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. *Journal of the Atmospheric*
1307 *Sciences*, 72, 287-311. <https://doi.org/10.1175/JAS-D-14-0065.1>

1308

1309 Nakanishi, M., Niino, H. (2006) An improved Mellor-Yamada level-3 model: Its numerical stability and
1310 application to a regional prediction of advection fog. *Boundary-Layer Meteorology*, 119, 397-407.
1311 <https://doi.org/10.1007/s10546-005-9030-8>

1312

1313 Nelli, N. R., Francis, D., Fonseca, R., Abida, R., Weston, M., Wehbe, Y., Al Hosary, T. (2021) The
1314 atmospheric controls of extreme convective events over the southern Arabian Peninsula during the spring
1315 season. *Atmospheric Research*, 262, 105788. <https://doi.org/10.1016/j.atmosres.2021.105788>

1316

1317 NOAA ARL (2024) HYSPLIT for Linux - Public (unregistered) version download [Software]. National
1318 Oceanic and Atmospheric Administration Air Resources Laboratory. Accessed on 04 July, available online
1319 at https://www.ready.noaa.gov/HYSPLIT_linuxtri

1320

1321 NOAA/NWS (2024) Cold & Warm Episodes by Season [Dataset]. National Oceanic and Atmospheric
1322 Administration / National Weather Service Climate Prediction Center. Accessed on 24 July, available
1323 online at https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

1324

1325 Oliveira, F. N. M., Carvalho, L. M. V., Ambrizzi, T. (2013) A new climatology for Southern Hemisphere
1326 blockings in the winter and the combine defect of ENSO and SAM phases. *International Journal of*
1327 *Climatology*, 34, 676-1692. <https://doi.org/10.1002/joc.3795>

1328

1329 Oolman, L. (2025) University of Wyoming - atmospheric soundings [Dataset]. Accessed on 04 July 2024,
1330 data available online at <https://weather.uwyo.edu/upperair/sounding.html>

1331
1332 Parkinson, C. L. (2019) A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at
1333 rates far exceeding the rates seen in the Arctic. *Environmental Sciences*, 116, 14414-14423.
1334 <https://doi.org/10.1073/pnas.1906556116>

1335
1336 Parkinson, C. L., Cavalieri, D. J. (2012) Antarctic sea ice variability and trends, 1979-2010. *The*
1337 *Cryosphere*, 6, 871-880. <https://doi.org/10.5194/tc-6-871-2012>

1338
1339 Plante, M., Lemieux, J.-F., Tremblay, L. B., Tivy, A., Angnatok, J., Roy, F., Smith, G., Dupont, F., Turner,
1340 A. K. (2024) Using Icemap to reproduce ice mass balance buoy observations in landfast ice: improvements
1341 from the mushy-layer thermodynamics. *The Cryosphere*, 18, 1685-1708. <https://doi.org/10.5194/tc-18-1685-2024>

1343
1344 Pook, M. J., Risbey, J. S., McIntosh, P. C., Ummenhofer, C. C., Marshall, A. G., Meyers, G. A. (2013) The
1345 seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship
1346 with rainfall. *Monthly Weather Review*, 141, 4534-4553. <https://doi.org/10.1175/MWR-D-13-00040.1>

1347
1348 Purich, A., Doddridge, E. W. (2023) Record low Antarctic sea ice coverage indicates a new sea ice state.
1349 *Communications Earth & Environment*, 4, 314. <https://doi.org/10.1038/s43247-023-00961-9>

1350
1351 PWRF (2024) The Polar WRF. Byrd Polar and Climate Research Center. The Ohio State University
1352 [Model]. Accessed on 08 April 2024, available online at <https://polarmet.osu.edu/PWRF/>.

1353
1354 Quan, J., Di, Z., Duan, Q., Gong, W., Wang, C., Gan, Y., Ye, A., Miao, C. (2016) An evaluation of
1355 parametric sensitivities of different meteorological variables simulated by the WRF model. *Quarterly*
1356 *Journal of the Royal Meteorological Society*, 142, 2925-2934. <https://doi.org/10.1002/qj.2885>

1357
1358 Raphael, M. N., Hobbs, W., Wainer, I. (2011) The effect of Antarctic sea ice on the Southern Hemisphere
1359 atmosphere during the southern summer. *Climate Dynamics*, 36, 1403-1417.
1360 <https://doi.org/10.1007/s00382-010-0892-1>

1361
1362 Rauber, R., M., Hu, H., Dominguez, F., Nesbitt, S. W., McFarquhar, G. M., Zaremba, T. J., Finlon, J. A.
1363 (2020) Structure of an atmospheric river over Australia and the Southern Ocean. Part I: Tropical and
1364 midlatitude water vapor fluxes. *Journal of Geophysical Research: Atmospheres*, 125, e2020JD032513.
1365 <https://doi.org/10.1029/2020JD032513>

1366
1367 Reid, P., Stammerjohn, S., Massom, R. A., Barreira, S., Scambos, T., Lieser, J. L. (2024) Sea-ice extent,
1368 concentration, and seasonality [in “State of the Climate in 2023”]. *Bulletin of the American Meteorological*
1369 *Society*, 105, 350-353. <https://doi.org/10.1175/BAMS-D-24-0099.1>

1370
1371 Riihelä, A., Bright, R. M., Anttila, K. (2021) Recent strengthening of snow and ice albedo feedback driven
1372 by Antarctic sea-ice loss. *Nature Geosciences*, 14, 832-836. <https://doi.org/10.1038/s41561-021-00841-x>

1373

1374 Roach, L. A., Dorr, J., Holmes, C. R., Massonnet, F., BLockley, E. W., Notz, D., Rackow, T., Raphael, M.
1375 N., O'Farrell, S. P., Bailey, D. A., Bitz, C. M. (2020) Antarctic Sea Ice Area in CMIP6. *Geophysical*
1376 *Research Letters*, 47, e2019GL086729. <https://doi.org/10.1029/2019GL086729>

1377

1378 Schroeter, S., Sandery, P. A. (2022) Large-ensemble analysis of Antarctic sea ice model sensitivity to
1379 parameter uncertainty. *Ocean Modeling*, 177, 102090. <https://doi.org/10.1016/j.ocemod.2022.102090>

1380

1381 Sledd, A., Shupe, M. D., Solomon, A., Cox, C. J., Perovich, D., Lei, R. (2024) Snow thermal conductivity
1382 and conductive flux in the Central Arctic: Estimates from observations and implications for models.
1383 *Elements: Science of the Anthropocene*, 12, 00086. <https://doi.org/10.1525/elementa.2023.00086>

1384

1385 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda,
1386 M. G., Barker, D., Huang, X.-Y. (2019) Description of the Advanced Research WRF Model Version 4.3
1387 (No. NCAR/TN-556+STR). Accessed on 03 June 2024, available online at
1388 <https://opensky.ucar.edu/islandora/object/opensky:2898>

1389

1390 Spreen, G., Kaleschke, L., Heygster, G. (2008) Sea ice remote sensing using AMSR-E 89-GHz channels.
1391 *Journal of Geophysical Research*, 113, C02S03. <https://doi.org/10.1029/2005JC003384>

1392

1393 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., Ngan, F. (2015) NOAA's
1394 HYSPLIT atmospheric transport and dispersion modeling system. *Bulletin of the American Meteorological*
1395 *Society*, 96, 2059-2077. <https://doi.org/10.1175/BAMS-D-14-00110.1>

1396

1397 Szapiro, N., Cavallo, S. (2018) TPVTrack v1.0: A watershed segmentation and overlap correspondence
1398 method for tracking tropopause polar vortices. *Geoscientific Model Development*, 11, 5173-5187.
<https://doi.org/10.5194/gmd-11-5173-2018>

1399

1400 Takaya, K., Nakamura, H. (2001) A Formulation of a Phase-Independent Wave-Activity Flux for Stationary
1401 and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. *Journal of the Atmospheric*
Sciences, 58, 608-627. [https://doi.org/10.1175/1520-0469\(2001\)058<0608:AFOAPI>2.0.CO;2](https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2)

1402

1403 Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., Mitchell, K. E., et al. (2004) Implementation
1404 and verification of the unified NOAH land surface model in the WRF model. *20th Conference on Weather*
Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, W, American
1405 Meteorological Society, 14.2.a. Accessed on 25 January 2024, available online at
1406 <https://opensky.ucar.edu/islandora/object/conference:1576>

1407

1408 Tewari, K., Mishra, S. K., Salunke, P., Ozawa, H., Dewan, A. (2023) Potential effects of the projected
1409 Antarctic sea-ice loss on the climate system. *Climate Dynamics*, 60, 589-601.
<https://doi.org/10.1007/s00382-022-06320-2>

1410

1411 Thomas, D (editor) (2017) Sea Ice. 3rd Edition. Wiley-Blackwell, New York (USA) and Oxford (UK), 664
pp. ISBN: 978-1-118-77838-8.

1412 Terpstra, A., Gorodetskaya, I. V., Sodemann, H. (2021) Linking sub-tropical evaporation and extreme
1413 precipitation over East Antarctica: An atmospheric river case study. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD033617. <https://doi.org/10.1029/2020JD033617>

1415 Trusel, L. D., Kromer, J. D., Datta, R. T. (2023) Atmospheric Response to Antarctic Sea-Ice Reductions
1416 Drives Ice Sheet Surface Mass Balance Increase. *Journal of Climate*, 19, 6879-6896.
1417 <https://doi.org/10.1175/JCLI-D-23-0056.1>

1418 University of Bremen (UoB) (2024) Sea Ice Remote Sensing, Data Archived. Accessed on 01 August 2024,
1419 available online at <https://data.seaice.uni-bremen.de/>.

1420 Vignon, E., Alexander, S. P., DeMott, P. J., Sotiropoulou, G., Gerber, F., Hill, T. C. J., Marchand, R.,
1421 Nenes, A., Berne, A. (2021) Challenging and improving the simulation of mid-level mixed-phase clouds
1422 over the high-latitude Southern Ocean. *Journal of Geophysical Research: Atmospheres*, 126,
1423 e2020JD033490. <https://doi.org/10.1029/2022JD033490>

1424

1425 Vignon, E., Traulle, O., Berne, A. (2019) On the fine vertical structure of the low troposphere over coastal
1426 margins of East Antarctica. *Atmospheric Chemistry and Physics*, 19, 4659-4683.
1427 <https://doi.org/10.5194/acp-19-4659-2019>

1428

1429 Wallace, J. M., Hobbs, P. V. (2006) *Atmospheric science: An introductory survey*. 504 pp. Academic Press
1430 Inc., second edition. ISBN-10: 012732951X, ISBN-13: 978-0127329512.

1431

1432 Wang, Z., Li, Z., Zeng, J., Liang, S., Zhang, P., Tang, F., Chen, S., Ma, X. (2020) Spatial and temporal
1433 variations of Arctic sea ice from 2002 to 2017. *Earth and Space Science*, 7, e2020EA001278.
1434 <https://doi.org/10.1029/2020EA001278>

1435

1436 Wang, M., Linhardt, F., Lion, V., Oppelt, N. (2024) Melt Pond Evolution along the MOSAiC Drift:
1437 Insights from Remote Sensing and Modeling. *Remote Sensing*, 16, 3748.
1438 <https://doi.org/10.3390/rs16193748>

1439

1440 Wang, J., Massonnet, F., Goosse, H., Luo, H., Barthelemy, A., Wang, Q. (2024) Synergistic atmosphere-
1441 ocean-ice influences have driven the 2023 all-time Antarctic sea-ice record low. *Communications Earth &*
1442 *Environment*, 5, 415. <https://doi.org/10.1038/s43247-024-01523-3>

1443

1444 Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Masson, R., Perovich, D., Sturm,
1445 M. (2018) Snow in the changing sea-ice system. *Nature Climate Change*, 8, 945-954.
1446 <https://doi.org/10.1038/s41558-018-0286-7>

1447

1448 Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthelemy, L., Bergstrom, D. M., Berne, A., Binder,
1449 H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Cordron, F., Datta, R.,
1450 Di Battista, S., Favier, V., Francis, D., Fraser, A. D., Fourre, E., Garreaud, R. D., Genthon, C.,
1451 Goorodetskaya, I. V., Gonzalez-Herrero, S., Heinrich, V. J., Hubert, G., Joos, H., Kim, S.-J., King, J. C.,
1452 Kittel, C., Landais, A., Lazzara, M., Leonard, G. H., Lieser, J. L., MacLennan, M., Mikolajczyk, D., Neff,
1453 P., Ollivier, I., Picard, G., Pohl, B., Ralph, F. M., Rowe, P., Schlosser, E., Shields, C. A., Smith, I. J.,

1454 Sprenger, M., Trusel, L., Udy, D., Vance, T., Vignon, E., Walker, C., Wever, N., Zou, X. (2024a) The
1455 Extraordinary March 2022 East Antarctica “Heat” Wave. Part I: Observations and Meteorological Drivers.
1456 Journal of Climate, 37, 757-778. <https://doi.org/10.1175/JCLI-D-23-0175.1>

1457

1458 Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthelemy, L., Bergstrom, D. M., Berne, A., Binder,
1459 H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R.,
1460 Di Battista, S., Favier, V., Francis, D., Fraser, A. D., Fourre, E., Garreaud, R. D., Genton, C.,
1461 Goorodetskaya, I. V., Gonzalez-Herrero, S., Heinrich, V. J., Hubert, G., Joos, H., Kim, S.-J., King, J. C.,
1462 Kittel, C., Landais, A., Lazzara, M., Leonard, G. H., Lieser, J. L., MacLennan, M., Mikolajczyk, D., Neff,
1463 P., Ollivier, I., Picard, G., Pohl, B., Ralph, F. M., Rowe, P., Schlosser, E., Shields, C. A., Smith, I. J.,
1464 Sprenger, M., Trusel, L., Udy, D., Vance, T., Vignon, E., Walker, C., Wever, N., Zou, X. (2024b) The
1465 Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet. Journal
1466 of Climate, 37, 779-799. <https://doi.org/10.1175/JCLI-D-23-0176.1>

1467

1468 Wille, J. D., Bromwich, D. H., Cassano, J. J., Nigro, M. A., Mateling, M. E., Lazzara, M. A. (2017)
1469 Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf, Antarctica, with Unmanned
1470 Aircraft Observations. Journal of Applied Meteorology and Climatology, 56, 2239-2258.
1471 <https://doi.org/10.1175/JAMC-D-16-0339.1>

1472

1473 Wille, J. D., Bromwich, D. H., Nigro, M. A., Cassano, J. J., Mateling, M., Lazzara, M. A., Wang, S.-H.
1474 (2016) Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf with Tower
1475 Observations. Journal of Applied Meteorology and Climatology, 55, 2349-2367.
1476 <https://doi.org/10.1175/JAMC-D-16-0032.1>

1477

1478 Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., Codron, F. (2019) West
1479 Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12, 911-916.
1480 <https://doi.org/10.1038/s41561-019-0460-1>

1481

1482 Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Baiman, R., Barrett, J. E., Barthelemy, L., Boza,
1483 B., Bozkurt, D., Casado, M., Chyhareva, A., Clem, K. R., Codron, F., Datta, R. T., Duran-Alarcon, C.,
1484 Francis, D., Hoffman, A. O., Kolbe, M., Krakosvska, S., Linscott, G., MacLennan, M. L., Mattingly, K. S.,
1485 Mu, Y., Pohl, B., Santos, C. L.-D., Shields, C. A., Toker, E., Winters, A. C., Yin, Z., Zou, X., Zhang, C.,
1486 Zhang, Z. (2025) Atmospheric rivers in Antarctica. Nature Reviews Earth & Environment, 6, 178-192.
1487 <https://doi.org/10.1038/s43017-024-00638-7>

1488

1489 Wille, J. D., Favier, V., Gorodetskaya, I. V., Agosta, C., Kittel, C., Beeman, J. C., Jourdain, N. C., Lenaerts,
1490 J. T. M., Codron, F. (2021) Antarctic atmospheric river climatology and precipitation impacts. Journal of
1491 Geophysical Research: Atmospheres, 126, e2020JD033788. <https://doi.org/10.1029/2020JD033788>

1492

1493 Wille, J. D., Pohl, B., Favier, V., Winters, A. C., Baiman, R., Cavallo, S. M., Leroy-Dos Santos, C., Clem,
1494 K., Udy, D. G., Vance, T. R., Gorodetskaya, I., Codron, F., Berchet, A. (2024c) Examining atmospheric
1495 river life cycles in East Antarctica. Journal of Geophysical Research: Atmospheres, 129, e2023JD039970.
1496 <https://doi.org/10.1029/2023JD039970>

1497

1498 Williams, N., Byrne, N., Feltham, D., Van Leeuwen, P. J., Bannister, R., Schroeder, D., Ridout, A., Nerger, L. (2023) The effects of assimilating a sub-grid-scale sea ice thickness distribution in a new Arctic sea ice
1499 data assimilation system. *The Cryosphere*, 17, 2509-2532. <https://doi.org/10.5194/tc-17-2509-2023>

1500

1501

1502 Worby, A. P., Steer, A., Lieser, J. L., Heil, P., Yi, D., Markus, T., Allison, I., Massom, R. A., Galin, N.,
1503 Zwally, J. (2011) Regional-scale sea-ice and snow thickness distribution from in situ and satellite
1504 measurements over East Antarctica during SIPEX 2007. *Deep Sea Research Part II: Topical Studies in*
1505 *Oceanography*, 58, 1125-1136. <https://doi.org/10.1016/j.dsr2.2010.12.001>

1506

1507 Xie, H., Ackley, S. F., Yi, D., Zwally, H. J., Wagner, P., Weissling, B., Lewis, M., Ye, K. (2011) Sea-ice
1508 thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. *Deep*
1509 *Sea Research Part II: Topical Studies in Oceanography*, 58, 1039-1051.
1510 <https://doi.org/10.1016/j.dsr2.2010.10.038>

1511

1512 Xue, J., Xiao, Z., Bromwich, D. H., Bai, L. (2022) Polar WRF V4.1.1 simulation and evaluation for the
1513 Antarctic and Southern Ocean. *Frontiers of Earth Science*, 16, 1005-1024. <https://doi.org/10.1007/s11707-022-0971-8>

1514

1515

1516 Yang, J., Xiao, X., Liu, J., Li, Q., Qin, D. (2021) Variability of Antarctic sea ice extent over the past 200 years.
1517 *Science Bulletin*, 66, 2394-2404. <https://doi.org/10.1016/j.scib.2021.07.028>

1518

1519 Zhang, J. (2014) Modeling the Impact of Wind Intensification on Antarctic Sea Ice Volume. *Journal of*
1520 *Climate*, 27, 202-214. <https://doi.org/10.1175/JCLI-D-12-00139.1>

1521

1522 Zhang, R., Screen, J. A. (2021) Diverse Eurasian winter temperature responses to Barents-Kara sea ice
1523 anomalies of different magnitudes and seasonality. *Geophysical Research Letters*, 48, e2021GL092726.
1524 <https://doi.org/10.1029/2021GL092726>

1525

1526 Zeng, X., Beljaars, A. (2005) A prognostic scheme of sea surface skin temperature for modeling and data
1527 assimilation. *Geophysical Research Letters*, 32, L14605. <https://doi.org/10.1029/2005GL023030>

1528

1529 Zou, X., Bromwich, D. H., Montenegro, A., Wang, S.-H., Bai, L. (2021a) Major surface melting over the
1530 Ross Ice Shelf part I: Foehn effect. *Quarterly Journal of the Royal Meteorological Society*, 147, 2874-2894.
1531 <https://doi.org/10.1002/qj.4104>

1532

1533 Zou, X., Bromwich, D. H., Montenegro, A., Wang, S.-H., Bai, L. (2021b) Major surface melting over the
1534 Ross Ice Shelf part II: Surface energy balance. *Quarterly Journal of the Royal Meteorological Society*, 147,
1535 2895-2916. <https://doi.org/10.1002/qj.4105>

1536

1537 Zou, X., Rowe, P. M., Gorodetskaya, I., Bromwich, D. H., Lazzara, M. A., Cordero, R. R., Zhang, Z.,
1538 Kawzenuk, B., Cordeira, J. M., Wille, J. D., Ralph, F. M., Bai, L.-S. (2023) Strong warming over the
1539 Antarctic Peninsula during combined atmospheric River and foehn events: Contribution of shortwave
1540 radiation and turbulence. *Journal of Geophysical Research: Atmospheres*, 128, e2022JD038138.
1541 <https://doi.org/10.1029/2022JD038138>