
 

1 
 

Optimizing output operations in high-resolution climate models 
through dynamic scheduling 
Dong Wang1, Xiaomeng Huang1 
1 Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global 
Change Studies, Tsinghua University, Beijing 100084, China 5 

Correspondence to: Xiaomeng Huang (hxm@tsinghua.edu.cn) 

Abstract. This study presents a new approach to improve the efficiency of data output in high-resolution climate models. The 

method begins by forwarding data to processes with lighter workloads or finishing their tasks earlier, allowing these units to 

serve as temporary storage. Following this, the processes create multiple smaller communication groups to reorganize the data 

and then use an I/O aggregation approach to enable efficient parallel writing. A dedicated control process dynamically manages 10 

these phases based on the status of each process. To further refine the I/O strategies, we collect performance data from the 

target machine to build a simulated environment. A reinforcement learning agent is deployed in this environment to identify 

and test better parameter configurations. Experiments conducted on two models, GOMO1.0 and LICOM3, show that this 

method increases output efficiency by factors of 1.54 and 13.1, respectively, compared to the commonly used PnetCDF and 

MPI-IO. These results suggest that this approach can significantly reduce the overhead associated with data output, providing 15 

a promising solution for enhancing the performance of climate models. 

 

1 Introduction 

Earth system models are essential for understanding past climate and environmental evolution and predicting future global 

change scenarios. Over recent decades, these models have seen significant advancements, primarily through temporal and 20 

spatial resolution improvements. However, this progress has led to exponential increases in computational demands and data 

output volumes. While supercomputer processing capabilities continue to advance rapidly, following Moore's Law and 

ensuring computational speed for high-resolution models, I/O speeds have not kept pace. This disparity has resulted in a 

growing imbalance between computation and data handling capabilities, particularly in high-performance computing 

environments. Consequently, I/O performance has emerged as a significant bottleneck in model execution. The effects of this 25 

bottleneck are particularly significant in high-resolution models, where experiments can run for months and produce several 

hundred terabytes data. The massive data generated by these extensive simulations greatly impacts overall performance, 

underscoring the urgent necessity for enhanced I/O strategies in Earth system models. 
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To enhance I/O performance in models, Corbetty et al. (1996) proposed advanced parallel I/O systems based on the Message 

Passing Interface (MPI), including MPI-IO. Similarly, PnetCDF (Li et al., 2003) was developed as a parallel I/O library that 30 

leverages MPI for efficient data handling. PIO (Dennis et al., 2012) also utilizes MPI to optimize input/output operations in 

high-performance computing environments. Additionally, ADIOS (Lofstead et al., 2008; Lofstead et al., 2009) incorporates 

MPI to provide a flexible and high-performance I/O framework suitable for various scientific applications. These systems are 

widely used in models and employ parallelization and optimization techniques to leverage multiple processors or nodes for 

input and output operations, thereby improving data access efficiency. The overall runtime of simulations consists of two main 35 

phases: compute time and I/O time. Despite the libraries above help reduce I/O time for large-scale data, iterative simulations 

still require the compute phase to wait for the finish of I/O. Essentially, the I/O and compute phases remain serially dependent 

on each other. There is potential to improve I/O efficiency by overlapping these phases. To address this, we previously 

introduced CFIO1.0 (Huang et al., 2014), adding additional dedicated processes specifically for I/O tasks. As shown in Fig. 1, 

When the computing process needs to output files, it sends data to the I/O-dedicated process via the MPI message interface 40 

and then proceeds to the following computation step. The actual I/O operations are handled by the I/O process, which 

automatically overlaps the I/O phase with the computation phase, thereby reducing the overall time of numerical simulations. 

In this paper, we also adopt the principles of CFIO1.0 by introducing an additional control process instead of a set of I/O 

processes. This control process utilizes the common issue of load imbalance among different processes in climate models, 

which arises from slight variations in hardware resources such as CPUs and differences in the computational workload 45 

assigned to each process. By leveraging this imbalance, the control process directs slower computing processes to forward 

their output data to faster ones. The faster processes then form multiple sub-communication domains to perform collective I/O. 

This approach effectively transforms the disadvantage of load imbalance into an advantage by filling idle time during 

computations with I/O operations, thereby maximizing the utilization of hardware resources. Compared to our previous version, 

CFIO1.0, we only introduce a single additional control process rather than a set of dedicated I/O processes. Furthermore, we 50 

have designed and implemented an automated parameter selection solution to ensure that users from diverse backgrounds can 

fully take advantage of the parallel I/O methods presented in this paper for climate models. This solution analyses I/O 

information collected from pre-execution on the target machine and employs reinforcement learning techniques in a simulated 

environment to identify optimal strategy parameters. Once these parameters are determined, they are applied during model 

execution to enhance the efficiency of parallel I/O operations. The above work has resulted in the second version, CFIO 2.0. 55 

We tested the methods presented in this paper using two climate models: the Regional Ocean Model (GOMO 1.0, Huang et 

al., 2020) and the ocean general circulation model (LICOM, Yu et al., 2012). GOMO achieved a speedup of 2.5 times at a 

resolution of 5 km using 4800 CPU cores, while LICOM attained a speedup of 13.1 times at a resolution of 10 km with 19200 

CPU cores compared to their original performance. Additionally, we compared our method's performance against PnetCDF 

and PIO, finding that our approach demonstrated superior performance in large-scale settings. The rest of the paper is organized 60 

as follows: Chapter 2 outlines the motivations behind our approach. Section 3 details the design and architecture of the 

proposed solution. Section 4 offers an overview along with a straightforward example of its interface. Section 5 presents a 
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performance evaluation and analysis. Section 6 reviews related work in the field. Finally, conclusions and potential areas for 

improvement are discussed in Section 7. 

 65 
(a). Alternating Computation and I/O Operations 

 

 
(b). Parallel Computation and I/O Operations 

Figure 1: Concurrent I/O and Computation. 70 

2 Motivation 

2.1 Utilizing I/O aggregation and I/O forwarding 

Most parallel I/O methods use the ideas of I/O aggregation and I/O forwarding. I/O aggregation refers to the simultaneous 

execution of I/O operations by a group of processes, where data is read or written in a coordinated manner. This method 

aggregates multiple requests into fewer, more extensive I/O operations, significantly improving throughput and reducing the 75 

overhead associated with individual I/O calls. In contrast, I/O forwarding means directing I/O requests from multiple 

computational processes to fewer dedicated I/O processes, thereby minimizing communication overhead and reducing 

concurrent access to the file system. This approach enhances resource utilization and reduces idle time. By leveraging both 

I/O aggregation and I/O forwarding, supercomputing systems can achieve better performance and scalability, effectively 

managing the challenges posed by large-scale data transfers. As shown in Fig. 2, PnetCDF employs I/O aggregation across all 80 

processes for its output logic. In the case of PIO, data is first transmitted to a small subset of processes using I/O forwarding, 

and then I/O aggregation is used to write the data to the parallel file system. In summary, by employing I/O aggregation and 

I/O forwarding, we can transform inefficient global parallel I/O requests into a mechanism where data is transmitted over the 

network to a small subset of processes, which then utilize I/O aggregation techniques to perform the actual I/O operations. 
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 85 
Figure 2: I/O aggregation and I/O forwarding in PnetCDF and PIO. 

2.2 Dynamic scheduling in load imbalance scenarios 

Load imbalance among processes is a prevalent challenge in climate models. For example, in ocean models, global or regional 

grids often contain numerous land grid points that do not contribute to ocean dynamics. This results in processes managing 

more ocean grid points facing a heavier computational burden, while those with more land grid points experience lighter 90 

workloads. Similarly, atmospheric models employ parameterization schemes to account for small-scale processes that 

influence large-scale flow fields, leading to varying usage frequencies based on regional meteorological conditions. Despite 

algorithms designed to distribute tasks evenly, performance disparities persist in supercomputing environments due to 

variations in CPU performance, network communication latency, bandwidth limitations, and fluctuations from operating 

system scheduling. Consequently, the execution speed is often constrained by the slowest process, which others must wait for 95 

at synchronization points. To optimize I/O operations, we propose leveraging these waiting periods by allowing faster 

processes to handle I/O tasks while slower ones complete their computations. 

 

 
Figure 3: Exploit the load imbalance and insert I/O into the waiting gap. (After the conclusion of the first computational step, a dynamic 100 
data handling process is initiated. Process 1, having completed its calculations, stores its data in a buffer and then receives data from Process 
2. Due to its slower processing speed, process 2 transfers its data to Process 1 via MPI before moving to the next computational step. 
Similarly, Process 3 forwards its data to Process n. Process n, after storing its data in a buffer, receives the transferred data from Process 3. 
In the second step, Process 1 caches its newly generated data and the data received from Process 2 in the previous step. Process 2 only caches 
its current step's data. Process 3 continues to transfer its data to Process n. Process n caches its new and previously received data from Process 105 
3.) 
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Figure 3 illustrates how data is forwarded from faster processes to slower ones, leveraging the differences in computational 

speed among the processes. This strategy enhances I/O efficiency by utilizing idle processing time and helps balance the 

workload, thereby mitigating the effects of computational imbalances. Integrating I/O operations during these pauses can 

improve overall system performance without requiring the additional hardware resources introduced in CFIO1.0. 110 

 

2.3 Selecting the appropriate I/O pattern 

There are five fundamental I/O approaches on a large scale, outlined in Table 1. The first approach is the serial output mode 

of NetCDF, which has a long output time but does not require post-processing. The second method utilizes PnetCDF's parallel 

I/O, which provides fast output speeds for a small to moderate number of processes. However, as the number of processes 115 

increases to thousands or even tens of thousands, the output speed does not scale linearly due to the requirement for global 

communication operations, which become increasingly time-consuming with larger process counts. The third method allows 

each process or thread to output data to a separate file, which can then be merged into a complete NetCDF file through post-

processing. While this approach often results in faster output times, having too many files can slow down the distributed file 

system's performance when handling metadata, leading to variable output time that may be short or moderate. In the fourth 120 

scenario illustrated in Fig. 4, black numbers represent process IDs, and yellow areas denote I/O domains. Each domain outputs 

data corresponding to a specific region, dividing a temperature field into six parts across six communication domains that 

operate independently. One variable is divided into six files, necessitating post-processing to concatenate them into a complete 

NetCDF file. Lastly, in the fifth approach, different physical quantities are forwarded to distinct domains; for example, domain 

1 receives global temperature data and performs parallel output within its communication domain, while domain 2 handles 125 

global pressure data similarly. This allows different domains to process different data at the same time. The final pattern offers 

a shorter output time and does not require post-processing, making it the optimal choice for large-scale scenarios. 

 
Table 1 Five fundamental I/O approaches on a large scale. 

Write pattern Number of  
output files 

Run time Postprocessing  
time 

Single-threaded, single-file 1 Long None 

Parallel I/O, single shared file 1 Moderate None 

Distributed I/O, single file per PE PEs Short or Moderate Long 

Single file per I/O domain, single area per domain I/O domains Short Long 

Single file per I/O domain, single variable per domain I/O domains Short None 

 130 

https://doi.org/10.5194/egusphere-2024-3533
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 

6 
 

 
Figure 4: A representative division of a global domain is illustrated, where the black squares denote the computational areas assigned 
to each process. The yellow lines indicate how these computational areas are combined to form a larger I/O domain, while the red 
line delineates the boundaries of the entire global domain. 

3 Design and Implementation 135 

This chapter comprehensively describes the proposed method's design and implementation. We begin with a detailed 

explanation of the system architecture, which divides the I/O workflow into three phases: dynamic forwarding, data 

rearrangement, and data output. Each of these phases will be discussed in detail. Finally, we address the various trade-offs 

encountered during the design and implementation phases and the selection of parameters by utilizing a reinforcement 

learning-based simulation environment to determine the optimal operational parameters. 140 

3.1 System architecture 

We divide the entire I/O workflow into three phases: data forwarding, data rearrangement, and data output: 

Data forwarding. The purpose of data forwarding is transfering the output data from each process to a limited number of 

other processes via the MPI communication interface over the network. This approach prevents all processes from 

simultaneously initiating I/O operations on the disk, a common practice in parallel I/O. For instance, in the PIO framework, 145 

data is forwarded to a specific subset of processes. In CFIO 1.0, data is forwarded to an additional group of processes designated 

for I/O tasks. In the method proposed in this paper, data is forwarded to processes that have faster computation speeds and 

have completed their tasks earlier. Further details will be discussed in 3.2. 

Data rearrangement. Data rearrangement aims to reorganize the data received during the data forwarding phase. For instance, 

if there are 100 processes in the data forwarding phase and 4 of these processes are selected to receive the global temperature 150 

field data, each of these 4 processes will hold a portion of the temperature data. However, the data chunks they each possess 

may be disorganized. To address this, the 4 processes must exchange data to rearrange it, aiming to make each process's 25 

data blocks contiguous in memory. This way, each process can effectively form a larger, more coherent data block. Further 

details will be discussed in 3.3. 

Data output. This is the phase in which data is written to disk. In the previous two phases, the data was temporarily stored in 155 

the buffers of specific processes but had not yet been written to disk. This phase involves two main components: the 

construction of sub-communication domains and the data output itself. For example, the temperature field data was forwarded 
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and temporarily stored in the buffers of processes 1, 2, 5, and 6 during the earlier phases. In contrast, the pressure field data 

was stored in the buffers of processes 3, 4, 8, and 9. The first step is to create two sub-communication domains: {1, 2, 5, 6} 

and {3, 4, 8, 9}. Each domain will then use PnetCDF's collective I/O mode to write the data to disk. Further details will be 160 

discussed in 3.4. 

The system architecture is illustrated in Fig. 5. At the center is an additional control process that coordinates all tasks and 

records global information. Specifically, it manages forwarding controls, communication domain controls, data output controls, 

and data logging. Surrounding this control process are the ordinary processes that perform integration calculations while 

running models. When these processes need to output data, they send a request to the control center and receive commands to 165 

execute specific actions. In the upper right corner of Fig. 5, two processes form a communication domain, within which 

PnetCDF collective I/O is invoked to write data to the file system. 

 
Figure 5: The system architecture. 

3.2 Phase 1: Data forwarding  170 

This section explains the data forwarding mechanism employed in our proposed method. Data forwarding is a crucial 

intermediate step in the I/O workflow, facilitating the efficient transfer of data from multiple source processes to a selected 

group of target processes. Utilizing the MPI communication interface ensures that I/O operations are controlled, thereby 

minimizing contention for disk access. 

The core issue of data forwarding is determining “who sends to whom”. We adhere to the following principles: First, the 175 

receiving processes should ideally compute quickly and complete their tasks early. This allows slower processes to move on 

to the next round of computations after sending their data, thereby balancing the workload among processes and enabling faster 
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processes to contribute effectively rather than remaining idle, as in traditional I/O scenarios. Second, the receiving processes 

should be better distributed across different nodes. In modern CPU clusters, processes on the same node share the network 

bandwidth. If multiple processes on the same node simultaneously perform MPI data reception tasks, it can slow down data 180 

transfer rates. Third, before data is written to the file system, a process should be responsible for caching only one variable at 

a time. For example, if Process 2, which computes quickly, is selected to receive the variable “temperature”, it will not be 

chosen again for data reception of “pressure” before data output, even if its speed remains high. This policy prevents any 

single process from being overloaded with data, which could strain node memory and complicate the subsequent data 

rearrangement and output phases due to increased resource competition. 185 

Figure 6 illustrates the flowchart for each process within the data forwarding phase. The red section represents the additional 

control process we have introduced, which manages the tasks executed by each process. The blue portions indicate the 

beginning and end of the data forwarding phase. During these phases, all processes have equal roles and later become I/O 

processes or regular computation processes based on the control process's decisions. The yellow sections denote the I/O 

processes chosen for their high computation speed. These processes serve as buffers and are responsible for receiving data 190 

from other processes under the control process's direction, temporarily storing it in memory. The green sections represent the 

regular computation processes that immediately proceed to the following computation phase after sending data to the I/O 

processes. After the data forwarding phase, the output data will be temporarily stored in the memory of specific processes. 

 
 195 
Figure 6: Flowchart of each process within the forwarding phase. 
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The control process continuously receives messages from other processes to monitor their states—whether they are finalizing, 

requesting write operations, or needing I/O services. When a process requests I/O, the algorithm evaluates its ability to handle 

the task based on its current load and resource availability. If the process is deemed eligible, it is assigned as the I/O process; 

otherwise, the task is delegated to another process. Finally, the algorithm manages the completion of I/O tasks by updating 200 

states and verifying whether all tasks are finished, ensuring that all processes can continue their computations without 

interruption. This structured approach enhances data management efficiency in parallel I/O operations and minimizes process 

contention. 

3.3 Phase 2: Data rearrangement 

This section discusses the data rearrangement process, essential for organizing the data received during the forwarding phase. 205 

After the data forwarding phase, the selected processes may hold fragmented data blocks that must be organized for efficient 

access and processing. 

Figure 7 illustrates the data rearrangement process. The black boxes in the figure represent processes, with eight processes 

involved in this example. During Phase 1, data is sent to Processes 1 and 6 via data forwarding. If these processes were to 

directly write the data to the file system at this stage, it would be inefficient because both contain multiple fragmented data 210 

segments that are not contiguous. Therefore, we employ data rearrangement to reorganize the data within Processes 1 and 6. 

After this rearrangement, as shown in the lower part of Fig. 7, each process will hold a single large data block composed of 

four contiguous data segments. This allows Processes 1 and 6 to perform a more efficient write operation to the disk, as they 

will each write a more big, contiguous data block. 

 215 
Figure 7: Data rearrangement. 
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The Data Exchange and Rearrangement Algorithm, as shown in Algorithm 1, utilizes MPI to exchange data among multiple 

processes. Since only a few processes contain data buffers, meaning that only a few processes on the same compute node 

receive the data, OpenMP multithreading is employed to rearrange the received data into a continuous block. Initially, the 

algorithm creates a custom MPI data type to define the structure of the data being exchanged. It then gathers metadata from 220 

all participating processes to understand the distribution of this data. Next, the algorithm integrates and sorts this metadata 

based on the starting positions of the data blocks, preparing for data exchange by mapping each block to its target process. The 

algorithm's core involves sending and receiving data using non-blocking MPI operations, which allows processes to continue 

their computations while waiting for communications to complete. Finally, it ensures that all ongoing communications are 

completed, allowing all processes to have their necessary data arranged into one big continuous block efficiently for further 225 

processing.  
Algorithm 1: Data exchange and rearrangement algorithm. 

 

3.4 Phase 3: Data output 

This section will delve into the specifics of utilizing PnetCDF's collective I/O mode for efficient data output to disk. Collective 230 

I/O is a method that allows multiple processes to coordinate their I/O operations, significantly improving performance and 

reducing the overall time taken to write large datasets. 

Before outputting the data, defining and establishing communication domains is necessary. As illustrated in Fig. 8, after several 

rounds of forwarding, the data to be output is stored in different processes. Under the coordination of the control process, those 

processes that cache the same variable are grouped into a sub-communication domain.  235 
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Figure 8: Create new communication domains. 

Next, we will utilize PnetCDF's collective I/O mode to write the data. Collective I/O enhances data writing efficiency by 

reducing I/O bottlenecks and improving throughput. Allowing multiple processes to coordinate their write operations 

minimizes contention for disk access and consolidates write requests into fewer, more significant transactions. This approach 240 

not only reduces latency but also ensures data consistency across processes. Additionally, collective I/O scales well with larger 

datasets and a higher number of processes, making it an effective solution for high-performance computing environments. 

We note that different data have been cached in separate processes during the initial forwarding and rearrangement phases. At 

this stage, the data have been organized according to communication domains, ensuring that cached processes for the same 

variable reside within the same domain. Consequently, different communication domains can simultaneously utilize PnetCDF 245 

for output. For example, as shown in Fig. 9, the “temperature” is located in MPI domain 1, while “pressure” is in MPI domain 

2, allowing for simultaneous output. This approach effectively maximizes the bandwidth of the file system. 

 
Figure 9: Output with PnetCDF. 

3.5 Select better parameters with reinforcement learning 250 

As previously discussed, the Control center manages all scheduling processes. These strategies involve several trade-offs that 

must be considered to maximize performance. The following points highlight some of the most essential trade-offs:  

Trade-off 1, the timing of file output operations, presents a trade-off in our system design. As shown in Fig. 8, we perform an 

output operation after two cycles of calculation and I/O forwarding, similar to MPI asynchronous communication with 

MPI_Isend and Wait. Data is forwarded to some processes when a user launches an I/O request. However, deciding when to 255 

write this data to the distributed file system is complex. Writing too early does not fully leverage the advantages of 

https://doi.org/10.5194/egusphere-2024-3533
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



 

12 
 

simultaneous output from multiple communication domains. Conversely, delaying the write operation risks saturating process 

buffers, complicating forwarding, and potentially causing buffer overflow errors. This balance between minimizing 

communication overhead and optimizing buffer utilization requires careful consideration. 

Trade-off 2: The number of I/O processes presents a significant trade-off in our system design. For instance, while the variable 260 

“temperature” could be stored in the buffers of processes 1, 4, 7, and 9, it could be stored in fewer processes, such as 1 and 4. 

Utilizing more processes for storage offers the advantage of significantly reducing communication time during the forwarding 

phase. In a system with n processes, where m processes are used for data storage, each process receives data blocks from an 

average of n/m processes. Despite employing asynchronous MPI communication, data transmission remains serial at the lowest 

level; thus, a more considerable m value decreases forwarding time. However, during the output phase, when the number of 265 

processes in a sub-communication domain becomes too large, the utilization efficiency of the parallel file system does not 

scale linearly. This balance between communication efficiency and file system performance must be carefully optimized based 

on specific system configurations and computational requirements.  

Trade-off 3, the selection of I/O processes presents a trade-off in our system design. Consider the scenario where we have 

decided to use 4 processes as the I/O processes for variable “temperature” A straightforward approach would be to designate 270 

the earliest four processes that launch the I/O request for “temperature” as I/O processes. However, this could lead to 

performance issues due to the nature of high-performance computing architectures. In climate models, the exchange of Halo 

information often results in adjacent processes having similar computation speeds. Logically adjacent processes are often 

located on physically adjacent CPU cores within the same compute node. This can lead to network congestion when many 

send data to adjacent processes, sharing the same node's network interface and bandwidth. Therefore, deciding between 275 

selecting the earliest 4 available processes or waiting longer to select processes from different nodes represents a trade-off.  

While identifying an optimal strategy is challenging, it is essential for climate model simulations that run for extended periods 

on stable systems. To address this issue, we draw on techniques from the field of automation that utilize reinforcement learning. 

We create a virtual environment by collecting data to identify the target machine's necessary parameters. A reinforcement 

learning (RL) agent is employed in this virtual setting to discover better parameter configurations. Once optimal configurations 280 

are identified in the virtual environment, they can be applied to accurate model runs, maximizing I/O efficiency. 

RL is a branch of machine learning that focuses on how intelligent agents should act in an environment to maximize cumulative 

reward. RL does not require labeled input/output pairs or explicit correction of suboptimal actions. Instead, it emphasizes 

learning through interaction with the environment, making it particularly suitable for complex, dynamic systems such as our 

I/O optimization problem.  285 

Figure 10 illustrates this process. First, we run a test program on a real machine to collect multiple sets of required parameters, 

including network communication speed, PnetCDF output rates at various scales, node memory details, and CPU information. 

Using these data, we construct a virtual environment. Based on this virtual environment, we employ a reinforcement learning 

agent to perform simulated I/O tasks, identifying the optimal strategy for that environment. Finally, we apply the best strategy 

to the natural machine environment for I/O tasks. 290 
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Figure 10: Select better parameters with reinforcement learning. 

Table 2 presents critical configurations for constructing the reinforcement learning environment. First, we execute a test 

program in a natural environment to collect performance data from the machine, including the throughput of PnetCDF, the 

speed of MPI communications and hardware information. This data is then used to create a virtual reinforcement learning 295 

environment that simulates the I/O process during model running. When a new variable requires I/O, the agent must take an 

action. There are three possible actions: the first is to continue forwarding the variable or execute Phase 3, which writes the 

previously cached variables to the file system. This corresponds to the trade-off mentioned earlier (Trade-off 1). The second 

action involves determining the number of I/O processes to cache the variable, relating to the previously described trade-off 

(Trade-off 2). The third action addresses a scenario where an idle process is available for I/O, but it resides on the same node 300 

as another I/O process. As discussed in Trade-off 3, waiting for a different idle process on a separate node may be more 

beneficial. Thus, the third action specifies the maximum wait time allowed. If this wait time is exceeded, we will designate the 

idle process on the same node as an I/O process to avoid excessive delays. Regarding the states, we define them based on the 

number of currently cached variables and the number of I/O processes in use. After executing Phase 3, these values are reset 

to zero. For the reward mechanism, we use the total execution time in the simulated environment as the reward. 305 

 
Table 2 Key configurations in reinforcement learning methods. 

Collected data Actions States Reward 
1. Throughput of PnetCDF 

2. Speed of MPI  

3. CPU, Memory 

1. Execute Phase 1 or 3 

2. Number of I/O processes 

3. Number of waiting rounds 

1. Number of cached variables 

2. Number of total I/O processes 
Total running time 

3.6 Improvements from CFIO1.0 to CFIO2.0 

First, the number of additional I/O processes required has been significantly reduced. As described above, Fig. 1(b) illustrates 

the approach of CFIO1.0, which necessitates a batch of extra processes dedicated solely to I/O. For instance, if the model itself 310 
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uses 1,000 processes for computation, an additional 200 processes are required specifically for I/O. In contrast, with version 

2.0, we only need to add one extra control process. Thus, for a model utilizing 1,000 processes, the number of additional 

processes required has been reduced from 200 to just 1. 

Second, in the I/O output phase, CFIO 1.0 relies on a fixed number of processes to handle I/O operations. However, this fixed 

count may not be adequate to fully exploit the parallel capabilities of the file system. Increasing the number of processes could 315 

lead to unnecessary waste of hardware resources. Conversely, version 2.0 theoretically allows the number of I/O processes to 

match that of the computing processes since I/O processes are dynamically selected from the pool of computing processes. 

This flexibility in selection can significantly enhance the parallel performance of the file system. The theoretical maximum 

output speed is faster than version 1.0 

In version 1.0, a significant bottleneck arose from the MPI system's allocation mechanism. For instance, when 200 processes 320 

were designated as I/O processes, they were concentrated on just four nodes, with 64 cores on each node. This limitation meant 

that only the bandwidth of these four nodes could be utilized for data forwarding. However, version 2.0 addresses this issue 

by introducing dynamic scheduling to enhance forwarding speed. In this new version, processes that complete their 

computations quickly are designated as data receivers. Furthermore, the system aims to distribute these receivers across 

different nodes whenever possible, thereby maximizing the utilization of network bandwidth across the nodes. 325 

4 The CFIO2 interface 

Since the NetCDF format is widely recognized as the standard data format in the climate community, we have decided to adopt 

it. This choice aims to lessen the workload involved in updating code and processing data during the transition to CFIO 2.0. 

Creating a new dataset in NetCDF requires several essential steps: initializing the dataset, defining dimensions, variables, and 

attributes, entering data mode, writing the variable data, and closing the dataset file. CFIO 2.0 simplified this procedure, as 330 

shown by the interface functions listed in Table 3. Additionally, this interface supports programming in both C/C++ and 

Fortran. 

To promote consistency across all computational processes, all functions within CFIO 2.0 are designed as collective I/O 

operations. For instance, when a climate model generates a new dataset, it is crucial that all computing processes execute the 

CFIO 2.0 functions in the same order and with matching arguments. 335 

 
Table 3 Main Interfaces of CFIO2. 

Function Description 

cfio2_init( 
comm,  
IO_process_per_node,  
IO_process_per_var) 

Initialization of CFIO2 
Communication domain 
Maximum number of I/O processes allowed on each node 
The maximum number of processes allowed per variable 
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cfio2_put_vara( 
all_comm,  
filename_in,  
var_name,  
datatype,  
dim_name 
global,  
start,  
count,  
buf, 
append) 

Finalization of CFIO2 
Communication domain 
File name 
Variable name 
Data type 
Names for each dimension 
Global varialble size 
Starting position of the current process in the global array 
Size of the data in current process 
Buffer of the data 
Append or overwrite to nc file 

cfio2_wait_output( 
comm) 

Wait for data to actually be written to disk 
Communication domain 

cfio2_finalize( 
comm) 

Finalization of CFIO2 
Communication domain 

 
Listing 1 provides a simple illustration of how to use CFIO 2.0 for data output. The cfio2_init function is used for initialization 

and accepts two parameters: IO_process_per_node and IO_process_per_var. These parameters specify the maximum number 340 

of I/O processes allowed on each computing node and the maximum number of I/O processes that can be associated with a 

single variable, respectively. The cfio2_put_var function outputs variable data, while the cfio2_wait_output function operates 

similarly to MPI_Wait, serving as a wait statement until the actual output of the variable is complete. 
Listing 1 A simple example with CFIO2. 

 345 

5 Experiments 

The experiments were conducted on the supercomputer of the Earth System Numerical Simulation Facility, “EarthLab”. This 

supercomputer features Hygon C86 7185 processors, with each node equipped with 64 cores and 256GB of memory. The 

nodes are interconnected via the InfiniBand network and utilize the Dawning ParaStor parallel file system. The operating 
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system is CentOS Linux release 7.6, and we used the Intel compiler version 17.0.5. The MPI environment is based on the 350 

optimized HPCX v2.7.4, which extends Open MPI. 

In the following sections, we evaluate CFIO2 using a regional model, GOMO1.0, and a global model, LICOM3.0, comparing 

its output performance with PnetCDF and PIO. We chose PnetCDF and PIO because they are widely used parallel I/O libraries 

in Earth system models and offer relatively good performance. Next, we conduct a more detailed comparison and analysis of 

throughput across various scenarios. Finally, we analyze CFIO2's speedup. 355 

5.1 GOMO case study 

The Generalized Operator Model of the Ocean (GOMO1.0) is a ocean model developed from the Princeton Ocean Model 

(POM). By utilizing OpenArray (Huang et al., 2019) to abstract parallel computing details, GOMO is streamlined to just 1860 

lines of Fortran code, enhancing its clarity and ease of maintenance. Moreover, GOMO exhibits robust scalability and 

portability across multiple platforms, including CPUs and the Sunway architecture (Fu et al., 2016). GOMO utilizes a bottom-360 

following free-surface staggered Arakawa C grid and implements a mode-splitting algorithm. Adapted from POM, the model's 

core equations are transformed into operator expressions that OpenArray processes efficiently. 

In this experiment, we employed the GOMO model to conduct a simulation with a resolution of 5 kilometers, covering the 

North Pacific, North Indian Ocean, and South China Sea regions (5°S to 45°N, 50°E to 90°W). The simulation duration was 

set for 1 days, during which we utilized a preprocessing scheme to generate a 5 km resolution grid. The grid was structured 365 

using latitude and longitude coordinates, resulting in an east-west grid spacing of 3769 to 5560 meters and a north-south grid 

spacing of 5569 meters. A restart file was created for each simulated day, and the total size of the output files generated during 

the simulation was approximately 700 GB. 

The original GOMO model managed file output using the OpenArray I/O interface, which relies on PnetCDF for parallel I/O 

operations. In this study, we will implement an alternative method for file output and compare the model's total runtime under 370 

three scenarios: without file output, using the original interface for file output, and utilizing the method proposed in this paper. 

We tested configurations with 900, 1800, 3600, and 4800 cores for these simulations. 

We recorded the overall running time of the GOMO model using the CFIO2 method and compared it with the running times 

achieved using the default I/O method and a no-I/O scenario. The running time in the no-I/O case represents pure computation 

time, serving as the upper limit for the maximum performance attainable through the complete overlap of I/O and computation. 375 

The results are illustrated in Fig. 11. In the figure, CFIO2(default) refers to the parameter strategy selected manually for this 

model and machine. At the same time, CFIO2(RL) indicates the configuration strategy derived from reinforcement learning 

applied in a virtual environment, as described in Section 3.5. 

As expected, CFIO2 outperformed the default I/O method in the GOMO model. The total running time with 900 computing 

processes decreased from 1853 seconds to 1798 seconds (default) and 1753 seconds (RL), resulting in a performance 380 

improvement of 1.06 times for GOMO. The acceleration effect was more pronounced with 4800 computing processes, where 

the total computation time was reduced from 948 seconds to 612 seconds, achieving a speedup of 1.54 times. 
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Figure 11: The overall running time of GOMO with different I/O approaches. 

5.2 LICOM case study 385 

LICOM3.0 is an ocean model which serves as the sea component of the LASG/IAP Earth System Model, known as 

FGOALS_g2. LICOM employs a two-dimensional data decomposition of the horizontal domain to partition data arrays 

evenly across all computing processes. The model uses an MPI-IO interface for output files every 4 model hours. 

In this experiment, we utilized LICOM version 3 with a resolution of 0.1°, simulating 10 days. The output variables consist of 

three-dimensional arrays of size 3600×2302×55. The total size of the output files is about 1020 GB. 390 

The results are illustrated in Fig. 12. The green area labeled “no-IO” represents the pure computational time of LICOM3. The 

time decreases from 5687 seconds with 1200 processes to 474 seconds with 19200 processes, achieving a speedup of 12 times. 

This indicates a parallel scalability of 75%, demonstrating solid efficiency in parallel processing.  

However, when we examine the blue section, we notice that although the total running time decreases when the number of 

processes increases from 1200 to 4800, the I/O time increases. Furthermore, as we scale from 4800 to 19200 processes, the 395 

total computation time rises significantly, with the overall time at 19200 processes even longer than that at 2400. Thus, we 

conclude that MPI-IO exhibits poor scalability in the current system when the number of processes reaches thousands or more. 

During our tests, we also observed that executing MPI-IO generates numerous hidden temporary files in the working directory, 

with the number of files equal to the number of processes. These temporary files disappear once the corresponding output is 

completed. This phenomenon is related to the optimization policy of MPI-IO for the file systems. The behavior of MPI-IO can 400 

vary across different file systems (such as Lustre and GPFS) due to underlying implementation differences. In some file 

systems, simultaneous writes by multiple processes to the same file may lead to data conflicts and inconsistencies. While MPI-

IO uses temporary files to address these issues, this approach can also reduce efficiency. The ParaStor parallel file system used 

in our tests is less common than systems like Lustre or GPFS. Consequently, MPI-IO adopts a conservative strategy with such 

file systems, contributing to its poor scalability. 405 
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After implementing our method, the file output time significantly improved. At 1200 cores, the program's total runtime 

decreased from 7562 seconds to 5932 seconds (default) and 5903 seconds (RL). At 19200 cores, the total runtime dropped 

from 7015 seconds to 568 seconds (default) and 533 seconds (RL), showing a 13.14 times acceleration. Additionally, the 

results indicate that the strategy obtained through reinforcement learning outperforms the parameters set manually. 

 410 
Figure 12: The overall running time of LICOM3 with different I/O approaches. 

5.3 In comparison to PIO and PnetCDF 

 

PnetCDF was developed to enable parallel I/O for NetCDF and is based on MPI-IO to leverage collective I/O optimizations. 

PIO, an application-level parallel I/O library designed for the Community Earth System Model (CESM), supports multiple 415 

back-end I/O libraries. In our experiments, we utilized PnetCDF version 1.12.3 and PIO version 2.4.2, selecting 

PIO_IOTYPE_NETCDF4P and PIO_IOTYPE_PNETCDF as the back-end method for PIO to achieve optimal parallel 

throughput.  

To compare performance differences, we conducted weak scalability tests. Each process was assigned a fixed data block size 

of 50x60x70 floats, considered a moderate size for single-process data blocks in climate models. Each test program was then 420 

run to output 20 variables continuously. We calculated the throughput based on the output time and the generated file size. To 

prevent network or file system congestion caused by other jobs, we conducted five runs for each case and selected the shortest 

execution time. 

The results of PIO and PnetCDF are presented in Fig. 13. In the throughput testing of PIO, an important parameter is the 

“stride”. This parameter determines how many processes are selected to execute I/O operations, with other processes sending 425 

data over the network to the designated I/O process. This approach helps reduce bottlenecks caused by synchronous access to 

the file system, embodying the concept of I/O forwarding. For example, when the stride is set to 20, processes 0, 20, 40, and 

60 are designated as I/O processes. In our testing setup, each node is configured with 60 CPU cores (although there are 64 
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physical cores, a few are reserved for system use according to machine recommendations to maximize MPI program 

performance). The maximum stride setting is 60, meaning each node has only one I/O process. If the stride exceeds 60, some 430 

nodes will lack an I/O process, leading to resource waste and underutilization of network and I/O bandwidth. When the stride 

was set to 2 (resulting in 30 I/O processes per node), we achieved a maximum throughput of 1.88 GB/s with 512 processes. 

With a stride of 20 (3 I/O processes per node), the maximum throughput reached 3.15 GB/s at 2048 processes. When the stride 

was set to 60 (1 I/O process per node), we achieved a maximum throughput of 3.44 GB/s with a total of 6144 processes. In 

comparison, for PnetCDF, a maximum throughput of 4.22 GB/s was reached with 8192 processes before it began to decline. 435 

Additionally, we added error bars to the PnetCDF line graph. Since the line represents the best throughput, the upper limit of 

the error bars corresponds to the line itself, while the lower limit reflects the lowest throughput recorded during the runs. This 

visualization clearly shows that as the number of cores increases, the throughput of PnetCDF exhibits significant fluctuations. 

Under the same configuration parameters, the minimum throughput is only half the maximum when run multiple times. 

 440 
(a). PIO and PnetCDF                                                        (b). CFIO2 

Figure 13: Throughput of PIO, PnetCDF and CFIO2. 

On the other hand, our approach demonstrates significantly better performance. As shown in Fig. 14, at 9000 cores, the version 

using default manually configured parameters achieved a maximum throughput of 14.2 GB/s. The parameter strategy 

optimized through reinforcement learning reached a maximum throughput of 15.1 GB/s. This performance is still 3.57 times 445 

faster than the best throughput observed in PnetCDF and PIO methods. We added error bars to the CFIO2 (with reinforcement 

learning) data. The error bars indicate that its performance is more stable than that of PnetCDF. CFIO2 achieved over 80% of 

the maximum throughput, even in the slowest run. This stability can be attributed to our method, which employs multiple sub-

communication domains that independently output individual variables during the data output phase. Each sub-communication 

domain consists of fewer processes, contributing to a more stable output speed. 450 
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5.4 Speedup analysis 

In this section, we will analyze the time expenditures of various phases of our method through experimental analysis and 

identify the sources of the final speedup achieved. To facilitate this, we developed a Jacobi iteration program that performs 

I/O operations at intervals during the iterations. We utilized 4800 processes, each handling a data block of size 50 × 60 × 70 

in float type, resulting in each output variable being 3.75 GB in size. 455 

We conducted several comparative experiments, as shown in Table 4. Experiment 1 features a Jacobi iteration without any I/O 

operations. Experiment 2 involves 10 instances of I/O without any Jacobi calculations. Experiment 3 includes Jacobi iterations 

with 10 instances of I/O using CFIO2. Experiment 4 changed the Phase 3 output data to serial, meaning that multiple sub-

communication domains execute the output data sequentially rather than simultaneously. Experiment 5 consists of Jacobi 

iterations with 10 instances of I/O but excludes the output from Phase 3. Finally, Experiment 6 includes Jacobi iterations with 460 

10 instances of I/O while omitting the data rearrangement from Phase 2 and the output from Phase 3. 
Table 4 Comparison of Jacobi Iteration with different I/O settings. 

No. Description Running time (seconds) 
1 Jacobi iteration w/o I/O  14.5 

2 Output 10 times w/o Jacobi iteration 4.1 

3 Jacobi iteration w/ output result 10 times 16.2 

4 Jacobi iteration w/ output result 10 times, but serial in phase 3 31.3 

5 Jacobi iteration w/ output result 10 times (remove phase 3) 14.8 

6 Jacobi iteration w/ output result 10 times (remove phase 2 and phase 3) 14.6 

 

Experiment 1 shows a pure computation time of 14.5 seconds, while Experiment 2 demonstrates an I/O time of 4.1 seconds. 

Experiment 3, which alternates between computation and I/O, has a total time of 16.2 seconds, less than the combined time of 465 

Experiments 1 and 2 (18.6 seconds). This indicates that some I/O time is effectively hidden during the waiting periods of 

computation. In contrast, Experiment 4 exhibits a significantly longer duration than Experiment 3 because it employs serial 

output data. In this setup, Communication Domain 1 first calls PnetCDF to complete the output of Variable 1, followed by 

Communication Domain 2, which outputs Variable 2. When comparing Experiments 5 and 6, we find that the time taken for 

Phase 2, the data rearrangement stage, is 0.2 seconds. Additionally, comparing Experiment 6 with Experiment 1 reveals that 470 

even with data forwarding, execution time only increases by 0.1 seconds. This suggests that data forwarding is also hidden 

during waiting periods. 

From these results, we can draw two conclusions: first, we have successfully concealed a portion of the time within the 

computation waiting periods; second, utilizing sub-communication domains for output data has effectively improved the 

utilization of the file system. 475 
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6 Related work 

This paper expands upon the concept of Two-phase I/O, a strategy for implementing collective I/O operations within the MPI 

environment, initially proposed by Rosario et al. (1993). Two-phase I/O enhances parallel computing efficiency by enabling 

multiple processes to perform data read and write operations more effectively, reducing file access costs. The strategy consists 

of two primary phases: the prefetch phase, in which I/O requests are redistributed to minimize the frequency of file access, 480 

and the completion phase, during which processes coordinate to execute the actual I/O operations. Two-phase I/O is widely 

employed in MPI-IO and has been incorporated into systems such as ROMIO, an open-source MPI-IO library developed by 

Thakur et al. (1999). Other advancements include a novel design by Kang et al. (2019) that mitigates communication overhead 

by aggregating requests within compute nodes and a study by Tsujita et al. (2014) demonstrating that multithreaded Two-

phase I/O can enhance collective write performance by up to 60% on the Lustre file system. Dickens and Logan (2008) 485 

examined high-performance MPI-IO methods on Lustre, underscoring critical optimizations for efficient parallel I/O. Yu et al. 

(2007) investigated the utility of Lustre file connections to improve collective I/O efficiency. Overall, two-phase I/O remains 

an essential parallel I/O optimization technique, with ongoing research to enhance its performance in massively parallel 

systems. 

There has been a growing interest in applying artificial intelligence (AI) techniques to optimize I/O performance in high-490 

performance computing (HPC) systems in recent years. For example, Xie et al. (2019) explored the application of machine 

learning to analyze and comprehend the write performance of large-scale parallel filesystems, demonstrating how AI can 

effectively identify performance bottlenecks. Similarly, Isakov et al. (2022) presented a multifaceted approach for automated 

I/O bottleneck detection, highlighting the potential of AI to enhance the efficiency of HPC workloads. Bez et al. (2022) 

introduced Drishti, a tool designed to guide end-users through the I/O optimization process, underscoring the role of AI in 495 

making I/O performance enhancements more accessible. In another study, Paul et al. (2021) characterized machine learning 

I/O workloads, providing insights into the specific performance behaviors of these applications under leadership-scale 

conditions. 

Recent advancements in parallel I/O optimization have significantly enhanced the performance of climate models, which 

necessitate the efficient management of large volumes of data. A notable contribution is the Parallel I/O (PIO) library, 500 

developed for the CESM and other climate models (Dennis et al., 2011). The PIO library offers a high-level interface for 

reading and writing distributed arrays, leveraging underlying parallel file systems. The Adaptable Input Output System 

(ADIOS), as introduced by Lofstead et al. (2008), has also been employed in climate models such as the Global/Regional 

Assimilation and Prediction System (GRAPES) to address I/O bottlenecks (Zou et al., 2014). ADIOS provides a flexible and 

high-performance I/O framework that supports various data formats and storage backends, enabling efficient data management 505 

in large-scale simulations. Additionally, the Climate Fast Input/Output (CFIO) library, specifically designed for climate models, 

optimizes I/O operations by leveraging asynchronous communication and dynamic scheduling (Huang et al., 2014). CFIO1.0 

has demonstrated significant reductions in I/O time, enhancing the overall efficiency of climate simulations. 
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7 Conclusions 

In this paper, we present the second version of our parallel I/O library for climate models (CFIO2.0), building upon the 510 

foundation of its predecessor. This iteration eliminates the additional processes dedicated to I/O work introduced in the first 

version, instead leveraging the inherent load imbalances in large-scale process calculations. Our approach utilizes process 

waiting intervals for data forwarding, employs an additional process for global dynamic scheduling, and transforms global 

parallel output operations into localized parallel operations for multiple variables. We have also incorporated reinforcement 

learning techniques to collect and analyze runtime information in specific environments, training our system in simulated 515 

scenarios to develop optimized strategies. Experimental results demonstrate that our proposed method significantly enhances 

output efficiency and reduces overall model execution time. Future work will focus on improving the generalization 

capabilities of our policy, aiming to determine optimal strategies across diverse cluster environments swiftly. We will also 

adopt and test CFIO2 in more climate models. This paper employs reinforcement learning to search for better parameters for 

CFIO2; however, this method is still experimental and requires users to collect data on specific platforms before conducting a 520 

simulation, which remains quite complex. We hope to achieve automated runtime tuning across different platforms in the 

future, thereby truly simplifying the complexity of use for our users. 

Code and data availability 

Our method's source code and documentation are available for download on GitHub (https://github.com/AI4EarthLab/CFIO2). 

Additionally, all the codes and data related to the experiments in this paper can be found in the following sources: 525 

1. All the codes including the data of GOMO case: https://doi.org/10.5281/zenodo.14581371 (Dong Wang, 2024).   

2. “JAR55”, the inputdata required for Licom3 case: https://doi.org/10.5281/zenodo.14580688 (Dong Wang, 2024).  

3. “inputdata_licom”, the inputdata required for Licom3 case: https://doi.org/10.5281/zenodo.14581279 (Dong Wang, 2024).  

4. “input_data”, the inputdata required for Licom3 case: https://doi.org/10.5281/zenodo.14581337 (Dong Wang, 2024). 

The “Readme.docx” in Database 1 describes how to use this code and the associated data to reproduce the results presented in 530 

this article. 
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