
Dear editor and reviewer,
First of all, we would like to express our sincere appreciation to your valuable feed-backs. Your
comments are highly insightful and enable us to substantially improve the quality of our
manuscript. Below are our point-by-point responses to all the comments and our plans to revise
the manuscript.

1. “This paper introduces an updated version of parallel I/O library for climate models. The
authors have implemented new methods in data forwarding, data arrangement and data writing
operations for improving the efficiency of parallel I/O. Moreover, a reinforcement learning
scheme is provided to optimize timings for data arrangement processes. This is a nice piece of
work that help optimizing I/O output operations in climate models. Although not much science on
model results is provided, the architecture of parallel I/O operations is interesting. ”
[Response]:
We sincerely thank the reviewer for their positive feedback on our work and their appreciation of
the architecture of the parallel I/O operations. We agree with the reviewer that the current paper
focuses primarily on the technical improvements and efficiency optimization of the parallel I/O
library, rather than the scientific results of climate models. This is because the main goal of this
work is to address the performance bottlenecks in I/O operations, which are critical for enabling
large-scale climate simulations. Meanwhile, we believe that the improvement in I/O efficiency,
which reduces model runtime, will enable climate model researchers to conduct more simulations
or experiments within a limited time frame. This, in turn, will indirectly assist model researchers
in discovering and addressing more scientific issues.

2. “ Lines 205-210 and Figure 7: it is not explained in the manuscript that how could we make
sure same data blocks are sent to a processor in data forwarding. Also, is the data rearrangement
done within a processor or through a multi-processor task? Could you discuss how efficient is
your rearrangement task for big datasets. Algorithm 1 in page 10: I suggest change this into a
pseudo-code. Also, I suggest authors to discuss how efficient is this algorithm for metadata,
particularly the send-receive communications.”
[Response]:
We appreciate the reviewer's insightful comments and would like to clarify the implementation
details regarding data forwarding and data rearrangement.

In the data forwarding phase, as illustrated in Figure 7, data is forwarded to Process 1 and Process
6. It is important to note that during this phase, there is no requirement for the same data blocks
sent to a processor in data forwarding.

The data rearrangement process consists of two main steps:

 Data Exchange Between Processes: In this step, Process 1 and Process 6 exchange data
blocks based on their respective `starts` and `counts`. After this exchange, both Process 1 and
Process 6 will possess four data segments, which are geographically contiguous. This
exchange is facilitated through MPI communication.

 Local Data Assembly: In this step, Process 1 and Process 6 independently assemble their
respective four data segments into a larger, memory-contiguous block. This step is performed
locally by each process without requiring further inter-process communication.



The efficiency of the data rearrangement process is notably high. As evidenced by the comparison
between execution times for No. 5 and No. 6 in Table 4, the time spent on data rearrangement
constitutes a minimal portion of the overall execution time. Furthermore, while the absolute time
for data rearrangement may increase with larger datasets, its relative proportion to the total
execution time remains largely unchanged. The same principle applies to the time spent on
send-receive communications. To provide a more quantitative analysis, we will include additional
experimental data in the next version of the manuscript.

We will explain the above more clearly in the manuscript. Regarding Algorithm 1 on page 10, we
thank the reviewer for the suggestion to convert it into pseudo-code.

3. Pages 11 and 12: How are trade-off 1 and 2 optimized? If they are not efficient, the I/O
operation will not be improved.
[Response]:
Regarding the optimization of Trade-off 1 (the timing of file output operations), we have
implemented two approaches:

 First, we provide an explicit output statement, similar to `MPI_Wait` in MPI, allowing users
to explicitly specify when to perform output operations.

 Second, if users do not explicitly trigger the output, the system will automatically perform the
output operation when the I/O processes are all occupied and can no longer buffer additional
output variables. At this point, the buffer is cleared.

For Trade-off 2 (the number of I/O processes), based on our experimental experience, selecting
between 4 to 16 processes as I/O processes has proven to be effective.

Both trade-offs fundamentally depend on the performance of the underlying hardware. This is why
we introduced a reinforcement learning-based approach in this work. The method first collects
performance data from the machine, and then an agent in a virtual environment automatically
explores and identifies the optimal strategy.

We will explain the above more clearly in the manuscript.

4. Also, the training process of reinforcement learning is not discussed. A fair comment here is
that if you spend too much time on training your ML algorithm, that should be considered in
evaluation of your updated I/O operation versus the previous I/O approaches.
[Response]:
We appreciate the reviewer's valuable feedback regarding the training process of the
reinforcement learning (RL) algorithm. We will include a detailed discussion of the RL training
process in the next version of the manuscript.

The reviewer raises a fair point: if the training process of the RL algorithm is too time-consuming,
it should be factored into the evaluation of the updated I/O operations compared to previous
approaches. In our experiments, using an Nvidia GeForce RTX 3090 GPU, the RL training
process takes approximately 30 minutes.

Based on this, we recommend the following:

 If the simulation is not intended for long-term runs, the default parameter configuration in



our library already provides significant acceleration, and the RL-based approach may not be
necessary.

 However, for simulations that require long-term execution, the benefits of using RL to
explore and identify optimal strategies are substantial, justifying the additional training time.

We will ensure that this rationale is clearly articulated in the revised manuscript, along with a
more detailed discussion of the RL training process and its implications.

5. Figure 1: there is empty space on the right side. I suggest moving panel (b) to top left side.
This will save some space. Same comment is for Figure 2.
[Response]:
Thanks for the suggestion. We will reformat both figures in the revised manuscript.

We really appreciate your highly constructive comments.

Best wishes,
Dong Wang, Xiaomeng Huang


