Supplement of

Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: Insights from single particle aerosol mass spectrometry

5 Xiufeng Lian^{1, 2}, Yongjiang Xu¹, Fengxian Liu³, Long Peng⁴, Xiaodong Hu⁵, Guigang Tang⁶, Xu Dao⁶, Hui Guo⁷, Liwei Wang⁸, Bo Huang², Chunlei Cheng¹, Lei Li¹, Guohua Zhang⁹, Xinhui Bi⁹, Xiaofei Wang¹⁰, Zhen Zhou¹, Mei Li^{1,*}

¹ College of Environment and Climate, Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University,

10 Guangzhou, 510632 PR China

² Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, Guangdong, China

³ Taiyuan University of Technology, Taiyuan 030024, PR China

⁴ College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China

⁵ Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou),
Jiangmen 529100, PR China

⁶ China National Environmental Monitoring Centre, Beijing 100012, PR China

⁷ Hunan Province Environmental Monitoring Center, Changsha 410014, PR China

⁸ Environment Emergency Monitoring and Accident Investigation Center, Jiaxing 314000, PR China

⁹ State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and
Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China

¹⁰ Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China

Correspondence to: limei@jnu.edu.cn

Figure S1. Time series and size distribution of Pb-containing particles and Pb-rich particles

Figure S2. The average mass spectrum of Pb-N particles from summer to winter in 2019.

Figure S3. The digital spectrum of Pb-N particles from summer to winter in 2019.

Figure S4. Correlation between the total peak area of nitrate (sum peak area of m/z - 46 and -62) and the total peak area of lead (sum peak area of m/z 206, 207, and 208) in Pb-N particles.

Figure S5. Correlation between the number fractions of K-Na-EC and KOC particles (a), K-Na and K-Na-Fe particles (b), K-Na and K-Na-Zn particles (c).

Figure S6. Number fractions for size distribution of the main Pb-rich particle types classified based on positive spectrum from spring to winter, respectively.

Figure S7. (a) Time series of pollutant concentrations (PM_{2.5}, NO₂, SO₂, CO, and O₃) and box plots of pollutant concentrations during heating (DHP) and non-heating (AHP) periods during spring; (b) The relative peak area of Pb in Pb-rich particles during four seasons.

50 Figure S8. The number fractions of the main Pb-rich particle types from spring to winter in 2019.

Figure S9. Number fractions for size distribution of Pb-N particles from spring to winter, respectively.

Figure S10. The ozone concentration on sunny and non-sunny days during four seasons.

		SO_2	NO_2	O ₃	PM _{2.5}	Т	RH	WS
Site	Date	(μg/m³)			(°C)	(%)	(m/s)	
	9 Mar-8 Apr 2019	6 ± 5	45 ± 32	62 ± 37	41 ± 37	12 ± 5	29 ± 14	2 ± 2
	16 Jun-17 Jul 2019	4 ± 3	32 ± 19	119 ± 75	33 ± 21	27 ± 5	56 ± 19	2 ± 1
	15 Sep-16 Oct 2019	4 ± 4	41 ± 22	59 ± 56	35 ± 26	19 ± 6	61 ± 21	1 ± 1
_	15 Dec 2019-15 Jan 2020	6 ± 5	49 ± 30	24 ± 23	36 ± 32	-1 ± 3	49 ± 20	2 ± 1

Table S1 Average value and standard deviation of meteorological parameters and the concentration of pollutants during sampling periods.