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Abstract. In this study, we present a novel algorithm using the lidar-derived particle linear depolarization ratios measured at

two wavelengths for the decomposition of three aerosol components, to retrieve aerosol-type-specific backscatter fractions.

This extended methodology builds upon well-developed polarization-based algorithms, e.g., POLIPHON (POlarization LIdar

PHOtometer Networking) method, offers an added advantage for an almost unambiguous separation of three aerosol com-

ponents, on the condition that their characteristic depolarization ratios are different. And it requires the proper knowledge of5

characteristic depolarization ratio and the backscatter-related Ångström exponent of each aerosol type. The mathematical re-

lationship between particle linear depolarization ratios at two wavelengths for a mixture of two aerosol components has been

derived and expressed as an equation. This equation is visualized as a curved line, where the boundaries are determined by

the characteristic depolarization ratios and the curvature is influenced by the characteristic backscatter-related Ångström expo-

nents of both aerosol types. Moreover, the pair values of particle linear depolarization ratios of three aerosol components at two10

wavelengths must remain within the enclosed region predetermined by three boundary curves, and each curve is determined by

the characteristics of any two of three types. Such characteristic curved relationships are more accurate than the common use

of the ratio of the particle linear depolarization ratios. This novel algorithm has been applied to synthetic examples considering

dust mixtures and to lidar observations of Arabian dust, Asian dust, and Saharan dust, so as to decompose coarse-mode dust

(>1 µm in diameter), fine-mode dust (<1 µm in diameter), and spherical non-dust aerosols. The dust characteristics reported in15

numerous laboratory and field studies have been considered.

1 Introduction

Light detection and ranging (lidar) is a powerful instrument that provides vertical information of atmospheric aerosol and

clouds from ground and space at high vertical resolution. Irregularly shaped particles induce strong depolarization of laser

light. Polarization-based algorithms have been developed to separate the aerosol profiles of weakly light depolarizing (spheri-20

cal, e.g., anthropogenic haze, biomass burning smoke, maritime) and strongly light depolarizing (non-spherical, e.g., volcanic

ash, desert dust, pollen) particles (e.g., Shimizu et al., 2004; Tesche et al., 2009, 2011; Ansmann et al., 2011, 2012; Sugimoto

and Lee, 2006; Nishizawa et al., 2007; Freudenthaler et al., 2009; Groß et al., 2011, 2012; Miffre et al., 2012; Nisantzi et al.,
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2014; Shang et al., 2020). Such techniques have been primarily used for decoupling the particle backscatter coefficient profiles

of, e.g., dust and non-dust particles (Tesche et al., 2009), ash and fine-mode particles (Ansmann et al., 2011; Marenco and25

Hogan, 2011), and pollen and non-depolarizing background aerosol (Shang et al., 2022). In addition, the POLIPHON (POlar-

ization LIdar PHOtometer Networking) method (Ansmann et al., 2012) allows the retrieval of the particle number, surface area,

and volume/mass concentration of fine mode and coarse mode particles, in synergy with sun-sky photometer measurements

(one-step POLIPHON). The extended POLIPHON method, namely the two-step POLIPHON method, further allows the sep-

aration of non-dust, fine mode, and coarse mode dust particle contributions of the above-mentioned optical and microphysical30

quantities (Mamouri and Ansmann, 2014, 2017). The two-step POLIPHON method comprises two subsequent phases similar

to the one-step POLIPHON, and allows separating three aerosol components, as long as their characteristic depolarization ra-

tios are distinct. However, to separate the backscatter coefficients of coarse mode dust in the first step, it requires an assumption

about the spherical particle fraction to estimate the overall depolarization ratio for the residual aerosol (a mixture of non-dust

and fine-dust with unknown mixing ratio). To date, POLIPHON has been utilized in many studies, to lidar observations ex-35

ploiting single-wavelength polarization measurements (Ansmann et al., 2019; Córdoba-Jabonero et al., 2018; Mamali et al.,

2018; Haarig et al., 2019; Proestakis et al., 2024).

Most commonly, the 532 nm and 355 nm wavelengths have been used to perform depolarization ratio measurements.

Most lidar stations in the European Aerosol Research Lidar Network (EARLINET, Pappalardo et al. (2014); https://www.

earlinet.org, last access: 10 October 2024) and the Raman and polarization lidar network (PollyNET, Baars et al. (2016);40

https://polly.tropos.de, last access: 10 October 2024) measure the particle linear depolarization ratios at 532 and/or 355 nm.

The NASA Micro-Pulse Lidar Network (MPLNET, Welton et al. (2001); https://mplnet.gsfc.nasa.gov, last access: 10 October

2024) provide polarization measurements at 532 nm. The space-borne lidars CALIOP (Cloud-Aerosol LIdar with Orthog-

onal Polarization) onboard the CALIPSO (the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) (Winker

et al., 2009), and ATLID (Atmospheric Lidar) in the ESA’s EarthCARE (Cloud, Aerosol and Radiation Explorer; https:45

//earth.esa.int/eogateway/missions/earthcare, last access: 10 October 2024) mission retrieve depolarization ratio at 532 or

355 nm, respectively. Depolarization ratio observations at 1064 nm have been increasing the last years as well (Haarig et al.,

2022; Hu et al., 2020). The Vaisala CL61 ceilometer, and the HALO Photonics Stream Line Pro scanning Doppler lidar

(Pearson et al., 2009) also provide polarization observations at 910 nm and 1565 nm, respectively. The utilization of the multi-

wavelength polarization lidar or a synergy of multiple lidars with the capability to provide concurrent depolarization ratio50

observations at various wavelengths allows the investigation of the spectral dependence on the depolarization ratios. This is an

important aspect to characterize different aerosol types, such as dust (Haarig et al., 2017a, 2022) and pollen (Bohlmann et al.,

2021; Filioglou et al., 2023). In particular, it could enable the distinction of non-spherical aerosol types.

In this study, we present a novel methodology (Sect. 2), using the particle linear depolarization ratios measured at two wave-

lengths, to separate the particle backscatter coefficients of three aerosol components without introducing assumptions regarding55

the aerosol particle fractions as required in the POLIPHON method. The relationship between particle linear depolarization

ratios at two wavelengths are investigated mathematically for mixtures of two and three aerosol components. Then, the method

is applied to lidar observations of dust particles at different regions (Sect. 3).
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2 Methodology

The particle linear depolarization ratio of the particle ensemble at wavelength λ, denoted as δp(λ), can be expressed by Eqs. 1–60

2 for an aerosol mixture of two or three externally mixed aerosol types (Shimizu et al., 2004; Tesche et al., 2009; Mamouri

and Ansmann, 2014). In this context, each particle consists of a single aerosol type, and the calculation involves the aerosol

backscatter coefficient (βx) and aerosol-type-specific characteristic depolarization ratio (δx), where the index x corresponds to

each aerosol type (a, or b, or c).

δp(λ) =
βa(λ)δa(λ)

δa(λ)+1 + βb(λ)δb(λ)
δb(λ)+1

βa(λ)
δa(λ)+1 + βb(λ)

δb(λ)+1

(1)65

δp(λ) =
βa(λ)δa(λ)

δa(λ)+1 + βb(λ)δb(λ)
δb(λ)+1 + βc(λ)δc(λ)

δc(λ)+1

βa(λ)
δa(λ)+1 + βb(λ)

δb(λ)+1 + βc(λ)
δc(λ)+1

(2)

The aerosol backscatter fraction ϕx (Eq. 3) is defined as the ratio of the backscatter coefficient of the aerosol type x (βx) to

the total particle backscatter coefficient (βp). The sum of all aerosol backscatter fractions in the particle ensemble is equal to 1.

ϕx(λ) =
βx(λ)
βp(λ)

(3)

The backscatter-related Ångström exponent (Åβ) between two wavelengths, λ1 and λ2, can be expressed through Eq. 4 (the70

index x can be used for one aerosol type or for the particle ensemble), where parameter η, often refereed as the backscatter

color ratio, is a function of Åβ and it is defined as follows:

ηx = (
λ1

λ2
)−Åβ,x(λ1,λ2) =

βx(λ1)
βx(λ2)

. (4)

To apply the novel algorithm for the decomposition of two or three aerosol components, proper knowledge of the character-

istic depolarization ratios (δx) and backscatter-related Ångström exponent (Åβ,x) of each aerosol type is necessary. The fine75

and coarse mode dust optical properties have been measured and reported in many laboratory and field studies (Sakai et al.,

2010; Järvinen et al., 2016; Freudenthaler et al., 2009; Burton et al., 2015). Due to the distinct depolarization ratios of fine and

coarse mode dust, and spherical non-dust aerosols, these aerosols become good candidates for validating the novel method-

ology. Atmospheric mineral dust is one of the most important aerosol types, playing a key role on several critical aspects of

the Earth system. As stated in Adebiyi et al. (2023), Castellanos et al. (2024), and references therein, many studies have been80

performed to investigate the dust properties. The size of mineral dust in the atmosphere ranges from less than 0.1 µm to more

than 100 µm in diameter (Adebiyi et al., 2023; Ryder et al., 2019; van der Does et al., 2018; Mahowald et al., 2014). Following

the POLIPHON method, in this study, we consider two components of pure dust: fine-mode dust which covers the particle size

spectrum up to 1 µm in diameter, and coarse-mode dust with super-micrometer particles (>1 µm in diameter).
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The algorithm was applied to synthetic examples considering dust mixture in Sect. 2, and to lidar observations of dust85

at different regions in Sect. 3, using the characteristics from Table 1. The characteristic depolarization ratios of coarse and

fine mode dust at 355, 532, and 1064 nm are taken from the review study of Mamouri and Ansmann (2017) (see Table 1

in that paper), which includes two laboratory studies (Sakai et al., 2010; Järvinen et al., 2016), and five field observations

(Freudenthaler et al., 2009; Burton et al., 2015; Veselovskii et al., 2016; Haarig et al., 2017a; Hofer et al., 2017). The laboratory

experiments to measure the airborne dust properties is challenging, and thus still limit. Sakai et al. (2010) measured δx(532)90

of several tropospheric aerosols using a laboratory chamber. For high number concentrations, δdf (532) of the fine-mode dust

were found to be 0.17 ± 0.03 for the Asian dust and 0.14 ± 0.03 for the Saharan dust, whereas δdc(532) of the coarse-mode

dust were 0.39 ± 0.04 to 0.05 for both. Järvinen et al. (2016) measured δdust of various dust samples at 488 and 552 nm in a

cloud chamber. They reported that the measured δdust ranged from 0.03 to 0.36 and were strongly dependent on the particle

size. Based on this study, Mamouri and Ansmann (2017) estimated δdf for fine-mode dust of around 0.21 ± 0.02, 0.16 ±95

0.02, and 0.09 ± 0.03 for the laser wavelengths of 355, 532, and 1064 nm, respectively. Miffre et al. (2023) found that the

dust depolarization ratios are mainly influenced by the particles’ complex refractive index, when the strongly light-absorbing

hematite is present, while its variations with size and shape are less significant. They also present measured δdust values for

finer and coarser size distributions of Arizona and Asian dust (see Table 1 in Miffre et al., 2023), which can not be used in this

study as the used size distributions are different from other studies. Field measurements were also considered. Nevertheless,100

the reported characteristic depolarization ratios from field observations may still contain contributions from spherical particles

within the mixture, potentially leading to an underestimation of the characteristic values. Moreover, certain vertical smoothing

is always applied in the lidar retrievals, and layer-mean values are often reported, adding uncertainties on the lidar-derived

characteristics of aerosol types. Burton et al. (2015) performed airborne measurements of dust plumes over the United States.

For a dense dust layer of local North American dust, they found high δp of 0.24 ± 0.05, 0.37 ± 0.01, 0.38 ± 0.01 at 355,105

532, and 1064 nm, respectively. The corresponding Åβ(532,1064) is -0.09 ± 0.04. For two transported Saharan dust layers,

Åβ(532,1064) were found to be 0.46 ± 0.03 and 0.68 ± 0.13. Veselovskii et al. (2016) observed that δp(532) increased up to

0.35 ± 0.05, and Åβ(355,532) decreased to -0.7, during strong African dust episodes. Hofer et al. (2017) present an extreme

dust event (probably with coarse mode dust dominant) with values of 0.29 ± 0.01 or 0.35 ± 0.01 for δp(355) or δp(532), and

values of -0.20 ± 0.13 or 0.29 ± 0.03 for Åβ(355,532) or Åβ(532,1064), respectively. Freudenthaler et al. (2009) reported110

0.31 ± 0.03 and 0.27 ± 0.04 for δp(532) and δp(1064) over Morocco. Haarig et al. (2017a) highlighted maximum values of

0.27 for δp(1064) measured over Barbados, which are almost equal to the coarse dust depolarization ratio. The characteristics

of non-dust type can vary widely across regions and times. A review study of Proestakis et al. (2024) suggests a value of

0.05 ± 0.02 at 532 nm for non-dust depolarization ratios (Tesche et al., 2009; Mamouri and Ansmann, 2014, 2016; Marinou

et al., 2017; Proestakis et al., 2018). Here we consider 0.05 ± 0.02 for all 3 wavelengths in the synthetic examples and cases115

where measurements are unavailable. However, such values may be adjusted if measurements become available. Laboratory

measurements of dust Åβ are still missing, thus values from lidar measurements are considered. Mamouri and Ansmann

(2014) stated the extinction-related Ångström exponent between 355 and 532 nm to be -0.2, 1.5, 2.0 for coarse dust, fine

dust, and non-dust aerosols, respectively. Assuming the same lidar ratios at 355 and 532 nm, these values can be used for the
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Table 1. Input parameters used in the synthetic cases (Sect. 2) and case studies (Sect. 3): characteristic depolarization ratios (δ) at 355, 532

or 1064 nm, and backscatter-related Ångström exponent (Åβ) between 355 and 532 nm, or between 532 and 1064 nm, for coarse dust (dc),

fine dust (df), and spherical non-dust (nd) aerosols. Typical values are considered from published studies (see text in Sect. 2). Values in

parentheses are based on our assumptions.

Aerosol type (abbreviation) δ(355) δ(532) δ(1064) Åβ(355, 532) Åβ(532, 1064)

Coarse dust (dc) 0.27 ± 0.03 0.37 ± 0.03 0.27 ± 0.03 -0.2 (± 0.03) 0.3 ± 0.03

Fine dust (df) 0.21 ± 0.02 0.16 ± 0.02 0.09 ± 0.02 1.5 (± 0.03) 0.6 (± 0.03)

Non-dust aerosol (nd) 0.05 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 2.0 (± 0.03) (1.5 ± 0.03)

Åβ(355,532). The authors found no available value for Åβ(532,1064) of fine-mode dust in the literature. Nevertheless, several120

studies documented range of values of Åβ for the dust layers including the coarse and fine mode dust. For example, Tesche

et al. (2009) and Filioglou et al. (2020) found Åβ(532,1064) values of 0.0 to 0.7, or 0.1 to 0.6, respectively. The upper limit of

such range values could be related to the fine-mode dust dominant dust mixture.

It should be emphasized that this paper focuses on presenting a novel methodology, and the investigation of the characteristics

is beyond the scope. The characteristic values of the various aerosol types can be readily updated as more accurate values125

become available and new observations emerge in the field.

2.1 Mixture of two aerosol components

As a first step, a two aerosol component mixture is considered assuming a strongly depolarizing and a weakly depolarizing

aerosol types, with type denoted by the subscripts a and b. The characteristic depolarization ratios of the two aerosol types

should be different (i.e., δa ̸= δb). The total particle backscatter coefficient, βp, is the sum of the backscatter coefficients of130

aerosols a and b (βp = βa + βb). The separation method using δp from one wavelength, initially developed by Shimizu et al.

(2004) and thoroughly discussed in Tesche et al. (2009), is well known and has been widely utilized. In this section, we present

an approach for cases where δp at two wavelengths are available.

Using Eqs. 1 and 3, the δp of the particle ensemble at wavelength λ1 (or λ2) can be expressed by Eq. 5 (or 6). A synthetic

example is given in Fig. 1(a), using the characteristics of coarse dust and spherical non-dust aerosol from Table 1. Using Eqs. 3135

(for wavelengths λ1 and λ2) and 4 (for aerosols a and b), the relationships between the aerosol backscatter fractions at two

wavelengths can be derived as Eqs. 7 and 8. Therefore, a scatter plot using δp at two wavelengths can be generated, and linked

to the backscatter fractions (an example is given in Fig. 1b). It is evident that the sum of ϕa(λ1) and ϕb(λ1) equals 1 (Eqs. 7–8).

Also, the sum of the two aerosol backscatter fractions at λ2 is equal to 1 (Eq. 9). Eqs. 7–9 remain valid under the interchange

of λ1 and λ2.140
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Figure 1. Synthetic particle linear depolarization ratios (δp) for the aerosol mixture with two aerosol types: coarse dust (dc) and spherical

non-dust aerosol (nd). (a) δp against the coarse dust backscatter fraction (ϕdc) at 355 or 532 nm. (b) Relationship between δp at 355 and

532 nm, with ϕdc at 532 nm shown by color scales. (c) Theoretical characteristic curves of δp at 355 and 532 nm for the dc and nd mixture,

with uncertainties from Monte Carlo simulations (using parameters in Table 1). (d) Characteristic curves of δp at 355 and 532 nm for dc and

nd mixture, with different characteristic backscatter-related Ångström exponents (Åβ,dc(355,532) and Åβ,nd(355,532)).

δp(λ1) =
ϕa(λ1)δa(λ1)

δa(λ1)+1 + ϕb(λ1)δb(λ1)
δb(λ1)+1

ϕa(λ1)
δa(λ1)+1 + ϕb(λ1)

δb(λ1)+1

(5)

δp(λ2) =
ϕa(λ2)δa(λ2)

δa(λ2)+1 + ϕb(λ2)δb(λ2)
δb(λ2)+1

ϕa(λ2)
δa(λ2)+1 + ϕb(λ2)

δb(λ2)+1

(6)

ϕa(λ1) =
ηa(λ1,λ2)ϕa(λ2)

ηa(λ1,λ2)ϕa(λ2) + ηb(λ1,λ2)ϕb(λ2)
(7)

ϕb(λ1) =
ηb(λ1,λ2)ϕb(λ2)

ηa(λ1,λ2)ϕa(λ2) + ηb(λ1,λ2)ϕb(λ2)
(8)

ϕa(λ2) +ϕb(λ2) = 1 (9)145

In the above-mentioned equations (Eqs. 5–9), eight variables are known: the particle linear depolarization ratios of the

particle ensemble (δp(λ1), δp(λ2)), and the characteristic depolarization ratios and the backscatter-related Ångström exponents

(δa(λ1), δb(λ1), δa(λ2), δb(λ2), Åβ,a, Åβ,b) which are aerosol-type-dependent. Thus, the mathematical relationship between

δp(λ1) and δp(λ2) can be derived and expressed through Eq. 10, without unknown parameters. Such a relationship relating

to the wavelength dependency on the particle linear depolarization ratios is fixed for the mixture of two aerosol components.150

The two boundaries are determined by the δx of the two aerosols. For the synthetic example in Fig. 1(b-d), the top-right (or

left-bottom) boundary of the curve is determined by δdc (or δnd) at 355 and 532 nm. Åβ,x of both aerosol types impacts

the curvature of the curve. Examples of characteristic curves using different Åβ,x values are given in Fig. 1(d) to illustrate

the curvature effect: higher Åβ,nd or lower Åβ,dc will result in a higher curvature while bending towards the right bottom
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direction. A sensitively study on the synthetic example (Fig. 1) was performed based on the Monte Carlo approach. Six155

variables (δdc(355), δdc(532), Åβ,dc, δnd(355), δnd(532), Åβ,nd) are used, considering normal statistical distribution with

their standard derivations (in Table 1). Results using 1000 draws/simulations are shown as gray error bars in Fig. 1(c).

δp(λ1) =
δa(λ1)ηa[δb(λ1) + 1][δa(λ2) + 1][δb(λ2)− δp(λ2)] + δb(λ1)ηb[δa(λ1) + 1][δb(λ2) + 1][δp(λ2)− δa(λ2)]

ηa[δb(λ1) + 1][δa(λ2) + 1][δb(λ2)− δp(λ2)] + ηb[δa(λ1) + 1][δb(λ2) + 1][δp(λ2)− δa(λ2)]
(10)

It is concluded that the relationship between δp at two wavelengths is not linear, thus, the common use of the ratio of δp(λ1)

and δp(λ2) is less accurate than the characteristic curved relationship proposed in this study. Furthermore, these characteristic160

wavelength dependencies provide the potential application for aerosol typing.

Moreover, there are four independent equations from Eqs. 5–9, considering Eq. 10. Thus, the four unknowns (ϕa(λ1),

ϕb(λ1), ϕa(λ2), ϕb(λ2)) can be calculated as a unique solution.

2.2 Mixture of three aerosol components

As a following step, more complicated aerosol mixtures were considered in this section, assuming an aerosol population of165

three aerosol types (denoted with the subscript a, b or c). The characteristic depolarization ratios (δx) of all three types should

be different.

Using Eqs. 2 and 3, δp of the particle ensemble at wavelength λ1 (or λ2) can be expressed by Eq. 11 (or 12). Synthetic

examples are given in Fig. 2 for a three aerosol component mixture (coarse dust, fine dust, and spherical non-dust aerosol).

δp value of the particle ensemble depends on the share of each aerosol type (e.g., Fig. 2a). The pair values of δp at two170

wavelengths must remain within the enclosed region predetermined by three boundary curves, and each curve is determined by

the characteristics of any two of three types (e.g., using Eq. 10, see Fig. 1b-d). Similar sensitively study was performed based

on the Monte Carlo approach, with results shown in Fig. 2(c), using the characteristic values and uncertainties of δx and Åβ,x

(in Table 1). The relationships between the aerosol backscatter fractions at two wavelengths can be derived as Eqs. 13–15, and

the sum of ϕa(λ1), ϕb(λ1), and ϕc(λ1) is clearly equal to 1. The sum of the three aerosol backscatter fractions at λ2 is also175

equal to 1 (Eq. 16). Eqs. 13–16 remain valid under the interchange of λ1 and λ2.
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Figure 2. Synthetic particle linear depolarization ratios (δp) of the particle ensemble at 355 and 532 nm for the aerosol mixture with three

aerosol types: coarse dust (dc), fine dust (df), and spherical non-dust aerosol (nd). (a) δp at 532 nm for different backscatter fractions (ϕ) of

coarse and fine dust. (b) δp at 355 and 532 nm, with coarse dust backscatter fractions (ϕdc) shown by color scales, and fine dust backscatter

fractions (ϕdf ) shown by marker sizes. (c) Theoretical characteristic curves of δp at 355 and 532 nm for the two aerosol mixtures are in black

lines, with uncertainties from Monte Carlo simulations (using parameters in Table 1). The characteristic values of δdc, δdf , and δnd is shown

as red square, yellow triangle, or blue cross, respectively.

δp(λ1) =
ϕa(λ1)δa(λ1)

δa(λ1)+1 + ϕb(λ1)δb(λ1)
δb(λ1)+1 + ϕc(λ1)δc(λ1)

δc(λ1)+1

ϕa(λ1)
δa(λ1)+1 + ϕb(λ1)

δb(λ1)+1 + ϕc(λ1)
δc(λ1)+1

(11)

δp(λ2) =
ϕa(λ2)δa(λ2)

δa(λ2)+1 + ϕb(λ2)δb(λ2)
δb(λ2)+1 + ϕc(λ2)δc(λ2)

δc(λ2)+1

ϕa(λ2)
δa(λ2)+1 + ϕb(λ2)

δb(λ2)+1 + ϕc(λ2)
δc(λ2)+1

(12)

ϕa(λ1) =
ηa(λ1,λ2)ϕa(λ2)

ηa(λ1,λ2)ϕa(λ2) + ηb(λ1,λ2)ϕb(λ2) + ηc(λ1,λ2)ϕc(λ2)
(13)

ϕb(λ1) =
ηb(λ1,λ2)ϕb(λ2)

ηa(λ1,λ2)ϕa(λ2) + ηb(λ1,λ2)ϕb(λ2) + ηc(λ1,λ2)ϕc(λ2)
(14)180

ϕc(λ1) =
ηc(λ1,λ2)ϕc(λ2)

ηa(λ1,λ2)ϕa(λ2) + ηb(λ1,λ2)ϕb(λ2) + ηc(λ1,λ2)ϕc(λ2)
(15)

ϕa(λ2) +ϕb(λ2) +ϕc(λ2) = 1 (16)

It is possible to retrieve the six unknowns ϕx(λi) (with x being a, b, or c, and i being 1 or 2) using the six independent

equations (Eqs. 11–16) with a unique mathematical solution. For the sake of simplicity, an aerosol-type-dependent term, Qx,

was introduced, which is based on the characteristic depolarization ratio (δx), as well as the particle linear depolarization185

ratio of the particle ensemble (δp), at a given wavelength (Eq. 17). For three aerosol types and depolarization ratios at two

wavelengths, there are six Qx(λi). Thus, the Eq. 11 or 12 can be simplified as Eq. 18. The expressions of the aerosol backscatter

fraction ϕx(λi) can be mathematically derived using Eqs. 13–18. An example of the expression of ϕa(λ2) solution is given in

Eq. 19. The solution equations for the other two types can apply the same equation, with the indices a, b, and c interchanged
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accordingly. The aerosol backscatter coefficient of one type can be easily calculated from the total backscatter coefficient using190

the backscatter fraction.

Qx(λi) =
δp(λi)− δx(λi)

δx(λi) + 1
(17)

ϕa(λi)Qa(λi) +ϕb(λi)Qb(λi) +ϕc(λi)Qc(λi) = 0 (18)

ϕa(λ2) =
ηbQb(λ1)Qc(λ2)− ηcQc(λ1)Qb(λ2)

ηaQa(λ1)[Qb(λ2)−Qc(λ2)] + ηbQb(λ1)[Qc(λ2)−Qa(λ2)] + ηcQc(λ1)[Qa(λ2)−Qb(λ2)]
(19)

2.3 Uncertainty study195

Decomposition of two aerosol component mixture is well studied and reported in many studies. In this section, we present a

sensitivity study and explore the uncertainties of the proposed methodology for the decomposition of three aerosol component

mixture using particle depolarization ratios at two wavelengths.

In the simulation, synthetic data representing aerosol mixtures, which may include coarse dust, fine dust, and spherical non-

dust aerosol, are utilized with characteristics from Table 1. The pair values of δp of the aerosol mixture, with whichever the200

mixing ratio of the three components, should be inside the region bounded by the three characteristic curves. The uncertainties

of both the type-specific characteristics and the measured δp introduce uncertainties on the retrievals of the aerosol backscatter

fractions. Here, we first focus on the uncertainty source of the type-specific characteristics and omit the uncertainty of the

measured δp.

Three representative cases are manually selected, with initial δp values given in Table 2 and Fig. 3(a). The aerosol backscatter205

fractions can be calculated using Eq. 19, where there are two measured/initial parameters (δp at 355 and 532 nm), and nine vari-

ables (δdc(355), δdc(532), Åβ,dc, δdf (355), δdf (532), Åβ,df , δnd(355), δnd(532), Åβ,nd). The idea results without introducing

uncertainties are given as "Reference results" in Table 2. A Monte Carlo simulation was conducted involving 10000 draws

based on normal distributions of nine variables (Table 1). For each draw, the aerosol backscatter fractions of three components

are calculated, resulting the distributions shown in Fig. 3(b-d). The statistical parameters are given in Table 2, where skew-210

ness is a measure of the asymmetry of the distribution, and kurtosis is a measure of the flatness of the distribution compared

to a normal distribution. The retrieved ϕx distributions are also presented as ternary plots in Fig. 3(e), where the color scale

represent the frequency of occurrences. We can easily identify areas where there is a greater accuracy/confidence for the ϕx

retrievals with darker color.

For case 1, the pair values of δp locate in the middle of the enclosed characteristic region. The retrieved backscatter fractions215

are closer in shape to a Gaussian distribution than the other two cases. The values are reasonably between 0 to 1. δp(355) and

δp(532) of case 2 are located inside the error bars of the characteristic curve of coarse dust and non-dust aerosol. Thus, for this
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Table 2. Parameters for the uncertainty study. Three cases with different initial particle linear depolarization ratios (δp) of the particle en-

semble at 355 and 532 nm are used. Reference results are calculated using Eq. 19 without introducing uncertainties. Statistical parameters of

retrieved aerosol backscatter fraction ϕx of coarse dust (dc), fine dust (df), and non-dust aerosol (nd) are given after Monte Carlo simulations.

Initial δp Reference results Monte Carlo results

δp(355) δp(532) Mean Standard deviation Skewness Kurtosis

Case 1 0.16 0.19 ϕdc(532) 0.33 0.33 0.09 0.53 13.63

ϕdf (532) 0.42 0.42 0.15 -1.78 51.61

ϕnd(532) 0.25 0.25 0.07 3.31 107.97

Case 2 0.18 0.28 ϕdc(532) 0.74 0.76 0.14 1.84 95.39

ϕdf (532) 0.08 0.05 0.20 -0.96 119.17

ϕnd(532) 0.19 0.19 0.08 -0.62 92.74

Case 3 0.10 0.30 ϕdc(532) 1.01 1.05 0.38 57.08 4527.20

ϕdf (532) -0.46 -0.52 0.59 -53.35 3906.65

ϕnd(532) 0.45 0.47 0.24 36.50 2010.26

δp pair, it is possible that the mixture contains only coarse dust and non-dust aerosol, or contains three aerosol components.

For example, a small part of simulated values of ϕdf distribution in Fig. 3(c) is negative due to the uncertainties. In case 3,

the pair values of δp are far away from the characteristic region, only un-physical values (always below 0) were derived for220

ϕdf (Fig. 3d), and a big portion of ϕdc are bigger than 1. This case is clearly not a mixture of above mentioned three aerosol

components. It could contain other depolarizing particles, e.g., pollen, in the mixture.

As a second step, we concentrate on the random uncertainties on the measured δp. Reference values of ϕdc, ϕdf , and ϕnd

of three cases in Table 2 are used here as inputs. Note that it is purely a mathematical problem, as the system can be solved

regardless of whether the values are physically meaningful (e.g., case 3). δp(355) and δp(532) are derived using Eqs. 11–15,225

and they exactly match the initial values. We added several relative uncertainty levels on both δp(355) and δp(532) from 0 % to

30 %, and performed Monte Carlo simulations using 10000 draws for each level, considering normal statistical distributions.

The uncertainties (including bias and standard deviations) and relative uncertainties on the retrieved ϕx for three cases are

shown in Fig. 4, and they increase as the uncertainties on δp increase. Such uncertainties on ϕx range from 0.02 to 0.18 when

considering typical relative uncertainties on the δp of 5–10 %. There is the demand of well characterized lidar systems to230

deliver high-quality depolarization ratios.

3 Case studies of mineral dust

In this section, the algorithm was applied to lidar observations of dust at different regions.

10
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Figure 3. (a) Theoretical characteristic curves of δp at 355 and 532 nm for the 2 aerosol mixtures are in black, with uncertainties from Monte

Carlo simulations (using parameters in Table 1). The characteristic δx of coarse dust (dc), fine dust (df), or spherical non-dust (nd) aerosol

are shown as red square, yellow triangle, or blue cross, respectively. (b-d) Probability density function (PDF) estimates of the backscatter

fractions (ϕx) of dc, df, and nd aerosol, for each case. Monte Carlo approach was applied. (e) Ternary plots of characteristic ϕx for 3 cases,

with normalized counts shown as color.

3.1 Arabian dust

Filioglou et al. (2020) reported the aerosol particle properties of Arabian dust over a rural site in the United Arab Emirates,235

during the 1 year measurement campaign between March 2018 and February 2019, within the framework of the Optimization

of Aerosol Seeding In rain enhancement Strategies (OASIS) project. Among 1130 night-time aerosol particle layers, δp at both

355 and 532 nm are available for 1063 layers. These layer-mean δp are plotted in Fig. 5, with center mass of the layers shown

by color scale, and layer depths shown by marker sizes.

The measurement site is a receptor of frequent dust events, three possible aerosol types are assumed to be present in these240

layers: coarse and fine dust (with characteristics in Table 1), and the spherical non-dust aerosols with anthropogenic and/or

marine origin. From the lidar measurements, the mean values of the depolarization ratios for the non-dust aerosols (δnd) are
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Figure 4. Estimated uncertainties (a–c) and relative uncertainties (d–f) on the retrieved backscatter fractions (ϕx) at 532 nm of coarse dust

(dc), fine dust (df), or spherical non-dust (nd) aerosols, against the applied relative uncertainties on the particle linear depolarization ratios at

both 355 and 532 nm (δp(355) and δp(532)). Monte Carlo approach was applied.

Figure 5. Scatter plot of layer-mean particle linear depolarization ratios (δp) of the particle ensemble at 355 and 532 nm of Arabian dust

layers observed over United Arab Emirates. The altitude of the center of mass of the layers are shown by color scale, and layer depths shown

by marker sizes. Theoretical characteristic curves of δp at 355 and 532 nm for the two aerosol mixtures are in black lines. Characteristic δx

of coarse dust (dc), fine dust (df), or spherical non-dust (nd) aerosol is shown as red square, yellow triangle, or blue cross, respectively.

derived as 0.02 ± 0.01 at both 355 and 532 nm. Åβ,nd is assumed as 2 (cf., Table 1). The majority of the cases are well

within the boundaries defined by the characteristic values of the three-aerosol-component method. A few δp pairs are above the

characteristic curve of coarse and fine dust. This could be an indication that the δx at 355 nm for pure Arabian dust (for both245

coarse and fine mode) may have slightly higher values. It may also be that the commonly reported layer-mean values which are
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Figure 6. Height-dependent aerosol backscatter fractions (ϕx(532)) of coarse dust (dc), fine dust (df), and non-dust (nd) aerosol, for Arabian

dust layers observed over United Arab Emirates. Layer numbers are given on the top.

Figure 7. An example of lidar-derived optical profiles (time-averaged at 00:10–01:09 on 4 August 2018 over United Arab Emirates). (a)

Particle backscatter coefficients and (b) particle linear depolarization ratio (δp) at 355 and 532 nm. (c) The retrieved backscatter fractions

(ϕ) of coarse dust (dc), fine dust (df), and non-dust (nd) aerosols at 532 nm, with uncertainties (shown by error bars) calculated using Monte

Carlo approach following method in Sect. 2.3. (d) Separation of 3 aerosol backscatter coefficients at 532 nm.

often calculated using smoothed optical parameters may lower the true characteristic value of dust particles. To this direction,

measuring the characteristics of pure dust particles, e.g., in laboratory experiments, would be beneficial.

The aerosol backscatter fractions of the three aerosol components are calculated using Eq. 19. δp pairs located outside the

region may result in negative or values above one for ϕx. To avoid introducing a bias, these negative or above one values are250

included in the analysis, as a large dataset is utilized. Final values of ϕx(532) are grouped using the center mass of aerosol

layers and shown in Fig. 6. The non-dust aerosol contribution is increasing the higher the aerosol layer is in the atmosphere

and at the same time the fine dust contribution is decreasing. Coarse dust contributes more at heights between 2 to 5 km, which

is in line with Fig. 7 of Filioglou et al. (2020) where higher δp at 532 nm has been detected. An example of vertical profiles

is given in Fig. 7. The fine dust and the non-dust aerosols dominant the lowest layer below 1.5 km. The lofted layer between255

3 and 4.5 km presents enhanced δp, containing mainly coarse and fine dust. A higher disparity between δp at 355 and 532 nm

was found for an upper layer between 5 and 6 km, revealing a mixture of coarse dust and non-dust aerosol particles.
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Figure 8. Scatter plot of layer-mean particle linear depolarization ratios (δp) of the particle ensemble at 355 and 532 nm of Central Asian

dust layers observed over Dushanbe. The layer-mean backscatter-related Ångström exponents (Åβ,p) are shown by color scale, and the layer

depths by marker sizes. Theoretical characteristic curves of δp at 355 and 532 nm for the 2 aerosol mixtures are in black. Characteristic δx

of coarse dust (dc), fine dust (df), or spherical non-dust (nd) aerosols are shown as red square, yellow triangle, or blue cross, respectively.

3.2 Asian dust

Central Asia is one of the hot spot regions facing significant environmental challenges and climate-change effects. Hofer et al.

(2020) presented a dense data set of lidar observations for a Central Asian site during the 18 month campaign from March260

2015 to August 2016, at Dushanbe, Tajikistan, in the framework of the Central Asian Dust EXperiment (CADEX) project.

They found broad distributions of optical properties of the 276 aerosol layers, reflecting the occurrence of very different

aerosol conditions with aerosol mixtures consisting of mineral dust, soil dust, and anthropogenic pollution.

Layer mean δp at 355 and 532 nm are shown in Fig. 8, with the layer mean Åβ,p shown by color scale, and the layer depths

by marker sizes. As already discussed in Hofer et al. (2020), with decreasing extinction-related Ångström exponents, the δp265

at two wavelengths increase. For the aerosol component separations, we considered three aerosol types in those layers: coarse

and fine dust (with characteristics in Table 1), and non-dust aerosols. Hofer et al. (2020) derived the mean values of δnd as 0.02

± 0.01 or 0.03 ± 0.01 at 355 or 532 nm, respectively. Åβ,nd is assumed as 2 (cf., Table 1). The pair values of δp are mostly

located close to the characteristic curve of coarse dust and non-dust aerosol. The aerosol backscatter fractions are calculated

(Eq. 19) and shown in Fig. 9, as time series. Highest dust contributions were found during the summer season, with coarse270

(or fine) dust contributes 61 % (or 8 %) on the backscatter coefficients at 532 nm. During spring and autumn, dust (including

coarse and fine mode) and non-dust aerosols have nearly equal contributions. Only during winter months, non-dust (e.g., urban

haze) dominates with 75 % on the backscatter coefficients.

Hu et al. (2020) documented 1 month East Asia dust aerosol observations over Kashi, China, in April 2019. The dust particles

originate mainly from the Taklamakan desert. The measured δp of dust layers are about 0.28–0.32 ± 0.07, 0.36 ± 0.05, and275
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Figure 9. Monthly means of aerosol backscatter fractions (ϕx(532)) of coarse dust (dc), fine dust (df), and non-dust (nd) aerosol, for Central

Asian dust layers observed over Dushanbe. Layer numbers are given on the top.

0.31 ± 0.05 at 355, 532, and 1064 nm, respectively. These δp are higher than the typical values of Asian dust in the literature

(Murayama et al., 2004; Dieudonné et al., 2015; Hofer et al., 2017). The reason could be linked to the fact that observations

were near the dust source region, and there would be a large fraction of coarse and giant dusts particles. They described four

representative cases with six dust layers. The δp values of two pure dust layers are 0.32 at 355 nm and 0.31 at 1064 nm, which

are higher than the characteristic depolarization ratios of coarse dust (0.27 at 355 nm and 0.27 at 1064 nm in Table 1). For280

the four polluted dust layers, two of them have higher δp at 355 nm and 1064 nm compared to the δdc. Those values make the

application of the algorithm unsuitable, as the δp pairs locate outside the characteristic region, hence, the results would yield

some un-physical values (below zero or above one as the fraction). The characteristic depolarization ratios of Taklamakan

desert dust need to be determined, especially at wavelengths 355 and 1064 nm. The inclusion of giant dust particles may have

impact on the characteristic depolarization ratios of coarse dust type when performing the decomposition.285

3.3 Saharan dust

Many research studies have explored the geometric and optical characteristics of Saharan dust layers through lidar observations

(e.g., Groß et al., 2011; Ansmann et al., 2003; Groß et al., 2015; Szczepanik et al., 2021). In this section, available lidar

observations of the Saharan dust depolarization ratios at all three classical lidar wavelengths (355, 532 and 1064 nm) are

considered. The small and spherical particles affect the back-scattering at shorter wavelengths more effectively than at longer290

wavelengths, whereas longer wavelengths are more sensitive to large particles.

Haarig et al. (2022) (referred as Ha22 further on) reported two case studies of Saharan dust layers observed over Leipzig,

Germany. In the first pure-dust case in February 2021, Saharan dust plumes reached the observation station in less than 2 d

after emission, exhibiting δp of 0.242 ± 0.024, 0.299 ± 0.018 and 0.206 ± 0.010 at 355, 532 and 1064 nm, respectively. In

the second polluted-dust case in March 2021, the dust spent about 1 week in transportation, and the dust plume mixed with295

European haze. Such dust layers have δp of 0.174 ± 0.041, 0.298 ± 0.016 and 0.242 ± 0.007 at 355, 532 and 1064 nm,

respectively. Haarig et al. (2017a) (referred as Ha17) documented the lidar observations in Saharan dust layers over Barbados

in the summer seasons of 2013 and 2014, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-
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Interaction Experiment (SALTRACE). δp for long-range-transported (after approximately 1 week transport over the tropical

Atlantic) Saharan dust layers were found to be 0.252 ± 0.030, 0.280 ± 0.020, 0.225 ± 0.022 at 355, 532 and 1064 nm,300

respectively. Hu (2018) (referred as Hu18) described two cases of lidar measurements of long-range-transported Saharan dust

observed at ATOLL observatory in Lille, France. The value ranges of δp were 0.25–0.26 (0.25–0.27), 0.25–0.28 (0.24–0.26),

0.17–0.21 (0.20–0.22) at 355, 532, 1064 nm for the first case in March 2017 (or the second case in October 2017), respectively.

The pair values of δp of these cases are presented in Fig. 10 to investigate the aerosol mixing states. We assume that there

are coarse dust (dc), fine dust (df), and non-dust (nd) aerosols in the mixture, with characteristic values of δx and Åβ,x as given305

in Tables 1. The characteristics of background non-dust aerosols for these cases are different, but here we consider them as

the same for the simplification. The two cases of Ha22 are located well on the characteristic curves of dc & df, or dc & nd,

respectively, for δp pairs both at 532 & 355 nm (Fig. 10a), and at 532 & 1064 nm (Fig. 10b). In the first case, dust plumes

were directly transported towards to the station, thus, only dust (both coarse and fine mode) is contained within the observed

plume. In the second case, δp reveal the impact of aerosol pollution mixed into the dust layers after the transportation, and it310

seems that the remaining dust are mainly coarse mode. The other three cases of Ha17 and Hu18 are mostly located around the

characteristic curve of dc & df considering δp pairs at 355 & 532 nm (Fig. 10a), or located inside the enclosed characteristic

region of three types regarding δp pairs at 532 & 1064 nm (Fig. 10b). It should be noted that the values reported by Ha17 are

the average over 21 individual cases of long-range-transported dust.

Apart from the first case of Ha22, all cases were long-range-transported dust. Results reveal that coarse dust contribute a lot315

in these layers. The dust particle size distribution can change quickly because of the dry deposition (e.g., gravitational settling).

However, observations have consistently shown that coarse dust, or even giant dust, are able to transport much farther than

previously expected, and can have longer atmospheric lifetime (e.g., Mallios et al., 2021; Ryder et al., 2018, 2019; van der

Does et al., 2018; Denjean et al., 2016).

4 Conclusions320

Polarization-based algorithms have been developed and wildly used for the decomposition of two aerosol components. The

two-step POLIPHON method allows separating three aerosol components under the assumption about the spherical particle

fraction. The measurements of depolarization ratios at multiple wavelengths from a single or multiple lidars have become

increasingly common, with availability continuing to expand. In this study, we present an extended methodology, using the

particle linear depolarization ratios measured at two wavelengths, for the decomposition of three aerosol components, to re-325

trieve the aerosol-type-specific backscatter fractions. This algorithm can be utilized for an almost unambiguous separation of

aerosol components, on the condition that their characteristic depolarization ratios are different. And it requires the proper

knowledge of characteristic depolarization ratios and backscatter-related Ångström exponent of each aerosol type. Therefore,

laboratory and modeling studies, or for a layer with only one aerosol component in atmospheric conditions, to character-

ize pure particles would be beneficial, and increase the accuracy for the retrievals. Furthermore, a good characterization of330

the lidar system is necessary to provide the depolarization ratio with a small uncertainty. The relationship between particle
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Figure 10. Scatter plot of layer-mean particle linear depolarization ratios (δp) of the particle ensemble (a) at 355 and 532 nm, or (b) at 532

and 1064 nm of Saharan dust layers observed in different places: Ha22 – Haarig et al. (2022), Ha17 – Haarig et al. (2017a), Hu18 – Hu

(2018). Theoretical characteristic curves of δp for the two aerosol mixtures are in black lines, with uncertainties shown as shaded area from

Monte Carlo simulations (using parameters in Table 1). Characteristic δx of coarse dust (dc), fine dust (df), or spherical non-dust (nd) aerosol

are shown as red square, yellow triangle, or blue cross, respectively.

linear depolarization ratios at two wavelengths for a mixture of two and three aerosol components has been mathematically

investigated: the pair values must locate on the characteristic curved line (for two aerosol components) or remain within the

enclosed region predetermined by three boundary characteristic curves (for three aerosol components). A characteristic curve
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line has its boundaries determined by the characteristic depolarization ratios and its curvature influenced by the characteristic335

backscatter-related Ångström exponents of two aerosol types.

The present algorithm has been applied to synthetic examples considering dust mixtures and to lidar observations of Arabian

dust, Asian dust, and Saharan dust, based on the dust characteristics reported in numerous laboratory and field studies. The

backscatter fractions of coarse-mode dust (>1 µm in diameter), fine-mode dust (<1 µm in diameter), and spherical non-dust

aerosols were retrieved, which can be converted to the aerosol-type-specific backscatter coefficients, and extinction coefficients340

(or aerosol optical depth) with known lidar ratios. These results can be further utilized to estimate the vertical profiling of mass

concentration, cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations (Mamouri and Ansmann,

2016, 2017). It seems that for the Arabian dust and East Asia dust, the characteristic depolarization ratios at 355 nm for pure

fine and pure coarse mode dust were underestimated. On the other hand, in Central Asia, the fine mode dust depolarization

ratio at 355 nm could be lower to have more fine mode contribution. Regional differences in the pure dust depolarization ratios345

should be investigated in future. Other than dust mixture, it would be also possible for the decomposition of an aerosol mixture

containing other types of 3 aerosol components. For example, an aerosol mixture with spherical background particles, and two

types of pollen (e.g., birch and pine pollen with different characteristic depolarization ratios, Shang et al., 2020; Filioglou et al.,

2023). However, additional dedicated laboratory studies for the pollen characterization are desirable. Furthermore, dry marine

aerosols (Haarig et al., 2017b; Ferrare et al., 2023), and stratospheric smoke aerosols (Haarig et al., 2018; Hu et al., 2019) also350

show enhanced depolarization ratios with certain spectral slopes, indicating that the algorithm is applicable to aerosol mixtures

containing these types as well.
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