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Abstract. Over the past decade, hyperspectral infrared sounders on satellites have offered global measurements of atmospheric

ammonia (NH3), providing valuable insights into its sources. However, due to their coarse spatial resolution and gaps in spa-

tial coverage, inferring emissions from smaller sources or utilizing data from single overpasses remains very challenging.

While a high spatial resolution imaging-sounder would greatly enhance monitoring capabilities, developing an instrument that

combines high spatial and spectral resolution is technologically difficult and expensive. Here, we analyze the feasibility of5

measuring NH3 with instruments having a largely reduced spectral coverage and resolution compared to current operational

sounders. We explore the performance trade-offs using simulated spectra, measurements from the Infrared Atmospheric Sound-

ing Interferometer (IASI) satellite sounder, and spectra obtained from aircraft. The measured spectra are degraded spectrally,

and their performance is evaluated using metrics such as NH3 measurement uncertainty, signal-to-noise ratio, and false alarm

rate. Instruments that measure across a continuous spectral interval and instruments covering specific well-chosen spectral10

bands are both examined. We demonstrate that a future dedicated NH3 sounder with as few as three spectral bands of 1–5

cm−1 is feasible and would enable the detection of NH3 at both high spatial resolution and across continental scales. The

advantage of choosing well-defined spectral bands is demonstrated, e.g. by showing that an instrument with five specific bands

of 5 cm−1 performs similarly to one with 20 contiguous channels across 900–1000 cm−1. Additionally, we show that at high

spectral resolutions (below 5 cm−1), the NH3 measurement capability is primarily driven by the instrumental noise. As the15

spectral resolution or number of measurement bands decreases, spectral interferences from other atmospheric constituents and

the surface start to dominate the NH3 retrieval uncertainty budget, fundamentally limiting the unambiguous identification of

NH3.

1 Introduction

Atmospheric ammonia (NH3) plays a key role in the formation of secondary particulate matter, which leads to chronic respi-20

ratory illnesses and premature deaths (Apte et al., 2018; Wyer et al., 2022). Excess NH3 also poses a significant threat to the
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environment, particularly through the acidification and eutrophication of ecosystems, leading to a loss of biodiversity, degrada-

tion of water and soil quality, and other environmental issues (de Vries et al., 2024). The primary source of excess atmospheric

NH3 is intensive agricultural activities, including livestock farming and the use of synthetic fertilizers (Sutton et al., 2013).

Global measurements of NH3 are currently provided by satellites equipped with hyperspectral infrared sounders, such as25

the Infrared Atmospheric Sounding Interferometer (IASI, Clarisse et al. (2009)) and the Cross-track Infrared Sounder (CrIS,

Shephard and Cady-Pereira (2015)). Their measurements have provided valuable insights into the distribution and sources of

NH3 in the atmosphere. In particular, they revealed that strong point sources such as animal feedlots and industrial fertilizer

production facilities dominate ambient NH3 (Van Damme et al., 2018; Clarisse et al., 2019). However, their spatial resolution

(larger than 10 km) and non-contiguous coverage pose significant challenges for detecting smaller NH3 emission sources and30

quantifying emissions from single overpasses. The agricultural landscape in Europe, for instance, features hundreds of thousand

of farms that are too small or too agglomerated to be quantified individually with IASI (ESA, 2023). Even future instruments,

such as the IASI-New Generation (IASI-NG, Crevoisier et al. (2014)) or the hyperspectral Infrared Sounder (IRS, Holmlund

et al. (2021)), while offering considerable improvements, are not expected to provide the high spatial resolution necessary for

resolving small-scale point sources. In the context of ESA’s Earth Explorer 11 call, a mission called Nitrosat (ESA, 2023)35

was proposed for measuring NH3 and nitrogen dioxide (NO2) at high spatial resolution. Within the Phase 0 studies, it was

demonstrated that a dedicated sounder capable of measuring NH3 at sub-kilometer resolution within a contiguous image 80 km

across track is well within the capabilities of current technology. While the immense scientific and societal benefits of such a

mission are unquestionable given the major disruption to the nitrogen cycle and the damaging consequences that this entails,

the proposed baseline instrument (characterized by a spectral range extending from 925 to 975 cm−1 and a resolution of40

0.625 cm−1) comes at a substantial cost.

In this paper, we explore hypothetical spectrometers measuring infrared spectra at a lower spectral resolution or with a limited

number of channels, and we investigate to what extent these can be used to effectively measure NH3. By compromising on

spectral resolution, imagers monitoring NH3 at high spatial resolution could be developed, offering significant advantages in

terms of weight, size, cost, and development time. We begin with a brief description of the data used for this study, including45

IASI satellite measurements and Telops Hyper-Cam airborne data (Section 2). Following this, we discuss ways to quantify

the NH3 retrieval uncertainty. We also provide a concise overview of the matched filter technique used to detect and identify

NH3 features in infrared measurements, and the metrics used to assess the resulting distributions. In Section 4, we evaluate the

performance of hypothetical instruments for measuring NH3. We first analyze simulated spectra to characterize the effects of

spectral range and resolution. After that, a more comprehensive evaluation is performed using the remotely measured spectra.50

We evaluate the native performance of these instruments, and progressively downgrade their spectra by averaging channels,

allowing the analysis of instruments with coarser spectral resolution. We investigate the performance not only for instruments

with continuous spectral coverage and fixed sampling, but also for instruments measuring a limited number of specific spectral

bands of various widths. In the final section, we present our conclusions.
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2 Measurements55

The spaceborne data used in this study were acquired by the IASI/MetopB instrument on 8 April 2020 (Figure 2). IASI is a

passive sounder equipped with a Fourier-transform spectrometer, observing the Earth in the thermal infrared in nadir geometry.

Operating in a sunsynchronous polar orbit, the satellite provides twice-daily global data, though only data from the morning

overpass (around 9:30 AM local time) were used here. The instrument’s field of view corresponds to a circular footprint of

12 km in diameter at nadir, extending elliptically up to 20×39 km2 for larger viewing angles. The spectral range of IASI covers60

645 to 2760 cm−1, but was limited here to 812–1126 cm−1 following the range used for the IASI NH3 retrieval algorithm

(Clarisse et al., 2023). The IASI L1C data have an apodized spectral resolution of 0.5 cm−1 and are sampled at 0.25 cm−1

(Clerbaux et al., 2009).

We also use measurements from aerial surveys that were carried out in Italy in the spring of 2022 in the context of Nitrosat

demonstration campaigns (ESA, 2023). The measurements were recorded by a Hyper-Cam LW on board a Cessna T207A65

aircraft. At an altitude of about 3 km, the ground instantaneous field of view for each individual pixel was about 5 m. The

Hyper-Cam LW instrument, developed by Telops, is an advanced hyperspectral imaging camera employing Fourier-transform

technology to deliver high-resolution spectra. Operating in the longwave infrared between 830 and 1270 cm−1, the spectrome-

ter offers a spectral resolution ranging from 0.25 to 150 cm−1 (Lagueux et al., 2009a, b; Montembeault et al., 2010). Data from

two flights are exploited here. The first one (Figure 7) measured a scene of approximately 6 by 14 km centered on the soda ash70

production plant in Rosignano. The production of soda ash is based on the well-known Solvay process that notably requires

an input of NH3. Although a large amount is recycled in the process, a part of the NH3 is lost to the atmosphere (European

Commission, 2007). The NH3 emissions of the Rosignano plant were estimated to exceed 200 t in 2022 according to the Eu-

ropean Pollutant Release and Transfer Register (E-PRTR, European Environment Agency (2022)). The area was surveyed on

19 May 2022, around noon. The second scene (Figure 8) was acquired on 30 June 2022 between 10 AM and 5 PM and covered75

an area of 10 by 55 km between the cities of Trecasali and Vetto. The northern part of the scene is part of the Po Valley, which

is Europe’s largest NH3 hotspot due to intensive agricultural activities (Lonati and Cernuschi, 2020; Van Damme et al., 2022).

Between 2020 and 2022, the E-PRTR listed 8 agricultural NH3 emission sources in the surveyed area. In this study, for each

of the two flights, the observed pixels were averaged two by two to reduce the noise (see Appendix A for the estimation of the

noise), resulting in a reduction of the spatial resolution from 5 to 10 m. The native spectra are sampled at 1.3 cm−1.80

3 Performance metrics and the matched filter

3.1 Measurement uncertainty

In nadir viewing geometry, the effect of atmospheric NH3 on observed radiances is linear for all but the largest columns

(Clarisse et al., 2023). That is, the observed spectrum can be written as

y = y0 + xK + ϵ, (1)85
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with y0 the theoretical spectrum that would be observed in the absence of NH3 and instrumental noise ϵ, x the NH3 total

column and K = ∂y
∂x the Jacobian with respect to NH3. If we assume that, except for x and ϵ, we have perfect knowledge of

all parameters affecting the spectrum (i.e. y0 and K are known), the weighted least-squares solution provides the following

estimate for x (Manolakis et al., 2016)

x̂ =
(
KT S−1

ϵ K
)−1

KT S−1
ϵ (y−y0), (2)90

with S−1
ϵ the covariance matrix of the instrumental noise. This solution minimizes the (weighted) distance between the ob-

served spectrum y and y0+xK in the presence of noise. The estimate x̂ has an associated variance or measurement uncertainty

(Bauduin et al., 2017)

σnoise =
(
KT S−1

ϵ K
)−1/2

, (3)

which is the propagation of the instrumental noise to x̂.95

In practice, the state of the atmosphere or the surface is not known perfectly. However, we can still write

y = yg + xK + g, (4)

with now yg some reference spectrum with negligible NH3 and g a generalized noise vector, which includes both the contribu-

tion of the instrumental noise and spectral contributions related to the uncertain scene parameters. This includes, for example,

unknown surface and air temperatures, or parameters that can directly interfere with the identification of the contribution of the100

NH3 signature in the spectrum, such as unknown water vapor abundance and surface emissivity variations. If we can estimate

the covariance matrix Sg associated with yg and the Jacobian K, we can, as before, obtain a weighted least-squares estimate

(von Clarmann et al., 2001; Manolakis et al., 2016)

x̂ =
(
KT S−1

g K
)−1

KT S−1
g (y−yg), (5)

with uncertainty105

σabs =
(
KT S−1

g K
)−1/2

. (6)

This solution minimizes the distance between y and yg + xK, but this time inversely weighted with a covariance matrix

characterizing not only the instrumental noise but also spectral interferences. This least-squares solution can be shown to

correspond to the maximum likelihood estimate in case g follows a multivariate normal distribution. Importantly, it can also

be shown to be equivalent to the solution obtained by performing a simultaneous optimal estimation of the interfering spectral110

features (von Clarmann et al., 2001). In the field of hyperspectral imaging, g is referred to as the background clutter (Manolakis

et al., 2014). The approach is very suitable for short-lived trace gases like NH3, for which yg and Sg can easily be estimated

from observations with background levels of NH3 (Walker et al., 2011; Clarisse et al., 2013). More details on their construction

will be provided in Section 3.2.
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In the present study, we are interested in characterizing the instrumental performance for retrieving NH3 column abundances.115

σnoise and σabs constitute two suitable metrics. The former quantifies the propagation of the instrumental noise to the retrieval

and is a firm lower bound to the total measurement uncertainty. The quantity is easy to calculate as it relies only on a Jacobian

and an estimate of the noise covariance matrix. σabs, on the other hand, includes uncertainty related to spectral interferences,

irrespective of whether they are explicitly taken into account through fitting in the retrieval procedure. The capability of

differentiating such interferences from the NH3 spectral signature is directly related to the instrument. For example, at higher120

spectral resolution, slowly varying surface emissivity is expected to be more easily disentangled from the sharper NH3 spectral

features. As such, this metric is fully representative of how the instrumental performances propagate to the retrieval uncertainty.

It is the main metric used in this study.

There are two important notes to be made, both related to the fact that in the above we assumed that K is known. K

inherently depends on the state of the surface and the atmosphere, and more particularly on the thermal contrast (TC), which125

is the temperature difference between the surface and the ambient temperature at the location where the bulk of the NH3 is

located. TC is crucial in the infrared as it determines whether the spectral signature of the species is observed in absorption or

emission, and the strength of this signal. We refer to Di Gioacchino et al. (2024); Noppen et al. (2023) for a detailed discussion

on TC.

The uncertainty on the scene results in an additional contribution σrel to the total retrieval uncertainty σtotal, with (Clarisse130

et al., 2023)

σ2
total = σ2

abs + σ2
rel. (7)

The notation abs and rel refer to the fact that σabs is an absolute contribution to the uncertainty, independent of the column,

while σrel is a relative contribution that varies linearly with the column CNH3 . It was shown in Clarisse et al. (2023) that σrel is

also, to a first order, inversely proportional to the TC:135

σrel ≈
(

0.07 +
1.6K
TC

)
CNH3 . (8)

This formula was derived statistically assuming a Gaussian-distributed NH3 vertical profile peaking at the surface with width

h, and the TC defined as the difference between the surface temperature and that at an altitude of h/2. Uncertainties of the

order of 1–2 K on both surface and air temperature were assumed. In what follows, we will assume that the input parameters

used to calculate K, in particular the temperatures, are provided from an external source, like the output of a meteorological140

model, and are not retrieved from the measurement itself. Uncertainty on the TC is, in this case, not related to the instrument, so

this source of uncertainty can be disregarded when comparing different hypothetical instruments. The design of an instrument

that is simultaneously capable of retrieving temperatures and NH3 (like IASI) will not be studied here. That being said, for

the instruments under investigation, surface temperature can always be estimated from measurements as we consider sounders

measuring in the atmospheric window between 900 and 1000 cm−1.145

The second note to be made is that both σnoise and σabs depend on the atmospheric state (and again mostly the TC) because

K does. It is therefore important to specify the exact atmosphere under which these numbers are calculated. In the rest of
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the paper, K is calculated for a standard atmosphere (Kneizys et al., 1996), a Gaussian-distributed NH3 vertical profile with

h = 1.35 km, and a surface temperature such that the TC is 10 K. For IASI observations, it was shown that (Clarisse et al.,

2023)150

σabs(TC)≈ 3.6× 1016

TC
molec.K

cm2
. (9)

For our IASI reference scene (see Figure 2 discussed in Section 4.2), we obtained σabs ≈ 3.6× 1015 molec.cm−2, which is

consistent with this value for a TC of 10 K. These fixed scenario numbers allow for a direct comparison of instruments, as the

value of the TC depends on the state of the scene, not the instrument. However, if desired, the retrieval uncertainty at other TC

can be obtained by scaling σabs inversely proportional to the TC.155

3.2 The matched filter (MF)

A quantity related to σabs is the signal-to-noise or signal-to-clutter ratio

x̂

σabs
= MF =

KT S−1
g (y−yg)√

KT S−1
g K

. (10)

This quantity, known as the (adaptive) matched filter, is widely adopted in scientific domains involving signal processing.

This includes hyperspectral imaging (Manolakis et al., 2016) and satellite remote sensing (Walker et al., 2011; Clarisse et al.,160

2013), where it is sometimes referred to as the hyperspectral range index (HRI, Van Damme et al. (2014)). By definition, the

distribution of the MFs for the background spectra (the clutter) has a mean of 0 and a variance of 1. By imposing a threshold on

its value, the MF can be used as a detection tool to identify the presence of the target signature in an observed spectrum. Even

if the set of spectra from which the pair (Sg , yg) is estimated does not follow a multivariate normal distribution, the distribution

of the MF values on the background spectra is in practice often near normal (Schaum, 2021). This implies that an MF value165

above 2.5 in absolute value indicates that the observed spectrum contains a signature of the target species with a probability

larger than 98.5%. Conversely, it means that 98.5% of the spectra that were used for the construction of Sg and yg have an MF

value (in absolute value) below 2.5.

Key to the calculation of σabs and MF is the construction of Sg and yg . As mentioned above, they are most frequently

estimated from a large collection of observed spectra. Ideally, these should contain no detectable signature of the target species,170

as this leads to a decrease in performance (Manolakis et al., 2016). Clarisse et al. (2013); Kim et al. (2016) proposed an iterative

approach where the detection itself is used to exclude spectra with detectable signatures of the target species. A first MF value

is calculated from the pair (Sg , yg) obtained from all observed spectra in the spectral range of interest. Next, a new pair (Sg ,

yg) is estimated, but this time only for spectra with a low |MF| value. This process is repeated until convergence. As explained

in Franco et al. (2018), using a very low threshold increases the sensitivity of the NH3 detection but leads to larger values of175

MF over the background too. Therefore, MF is explicitly renormalized at each iteration to have a standard deviation of exactly

1 on a well-chosen area of the scene with low MF values. Finally, to prevent numerical problems associated with the very small

eigenvalues of Sg , S−1
g is calculated using the methodology presented in Clarisse et al. (2023).
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Figure 1. (a) Measurement uncertainty (σnoise) for an instrumental noise (ϵ) of 100 mK from data simulated at a spectral resolution of

0.3 cm−1 as a function of central wavenumber and range width. The NH3 Jacobian K for the full range is indicated on top (black line). The

crosses indicate the ranges discussed in Table 1. (b) On the left axis, σnoise is drawn as a function of the spectral sampling/resolution for two

different spectral ranges. On the right axis, ϵ is shown corresponding to a σnoise = 3× 1015 molec.cm−2. The spectral samplings of some

existing and planned spaceborne instruments are indicated, along with the sampling of the Hyper-Cam airborne measurements (Crevoisier

et al., 2014; Glumb et al., 2003; Holmlund et al., 2021).

3.3 Signal-to-noise (SNR) and false alarm rate (FAR)

The quantities σabs and MF convey similar information for comparing instrumental performance when the pair (Sg , yg), on180

which they both rely, represents a multivariate normal background distribution. Consistent with its interpretation as a signal-

to-noise ratio, an MF value of 1 corresponds to an NH3 value of x = σabs (this can be seen by substituting y−yg = xK in

Equation 10). Larger values of MF can be interpreted likewise in units of σabs. However, while σabs is a single number calculated

from an ensemble of spectra, MF can be calculated on individual spectra and can be used to investigate possible departures

from linearity or non-Gaussian statistics, which might be instrument-dependent. For this reason, we use two additional metrics185

based on MF in this study.

The first is the mean signal-to-noise ratio (SNR), calculated as the average MF value of a given set of spectra containing the

target signature. In view of the above, the expected behavior of this SNR is inversely proportional to σabs.

Another common metric based on the MF is the false alarm rate (FAR, Manolakis et al. (2016)). Rather than assessing the

performance on spectra containing observable quantities of NH3, this metric evaluates how likely it is that noise or spectral190

interferences are misinterpreted as NH3. It is defined as the fraction of false detections over the total number of observations

for a given set of NH3-free spectra.
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Table 1. σnoise for the spectral ranges marked with crosses in Figure 1a and, in the last column, σnoise relative to the range used for the IASI

NH3 retrieval. An instrumental noise of 100 mK is assumed.

Range (width) σnoise Relative to IASI

in cm−1 (molec.cm−2) (%)

780–1180 (400) 1.72× 1015 99.5

812–1126 (314) 1.73× 1015 100

925–1125 (200) 1.85× 1015 107

930–1090 (160) 2.04× 1015 118

965–1085 (120) 2.61× 1015 151

900–1000 (100) 2.13× 1015 123

925–975 (50) 2.27× 1015 131

961–971 (10) 3.06× 1015 177

925–935 (10) 3.45× 1015 199

4 Results

In the first part of this section, we analyze the performance of hypothetical instruments with different spectral ranges and

resolutions, focusing on the σnoise metric. Then we move to the other metrics (SNR, FAR and σabs), for which we rely on195

manipulations of real data from IASI (Section 4.2) and Hyper-Cam (Section 4.3).

4.1 From simulated spectra

In this section, Fourier Transform-type instruments were assumed, with different maximum optical path differences (MOPD)

and spectral ranges. The MOPD determines both the spectral sampling (0.5/MOPD) and spectral resolution (0.60335/MOPD)

(Davis et al., 2005). The instrumental noise was assumed to be constant across the spectrum with ϵ in radiance units corre-200

sponding to 100 mK for a reference blackbody at 288 K and 1000 cm−1. In this case, Sϵ is proportional to the identity matrix

as Sϵ = ϵ2I and

σnoise = ϵ
(
KT K

)−1/2
. (11)

The line-by-line radiative transfer code Atmosphit was used as the forward model (Barret et al., 2005; Coheur et al., 2005)

under the fixed standard atmospheric conditions specified in Section 3.1. We focus on the 800–1200 cm−1 range that contains205

most of the ν2 band of NH3, showing strong features around 931 and 967 cm−1, as can be seen from the Jacobian K displayed

in Figure 1a.

We first evaluate the effect of spectral range on the measurement uncertainty, for an instrument with an MOPD of 2 (sampled

at 0.25 cm−1 and with a spectral resolution of 0.3 cm−1). Figure 1a shows σnoise as a function of both central wavenumber and

range width. Table 1 lists a series of selected spectral ranges of various widths (marked with crosses in Figure 1a) along with210
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Figure 2. MFIASI distribution calculated from the morning IASI overpass on April 8, 2020 from Clarisse et al. (2023). The signal-to-noise

ratio (SNR), the false alarm rate (FAR) and the uncertainty (σabs) are indicated on top. The "out" boxes correspond to the areas used to

estimate the FAR.

their σnoise. The last column of Table 1 expresses retrieval uncertainty relative to the one for the range used for the NH3-IASI

retrieval (812–1126 cm−1).

As expected, we observe the smallest uncertainties for the largest range, with the 925–975 cm−1 interval contributing the

most. Compared to the IASI retrieval range, we find that extending the range to 400 cm−1 improves the uncertainty by only

0.5%. For range widths of 200 cm−1 and 100 cm−1, σnoise increases by 7% and 23%, respectively. Increases greater than 60%215

are observed for ranges shorter than 35 cm−1, as these contain only one of the two major features of the NH3 signature. The

range focusing on the feature centered at 967 cm−1 is more sensitive to NH3 than the second one centered on 931 cm−1, as

seen from the last two rows of Table 1.

The effect of spectral sampling is investigated for two ranges. The first is 200 cm−1 wide, extending from 925 to 1125 cm−1,

and the second is 100 cm−1 wide between 900 and 1000 cm−1. Figure 1b shows σnoise (black curves) calculated for both ranges220

as a function of the spectral sampling, which varies from 0.1 to 10 cm−1 (the equivalent spectral resolution is indicated on

top). For the 900–1000 cm−1 range, degrading the sampling from 0.1 to 1 cm−1 increases σnoise by a factor of 3.6. When

the sampling is further degraded from 1 to 10 cm−1, σnoise increases by a further factor of 4.5. Consistent with what was

observed above, σnoise is slightly larger for the shortest range. However, this difference is small, and the effect of the spectral

sampling/resolution is clearly greater than that of the spectral range.225

The right axis of the graph shows the required noise ϵ (in orange) to obtain a fixed value of σnoise = 3× 1015 molec.cm−2.

This was calculated by inversion of Equation 11. As can be seen from that relation, in principle, any desired retrieval uncertainty

can be achieved as long as the instrumental noise is small enough. However, at very coarse resolution, the NH3 signature

becomes difficult to distinguish from other spectral contributions. Hence the need to look at simulations involving real data and

the σabs metric.230
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(c) Hyper-Cam (Po Valley)

2 3 4 5 10 20 40 80
1

1.2

1.4

1.6

1.8

2

2 3 4 5 10 20 40 80
# channels

0

5

10

15

20

Continuous channels Individual bands 1 / 1.3 cm⁻¹ 2 / 2.6 cm⁻¹ 5 / 5.2 cm⁻¹ 10 / 10.4 cm⁻¹

Figure 3. SNR, FAR and σabs as a function of the number of channels for the degraded IASI (a) and the Hyper-Cam data over Rosignano (b)

and around the Po Valley (c). The triangles show the results for continuous channels between 900 and 1000 cm−1, while the dots represent

for the well-chosen spectral bands of different widths, as indicated by their respective color for IASI / Hyper-Cam. The open triangles on

σabs plots indicate σnoise.

4.2 From IASI spaceborne data

4.2.1 Uniformly spaced channels

Taking advantage of the high spectral resolution of the native IASI measurements, we degraded the original L1C spectra

to characterize hypothetical sounders with lower resolution. The sampling was degraded to 1, 2, 5 and 10 cm−1 by block-

averaging neighboring channels of the original spectra. In view of the results of the previous section, the spectral range was235
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100 channels at a resolution of 1 cm⁻¹ between 900 and 1000 cm⁻¹

SNR: 16.8, FAR: 2.2
<abs: 0.6#10¹⁶

(a)      

-10

-5

0

5

10

MF
50 channels at a resolution of 2 cm⁻¹ between 900 and 1000 cm⁻¹

SNR: 11.4, FAR: 1.7
<abs: 1.0#10¹⁶

-5

0

5

MF

5 bands of 1 cm⁻¹

SNR: 10.4, FAR: 1.3
<abs: 1.1#10¹⁶

(b)      

-5

0

5

MF
5 bands of 2 cm⁻¹

SNR: 8.1, FAR: 1.6
<abs: 1.4#10¹⁶

-5

0

5

MF

4 bands of 1 cm⁻¹

SNR: 9.3, FAR: 1.4
<abs: 1.2#10¹⁶

(c)      

-5

0

5

MF
4 bands of 2 cm⁻¹

SNR: 7.3, FAR: 1.4
<abs: 1.5#10¹⁶

-5

0

5
MF

3 bands of 1 cm⁻¹

SNR: 8.0, FAR: 1.3
<abs: 1.4#10¹⁶

(d)      

-5

0

5
MF

3 bands of 2 cm⁻¹

SNR: 6.3, FAR: 1.4
<abs: 1.7#10¹⁶

-4

-2

0

2

4

MF

2 bands of 1 cm⁻¹

SNR: 5.7, FAR: 1.6
<abs: 2.0#10¹⁶

(e)      

-4

-2

0

2

4
MF

2 bands of 2 cm⁻¹

SNR: 5.3, FAR: 1.6
<abs: 2.1#10¹⁶

-2

0

2

MF

Figure 4. Each panel shows an MF distribution calculated from degraded IASI spectra. They show distributions retrieved for an instrument

with a sampling of 1 cm−1 (left column) and 2 cm−1 (right column). The first row is for an instrument with continuous channels between

900 and 1000 cm−1, the other rows for spectra with (b) 5, (c) 4, (d) 3, (e) 2 spectral bands, respectively. The SNR and the FAR (in %) are

noted on the upper right of each panel along with σabs (in molec.cm−2).
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20 channels at a resolution of 5 cm⁻¹ between 900 and 1000 cm⁻¹
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Figure 5. Each panel shows an MF distribution calculated from degraded IASI spectra. They show distributions retrieved for an instrument

with a sampling of 5 cm−1 (left column) and 10 cm−1 (right column). The first row is for an instrument with continuous channels between

900 and 1000 cm−1, the other rows for spectra with (b) 5, (c) 4, (d) 3, (e) 2 spectral bands, respectively. The SNR and the FAR (in %) are

noted on the upper right of each panel along with σabs (in molec.cm−2).
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Table 2. SNR and FAR (%), along with σabs (×1016 molec.cm−2) and σnoise (×1016 molec.cm−2) for downgraded IASI spectra with n

continuous channels between 900 and 1000 cm−1, and with 5, 4, 3, 2 bands of different width (see Table 3).

1 cm−1 2 cm−1 5 cm−1 10 cm−1

n bands SNR 16.84 11.43 5.76 2.39

FAR 2.25 1.71 1.49 2.81

σabs 0.63 0.98 1.99 4.06

σnoise 0.59 0.86 1.59 2.66

5 bands SNR 10.37 8.12 5.46 3.07

FAR 1.34 1.61 1.48 1.31

σabs 1.10 1.37 2.01 3.75

σnoise 0.92 1.07 1.52 2.43

4 bands SNR 9.27 7.29 4.70 2.76

FAR 1.43 1.39 1.82 1.39

σabs 1.21 1.53 2.24 3.90

σnoise 0.92 1.07 1.52 2.57

3 bands SNR 7.95 6.33 4.55 2.43

FAR 1.26 1.44 1.32 2.03

σabs 1.36 1.72 2.54 4.52

σnoise 1.17 1.38 1.95 3.55

2 bands SNR 5.74 5.25 2.69 1.50

FAR 1.64 1.64 1.99 2.56

σabs 2.04 2.08 4.00 5.99

σnoise 1.46 1.38 2.56 3.70

limited to the 900–1000 cm−1 region. Averaging multiple channels together reduces the single-channel noise, and to be able

to fairly compare the different hypothetical instruments, artificial noise was added to each spectrum to match the noise level

of the spectra degraded to 1 cm−1 sampling. The details of how the spectra were degraded, and how the noise levels were

estimated are explained in the Appendix A. There, we also show that the spectra obtained in this way have a spectral resolution

that matches very closely their spectral sampling, so that both terms will be used interchangeably in this section.240

As the basis for our analysis, we used all IASI morning observations of a single day (8 April 2020) between -65° and 65°

latitude. The original MFIASI from Clarisse et al. (2023) is illustrated in Figure 2 over an area covering part of Europe, northern

Africa and western Asia. For clarity, we only show this region in the following. However, since we use all data between -65°
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and 65° latitude, the results that will be presented are based on and representative of global data (except for the poles). The pair

(Sg , yg), the MF and the four performance metrics were determined as follows:245

(Sg , yg) These were constructed from all degraded spectra with a corresponding |MFIASI| ≤ 1.5.

MF MF was calculated from the degraded spectra with Equation 10, using (Sg , yg) defined above and K calculated from for-

ward simulations as explained in Section 3, and block-averaged in a similar way as the spectra. For the reason explained

in Section 3.2, the MF was renormalized to have a standard deviation of 1 over the area east of -140°W (remote Pacific

Ocean).250

SNR A mean SNR was calculated from the average MF for spectra with MFIASI > 20. The SNR for MFIASI on this set is 22.2.

FAR The FAR was calculated as the fraction of observations for which |MF|> 2.5 for observations inside the "out" boxes

defined on Figure 2. As mentioned above, when the MF follows a normal distribution, the expected value of the FAR is

1.5% for this threshold (this is the case for MFIASI).

σabs σabs was straightforwardly calculated from Equation 6 and estimated to 3.6×1015 molec.cm−2 for MFIASI.255

σnoise σnoise was calculated from Equation 3. While the single channel noise is defined to be the same across all degradations,

σnoise varies because of the different Jacobians and number of channels.

The metrics are summarized in column (a) of Figure 3 (triangles) and Table 2, while the MF distributions are shown in rows

(a) of Figures 4 and 5. Note that the color scale of each panel was adapted to show visually similar NH3 over India, enabling

better comparison of the noise levels.260

The distributions from the spectra sampled at 1, 2 and 5 cm−1 visually match the original distribution closely (see Figure

2), demonstrating that high spectral resolution is not a requirement for reliable NH3 measurements. The main difference is in

the level of observed noise, as witnessed by the progressively higher σabs and lower SNR numbers for coarser samplings. From

100 channels of 1 cm−1 to 20 channels of 5 cm−1, the noise increases by a factor of approximately 3.

The FARs are all relatively close to the theoretical value of 1.5%, a consequence of the MF normalization and the Gaussian265

nature of the MF distribution. The configuration of 10 channels of 10 cm−1 sampling (top-right panel of Figure 5) has the

highest FAR (2.8%). While the main NH3 patterns of the original distribution are still visible with an SNR of 2.4, slightly

negative values are seen over North Africa and the Middle East. These can be attributed to variations in surface emissivity,

which apparently cannot be resolved with the given spectral resolution and which also explain the higher FAR.

As for σnoise (open triangles in Figure 3), the results are consistent with the theoretical simulations from Section 4.1, increas-270

ing by a factor of 4.5 between 1 and 10 cm−1 sampling. In all cases, σabs is larger than σnoise as expected. We also see that

at 1 cm−1 resolution, there is hardly any difference between the σabs and σnoise. However, as the resolution gets coarser, the

difference becomes progressively larger. This is a consequence of the fact that at coarser resolution it becomes increasingly

difficult to unambiguously distinguish NH3 from other interfering physical parameters. At 10 cm−1, the contribution of these

spectral interferences is
√

σ2
abs−σ2

noise ≈ 3×1016 molec.cm−2, limiting inherently the unambiguous identification of columns275

of this magnitude, even for an instrument with a very small radiometric noise.
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1 cm⁻¹ 2 cm⁻¹ 5 cm⁻¹ 10 cm⁻¹ NH₃ Jacobian

Figure 6. Illustration of the optimal spectral bands of various widths (from 1 to 10 cm−1) for observing atmospheric NH3 in the infrared.

The NH3 Jacobian from Figure 1 is indicated as well in each subpanel (black line). Exact band positions are listed in Table 3.

4.2.2 Well-chosen bands

Especially for the instruments with 5 and 10 cm−1 samplings, there are potentially better choices for the channel centers in

relation to the absorption features of NH3. In this section, we explore again potential instruments with channels 1, 2, 5, and

10 cm−1 wide. However, instead of instruments with uniform sampling, we investigate instruments with fewer bands (2 to280

5) and optimize their positions within the 900–1000 cm−1 interval. This could also potentially further reduce the complexity

of a dedicated NH3 sounder. The locations of the bands reported here were determined as those that minimized the resulting

σabs (calculated using the same procedure as before). For 2 bands, an exhaustive search was performed, while for 3, 4, and

5 bands, these were found with a stochastic hill climbing algorithm (Russell and Norvig, 2010) starting from 300 randomly

chosen configurations. The optimal bands are summarized in Table 3 and illustrated in Figure 6.285

As shown in the figure, for configurations with 2 or 3 bands, bands are always selected very close to each other, with one band

targeting either the 931 cm−1 or 967 cm−1 NH3 feature, and one or two bands focusing on the baseline. When more bands are

available, the two strong NH3 features are always targeted. For the configurations with more bands, bands are relatively close

together as well and the full 900–1000 cm−1 range is never exploited. This likely helps avoiding broadband variations in the

baseline due to surface emissivity or clouds.290

The associated MF distributions are shown in Figures 4 and 5, and the statistics are summarized in column (a) of Figure

3 (dots) and Table 2. All distributions resemble the original distribution, all reproducing the main NH3 enhancements over

Europe, Russia, North Africa, India and Myanmar. However, with an SNR of 1.5, the 2-band 10 cm−1 configuration is by far

the noisiest, and with a measurement uncertainty of 6×1016 molec.cm−2 such an instrument is only suitable for measuring
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Table 3. Table summarizing the position of the optimal bands for observing atmospheric NH3 for the test data under consideration. Each

value represents the center of the band in cm−1.

1 cm−1 2 cm−1 5 cm−1 10 cm−1

5 bands 931.25 931.25 931.00 930.00

944.75 940.00 937.75 938.50

947.00 946.00 945.25 958.75

967.25 967.00 965.75 963.75

981.25 978.00 979.25 982.75

4 bands 931.25 931.25 931.00 930.00

941.50 945.50 941.50 942.50

967.25 967.00 965.75 968.50

970.50 970.50 979.00 978.75

3 bands 959.25 954.00 958.50 916.25

967.25 967.00 966.00 930.00

975.50 978.75 979.00 943.00

2 bands 967.75 967.00 931.50 932.00

970.25 970.75 939.00 942.00

very large NH3 columns. As expected, there is a clear general decrease in SNR and an increase in σabs for wider bands, with295

a factor of 3–4 between 1 and 10 cm−1 for a given number of bands. The number of bands also affects these two metrics, but

to a lesser extent —about a factor of 2 between 2 and 5 bands. As a general observation, it is more efficient to observe NH3

using fewer bands at finer sampling than more bands at coarser sampling. For instance, in terms of SNR and σabs, we observe

that even just 2 bands of 1 cm−1 perform similarly to 5 bands of 5 cm−1. Likewise, 2 bands of 2 cm−1 outperform 5 bands

of 10 cm−1. We also see from the statistics in Table 2 that for the coarsest spectral resolutions of 5–10 cm−1, the precise300

location of the bands is key, and that the optimal choice provides a genuine gain in performance. For instance, 5 well-chosen

bands of 10 cm−1 outperform 10 contiguous bands between 900–1000 cm−1. For the 10 cm−1 band configuration, even just

3 well-chosen bands match the performance of the latter.

The MF does a good job of minimizing the FAR, with most configurations having a FAR below 2%. It is notable that the 5

well-chosen bands of 10 cm−1 have a much better FAR and performance over deserts than the 10 uniformly sampled bands305

of 10 cm−1. This demonstrates that the optimized choice of band centers not only helps increase the SNR but can also help

mitigate false detections. In terms of FAR, besides the 10 bands of 10 cm−1, the configurations that perform the poorest are

the 2 or 3 bands of 10 cm−1, with a FAR between 2% and 2.6% (see rows (d) and (e) of Figures 4 and 5). These are the
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450 m

Figure 7. (a) Superimposed on satellite visible imagery from © Google Maps, MF distribution retrieved from Hyper-Cam measurements

performed over Rosignano (the location within Italy is shown in red in the inset) on 19 May 2022, revealing a plume of NH3 originating

from the soda ash plant. The "in" and "out" boxes correspond to the areas used to estimate the SNR and FAR, and to renormalize MF. (b)

Close-up view of the region outlined by the dotted rectangle in the left panel.

same configurations that exhibit the largest negative values over the deserts in North Africa and the Middle East. For these,

the information content of the measurement is not large enough to distinguish surface effects from the NH3 spectral signature.310

Related to this, we again observe that the difference between σabs and σnoise increases as the spectral resolution decreases

(see Table 2). Here, we additionally see that these differences increase as the number of bands decreases, showing that both

the number of bands and their resolution affect the capability of an instrument to disentangle the NH3 signature from other

spectral interferences.

4.3 From Hyper-Cam airborne measurements315

4.3.1 Uniformly spaced channels

As explained in Section 2, the Hyper-Cam data were spatially averaged to reduce noise. Even after averaging, the resulting

resolution of 100 m2 is still 1000 times finer than IASI’s (> 100 km2). At such a fine resolution, the measurements are expected

to exhibit much stronger variations in surface emissivity due to features like rooftops, solar panels, crop fields, or bare soil.

Such features are not seen individually by IASI and might affect NH3 measurements at low spectral resolution. Hence, in this320

section, we explore the effects of spectrally degrading the Hyper-Cam measurement data to verify whether the results from the

previous section remain valid at smaller spatial scales.

From the two surveys (over Rosignano and around the Po Valley, see Section 2), MF distributions were calculated from the

observed spectra covering the spectral range from 870 to 1260 cm−1 at the native 1.3 cm−1 sampling. In both cases, the pair

(Sg , yg) was built in 8 iterations, each time filtering out pixels with |MF|> 1.5. The MF distributions were renormalized using325
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300 m
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Figure 8. Superimposed on satellite visible imagery from © Google Maps, MF distribution retrieved from Hyper-Cam measurements per-

formed over the Po valley (the location within Italy is shown in red in the inset) on 30 June 2022, revealing NH3 hotspots over various farms.

Some of these identified sources, delimited by dotted rectangles, are displayed on the right side of the figure. The black dots refer to the

agricultural sources reported in the E-PRTR between 2020 and 2022. The "in" and "out" boxes correspond to the areas used to estimate the

SNR and FAR, and to renormalize MF.
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Figure 9. MF distributions calculated from Hyper-Cam measurements in Rosignano downgraded to a spectral sampling of (a) 1.3, (b) 2.6,

(c) 5.2 and (d) 10.4 cm−1 between 900 and 1000 cm−1. Panel (e) corresponds to the distribution obtained from spectra computed in five

well-chosen bands of 1.3 cm−1 width. The arrows indicate a false signal of NH3. The SNR, FAR (in %) and σabs (in molec.cm−2) are

indicated on the bottom-left of each panel. The bottom-right shows the average of the 500 downsampled spectra observed over the plume

used to calculate the SNR (in blue) and the NH3 Jacobian (in red).
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Figure 10. Panel (a) shows the MF distribution calculated from Hyper-Cam measurements over the Po Valley downgraded to a spectral

sampling of 1.3 cm−1 between 900 and 1000 cm−1, superimposed on satellite visible imagery from © Google Maps. Panels (b), (c), and (d)

represent the equivalent MF distributions calculated from spectra degraded as 5, 4, and 3 well-defined bands of 1.3 cm−1. The SNR, FAR

(in %) and σabs (in molec.cm−2) are indicated at the bottom right of each panel.
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the spectra measured over the areas referred to with "out" in Figures 7 and 8, defining the background. In the measurements over

Rosignano, we observe an NH3 plume originating from the plant, extending over more than 2 km in the eastward direction;

see Figure 7. As can be seen from the zoomed-in view of the industrial complex shown in panel (b) of the figure, both positive

and negative MF values are observed. The sign is related to the sign of the TC, which determines whether the spectral signature

is observed in absorption or emission (Noppen et al., 2023). The MF distribution for the scene in and around the Po Valley is330

shown on the left side of Figure 8. Various hotspots of NH3 can be observed over farms, some of which are shown in close-ups

on the right side of the figure. The agricultural sources listed in the E-PRTR between 2020 and 2022 are indicated by black

dots, most of which are visible in the MF distribution.

For the evaluation of the results, we followed as much as possible the approach applied to the IASI spectra. The spectral

range was as before limited to 900–1000 cm−1 and spectra were degraded by block-averaging neighboring channels of the335

original measurements. Given the initial sampling of 1.3 cm−1, this procedure results in spectra sampled at 2.6, 5.2, and

10.4 cm−1, which is close to the 2, 5 and 10 cm−1 studied earlier. For the same reasons as above, Gaussian noise was added

to each spectrum to match the native unapodized noise of the 1.3 cm−1 spectra, estimated at 4.43×10−4 W.(m2.sr.cm−1)−1

(see Appendix A). For each configuration, (Sg , yg) were calculated based on the pixels for which |MF|< 1.5 of the original

spectra. The SNR was calculated from the 500 pixels presenting the highest MFs located in the "in" boxes defined in Figures340

7 and 8. The FAR was calculated as the fraction of spectra with |MF|> 2.5 within the "out" boxes defined in Figures 7 and 8.

Panels (a) to (d) of Figure 9 show a close-up of the resulting MF distributions over Rosignano. As before, the color scale

was adapted so that the NH3 plume appears similar in each panel. The SNR, FAR, and σabs are indicated on the bottom-left

of each panel and are also shown in column (b) of Figure 3 (triangles). As expected, the NH3 signal gradually fades into the

noise when the sampling deteriorates, resulting in an SNR decrease from 8.0 to 2.1 and a σabs increase from 2.2× 1016 to345

10.3× 1016 molec.cm−2. By means of illustration, the insets of Figure 9 show the average of the 500 spectra measured inside

the plume and used to calculate the SNR (blue) at different spectral resolutions. In red, a scaled Jacobian is shown with the

signature of NH3, illustrating that while the contribution of NH3 to the average is easily seen at fine resolution, it becomes

increasingly hard to identify NH3 at coarser spectral resolution. As before, the FARs are all close to the theoretical value of

1.5% for the given threshold of MF. Yet, there are certain small features that are apparent in MF distributions, especially at350

coarser resolution. One of these is indicated with an arrow in Figure 9. The associated spectra have a large positive slope in the

baseline between 900–1000 cm−1. Inspection of visual imagery shows that this particular feature is related to a large rooftop.

So even though the overall FAR statistics are favorable, localized false detections related to surface features are to be expected

at small spatial scales.

The results related to the spectra measured over the Po Valley show the same tendencies, as summarized in the third column355

of Figure 3. Overall, these statistics are again fully consistent with those from IASI, when taking into account the larger noise of

the Hyper-Cam measurements (4.43×10−4 W.(m2.sr.cm−1)−1, Figure A1) compared to that of the IASI instrument averaged

in blocks of 1 cm−1 (1.73× 10−4 W.(m2.sr.cm−1)−1).
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4.3.2 Well-chosen bands

As with the IASI spectra, we also degraded the Hyper-Cam spectra to just a few bands. The bands were selected as close as360

possible to the optimal ones found for IASI. The results are summarized in Figure 3. Generally, we observe that all metrics are

remarkably close to each other for both campaigns, demonstrating that these are largely scene independent. Taking into account

the larger noise of the Hyper-Cam measurements, the statistics follow closely those from IASI. In particular, we observe the

general trend that the SNR and σabs improve when the channels become narrower or when the number of channels increases.

The only exception is for the case of 4 bands of 10.4 cm−1, which performs slightly better than the 5 bands of 10.4 cm−1 over365

the Po Valley. This is likely related to the slight shifts in the positions of the bands. The FARs are all around the theoretical

value of 1.5%.

We also observe again that configurations with few bands at higher resolution can perform just as well as a uniformly sampled

instrument, supporting again the possibility of drastically reducing the number of spectral measurements to monitor NH3. For

instance, for the Rosignano measurements, we see that the SNR and the σabs of the 5-band 1.3 cm−1 configuration are similar,370

and even slightly better than the 40 continuous channels of 2.6 cm−1. Both distributions are compared in Figure 9b and 9e

and indeed have a visually similar appearance. However, the FAR, at 1.6%, is slightly larger for the 5-band configuration, and

there are also a few additional surface artifacts in the distribution with fewer channels. Somewhat surprisingly, we observe that

generally the FAR for the campaign data does not vary as much as for IASI. This is likely due to the absence of sandy surfaces

with large and variable surface emissivity variations, posing particular difficulties for the MFs.375

Figure 10 illustrates MF distributions obtained from spectra measured over the Po Valley sampled at 1.3 cm−1 and computed

as continuous (panel (a)) and individual well-defined bands (panels (b) to (d)). The gradual increase in noise is visible, but the

main NH3 hotspots are clearly identifiable in all distributions, as well as the broad gradients across the map, confirming that

NH3 can be effectively observed with just a few channels, also at small spatial scales.

5 Conclusions380

One of the crucial challenges in designing a satellite sounder is balancing the quality of the observations with the complexity

and cost of a mission. For measuring atmospheric compounds, the key observational requirements are on the spatial resolu-

tion and the retrieval uncertainty that are intricately linked with the spectral range, resolution and radiometric noise of the

instrument. Current sounders capable of measuring NH3 offer excellent spectral and radiometric qualities, but lack the spatial

resolution for quantifying its many small-scale emission sources. While a hyperspatial high-resolution infrared sounder is tech-385

nologically feasible, it has until now not yet been investigated whether the high spectral resolution offered by current sounders

is required for effectively observing NH3. In this study, we explored the feasibility of measuring NH3 with instruments having

a reduced spectral coverage and resolution compared to current and planned operational sounders. This objective is driven by

the urgent need for effective monitoring of atmospheric NH3 at high spatial resolution, especially in the context of excessive

agricultural and industrial emissions that significantly affect air quality and the environment.390
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A first general conclusion is that the 900–1000 cm−1 (or even the 925–975 cm−1) range is by far the most sensitive spectral

range for infrared measurements of NH3, and that from a pure retrieval uncertainty perspective, there is no large benefit of

extending beyond. When it comes to instruments providing full spectral coverage with uniformly spaced channels, it was

found that even a spectral resolution of 10 cm−1 can be adequate for monitoring NH3, depending on the radiometric noise and

the targeted retrieval uncertainty. However at such a resolution, spectral interferences start becoming increasingly important in395

the retrieval uncertainty budget, limiting inherently the retrieval to high columns only. For a general purpose NH3 sounder of

low-resolution and uniform sampling, we therefore would recommend a spectral resolution finer than 5 cm−1, noting that it is

more efficient to observe NH3 using fewer bands at finer sampling rather than more bands at coarser sampling.

The possibility of using a few dedicated broadband channels for measuring atmospheric gases has been demonstrated before.

Varon et al. (2021) for instance retrieved methane (CH4) column concentrations from two 10 nm-wide bands in the shortwave400

infrared of the Sentinel-2 MultiSpectral Instrument. We have shown that especially for sounders with a resolution of 5–10

cm−1, the location of the spectral bands is key, and if the instrumental design permits, 3–5 carefully chosen located bands

can provide significant benefits on the retrieval uncertainty. For instruments with higher resolution (1–2 cm−1), already 2 or 3

carefully chosen microchannels can faithfully reproduce NH3 distributions and outperform instruments with broader spectral

bands.405

Further validation was conducted using airborne Hyper-Cam measurements. The analysis of these spectra, measured at fine

spatial resolution, confirmed the results obtained with IASI and demonstrated the applicability of a sounder with reduced

spectral resolution for measuring NH3 at small spatial scales, whether from industry or agriculture.

While it is clear that high spectral resolution offers significant benefits, it should be emphasized that all the results reported

here assume uniform noise, which in practice will not be the case when comparing different engineered designs. For example,410

it is generally much easier to achieve a required noise level at low spectral resolution than at high. If a medium-low spectral

resolution instrument were to be designed, the analysis should carefully take into account the estimated instrumental noise

budgets that each of the potential designs could offer. The methodology developed and presented in this paper allows this, and

can be easily generalized to variable noise levels. Indeed, for the case of uniform noise presented here, there are a plethora of

well-chosen bands that theoretically have a very similar performance. Some of these alternative options are likely to perform415

better with a specific non-uniform noise profile.

Appendix A: Downgrading spectra and total noise estimate

In this study, spectra were downgraded by averaging neighboring channels in blocks of different sizes n. For IASI, values of

n = 4,8,20 and 40 were used, resulting in spectra sampled at 1, 2, 5 and 10 cm−1. Block-averaging a spectrum is equivalent

to convolving the original spectrum with a normalized boxcar function of width n, and selecting 1 out of n channels of the420

resulting spectrum. The spectral resolution of this spectrum can be estimated from the full width at half maximum (FWHM)

of the instrumental line shape of IASI (approximately Gaussian with a FWHM of 0.5 cm−1) convolved with this boxcar.

Numerically, it was found to be very close to the sampling rate; see Table A1.
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Table A1. The first part of the table compares the sampling and the equivalent spectral resolution from original IASI measurements and

downsampled spectra. The second part lists the median of σ between 900 and 1000 cm−1 for both diagonal and off-diagonal elements (in

W.(m2.sr.cm−1)−1). The bottom part shows the median values of the unapodized noise, the added noise and the total noise, provided in

radiance units and converted in brightness temperatures for a reference temperature of 288 K.

Original IASI Downgraded IASI measurements

Sampling 0.25 cm−1 1 cm−1 2 cm−1 5 cm−1 10 cm−1

Resolution 0.5 cm−1 1.01 cm−1 2.00 cm−1 5.00 cm−1 10.0 cm−1

σii 2.16× 10−4 1.61× 10−4 1.22× 10−4 0.77× 10−4 0.53× 10−4

σii+1 1.79× 10−4 0.46× 10−4 0.06× 10−4 0 0

σii+2 0.97× 10−4 0 0 0 0

Unapodized noise 3.46× 10−4 1.73× 10−4 1.23× 10−4 0.78× 10−4 0.56× 10−4

Added noise / 0 1.22× 10−4 1.55× 10−4 1.64× 10−4

Total noise (W.(m2.sr.cm−1)−1) 3.46× 10−4 1.73× 10−4 1.73× 10−4 1.73× 10−4 1.73× 10−4

Total noise (mK) 240 120 120 120 120
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Figure A1. Radiometric noise estimated from native IASI and two by two averaged Hyper-Cam measurements between 900 and 1000 cm−1.

To compare these hypothetical instruments fairly, it is important to equalize their noise levels, and so Gaussian noise was

added to spectra to match the noise level of the spectra with the smallest sampling, as these have the largest noise. Noise425

covariance matrices were estimated from a principal component analysis (Atkinson et al., 2010; Serio et al., 2018). For IASI,

as its spectra are quite strongly apodized, these matrices are found to have non-negligible off-diagonal elements, indicating

correlated noise across nearby channels (Serio et al., 2014). Reversible apodization does not affect the total noise in the
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spectrum, but does make it more difficult to compare noise levels. Below, we show that the uncorrelated noise, i.e. the diagonal

noise before apodization, can be recovered by simply summing up the columns of the correlated noise covariance matrix.430

Table A1 summarizes, for both original and downgraded IASI spectra, the apodized noise (diagonal and off-diagonal ele-

ments of the noise covariance matrix), and total unapodized noise. It also tabulates for each choice of n how much Gaussian

noise was added and the resulting total noise, both in radiance units and brightness temperatures. Figure A1 shows the original

IASI apodized and unapodized noise between 900 and 1000 cm−1.

The same procedure was applied to the Hyper-Cam data. Spectra were downgraded by block-averaging neighboring channels435

(n = 1,2,4 and 8), resulting in spectra sampled at 1.3, 2.6, 5.2 and 10.4 cm−1. Gaussian noise was added to these spectra to

match the unconvoluted noise level of the original measurements, estimated at around 300 mK from the noise covariance

matrix. The apodized and unapodized noise calculated from the original data measured over Rosignano are shown in Figure

A1 (in green).

We end this section with a proof of the relation between the apodized and unapodized noise covariance matrix. Let Sϵ

be a diagonal noise covariance, with σ the square root of its diagonal. We now investigate how this covariance matrix is

altered by convolution or apodization. We write the convolution as w−n,w−n+1, . . . ,wn−1,wn, with
∑

k wk = 1. We assume

the convolution only spreads a few elements wide (much smaller than the length of the spectrum). The convolution has the

following effect on a given spectral noise ϵ

ϵ̃j =
∑

k

wk−jϵk.

This can be written in matrix notation as

ϵ̃ = w ⋆ ϵ = Wϵ,

with Wjk = wk−j . Using the propagation of uncertainty formula, the noise covariance matrix of the convoluted spectra takes

the form (Tellinghuisen, 2001)

S̃ϵ = WSϵWT,

or

S̃ϵ,ij =
∑

kl

WikSϵ,klWjl =
∑

k

Wikσ2
kWjk,

where we have used the fact that Sϵ is assumed diagonal. This equation gives the relation between the apodized and unapodized

covariance matrix. Let us now evaluate the vector obtained by summing the rows of S̃ϵ,ij

∑

i

S̃ϵ,ij =
∑

ik

Wikσ2
kWjk =

∑

k

(
σ2

kWjk

∑

i

Wik

)
.

Using the fact that the sum of all rows of W equals an all-one vector (disregarding edge effects), we find
∑

i

S̃ϵ,ij =
∑

k

σ2
kWjk.

Assuming a small kernel, slowly varying noise (σk ≈ σj), and again away from end points, we find that
∑

i

S̃ϵ,ij = σ2
j .
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We can therefore recover the unconvoluted noise σ2 by simply adding up the columns of the noise covariance matrix.440
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