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Abstract. In this paper, we apply varimax empirical orthogonal function (EOF) analysis to MOPITT total column CO retrievals

to answer the question of whether or not it is possible to disentangle the dominant CO sources associated with inferred modes

of variability at regional to global scales. Additionally, we write this manuscript with the intention to highlight the strengths

and weaknesses of EOF analysis, specifically their usage in the field of atmospheric chemistry. We analyzed daily MOPITT

Version 8 Level 3 joint (TIR-NIR) products from 2005 to 2018, aggregated every 8 days on a 1◦ by 1◦ grid. Our findings5

show that EOF patterns of MOPITT CO are consistent across various regional subdomains, demonstrating that these spatial

patterns are independent of the chosen domain. A comparison of the eigenvalue spectrum reveals that unrotated EOF analysis

yields three distinct modes, while varimax rotation reduces these to two. The power spectra of the principal components

indicate that the first two unrotated modes are primarily driven by annual and semi-annual cycles, while the third mode reflects

seasonal variations occurring over roughly three months. To further isolate these modes, we employed singular spectrum10

analysis (SSA) at each grid point to generate long-term, seasonal, and residual EOF patterns. The power spectrum analysis

of the principal components shows that the long-term EOFs replicate the original two dominant modes, while the seasonal

EOFs reveal significant variations over 2 to 3 months, and the residual modes exhibit time scales of 2 months or shorter. By

plotting the mean skewness field we show the dataset is non-Gaussian, leading us to conclude each principal component is

time-dependent despite being uncorrelated. The periodic decay observed in the temporal auto-correlation function for each15

time series suggests a classification of wide-sense cyclostationary or wide-sense polycyclostationary behavior. We find the

non-stationarity of each time series together with the temporal dependence of modes leads us to conclude that EOF analysis

alone cannot fully disentangle individual CO sources. Consequently, we recommend exploring cyclostationary EOF analysis

in future studies. These limitations must be carefully considered when interpreting EOF patterns of other composition datasets

with similar characteristics.20

1 Introduction

1.1 The Role of Carbon Monoxide in Atmospheric Composition

Carbon monoxide (CO) plays an important role in tropospheric chemistry and composition. Firstly, its reaction with the hy-

droxyl radical (OH) has a significant impact on the atmospheric oxidizing capacity. CO as well as non-methane volatile organic
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compounds (NMVOCs) are both responsible for positive climate forcing because they raise tropospheric ozone (O3) and CH425

by creating a global sink for the hydroxyl radical OH (Fiore et al. (2012)). The spatiotemporal variations in CO (and hence OH)

can lead to changes in O3 abundance depending on whether the concentration of nitrogen oxides (NOx) is low or high. Regions

of high NOx experience ozone production while clean areas with low NOx experience the destruction of ozone (Holloway et al.

(2000)). Because OH is a photochemical sink of CO through oxidation, its global distribution determines the lifetime of CO

and therefore values of CO are lowest with the shortest lifetime in regions with the highest OH. Secondly, CO can also serve30

as a tracer of pollution transport given its medium length lifetime (weeks to months) (Cicerone, 1988). Mainly a product of

incomplete combustion of wood and fossil fuels, CO is co-emitted with nitrogen dioxide (NO2), black carbon, and carbon

dioxide (CO2). It is more concentrated in the atmospheric boundary layer (with less in the stratosphere) so observing CO can

be useful as well to study the exchange of these gases and aerosols across the troposphere. Thirdly, as discussed by Gaubert

et al. (2020), because CO is the main sink of OH it is important for quantifying losses of methane in the troposphere as well35

(Myhre and Shindell (2013), Gaubert et al. (2016) Gaubert et al. (2017), Nguyen et al. (2020)). The lack of constraints on OH

spatiotemporal variability as well as the interannual variability of CH4 have both made it difficult to accurately determine the

global CH4 budget (Saunois et al. (2016), Prather and Holmes (2017), Turner et al. (2019). This means there is a need to reduce

the uncertainty of primary drivers of OH including CO, ozone, water vapor, nitrogen oxides, and non-methane volatile organic

compounds (Gaubert et al. (2020)).40

Determining the spatial and temporal distribution of CO, along with the distribution of co-emitted species including NO2,

CO2, CH4 and aerosols helps us to understand trends of combustion, biomass burning, and other sources of air pollution. For

example Lin et al. (2020b) uses a combined mean and standard deviation approach for total column CO to classify local regions

of Southeast and East Asia based on combustion activity into areas of intense urbanization, large-scale biomass burning, regions

undergoing significant change from one type to another, and clean regions. Raman and Arellano (2017) utilized variations in45

enhancement ratios of elemental carbon (EC), CO, and NO2 to investigate processes driving EC levels across the United

States. Tang and Arellano Jr. (2017) demonstrated that local enhancement ratios of ∆CO/∆NO2 can distinguish different

combustion types, identifying whether or not a fire was in a flaming phase or smoldering phase while Silva et al. (2013) used

∆CO/∆CO2 to identify combustion efficiency patterns in urban agglomeration. Building on this, Silva and Arellano (2017)

combined ∆CO/∆CO2 and ∆CO/∆NO2 to better characterize regional-scale combustion process while Tang et al. (2019)50

used ∆CO/∆NO2 and ∆CO/∆SO2 to track the common combustion emission pathways across China. Recently, Mottungan

et al. (2024) demonstrated the value of multi-species enhancement ratios (CO, CH4, CO2) along with multivariate regression

methods to differentiate between regional and local influences, and identify the dominant processes driving these patterns.

However, determining accurate trends in air pollution is difficult in practice for many different reasons. While there has

been an increasing availability of satellite measurements of trace gases and aerosols in the recent decade, most of these remote55

sensing retrievals cannot in general tell us where their original source or sink was due to the diffusive nature of atmospheric

transport (Murayama et al., 2004). Another challenge is that space-based CO measurements often lack accuracy in areas with

persistent cloud cover and near the surface, where thermal infrared sensors struggle due to interference from surface radiation

and limited retrieval sensitivity. These significant sources of uncertainty require us to cross-validate satellites across different
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instruments as well as with ground and aircraft measurements during field campaigns and is especially problematic over areas60

such as Sub-Saharan Africa where there are very few air quality monitoring stations. Determining the background value of

constituents is especially difficult on a global scale because it changes across time and space based on the sources and sinks

for a given region and chemical regime. Because satellites measure the total amount of a constituent rather than the source of

emission for a given region, it is difficult to tell whether local changes in the overall trend are due to anthropogenic or biogenic

sources or the background or residual burden. As discussed in Buchholz et al. (2021) there are no overall trends in either CO65

or aerosol optical depth (AOD) in Central/Southern Africa despite the increasing trend in anthropogenic combustion in Central

Africa as determined by Zheng et al. (2019) which may be counteracting the global decrease in CO. Buchholz et al. (2021)

have also noted that the increase in burning in the region as shown in Andela et al. (2017) may be potentially counteracting

transport.

There are also a number of complex challenges when determining emission inventories. As discussed by Gaubert et al.70

(2020), emission inventories in China are low in comparison to in situ observations in the case of both forward and inverse

models, and in particular there is an underestimation of CO despite having revised inventories (Kong et al. (2020), Feng et al.

(2020), Li et al. (2017)) as explained by an underestimation of residential coal combustion from either heating or cooling

(Chen et al. (2017), Cheng et al. (2017), Zhi et al. (2017)). Even though this underestimation of fossil fuel burning does

explain the underestimation of Northern Hemisphere (NH) CO in global models (Shindell et al. (2006)) this is confounded75

by the large difference in modeled variability of the regional distributions of OH in the NH which could offer an alternative

explanation (Naik et al. (2013) Young (2013)). Gaubert et al. (2020) used observations from the Korea-United States Air

Quality (KORUS-AQ) field campaign to investigate this underestimate over East Asia and found that assimilation of CO

improves the representation of OH in global chemical transport models by correcting OH/HO2 partitioning. This also implies

that assimilation of CO should be helpful in studying coupled CH4-CO-OH reactions which allow for chemical feedback.80

Effectively distinguishing the signature of secondary CO from the influence of surface emissions—whether anthropogenic,

biogenic, or from fires— is crucial for enhancing the reliability of source attribution studies, including inverse modeling for air

quality assessments and chemistry-climate simulations. This separation also aids in the physical interpretation of observed air

pollution patterns, with important implications for understanding the distributions of both OH and CH4. The primary questions

that we are interested in this study include the following:85

1. How can we use the spatial and temporal distribution of CO to detect the difference between anthropogenic and natural

variability of CO?

2. Can the global background of CO be disentangled from the local-to-regional influences to observed CO abundance?

To attempt an answer to these questions, we will use an empirical orthogonal function (EOF) analysis, which is a method

in pattern analysis to determine the dominant spatial and temporal patterns of a dataset and is described in full detail in the90

next section on Methods. It has been extensively utilized in climatology, a historical use being from Wallace and Gutzler

(1981) who used EOF analysis of geopotential height fields to produce EOF patterns that we now refer to as teleconnections.

It has had fewer applications to atmospheric chemistry, but for instance Li et al. (2009) use varimax rotated EOF analysis of
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de-seasonalized aerosol index in order to isolate major dust and biomass burning regions and dust transport. Li et al. (2013)

performs a similar analysis on AOD data. Lin et al. (2020a) verifies the result of their classification of urban and biomass95

burning regions using EOF analysis. Yin et al. (2019) used EOF analysis to analyze the dominant patterns in summer ozone

pollution over Eastern China and their relationship to atmospheric circulations. The focus of this current paper will be on the

use of EOF analysis on total column CO data to attempt the separation of anthropogenic and biogenic modes of variability

from the background. While EOF have proven useful in climatological studies, this approach has significant limitations that

require careful consideration, as detailed in this study.100

2 Methods

2.1 Data Description

We use total column CO data from the Measurements of Pollution in the Troposphere (MOPITT) instrument which uses a

correlation radiometer from the NASA Terra instrument. Terra flies at a normal altitude of 705 km in a Sun-synchronous polar

orbit that passes over the equator at approximately 10:30 and 22:30 local time. The temporal resolution is daily which has been105

averaged into 8-day periods, and the spatial pixel resolution is 22 km x 22 km at nadir, resampled to 1◦ from L3 products. The

cross-track scanning angle is ±26 degrees and yields a swath of approximately 640 km with global coverage every 3 days.

The radiometer performs gas correlation spectrometry for broadband measurements in thermal infrared (TIR) at approx-

imately 2140 cm−1 and near-infrared (NIR) around 4725 cm−1 (Buchholz et al. (2021), Drummond et al. (2010)). This is

done by modulating either pressure or length of a correlation cell filled with gas of the target to determine spectral line110

differences. The TIR is measured using terrestrial thermal radiation while the overtone band from NIR is measured from

reflected solar radiation and enhances retrievals, especially near the surface. Products are available in thermal infrared only,

near-infrared only, or joint TIR-NIR, although NIR signals are only available during the day and over land. (Buchholz et al.

(2017)) For this study, we use Level 3 data using the V8 retrieval algorithm for TIR-NIR. Level 2 and Level 3 products for

MOPITT for the V8 retrieval algorithms (and its most recent version, V9) are publicly available through repositories located115

at https://terra.nasa.gov/data/mopitt-data.

The V8 product includes updates to MODIS cloud cover Collection version 6.1, spectral data for H2O and N2 as well as

aircraft data from NOAA Deeter et al. (2019). This enables a radiance-based bias correction and accounts for both temporal

bias drift and bias as a result of water vapor. Daytime retrievals of total column CO for V8 are stable and have a nominal drift

of −0.015± 0.061% relative to NOAA airborne flask sampling during the MOPITT mission. MOPITT measurements have120

been verified extensively using cross-validation with other satellites, in-situ measurements at the ground, as well as via aircraft,

and more recently through ground-based solar Fourier transform infrared spectrometer measurements (Buchholz et al. (2017);

Martínez-Alonso et al. (2020); George et al. (2015)).

We note that satellite retrievals of tropospheric CO are also available using a multitude of other instruments including the

Atmospheric InfraRed Sounder (AIRS) onboard Aqua, the Tropospheric Emission Spectrometer (TES) on Aura, the Infrared125

Atmospheric Sounder Interferometer (IASI) on the MetOp platform, the Tropospheric Monitoring Instrument (TROPOMI),
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and the Cross-track Infrared Sounder (CrIS). These instruments are all sun-synchronous, capable of measuring CO in the

infrared region, and have been shown to have consistent hemispheric CO variability when compared to MOPITT CO records

from 2002 to 2018 (in the case of CrIS, from 2015 onward) (Buchholz et al. (2021)). Because CrIS was launched in October

2011, it does not have a long or consistent enough period of measurement to be suitable for the determination of long-term130

trends of CO. The same applies for TROPOMI which was launched in 2017. While CO measurements for IASI-A are long

enough to determine trends, they have potential discontinuities due to the fact that CO retrievals are not done using consistent

humidity, temperature, and cloud information. Measurements from TES are 2 orders of magnitude fewer than other instruments

and are more difficult to verify due to not being collocated. Measurements from AIRS have a long and stable enough record for

trend determination and have been shown to reproduce trends from MOPITT, however, AIRS uses a cloud-clearing algorithm135

that increases global coverage at the expense of increasing ground pixel sizes to 45 km x 45 km resulting in coarser resolution.

Our choice of using MOPITT retrievals is because it has the longest available CO record with a verified history of reliable

and stable observations and relatively fine spatial resolution. We use daily data averaged to 8-day periods to give us a sufficient

resolution to observe CO during its lifetime while also reducing computation time and giving a more consistent overpass time.

We use measurements for the 14 year duration of 2005-2018 so that we have sufficient data to be able to study long-term140

patterns. Plots are shown below of the spatial (Fig. 1) and temporal (Fig. 2) mean of de-trended CO for global data over our

stated observation period. We will discuss the significance of the variability observed by MOPITT in Sect. 3, focusing on its

relationship to the sources and sinks of CO.

Figure 1. Spatially averaged time series of de-trended MOPITT CO over the period of 2005-2018 across the globe from 60◦S to 60◦N (in
molecules cm−2).
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Figure 2. Temporally averaged global map of de-trended MOPITT CO over the period of 2005-2018 across the globe from 60◦S to 60◦N (in
molecules cm−2).

2.2 Source Signatures of CO

Here, we briefly describe the source categories of CO, which include fossil fuel/biofuel burning, biomass burning, biogenic,145

non-methane hydrocarbon oxidation, and methane oxidation as summarized in Holloway et al. (2000), Edwards et al. (2004)

and Edwards et al. (2006). Describing these categories is useful because surface emissions of CO can display unique signatures

that may be linked to specific spatial and temporal patterns in observed CO abundance.

CO from anthropogenic combustion (fossil fuel/biofuel burning) is much larger in the NH compared to the SH which is

attributed to significantly more fossil fuel consumption in urban and industrial regions. We consider these areas of high emission150

to be mostly associated with eastern China, India, the eastern United States, and Western Europe. Historically, eastern China

has contributed significantly to anthropogenic emissions because of a distinct reliance on coal and biofuel burning, however,

recent regulations have shown to make progress toward slowing down emissions Buchholz et al. (2021). The lifetime of CO is

much longer during the wintertime and high pollution events may persist in the atmosphere for weeks at a time. It is found in

general that CO loading tends to reach maximum values in April and minimum values in September (Edwards et al. (2004)).155

Biomass burning is largest in the Southern Hemisphere and a primary source of CO. Biomass burning consists of burning of

savanna, forests, agricultural residue, fuelwood, and animal waste and is most concentrated in tropical and sub-tropical forests

and grasslands Holloway et al. (2000). The largest contributions of fire emissions come from Africa and South America,

although fires also occur in Indonesia, the Boreal forests of Canada, Alaska, and Russia as well as Australia. African NH fires

occur in the savanna south of the Sahara Desert and in tropical rainforests north of the equator, while SH fires begin burning160

in the western portion of the continent near Angola and then spread southeast down the eastern coast. Fires in South America
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happen on the southern edge of the Amazon rain forest, the cerrado grasslands, and drought-deciduous forests in the south

(Edwards et al., 2006). Another distinct feature of CO fire emissions is their timing (Wiedinmyer et al., 2023). While long-term

drivers such as land-use and land cover changes, as well as drought conditions, heavily influence fire occurrences, seasonal

variations are primarily driven by agricultural burning practices and prevailing weather conditions. The anomalously high CO165

levels from these fires, coupled with their distinct spatial and temporal variability inherent to biomass burning, provide a more

reliable signature for distinguishing fire emissions from other CO sources.

The contribution of methane oxidation as well as oxidation from non-methane hydrocarbons (NMHC) represent secondary

sources of CO that are most apparent in the Southern Hemisphere. The oxidation of NMHCs includes a wide variety of

constituents which includes isoprene, terpenes, acetone, as well as industrial and biomass NMHCs. Temperature-dependent170

biogenic emissions of isoprenes account for about a third of hydrocarbon emissions. They are volatile organic compounds

that are emitted by trees, shrubs, and animals including humans (measurable in breath). Terpenes are produced primarily from

coniferous forests and are released in higher amounts with warmer weather. The largest emissions of hydrocarbons occur in

the tropics which is primarily from isoprene and occurs because of large density of biomass and high temperature conditions.

During the NH winter, there is a strong gradient resulting from biogenic emissions that are south of the equator where the175

intertropical convergence zone is located, and includes emissions from South America, Southern Africa, and Australia. During

the NH Summer biogenic sources contribute more in the NH resulting in a weaker but still observable gradient. This gradient

is significantly stronger for surface observations but is observable at all levels of the atmosphere (Holloway et al., 2000). CO

production from methane oxidation can be observed across the troposphere and tends to be spatially homogeneous given the

longer lifetime of CH4 (≈ 10 years). It does however exhibit some seasonality due to chemical loss with its reaction to OH.180

2.3 Mean Spatial and Temporal Distribution of CO

In this section, we describe the spatial and temporal variations in CO abundance, illustrated in Figs. 1 and 2 using MOPITT

retrievals of total CO columns.

In addition to source signatures, the variability in CO, particularly its seasonality, is significantly influenced by its chemical

loss with the OH radical. Notably, CO serves as the primary sink for OH, while CH4 serving only as a secondary sink. A185

recent study by Bryant and Stevenson (2024) has shown that increased hydrogen can also increase the mixing ratio of CO in

the troposphere through photolysis of formaldehyde (HCHO) and reactions with OH and nitrate (NO3).

Reports of the inter-annual variability of CO can be identified as fluctuations in the observed gradient of its abundance

between the Northern and Southern Hemispheres. This gradient is driven by the significant differences in surface emissions

between the hemispheres, along with the associated air mass exchange that occurs over a year. respectively. To a first ap-190

proximation, CO concentrations are lowest where OH abundance is highest, as CO’s chemical lifetime is strongly dependent

on reactions with OH. These areas are characterized by having high photochemical activity (solar radiation), as well as high

concentrations of O3 and NOx, and correspond to continental regions during the summer. On the other hand, oceanic (remote)

regions during the winter correspond to areas with the lowest OH and therefore the highest CO. However, the transport and

mixing of surface emissions complicates this first order relationship.195
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Seasonal differences in the distribution of OH and the imbalance of emission in each hemisphere lead to a North-South

gradient in CO that is clearly visible during the NH winter but is absent in the NH Summer. During the NH winter, low OH in

the NH lead to high CO while high OH in the SH lead to low CO. This in turn reinforces large NH anthropogenic emissions

from Europe, North America, and Asia that peak during early spring time which leads to a steep gradient during the NH winter.

During the NH summer, we instead have low CO in the NH, but high CO in the SH which balances a much lower budget of200

emissions of CO in the SH.

Significant changes in the annual cycle have been connected to fire emissions due to biomass burning, and limited studies

have connected variability in the SH to climate indices where biomass burning is the primary driver. In the NH, fires from

Boreal forests in North America and Eurasia have been shown to contribute to significant interannual variability. In the SH,

while fires in southern Africa and South America generate overall high CO loadings, a primary driver of variability is due to205

fires in the Maritime Continent and Northern Australia. Buchholz et al. (2018) were able to use multilinear regression with four

climate indices (ENSO, IOD, TSA, and AAO) to explain the variability of CO across the Southern Hemisphere and tropics

including Maritime SEA, two subregions in each of Australasia, Southern Africa, and South America. They found that more

than 50% variability is explained over all regions and more than 70% variability was explained across maritime SEA and North

Australasia. The fire intensity and burned area are connected to the amount, type, and dryness of fuel availability which depend210

on climate-sensitive water availability and ecosystem responses. This indicates that SH interannual variability of CO loading

has a clear but complex dependence on climate.

2.4 EOF Analysis

2.4.1 Overview of EOF Analysis

The following is a simplified description of EOF analysis. A more complete description can be found in Hannachi et al. (2007),215

Björnsson and Venegas (1997), Wilks (2011), Hannachi (2021), and von Storch ad F. Zwiers (2003). The exposition presented

here is fairly involved because we wish to provide readers both practical and technical foundations that are tailored for the

use of EOF analysis in atmospheric chemistry datasets, especially because most references approach the subject from the

perspective of meteorological applications. We do this to simultaneously provide a tutorial for future atmospheric chemistry

students, as well as to highlight both the strengths and the limitations of EOF analysis in our findings.220

Assume that we have a set of n observations in time of a gridded field with a total of m gridpoints. Let fij where i = 1,2, ...n

j = 1,2, ...m represent the value of the field observed at time i and location j, then the data is represented by the n×m matrix

F :

F = (f1, f2, ...fn)T =




f11 f12 · · · f1m

f21 f22 · · · f2m

...
...

. . .
...

fn1 fn2 · · · fnm
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so every row of F represents a 1×m vector corresponding to a single observation in time across all grid points.225

We now construct the anomaly matrix F ′ that represents the departure from normal climatology by removing from each grid

point its corresponding mean across time. This is done by taking F and individually subtracting the mean for each of its m

columns. Instead of constantly referring to F ′ as the anomaly matrix, we will simply refer to it as F from now on.

Our goal for EOF Analysis will be to decompose the anomaly matrix F into a matrix of orthogonal spatial patterns called

the EOF modes C, and a set of uncorrelated time series Φ such that230

F (x,t) = λ1ϕ1(t)c1(x)T + λ2ϕ2(t)c2(x)T + · · ·λpϕp(t)cp(x)T =
p∑

k=1

λkϕk(t)ck(x)T

where p≤ r, with r = rank(F )≤min(n,m). The number of modes p to retain in the truncation is always chosen such that the

maximum percent variance of the original dataset can be explained using the new set of basis functions. The data is compressed

more when fewer modes of variability are kept in the expansion.

This decomposition can be accomplished by phrasing the question in the form of an optimization problem. We will find235

uncorrelated linear combinations of the p spatial patterns C = (c1, ..., cp)T such that the resulting projected time series Φ = FC

have maximum variance and are uncorrelated. In terms of the m×m spatial covariance matrix R =
1
n

FT F :

The maximization problem to be solved for C such that :

cT
k Rck =

1
n
||Fck||2 is maximized, with cT

k c = 1 for k = 1, ...,p.

If we define λk =
1
n
||Fck||2 ≥ 0 The maximization problem is equivalent to solving the eigenvalue problem given by:240

RC = CΛ

where Λ = diag(λ1,λ2, ...λp).

So we see that the EOF spatial patterns C correspond to the eigenvectors of the spatial covariance matrix R, and the PC

time series Φ correspond to the projections Φ = FC. It is important to note that because the covariance matrix R is symmetric

and positive semi-definite it has non-negative eigenvalues with well-defined square roots as well as orthogonal eigenvectors.245

An equivalent formulation is to use singular value decomposition on F , so we expand it into unitary matrices Φ and C and a

matrix Σ = Λ1/2 of singular values such that:

F = ΦΣCT .

Using this expression for F , we can verify using direct substitution that the EOF spatial patterns C are indeed the eigenvectors

of the spatial covariance R =
1
n

FT F , and additionally that the PC time series Φ are the eigenvectors of the temporal covariance250
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L =
1
n

FFT . Note that in the case that each column of F represents a different observed field, it should also be divided by its

standard deviation so that the covariance matrix then becomes a correlation matrix.

In Appendix A, we detail exactly how the EOF patterns and PC time series can be computed in Matlab either using SVD or

by using eigendecomposition on R or L and then projecting the resulting eigenvectors onto the original matrix F . While using

SVD is stable computationally, it may require too much computing power in the case that F is very large because it requires255

us to compute eigenvectors of both R and L. When the spatial grid is large, then dim(R) >> dim(L) and we decompose L.

On the other hand, if the number of observations is large, then dim(L) >> dim(R) and we instead will decompose R. An even

better alternative that is considerably faster with no loss of stability is to use Lanczos iteration to solve the eigenvalue problem

as detailed in Toumazou and Cretaux (2001).

2.4.2 Separation of Modes Using the North Test260

Assuming that the p eigenvalues have been sorted in descending order of magnitude (this is done automatically in SVD

algorithms but not necessarily in eigendecompositions), then the percent variance that is accounted for by the mth mode is

given by Hannachi et al. (2007):

% var =
λm∑p
k=1 λk

× 100%.

Because of correlations between variables (spatial autocorrelation in F ), it is not possible for F to have truly independent265

samples. The sampling uncertainty for the eigenvalues can be estimated by using a variety of methods including Asymptotic

Approximation, Probabilistic PCA, Monte-Carlo Resampling Methods, or Bootstrapping (Hannachi (2021)). In this paper, we

emphasize the asymptotic method as described by North et al. (1982) who established an estimate of the typical error ∆λk

between two neighboring eigenvalues to be:

∆λk ≈
√

2
N∗ λk270

so we see that the error in each eigenvalue is proportional to its magnitude. Because this approximation relies on the central

limit theorem and the law of large numbers, it is valid as long as the number of independent samples N∗ is large.

According to Hartmann (2016), N∗ is estimated in terms of a red noise (AR1) time series defined by exponentially decaying

autocorrelation. If a = r1(∆t) is the autocorrelation at one time step ∆t, then N∗ for first order processes is approximated in

terms of the true sample size N as:275

N∗ = N

(
1− a

1 + a

)
.
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This expression is not accurate for the case of non-Gaussian red noise. North also gives an estimate for the error between

eigenmodes (ck is the EOF for λk) as:

∆ck =
(

∆λk

λj −λk

)
ck

which shows that large errors in eigenvalues will also cause large errors in a neighboring EOF mode. When there is a significant280

overlap between the error bars of adjacent eigenvalues, it is a good indicator that these modes are either degenerate due to being

contaminated by error, or potentially represent white noise.

2.4.3 Weaknesses of EOF Analysis

While EOF analysis can be used as a very powerful tool to compress data and determine dominant modes of climate variability,

the method suffers from numerous potential limitations. EOF modes have been extensively found to suffer from the following285

major drawbacks in comparison to Rotated EOFs (REOFs) (Hannachi (2021), Richman (1986)):

1. Domain Dependence

2. Subdomain Instability (Non-locality)

3. Sampling Error

4. Inaccurate Representation of Physical Phenomena290

Domain dependence is a problem that was first reported by Kaiser (1958). Buell (1978) determined that the primary factor

that determines the shape of an EOF was not its covariance structure, but rather the shape and size of the domain (also Lehr

and Hohenbrink (2024)). This is very immediately a problem, as the covariance structure contains the features of our data and

allows us to separate it into different modes of variability. Buell (1978) also showed that it is possible to find several different

correlation functions that have a very similar structure over the same domain.295

Sub-domain instability is closely related to the issue of domain dependence and references the lack of invariance when EOFs

from a given domain are compared to those generated from localized subdomains (Richman (1986)). In order for an EOF to be

physically insightful, it should for instance be the case that EOF patterns over Africa and Asia should reproduce those generated

globally. If this was not the case, the modes generated would be impossible to reproduce with any semblance of consistency.

This difficulty is caused by the orthogonality constraint of EOFs which causes the variance criterion to become maximized300

globally rather than locally, and leads to the inability of EOF analysis to separate independent and localized features that share

similar covariance structure with each other (Horel (1981), Monahan et al. (2009)). This non-locality issue is also consistent

with the mixing property for EOFs, which refers to their tendency to take a signal which begins as a linear superposition

of several different independent and potentially uncorrelated signals, and then combine them together in order to maximize

variance (Hannachi (2021)). Sampling error between neighboring eigenvalues is an issue that we have discussed in Sect. 2.4.2305

of this document, so we will not examine it further here.

11

https://doi.org/10.5194/egusphere-2024-3440
Preprint. Discussion started: 6 January 2025
c© Author(s) 2025. CC BY 4.0 License.



The difficulty EOF analysis suffers in expressing physical phenomena is a complex issue, and here we summarize the

main points on this topic as discussed in Monahan et al. (2009). The first major issue is that statistical modes generated

in EOF analysis do not in general represent dynamical modes that correspond to true physical modes of variability, and in

fact hold only under very strict circumstances. This is not unexpected, as the forced orthogonality of modes for EOFs is310

a mathematical constraint rather than a physical one. In particular, linearized climate models have conditionally orthogonal

modes. The linearized barotropic model given in Simmons et al. (1983) does not have orthogonal processes. A more general

climate model with conditional orthogonality is given in Monahan et al. (2009).

We should also not expect EOF analysis to produce principal component time series that are truly independent, because in

the absence of autocorrelation, we could still have uncorrelated variables that may be related in a nonlinear way. Only in the315

case that X has a joint Gaussian distribution will it have modes that are uncorrelated and independent. To see this fact, we note

that in the case of 2 random variables if X1 and X2 are uncorrelated and jointly Gaussian then the associated covariance matrix

is diagonal and the joint PDF takes the form

fX(x1,x2) =
1√

(2π)2σ2
1σ2

2

exp
(
−1

2

(
(x1−µ1)2

σ2
1

+
(x2−µ2)2

σ2
2

))

which can be written as:320

fX(x1,x2) =
1√
2πσ2

1

exp
(
−1

2

(
(x1−µ1)2

σ2
1

))
× 1√

2πσ2
2

exp
(
−1

2

(
(x2−µ2)2

σ2
2

))

= fX(x1)× fX(x2)

so therefore X1 and X2 are independent. Without this joint Gaussian assumption, it does not follow in general that uncorrelated

random variables are independent. A simple counterexample is given in Hannachi 2021 where if we take X to be standard325

normal, then X and Y = X2 are uncorrelated, but are not independent. The degree to which a field F deviates from Gaussian

behavior can be estimated by calculating the skewness:

skew(F ) =

〈(
F −⟨F ⟩
std(F )

)3
〉

Climate data which has a relatively low degree of skewness can still be thought of as being Gaussian and therefore having

independent principal components.330

Some, but not all of these weaknesses in EOF analysis can be resolved using REOFs, but even they come with their own

drawbacks, which will be discussed in the next section.
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2.4.4 Varimax Rotation

We describe rotated EOFs (REOFs) using the varimax criterion, which are EOFs that have been rotated according to a max-

imization condition. REOFs are motivated by the need to make EOF patterns more localized, easier to interpret in physical335

space, and less dependent on the domain. This is accomplished by relaxing orthogonality constraints for the EOFs and/or the

uncorrelated constraints of the PCs subject to a specified criterion. Rotations can either be oblique or orthogonal and include

more than ten different possible criteria according to Richman (1986). We will only discuss the varimax criterion in detail,

which has popularity due to the fact that orthogonal rotation is less sensitive to changes in the number of variables, and it

avoids some convergence issues that can happen during matrix inversion in oblique rotation.340

Suppose we begin with an m × p matrix Up of the first p leading EOF spatial modes:

Up = {u1, ...up}

Then the new m × p matrix of REOF modes B is defined as:

B = UpQ

where Q is a p × p rotation matrix. In varimax rotation, the matrix Q is chosen to be orthogonal so that it satisfies345

QT Q = QQT = Ip

where Ip is the p × p identity matrix. The varimax criterion requires maximizing the function f(B) where:

f(B) =
p∑

k=1


m

m∑

j=1

b4
jk −




m∑

j=1

b2
jk




2



In plain English, the varimax criterion is named because it attempts to maximize the sum of the spatial variances of the squared

and rotated EOF patterns bij . Orthogonality is preserved while achieving simplicity by forcing patterns to have magnitude near350

either 0 or 1 so that each pattern can be easily represented by the linear combination of only a few basis vectors.

One potential drawback from varimax rotation is that leading patterns produced by globally maximizing variance could

potentially be destroyed. As p increases and we rotate a higher number of EOF patterns, the rotated EOFs become more

localized at the expense of the leading patterns, which may no longer be invariant under the orthogonal transformation.
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2.5 Seasonal Decomposition using Singular Spectrum Analysis355

Singular spectrum analysis (SSA) is a very powerful tool in time series analysis with a wide variety of applications, some of the

more notable ones including forecasting, change point detection, filtering, and detection of spatio-temporal patterns. SSA also

has applications to meteorology and air quality monitoring, for instance, Macias et al. (2014) uses SSA on the global surface

temperature to separate a multi-decadal oscillation from a secular trend, and Gruszczynska et al. (2019) uses multichannel

SSA to perform spatiotemporal analysis for atmospheric, continental hydrology, and non-tidal ocean changes to determine an360

annual signal for 16 sections depending on the climate zone. Another application is from Espinosa et al. (2022) which uses the

time derivative of a resulting SSA signal to detect air quality anomalies.

Broadly, our goal is to take a time series x = [x1,x2, ...,xN ] of length N and then decompose it into a sum of trends, periodic

(or quasi-periodic) components, or noise, the sum of which will reconstruct the original series. SSA is accomplished in two

main stages: decomposition and reconstruction each of which has two different steps. A detailed description of the method can365

be found in Golyandina and Zhigljavsky (2013). Here we summarize the main points as discussed in Hassani (2007).

In stage 1 the decomposition is done by beginning with an embedding where the original 1-D time series is mapped into

K = N −L+1 different lagged vectors of length L where L is called the window length, a number that satisfies 2 <= L < N

and should be large enough to capture a key feature of the data. The L trajectory matrix X is then a Hankel matrix of size

(L,K) where each column is one of the lagged vectors and each element is constant along an anti-diagonal i + j = const:370

X = [X1,X2, ...XK ] =




x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2

...
...

...
. . .

...

xL xL+1 xL+2 . . . xN .




(1)

After completing the embedding, SVD is performed on the trajectory matrix by computing the eigenvalues λ1 ≥ λ2, ...≥ λL

and eigenvectors U1,U2, ...UL of S = XXT (since L < N ). The eigenvectors of XT X are then computed as Vi = XT Ui/
√

λi

(i = 1,2, ...d) with d = rank(A) and the decomposition for X is completed by writing it as a sum of d rank 1 elementary

matrices:375

X = UΣV T = X1 + . . . + Xd

where Σ = Λ1/2 is the matrix of singular values.
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Suppose that I = 1,2, . . . , ...d is the set of indices corresponding to our listing of elementary matrices. The reconstruction

stage is begun by splitting the set I into m disjoint subsets so that:

I = I1 ∪ I2 . . . Im.380

The partitioning gives us d1 elements in I1, d2 elements in I2 etc. and finally we have dm elements in Im so that d = d1 +d2 +

. . .dm. This procedure of choosing the m subsets is called eigentriple grouping and allows us to write the reconstruction as m

distinct sums:

X = XI1 + XI2 . . . + XIm

385

=
∑

i∈I1

Xi +
∑

i∈I2

Xi + . . . +
∑

i∈Im

Xi.

In the case that m = d we reproduce the elementary grouping of rank 1 matrices. The percent variance that a specific group Ip

contributes to the total variance is found by taking a ratio of their eigenvalues:

%var =

∑
i∈Ip

λi
∑d

i=1 λi

.

After the eigentriple grouping is finished a diagonal averaging procedure called "Hankelization" is done to each matrix in390

the sum by averaging across the antidiagonal elements in the matrix where i + j = k + 1 for k = 1, . . .N in order to create m

different time series of length N . We therefore obtain a reconstruction of the original time series:

x = x̃1 + x̃2 + . . . + x̃m

where x̃j corresponds to the resulting time series after XIj
has been diagonally averaged.

In practice, there is a large amount of subtlety to the eigentriple grouping procedure, however, one important comment is the395

fact that the ability to extract cycles depends upon the chosen window length L. In general, structure in short-term time series

is detected by choosing a smaller window length, and structure in longer-term series is detected by choosing a longer window

length.

3 Results and Discussion

3.1 Domain Independence and Separation of Modes for MOPITT CO400

As discussed in Methods (Sect. 2), one of the first potential issues that needs to be addressed in order to produce physical EOF

modes is whether or not the modes capture the local structure and if they are reproducible across differing subdomains. Prior

to generating EOF modes, our data matrix of size (longitude, latitude,time) is reshaped into size (time,grid), and every
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grid point is mean centered across time and then standardized. In Fig. 3, we show the first leading EOF mode for the dataset

across the entire globe (top left) and then recompute the first mode after subdividing the domain into North American (top405

right), African (bottom left), and Asian (bottom right). The spatial structure of the original pattern has been preserved in each

of the three subdomains, showing us that the local and global structure for the pattern is the same, and therefore our dataset is

independent of its domain.

In some problems, it is often a good idea to attempt varimax rotation in order to ensure that the resulting patterns are simple

and easy to interpret, but in our case, there is not a real need to do so because our problem does not suffer from domain410

instability. To demonstrate that varimax does not improve our resulting modes, we show the eigenvalue spectrum of the first

6 unrotated EOF modes together with the spectrum of our varimax modes in Fig. 3. Each mode is plotted as a fraction of

the percent variance with the exact value shown at the top. We compute the error bars using the expression for ∆λk in Sect.

2.2.2 and plot the results in red. For our unrotated modes, the variance together with error bars (the length above/below each

data value) are given by: 61.55± 3.43%,20.52± 1.143%,8.24± 0.459%,3.92± 0.218%,1.10± 0.061% and 0.69± 0.038%.415

After using varimax rotation, the percent variance of each mode was: 86.02±4.793%,11.56±0.644%,1.87±0.104%,0.49±
0.027%,0.03±0.002% and 0.01±0.001%. None of these eigenvalues represent degenerate modes because their error bars do

not overlap with adjacent neighbors. We note however that varimax modes 4,5, and 6 have such a small percent variance it

is unlikely for them to rise above the level of noise and represent independent and important features. On the other hand, our

unrotated EOFs have higher modes with a much larger percent variance and are more likely to represent independent features,420

with modes 5 and 6 most likely representing noise.

3.2 Seasonal Decomposition for MOPITT CO

We perform a seasonal decomposition on the mean-centered and standardized time series A for each grid point of our dataset

by using the trenddecomp function in Matlab with one mode of seasonal variability. This gives us A = LT + S + R where

LT is the long-term variation, S is the seasonal variation, and R is the remainder. To visualize this decomposition, rather425

than choosing a single grid point as an example we plot a decomposition for the temporal mean of the dataset in Fig. 5 to

show the average overall effect. The result is that the long-term component (blue) has a yearly periodicity that reproduces

the peaks of the original MOPITT series (black), the seasonal component (red) has a shorter temporal periodicity (6 months)

while the remainder (dashed, black) shows the shortest periodicity, being on the order of 3 months. Note that in each case the

decomposition is phase shifted with reduced magnitude in comparison to MOPITT.430

By implementing SSA on each grid point, we produce 3 matrices each with the same size as our original dataset which are

again mean-centered and standardized. We then conduct EOF analysis on the resulting matrices, displaying the first 3 global

modes for MOPITT in Fig. 6 together with the first 3 modes of the long-term, seasonal, and remainder datasets. While there

are some differences in magnitude and percent variance, we note that the first two long-term EOF modes reproduce the spatial

pattern of the first two modes for the original MOPITT CO patterns. Examination of the third long-term EOF mode shows435

that the pattern appears to be noise, as indicated by the low percent variance and the complete lack of any spatial structure.

We also note that there is a very similar structure between the third MOPITT EOF mode and the first Seasonal EOF mode,
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Figure 3. Spatial map showing the first EOF mode of MOPITT CO for the globe (Top Left), North America (Top Right), Africa (Bottom
Left), and Asia (Bottom Right).

however, the first seasonal mode has a larger contrast between the positive and negative patterns which is especially noticeable

in Northeastern Asia and the east coast of the United States. The structure for seasonal modes 2 and 3 as well as all three

residual modes represent patterns distinct from our MOPITT EOF modes before we performed SSA on the data.440

Our intention in performing EOF analysis was that each EOF mode would represent the variability from either a source or

sink in carbon monoxide, however, the patterns depicted in Fig. 6 do not correlate with physically separable sources. If each

mode represented a source of CO then we would expect to see modes that correlated with variability due to fossil fuel burning,

biomass burning, biogenic oxidation, or methane oxidation. However, none of the modes depicted in Fig. 6 show patterns of

variability that can be directly connected with source distributions.445

As an example, let us attempt to connect MOPITT EOF 2 with fossil fuel burning. If we attempt the interpretation that

blue areas represent areas with high contributions of fuel burning, this would be inconsistent with our knowledge of fossil fuel

burning as a source of CO. While we do see significant areas of blue highlighted on the east coast of the United States which

is consistent with combustion, the pattern shows too little activity over Eastern China and India and higher activity over Russia

than expected. Similarly, when we examine EOF 3 we see a pattern that has some consistency with biomass burning in Africa450
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Figure 4. The percent variance that is explained by the first six EOF modes for the original MOPITT Dataset and the long term, seasonal,
and residual components after using an SSA decomposition. Results are shown globally for both for varimax EOFs (black) and unrotated
EOFs.

and South America, however, the features are far too smeared to be a potential interpretation. For example, the pattern stretches

too far across oceanic regions as well as the Sahara and Saudia Arabia to be classified as potential fire activity. For similar

reasoning, it would not make sense for us to interpret this as biogenic emission.

When examining EOF mode 1 we see a very clear boundary in the Northern and Southern Hemisphere as indicative of the

annual cycle in CO caused by the combination of larger combustion activity and lower hydroxide radicals in the Northern455

Hemisphere during the winter season. This interpretation is consistent with an observation we state in Sect. 3.3 on spectral

analysis and time scales which is that the time scale for EOF 1 is dominated by annual/semiannual variation.
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The majority of the areas with the highest contrast in Residual EOF mode 1 are seen to be over oceanic regions, which

leads us to believe there may be a connection between Residual mode 1 and oceanic variability. However, these patterns do not

match the variation of CO due to oceanic cycles, such as patterns as shown in Conte et al. (2019). This could be because we460

would expect oceanic variability to be strongest near the surface and patterns due to surface variations would be obscured by

the changes in CO throughout other areas of the atmosphere which we are accounting for by using total column data.

Examining the remaining seasonal and residual patterns we see patterns that could be indicative of regional-scale transport,

however, verification and further discussion of these modes is beyond the scope of our analysis at this time.

Figure 5. A time series plot of the spatially averaged MOPITT CO global mean (black) and the long-term (blue), seasonal (red) and remainder
(black dotted) components of the SSA decomposition.

3.3 Spectral Analysis and Time Scales465

In Fig. 7 we display the principal component time series for the original MOPITT dataset as well as the long-term, seasonal,

and residual components. We first note that the first two long-term principal components have very similar periodic patterns

as the original 2 MOPITT modes, while the third mode is of course noise because as we already seen the third long-term

EOF pattern had no spatial structure. We also see the first two seasonal components have a similar periodic pattern to the third

MOPITT component even though we saw from Fig. 6 that the second seasonal EOF has a very different spatial structure. The470

long-term modes have the largest period while the seasonal components have shorter periodicity and the residual modes the

shortest.
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Figure 6. Spatial maps of the first 3 unrotated EOF modes of the MOPITT dataset and the long-term, seasonal, and residual components
after using an SSA decomposition. The percent variance that is explained for each mode is displayed in the title.

In order to determine the most dominant time scale for a given mode, we used Fourier transforms to compute the power

spectral density of each principal component and then used a numerical trapezoid rule to determine the total cumulative power

as a percentage which is then plotted in Fig. 8 on a logarithmic scale. The percent of total power is labeled for a period of475

oscillation for 100 days, 1 year, and 1000 days. A dotted line and the value tmax indicates the period of oscillation which has
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Figure 7. Time series for the first 3 principle components of the MOPITT dataset and the long-term, seasonal, and residual components after
using an SSA decomposition.

contributed the largest amount to the total power. For example, examining Mopitt Spectrum Mode 1 we see that 1.3% of power

is from periods of 100 days or smaller, 26.9% of power is from periods of 1 year or smaller, and 43.2% of power is from periods

of 1000 days or smaller. We see that the first two Mopitt patterns correspond to variation dominated by an annual/semi-annual
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cycle while the third mode is dominated by seasonal changes on the order of 3 months. Our long-term EOFs reproduce our480

original 2 modes, while our seasonal EOFs show dominant time scales on the order of 3 or 2 months, and our residual modes

show dominant time scales on the order of 2 months or less.

Figure 8. The cumulative percent total power for each principal component. Power values are labeled at 100 days, 1 year, and 1000 days.
The dotted line and the value tmax indicates the period of oscillation which has contributed the largest amount to the total power.
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3.4 Time Dependence and Non-Stationarity of Modes

As we have said in Sect. 2.2.3, one weakness of EOF analysis is that even though the principal component time series are

constructed to be uncorrelated, it is not necessarily appropriate to assume that they represent independent processes which485

complicates the interpretation of assigning physical meaning to the modes. Only in the special case that the data is Gaussian

does it follow that uncorrelated random variables are then deemed independent. In Fig. 9, we plot the mean skewness field

for MOPITT CO over the period of interest from 2005-2018. It is standard to consider values of absolute skewness less than

0.5 to have negligible skewness corresponding to a relatively symmetric distribution, while values between 0.5 and 1.0 are

moderately skewed, and values larger than 1.0 are highly skewed. Contour lines are shown for skewness values of -1, -0.5,490

+0.5, and +1.0 to highlight areas that have a notable degree of skewness. We see that our dataset has significant skewness in

the Southern Hemisphere, especially in South America as well as over China, Indonesia, and East Asia. This indicates that we

cannot consider our dataset to be approximately Gaussian, and is a potential explanation for why our principal components

show significant dependence in the distributions of their spectral responses.

EOF analysis assumes that the dataset is stationary so that the mean and temporal covariance remains constant in time,495

which is done in order to sure that the first and second moments (the mean and covariance) of random variables can be

determined using a limit of simple summations (or integrals). In practice, this assumption is rarely realistic with physical data.

An equivalent statement is that the temporal autorrelation is constant as a function of lag time τ . If we consider the mean and

covariance of carbon monoxide it would be realistic to assume that these statistics should be a function of time because their

sources and sinks are correlated temporally. If we imagine a smokestack emitting CO at a fixed location, the CO measured500

in the future is highly correlated with the amount of CO in the present. This brings us to our next main point which is that

another reason why our modes cannot be interpreted in terms of individual sources and sinks lies in the non-stationarity of the

MOPITT dataset which remains unaccounted for in standard EOF analysis and is a fact we will now show.

As shown in Fig. 10, the autocorrelation for the original MOPITT time series as well as each component from the seasonal

decomposition do not decay to zero but instead show periodic variation that persists across time. The MOPITT series has a505

positive correlation that peaks for every year exactly and shows two negative peaks, both of which also reoccur at intervals of

1 year. We could therefore consider the MOPITT autocorrelation as being a sum of three periodic components. The long-term

and seasonal autocorrelation are simpler functions and both have a single periodic component that peak exactly once per year,

and 6 months respectively. The residual autocorrelation like MOPITT is a sum of periodic processes. It is important to note

that we cannot force the dataset to become stationary by removing an annual cycle, because the autocorrelation represents a510

superposition of multiple periodic processes. We may therefore consider both the long-term and seasonal series to be wide-

sense cyclostationary processes since they have periodic temporal mean and a periodic temporal autocorrelation. Because

the MOPITT series and residual series are composed of multiple periodic processes, we may consider them to be wide-sense

polycyclostationary. We conclude this discussion by recommending the use of cyclostationary EOF (CSEOF) analysis on either

the original time series or on the seasonal modes which is a method that is well suited for datasets that possess autocorrelation515

functions of this type.
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Figure 9. A spatial plot showing the mean skewness field of MOPITT CO from 2005-2018. Contour lines are shown to highlight skewness
values of -1.0, -0.5, 0.5, and 1.0 indicating regions that are moderately or heavily skewed.

4 Conclusions

In this study, we investigated the use of EOF analysis and its variants to assess whether source signatures of CO can be

identified from observed CO abundance. We hypothesize that the spatial and temporal differences are linked to surface emission

patterns, which are intertwined with CO from methane and non-methane hydrocarbons, atmospheric transport, and reactions520

with OH. Our results highlight the dominant modes of variability in MOPITT CO columns from 2005 to 2018, with a focus on

examining the methodological rationale (limitations) underlying these findings rather than provide physical interpretations on

these patterns.

First, our results show that the EOF modes of MOPITT CO columns are not domain-dependent as generating regional

domains produced the same spatial patterns as those produced using a global domain. We have also shown that the resulting525

modes of variability are highly dependent on each other in time. By examining the seasonal skewness, we verify that even

though the principal component time series are constructed to be uncorrelated, they are not independent because the dataset is

non-Gaussian and therefore they do not correspond to potential sources and sinks.

Spectral analysis for the principal components was used to compute the total accumulated power for each of the modes

and to show the dominant time scale for each mode. This verifies that lower EOF modes correspond to the effects of long-530

term variability in the data while higher modes correspond to the effects of shorter term variability. Because each spectrum is
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Figure 10. The autocorrelation for MOPITT CO as well as the autocorrelation of the long-term, seasonal, and residual modes after using an
SSA decomposition plotted as a function of lag time (measured in 8-day periods).

continuous with a significant spread of varying frequencies, we see that each mode is produced using a combination of many

different time scales rather than an individual.

The first unrotated MOPITT pattern as well as the first long-term pattern are indicative of the annual/semiannual cycle for

CO. Because each mode is highly dependent on time, it is very difficult for us to attribute the variability of higher modes for535

CO with the individual effects of a source or sink and we therefore cannot offer a complete physical interpretations beyond the

understanding of what time scale contributed the most to its variability. Part of the reason for having dependent modes in time

could be due to the fact that we chose to use total column CO data which may be averaging the modes of variability together.

In future studies, it seems worthwhile to examine the statistics for CO throughout multiple levels of the atmosphere to see

whether it is Gaussian or not and whether the spectrum shows behavior that is more time-independent.540
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As we showed in the autocorrelation functions in Fig. 10, the MOPITT CO time series can be considered to be wide-sense

polycyclostationary and as such we recommend using CSEOF analysis which is a method that is able to handle cyclostationary

time series data by assuming that the covariance is a sum of periodic functions of time. This is unlike standard EOF analysis,

which uses the major simplification to assume the covariance is stationary (constant in time). In practice, physical modes often

have statistics that evolve in time and are an important feature that should be accounted for in the variability of time series data.545

The use of CSEOF analysis is therefore a more appropriate method to apply to the MOPITT time series data in future analysis

and may be able to separate modes of variability based on the individual sources and sinks of CO.

If this was indeed possible, then this could have future implications about the ability of EOF methods to identify biases in

chemical transport models. For example, Covariance Discrimination Analysis (CDA) is a method that is able to tell statistical

differences between datasets based on the information content of their covariance matrices (or equivalently their principal550

components). If we were able to separate physical modes of variability for CO using CSEOFs, we may then be able to use

CDA to identify statistical differences between model and satellite variability of CO and then connect differences in each mode

to biases in the attribution of individual sources including fossil fuel and biomass burning, as well as methane and hydrocarbon

oxidation. This would be very useful to identify which sources contribute the highest bias when attempting to model the

chemical transport of CO.555

Finally, we recognize that these limitations result from the convolution of atmospheric transport and mixing’s highly diffu-

sive nature with the reactive chemistry of CO and OH, compounded by the limited information content of columnar CO data.

These factors make it challenging to distinguish shorter-scale regional source signatures from the longer-scale background CO.

Using a multi-species and multi-scale approach to leverage synergies between various data sources, combined with advanced

algorithms—such as the previously mentioned pattern recognition techniques, dimensionality reduction, and machine learn-560

ing—can greatly improve our ability to distinguish these signatures and attribute them to physical processes. This is especially

true with the recent availability of higher-resolution atmospheric composition datasets.

Data availability. The MOPITT V8 joint TIR-NIR L3 datasets can be accessed at the following URLs : https://asdc.larc.nasa.gov/project/

MOPITT/MOP03J_8.

Appendix A565

A1 Eigenvectors of Temporal and Spatial Covariance Matrices

Suppose F is an n x m matrix where measurements are taken over n points in time and over a spatial grid with m points. We

define the m x m spatial covariance matrix as R = FT F and the n x n temporal covariance matrix as L = FFT . In the case that

the number of gridpoints is very large and n >> m it becomes computationally infeasible to perform an eigendecomposition

on R. It is instead desirable to decompose the much smaller covariance matrix L and project the resulting PC time series in570

order to compute the EOF spatial patterns which are eigenvectors of R.
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We begin by performing an eigendecomposition on the spatial covariance matrix R to yield the eigenvector matrix C which

corresponds to the EOF spatial patterns and satisfies:

RC = CΛ

Multiplying on the LHS yields:575

FRC = FFT FC = LFC (A1)

and multiplication by F on the RHS then gives us:

L(FC) = (FC)Λ (A2)

And defining A = FC we have:

LA = AΛ (A3)580

which shows that A is the matrix of eigenvectors for L, while the eigenvalues Λ are the same as for R. We note that while the

eigenvectors C of R are size m x m and represent a spatial pattern, the eigenvector matrix A of L is size n x n and represents

the principal component (PC) time series constructed by projecting the original matrix F onto the EOF patterns C.

We are able to reconstruct the original matrix F using the EOF spatial patterns and the un-normalized PC time series as:

F = ACT (A4)585

The fact that A is not normalized is apparent from the PCA property of R:

AT A = (FC)T
FC = CT FT FC = CT RC = CT CΛCCT = Λ (A5)

which shows us that ||AT A||= ||Λ|| ̸= I . We can therefore define a normalized PC time series Φ by dividing each term by

λ1/2:

Φ = FCΛ−1/2 = AΛ−1/2 (A6)590

then it follows that Φ is orthogonal:
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ΦT Φ =
(
AΛ−1/2

)T

AΛ−1/2 =
(
AT A

)
Λ−1 = ΛΛ−1 = I (A7)

This expression of Φ is important, because it allows us to express the singular value decomposition of the matrix F as:

F = ΦΛ1/2CT = ΦΣCT (A8)

If we use the singular value decomposition for F in the covariance matrices then we recover the eigendecompositions for both595

R and L:

R = FT F =
(
ΦΣCT

)T
ΦΣCT = CΛCT (A9)

L = FFT =
(
ΦΣCT

)T
ΦΣCT = ΦΛΦT (A10)

so we see that orthogonal eigenvector matrices for R and L are the normalized EOF spatial patterns C and the PC time series

Φ, respectively.600

Therefore, when n >> m and we cannot easily compute C, our strategy is to perform eigendecomposition on L to find Φ,

and then determine C by rearranging the SVD expression:

C =
(
FT Φ

)
Λ−1/2 = GΛ−1/2 (A11)

where G = FT Φ. The original matrix F can then be reconstructed using the full rank expression for the SVD. If we are using

correlation matrices so that F has zero mean and has been scaled by its standard deviation, the original matrix in physical space605

F ∗ is given by:

F ∗ = F std(F) + mean(F ) =
(
ΦΣCT

)
std(F ) + mean(F ). (A12)
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A2 Equivalence of Determining EOFs and PCs Using Eigenvector Decomposition and SVD

In the case of eigenvector decomposition, we will describe cases. When we have n >> m so the spatial grid is large then

L = FFT has size m x m and as described before we compute the eigendecomposition of L to determine the PC time series610

which are the column vectors of Φ. In Matlab we would simply use [Φ,Λ] = eig(L) to compute the normalized eigenvectors

and the eigenvalues. We can then compute the matrix G and find the EOF spatial patterns which are the column vectors of C

(or the row vectors of CT ) as shown in (11).

In the case that m >> n so the time points are large, then R = FT F has size n x n and we first compute the EOF spatial

patterns C which are the normalized eigenvectors of R, and are found in Matlab as [C,Λ] = eig(R). We then determine the PC615

time series Φ using equation (6).

When m≈ n then either method from above would be appropriate to compute the EOFs and PCs. It would also be appro-

priate (and equivalent) to compute the singular value decomposition of F using equation (8) which is determined in matlab

as [Φ,Σ,C] = svd(F ), where the singular values Σ are the square roots of the eigenvalues Λ. In this case, the left singualar

vectors are the normalized PC time series, and the right singular vectors are the normalized EOF spatial patterns.620

R = F ′F L = FF ’ SVD

Matlab [C,Λ] = eig(R) [Φ,Λ] = eig(L) [Φ,Σ,C] = svd(F )

PC (un-normalized) FC ΦΛ1/2 ΦΣ

PC (normalized) FCΛ−1/2 Φ Φ

EOF C FT ΦΛ−1/2 C

F (un-normalized) (PC)(EOF)T (PC)(EOF )T (PC)(EOF)T

F (normalized) (PC)Λ1/2 (EOF)T (PC)Λ1/2 (EOF)T (PC)Σ(EOF)T
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