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Abstract. Significant advances in full-3D modeling of geophysical flows have provided deeper insights into complex processes

and predictive potential. However, practical application in the natural hazard community remains limited due to inadequate GIS

integration of simulation results. This study addresses the oxymoronic transformation of 3D depth-resolved MPM simulation

outputs into simplified depth-averaged results, such as flow depth and thickness, and slope-parallel and slope-normal velocities.

Specifically, we present an algorithm that rasterizes scattered MPM outputs into a 2D format, enhancing their utility for hazard5

mapping and mitigation. We demonstrate our approach by applying it to an ice avalanche event, which is simulated using MPM

and visualized in GIS.

1 Introduction

With the emergence of computers, numerical modelling of geophysical flows (e.g., debris flows, rock, snow, and ice avalanches)

has become an integrated part of natural hazards mapping and mitigation. Starting from the 1960s, depth-averaged models that10

simulate gravitational mass movements along a prescribed 2D topography were developed (see, e.g., the review by Eglit et al.

(2020) for snow avalanche models; Hungr (1995) for debris flows). Later, depth-averaged models have been extended to 3D

topography, also aided by higher spatial coverage and resolution of Digital Terrain Models (DTMs). Several depth-averaged

models have been proposed to model rock avalanches (e.g., Mergili et al., 2012), debris flows (e.g., Denlinger and Iverson,

2004; McDougall and Hungr, 2004; Iverson and George, 2014; Tayyebi et al., 2021), and snow avalanches (e.g., Christen et al.,15

2010; Vicari and Issler, 2024). The extensive scientific advancement and adoption of depth-averaged models can largely be

attributed to their computational efficiency, as these models modify the 3D conservation equations by integrating them in the

vertical direction or perpendicular to the topography—thus reducing the number of conserved flow variables that need to be

resolved—and assume simplified rheologies. Additionally, their integration into Geographic Information Systems (GIS) has

also contributed to their popularity, particularly among natural hazard agencies and practitioners focused on hazard mapping.20

Recently, advancements in computing power have enabled the resolution of 3D conservation equations within a feasible (yet

extensive) timeframe, making it possible to simulate geophysical flows at the slope scale. 3D models have been applied for

debris flows (e.g., Kwan et al., 2015; Koo et al., 2018), snow avalanches (e.g., Gaume et al., 2019; Li et al., 2021; Kyburz

et al., 2024), rock and ice avalanches (e.g., Cicoira et al., 2022), and landslides (e.g., Franci et al., 2020; Tran et al., 2024).
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Nonetheless, although these models are scientifically popular, their use in practical applications for evaluating and mitigat-25

ing natural hazards remains limited. We believe that this gap can be attributed to multiple factors: (i) inexperience within the

natural hazards community and scarcity of guidelines; (ii) limited laboratory experiments to determine the constitutive param-

eters of geomaterials and challenges in determining these parameters in the field; (iii) non-user-friendly software; (iv) higher

computational cost compared to depth-averaged models; (v) poor integration of simulation results with GIS tools. Within this

work, we aim at addressing this last point, by developing a tool to export the results of 3D Material Point Method (MPM)30

simulations into a rasterized format. In other terms, our aim is to convert the depth-resolved MPM particle information into

depth-averaged variables that can be saved in a 2D raster format and visualized in GIS. Toward the end of our research, we

became aware of a similar tool, very recently developed by Su et al. (2024), to extract physical quantities from 3D Smoothed-

Particle Hydrodynamics (SPH) simulations. Nevertheless, considering the significance of MPM for modeling gravitational

mass movements, there is a need for a dedicated algorithm; our method also introduces novel elements, especially concerning35

the exported depth-averaged variables. We illustrate the practical application of the depth-averaging algorithm by presenting an

ice avalanche event simulated using MPM and subsequently exported to GIS. We then examine the depth-averaged variables

derived from the 3D MPM simulation and discuss potential future enhancements of the exporting tool.

2 Methods

2.1 3D depth-resolved MPM model and material parameters40

MPM is a hybrid Eulerian–Lagrangian method for simulating the behavior of continuous materials. In the ice avalanche simu-

lations discussed in this paper, a Drucker–Prager yield criterion is used to model ice:

q− γ(p + a)≤ 0, (1)

where q and p are the deviatoric and mean stress, respectively. The material parameters γ and a represent friction and at-

traction, respectively. These can be derived from the Mohr-Coulomb yield criterion parameters—i.e., the friction angle φ45

and the cohesion c—given that the two yield criteria are assumed to be equivalent under triaxial compression conditions:

γ = (6sinφ)/(3−sinφ) and a = c/tanφ. We assume a non-associative flow rule with zero dilatancy. The model incorporates

softening, similar to the model of Cicoira et al. (2022), wherein we assume that the friction angle decreases from an initial

φi = 40◦ to a residual φr = 20◦, and cohesion decreases from an initial ci = 1 kPa to 0, depending on the accumulated devi-

atoric plastic strain εp
d. Unlike the simulations of Cicoira et al. (2022), we do not model explicitly erosion of glacier’s ice and50

snow cover. Therefore, we assume that the basal friction in contact with the glacier (µ = 0.65) is higher than the basal friction

in contact with bedrock and soil (µ = 0.55). This assumption is made to consider for potential erosion of wet compact snow,

resulting in decreased flow mobility (Li et al., 2022). At t = 0, the ice bulk density is set equal to ρ0 = ρp0 = 850 kg/m3,

where ρp denotes the material points’ density. The simulation is carried out with a grid size of gs = 1 m, with ng = 6 material

points per cell. A complete list of the material parameters is reported in the Supplements.55
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2.2 Topography

MPM simulations are performed on a generic topography Σ, whose elevation is defined in a global Euclidean system (ENH)

as H(E,N) (Fig. 1). We denote the latitude and longitude coordinates of sampled points on the surface as (Es,Ns), and Hs

their respective elevations on Σ. Each sampled coordinate (Es,Ns) specifies the center of a cell with index (i, j), which is

separated by a distance cs (the cell size of the DTM) from the adjacent cell (Fig. 1a):60

i =
Es−Ellc

cs
, (2a)

j =
−Ns + Nllc + cs · (r− 1)

cs
, (2b)

where (Ellc,Nllc) define the planar coordinates of the centre of the lower left cell of the DTM. The number of cells of the

discretized topography in the east and north directions is indicated by c (i.e., columns) and r (i.e., rows), respectively. The65

parameters (Ellc,Nllc), (cs · c,cs · r), cs, define the location, extension and resolution of the DTM, respectively.
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Figure 1. Discretization of the topography in ASCII format: (a) Global and local coordinate system; (b) Calculation of the surface normals

and mapping of the material points to their corresponding cell.

To project the simulation results on the topography, it is necessary to define a terrain orientation metric. The unit vector

normal to the topography (outward-pointing) is expressed as (see, Fischer et al., 2012):

ns =
(−∂EH,−∂NH,1)T

√
1 + (∂EH)2 + (∂NH)2

. (3)
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In the exporting code, the spatial gradients of the surface height are approximated using central difference at each grid point:70

∂EH(i, j)≈ H(i + 1, j)−H(i− 1, j)
2 · cs , (4a)

∂NH(i, j)≈ H(i, j− 1)−H(i, j + 1)
2 · cs . (4b)

2.3 Depth-averaging of MPM results

The results of the MPM simulation at a certain time te include particles (p) with their position Xp(te) = (Xp,Yp,Zp) and75

velocity Up(te) = (Up,Vp,Wp), expressed in the global coordinate system ENH . The algorithm initially finds the indexes

(im, jm) correspondent to the DTM’s cell Cm to which each particle p belongs (Fig. 1b):

im(te) = argmin
i∈Z∩[0,c−1]

∣∣∣∣
Xp(te)−Ellc− cs · i

cs

∣∣∣∣ , (5a)

jm(te) = argmin
j∈Z∩[0,r−1]

∣∣∣∣
−Yp(te) +Nllc + cs · (r− 1)− cs · j

cs

∣∣∣∣ . (5b)80

The code offers the possibility to export the depth-averaged results to a new digital model with a different cell size (cse) than

the original DTM’s cell size (cs). The indices (ie, je) for each cell Ce in the new model are thus computed using equations

similar to Eqs. 5a and 5b, but with cse.

2.3.1 Flow heights

Once the DTM’s cell Cm has been identified, the elevation Hp of the surface at the planar coordinate (Xp,Yp) is calculated85

imposing the coplanarity condition

nT
s (im, jm) · [Xp(te)−Es(im), Yp(te)−Ns(jm), Hp(te)−Hs(Es,Ns)]

T = 0. (6)

For each non-empty cell Ce, the maximum flow depth (distance to the topography Σ, Fig. 1c), projected normal to the

topography, can be found as

h(ie, je, te) = max
Xp(te)∈Ce

[(Zp(te)−Hp) ·nsH(im, jm)] , (7)90

where nsH is the component of the normal-to-topography unit vector in the vertical direction.

Similarly, the maximum flow thickness (elevation difference between highest and lowest flow particle, Fig. 1c), projected

normal to the topography, is calculated as

t(ie, je, te) =
[

max
Xp(te)∈Ce

Zp(te)− min
Xp(te)∈Ce

Zp(te)
]
·nsH(im, jm). (8)

In both Eqs. 7 and 8, we provisionally neglect the increase in flow height associated to the volume of the material points. The95

code also allows setting a percentile to get the flow depth and thickness from all heights and thickness values of all particles

within each cell, thus potentially excluding scattered particles.
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2.3.2 Flow velocities

The velocity Up of each particle p within a cell Ce is decomposed into the slope-normal and slope-parallel components (Fig.

1b):100

Upn(Xp, te) = [Up(Xp, te) ·ns(im, jm)]ns(im, jm), (9)

Upt(Xp, te) = Up(Xp, te)−Upn(Xp, te). (10)

The slope-normal and slope-parallel velocities can therefore be depth-integrated using (density-weighted) Favre-averaging:

Ũn(E,N,te) =
1

∫ h

0
ρ(E,N,z, te)dz

h∫

0

ρ(E,N,z, te)Un(E,N,z, te)dz, (11)105

Ũt(E,N,te) =
1

∫ h

0
ρ(E,N,z, te)dz

h∫

0

ρ(E,N,z, te)Ut(E,N,z, te)dz, (12)

where z is the coordinate normal to the topography and ρ is the flow bulk density. However, in the code, the integration is

not performed in the normal-to-topography direction, but vertically for all particles within a cell Ce. Although this is formally

not consistent with the definitions of the depth-averaged velocities of Eqs. 11 and 12, this calculation avoids inconsistencies110

on concave topographies (i.e., duplication of particles to multiple cells is avoided; see also the discussion in Hergarten, 2024,

p. 783) and carries substantial simplifications in coding. We therefore calculate the depth-averaged velocities by replacing dz

with the discrete particle volume Vp, and ρ with the particle density ρp:

Ũn(ie, je, te)≈
1∑

Xp(te)∈Ce
ρp(Xp, te)Vp(Xp, te)

∑

Xp(te)∈Ce

ρp(Xp, te)Upn(Xp, te)Vp(Xp, te)

=
1

np(te)

∑

Xp(te)∈Ce

Upn(Xp, te), (13)

115

Ũt(ie, je, te)≈
1∑

Xp(te)∈Ce
ρp(Xp, te)Vp(Xp, te)

∑

Xp(te)∈Ce

ρp(Xp, te)Upt(Xp, te)Vp(Xp, te)

=
1

np(te)

∑

Xp(te)∈Ce

Upt(Xp, te). (14)

Since the (solid) mass of each particle, ρpVp, is constant in MPM1, the expressions on the far right of Eqs. 13 and 14 are

derived, where np is the number of particles in each cell Ce. Notably, in this context, the Favre-averaged velocities correspond

1This assumption holds for the temporal evolution of a given particle’s mass (ρpVp = ρp0Vp0) and requires that the densities of various materials within

a certain cell Ce are the same. In this study, we simulate only a single material type (ice), and so the mass of the particles remains unchanged.
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to the cell-averaged velocities. In certain circumstances, however, the flow may dilate, which would lead to a reduction in

the flow bulk density ρ from its initial value ρp0—this change in bulk density is not always purely due to plastic volumetric120

deformation from the constitutive model (i.e., resulting in the particles’ density changing from ρp0 to ρp; see, also, Li et al.,

2021), but can also result from the formation of cracks and voids between granules of particles, as well as particles moving

apart while air gets mixed into the flow (even though air is not explicitly modeled). Therefore, it would become necessary to

replace ρpVp in Eqs. 13 and 14 with [ρp0Vp0 +ρa(V −Vp0)], where ρa is the air density and (V −Vp0) is the extra-air volume

ingested in the flow. Given that ρa is small and assuming limited flow dilation, we neglect the term ρa(V −Vp0).125

2.3.3 Choice of exporting parameters for GIS visualization

GIS results are exported with a specified cell size cse. Choosing an appropriate value for cse is crucial: If the cells are too

small, it may result in too many empty cells, especially in areas of the flow where the flow is dilated and particles are dispersed;

Conversely, if the cells are too large, it might overestimate the flow extent, especially in areas where the flow has compacted.

For an initial estimate, one can use the reference volume V around a particle as a surrogate for cell size:130

cse ≈ 3
√
V ≈ 3

√
ρp0Vp0

ρ
, (15)

where the extra-air mass has been neglected to obtain the far right side of the equation. As the flow bulk density ρ may not be

constant spatially and temporally (see discussion in Sec. 2.3.2), the choice of cse requires some compromise and may cause

the total flow mass (as derived from the exported flow height results) to be not conserved at all time steps. For instance, at

the initial time step, results may be exported with cse(t0)≈ 3
√
Vp0 = 3

√
gs3/ng . If, say, during the flow ρ becomes smaller135

than ρp0, results should ideally be exported with cse(te) > cse(t0). This becomes particularly difficult when results must be

exported not just at a specific time step, but also require the export of spatial distribution of the maximum value of a certain

depth-averaged variable F (any of Eqs. 7, 8, 13, 14) over all time steps (this forcedly requires selecting a constant cse):

Fmax(ie, je) = max
te=k·∆te, k=0,1,...,

tsim
∆te

F(ie, je, te), (16)

where tsim is the simulated flow duration and ∆te is the exported time step. Furthermore, to avoid spatial-loss of information140

of maximum values of the depth-averaged flow variables, ∆te should be chosen as

∆te ≈
cse

∥Ũ∥max

, (17)

where ∥Ũ∥max is the maximum (over time and space) depth-averaged speed projected in the EN plane.

3 Results and discussion

We first validate the exporting tool on a simplified case of a frictionless block moving on an inclined plane and then falling from145

a cliff (see Supplements). Subsequently, we simulate in MPM the ice avalanche that resulted from the collapse of a 150000 m3
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portion of the Whymper serac (Courmayeur, Italy) in 1998 (Fig. 2a). The results are exported using cse = 1 m (estimated from

Eq. 15) and ∆te = 0.2 s and visualized in Figs. 2b–g. Since the current version of the code is not parallelized, and consequently

considerably slow, we provisionally used a large time step ∆te, about 10 times greater than what suggested by Eq. 17.

The simulated deposit is shown in Fig. 2b (flow depth h, normal to the terrain) and the flow extent is shown in Fig. 2c150

(maximum depth-averaged slope-parallel flow speed). The runout and flow extent reasonably match the mapped extent of the

event. Nonetheless, the simulated left bank lobe of the avalanche stops approximately 300 m up-slope compared to the mapped

runout. Similarly, the right lobe of the simulated avalanche exhibits a shorter runout compared to the actual event. This reduced

simulated mobility may result from excessive material deposition in the crevasses (the real terrain DTM at the time of the ice

avalanche is unknown and could have had smaller crevasses than the DTM used for simulations) and not explicitly modeling155

the erodible glacier cover. Furthermore, we only made a few attempts to alter the parameters of the ice material in MPM (in

particular the residual friction and the basal frictions) without further optimization of the simulation results.

In this section, we briefly analyze the influence of complex terrain topography on flow behavior, which can be effectively

captured by the depth-averaged results, shown in Figs. 2d–i at te = 50 s. In regions with curved topographies and jumps (e.g.,

cliffs, crevasses), high values of the depth-averaged slope-normal speed (Fig. 2d) are calculated, whereas on more gentle terrain160

the ice flows approximately parallel to the terrain (Fig. 2e). Specifically, on convex topographies along the flow direction, the

ice flows in the out-of-slope direction (i.e., positive, blue values of nT
s · Ũn), while it flows toward the slope on concave

topographies along the flow direction (i.e., negative, red values of nT
s · Ũn). Figure 2h shows the calculated depth-averaged

velocities extracted along a linear profile of the glacier (the profile line is shown in Fig. 2d–g). A cliff is located between≈ 60 m

and≈ 80 m in the profile, causing the flow to separate from the topography (nT
s · Ũn > 0) at the jump and subsequently collide165

with the topography (nT
s ·Ũn < 0) upon landing. In areas where the curvature of the topography is smaller, the calculated slope-

normal component also appears to be smaller, or even mostly negligible compared to the slope-parallel velocity component.

The flow detachment from the topography is also evident by comparing the flow thickness (Fig. 2f) to the flow depth (Fig. 2g).

Figure 2i presents the comparison of these two parameters along the profile line: across the jump and upon landing (splash), the

flow depth significantly exceeds the flow thickness—signifying the flow’s detachment from the surface—whereas the values170

of t and h are similar when the flow sticks to the terrain. Unlike in depth-averaged models, the detachment from the terrain

in our 3D simulations allows to correctly capture that, while in airborne motion, the material does not experience basal flow

resistance. Similarly, when the flow impacts the terrain, the 3D MPM can effectively capture the predominant motion towards

the terrain, potentially leading to increased basal flow resistance, as well as compaction and/or dilation of the material. This

may lead to more precise dynamics compared to depth-averaged models, particularly on complex terrains that exhibit jumps175

and substantial curvature2.
2Depth-averaged models may also somehow mimic reduced/increased basal friction when flowing over convex/concave topographies, if centrifugal

curvature-induced effects—thus reducing/increasing the slope normal stress—are being implemented. Moreover, frictional parameters are, in some opera-

tional models (e.g., Bartelt et al., 2017), adjusted heuristically based on the curvature of the terrain.
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Figure 2. Depth-resolved MPM simulations and GIS visualization of exported depth-averaged results. (a) 3D visualization at t = 50 s of

the MPM simulation of the Whymper ice avalanche in 1998. (b) Exported final deposit. (c) Maximum depth-averaged slope-parallel speed

over all time steps. (d) Depth-averaged slope-normal velocity at te = 50 s. (e) Depth-averaged slope-parallel speed at te = 50 s. (f) Flow

thickness at te = 50 s. (g) Flow depth at te = 50 s. (h) Slope-normal and slope-parallel speeds at te = 50 s along a profile line. (i) Flow

thickness and depth at te = 50 s along a profile line (black line in d–g).
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4 Conclusion and outlook

In this study, we presented a methodology to transform 3D MPM simulation outputs into 2D rasterized formats that can be

visualized with GIS tools. This methodology entails the conversion of depth-resolved MPM variables into depth-averaged

variables. More specifically, we described the computation of flow height metrics, like flow depth and thickness, and flow180

velocity metrics, like Favre-averaged slope-normal and slope-parallel velocities. Thus, this approach facilitates harvesting

the benefits of 3D numerical methods (Li et al., 2021; Cicoira et al., 2022), including the simulation of geophysical flows

over complex topographies, terrain jumps, cavities, and interacting with mitigation structures, while enabling practitioners to

visualize the model results on GIS maps similar to traditional depth-averaged simulation outputs. Therefore, this tool represents

a step forward in using 3D MPM for hazard assessment and mapping of geophysical flows.185

The application of the depth-averaging tool to the simulation of an ice avalanche highlighted how complex terrain, like

with cliffs and crevasses, can significantly alter flow velocities, causing them to deviate from being parallel to the ground.

The computation of slope-normal velocities and the distinction of flow depth and flow thickness revealed that the material

might detach from the terrain during jumps and impact the terrain upon landing, potentially influencing flow dynamics through

dilation, compaction, and variations in internal and basal stresses. Additional research will be needed to study in detail the effect190

of complex topographical features on avalanche characteristics. Furthermore, we observed that crevasses along the flow path

could lead to significant deposition, further influencing subsequent flow dynamics. Thus, selecting an appropriate DTM appears

critical for simulating ice avalanches over glaciers: this needs to be further investigated in the future. Alternative constitutive

models for ice, such as incorporating rate dependency, will be required in future studies to achieve better agreement between

the simulated ice avalanche and the actual observed runout.195

The depth integration of 3D simulation results presented in this work will allow future comparison between 3D MPM

simulations and depth-averaged simulations (Wirbel et al., 2024) to verify the assumptions made in depth-averaged numerical

models, such as neglecting flow velocities normal to the terrain, assuming the flow sticking to the terrain, constant bulk flow

density, and uniform velocity profiles. Additional work is required to broaden the utility of our depth-averaging tool. In the

future, we plan to export density and velocity profiles along the flow depth direction. These data could be crucial for determining200

the pressure distribution of avalanches impacting obstacles. Such vertical information (e.g., Kyburz et al., 2024) may, for

example, be exported onto raster, to replace traditional empirical analytical models of impact pressure, which (typically) rely

solely on depth-averaged density and velocity. The tool could also be used to determine topography changes and erosion rates

when an erodible bed layer is explicitly modeled in MPM (e.g., Li et al., 2022).

Finally, a similar framework could be applied in the future to depth-average other 3D particle-based models’ results, like205

SPH and DEM. Su et al. (2024) recently proposed an algorithm to extract physical quantities from SPH simulations. In their

approach, flow particles quantities are assigned to the corresponding closest boundary particle, allowing for the extraction of

flow depth (measured perpendicular to the topography) and averaged velocities. Instead of exporting results on a 2D rasterized

grid format like ours, their results are saved on the boundary particles and visualized using ParaView software. Moreover,

in contrast to the mesh-free SPH method, MPM solves momentum conservation on a background Eulerian grid. Thus, an210
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alternative approach could rely on the direct extraction of physical quantities from the MPM code, straightforwardly utilizing

the transferred velocities and masses at the grid nodes—thus eliminating the need for a separate export tool.

Code availability. The simulations were performed using the MPM code of Gaume et al. (2018). The MPM simulation results were first

opened and visualized in the software Houdini. The depth-averaging code was implemented as a Python node within Houdini. In the Sup-

plements, we provide the depth-averaging code.215
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