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Supplement S1: Alternative analytical form of hypergeometric functions for EBM rheology

This supplement describes a simple procedure to be implemented for the hypergeometric function, T =5 Fi[1,1+ «;2+
a; z]; 2 = —s7y, 1, for the extended Burgers Material model with 0 < o < 1 without requiring a function call to software for the
general case of the hypergeometric function. The main purpose of avoiding such a function call is to gain some computational
efficiency by tailoring the replacement to the detailed requirements of the EBM/GIA ensemble for Bayesian analysis. While
past experience suggests that the a-dependency is weak, further testing is required. A method relied upon here is to employ
Mathematica software.

For example, Mathematica returns the specific case of a = %:

3(—z 4+ V2ArcTany/z)
5 .

z

w

5
2F1[1,—;§§Z] =

(S11)

We remind the reader that all actions on the variable, z, for transcendental equations assume complex computation, and
similarly for the hypergeometric function. There are no straightforward simplifications for o F offered by Mathematica 13.1,
or earlier versions. Furthermore no useful reductions may be derived from Abramowitz and Stegun (1970) in any obvious way.
The functions 5 F [a, b; ¢; 2] may be recovered from the following definition

I'(c) i T(a+pT(b+p) 2*

o Fila,bie;z] = T(a)L(b) I'(c+p) p

(S12)

p=0
where I" represents the Gamma function, p is an integer and the mark ! indicating factorial. However, the functions are also a

special solution of the equation:

2
z(l—z)%+[C—(a+b+1)z]%—abl‘ = 0. (S13)

This equation is sometimes called Gauss’ differential equation. Solutions have three regular points [e.g.,Wylie 1966, p. 653,
Mathews and Walker 1970, p. 187]; z = 0,1, 00. The solution 2 F [a, b; ¢; z] behaves as a constant near z = 0. If this constant is
equal to unity, we formally arrive at the hypergeometric function o Fj.

We may treat v as a ratio of two integers, m and n where m < n, and both n and m are positive. In our case a =1,
b= (n+m)/n and ¢ = (2n+m)/n. There is no advantage to this substitution other than it provides a way to solve special
cases of the one point boundary value problem
nz(l—z)il;%+[2n+m—(3n+m)z]%—(n+m)'f = 0, (S14)

with the condition
T(0) = 1. (S15)

For example, whenm = 1,n = 4 (o = ;11), then the solution for Y (2) is

5
T(z) = b ~{2z% - ArcTan[z%] - ArcTanh[z%]}. (S16)
z1
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Possibly a more illustrative example is whenm = 1,n = 3 (o = %). A more complicated expression is generated. The solution
is
2 T
T(z) = {( (V3 - 61)m + 3(62J — 2\/—ArcTan[ Al
923 V3

where ¢ is the imaginary unit v/—1. Clearly, complex arithmetic should be fully implemented when using the simplifications

| +2n[z3 — 1] — In[z5 + 2% +1])} (S17)

owing to a Gauss’ differential equation solution method for generating the special cases that arise in the power law distribution
function of EBM theory. Figure S1 shows a comparison of the two methods, one which we term ’exact’ is obtained in a
function call in Mathematica computing language and the Gauss’ differential equation method for the case a = % Some of the
expressions generated by this method are more complicated than in our two examples, but these will always be more efficient
than general call to functions generating o F1[1,1+ a;2+ «; —7;s/7ar]. This is especially important due to the necessity of
inverting the Laplace transforms numerically in order to generate time-dependent GIA solutions.

While transcendental equations and hypergeometric functions assume complex argument, computation of the imaginary

parts reveal they are numerically near zero. EBM cases for a = %, for example, reveal the following results using the Gauss

method;
T(—10001.0) = 0.000377533 + 1.6263 x 10~ %, (S18)
T(—.0001) = 0.999943 — 2.63911 x 10~ 14, (S19)

with the default precision in Mathematica on a MacBook Pro with Apple M1 Max chip.

In addition to the cases of « at values + 1 5, as discussed here, we also give three additional solutions using the Gauss

3 2
differential equation method. Case o = % has the solution

9 +z
T(z = —— + V2(7 + 2 ArcCoth
@) = -2+ v Ser))
1 1 V225
4 (ArcTan[z3] + ArcTanh[z%]) + 2\/§ArCT8th[1 -1} (S110)
+z8
Case o = % has the solution
1 2 14223
T(z = - _ (V3 —6i)7 4+ 923 + ArcTan
() = (V30 g
+3(2In[—1 + 23] — In[1 + 23 + 25)))}, (S111)
and case a = 3, the solution;
7 :
T(z) = —— -{222 —|—3(ArcTan[z%] ArcTanh|z %])} (S112)

621
It is also possible to pursue an examination of the case of a = 0 by taking the limit of the a-dependent part of Equation (19)

of Ivins et al [2022]. This leads to a form that contains the sum on the low and high cutoff times (77, and 7)) of Ei[—t/7;]
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Figure S1. A comparison of the hypergeometric function computation options required of EBM/GIA.

with sum on the two cutoff times, 7;. To complete this solution for o = 0, then requires convolving the load function with
785 this exponential integral function, E'i[—t/7;], a task we can leave to the reader. It is noted that laboratory torsion experimental

values of « are all larger than %.
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