
Supplement S1: Alternative analytical form of hypergeometric functions for EBM rheology

This supplement describes a simple procedure to be implemented for the hypergeometric function, Υ=2 F1[1,1+;2+

;z]; z =−sτH,L for the extended Burgers Material model with 0< < 1without requiring a function call to software for the730

general case of the hypergeometric function. The main purpose of avoiding such a function call is to gain some computational

efciency by tailoring the replacement to the detailed requirements of the EBM/GIA ensemble for Bayesian analysis. While

past experience suggests that the -dependency is weak, further testing is required. A method relied upon here is to employ

Mathematica software.

For example, Mathematica returns the specic case of  = 1
2 :735
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We remind the reader that all actions on the variable, z, for transcendental equations assume complex computation, and

similarly for the hypergeometric function. There are no straightforward simplications for 2F1 offered by Mathematica 13.1,

or earlier versions. Furthermore no useful reductions may be derived from Abramowitz and Stegun (1970) in any obvious way.

The functions 2F1[a,b;c;z] may be recovered from the following denition740

2F1[a,b;c;z] ≡ Γ(c)
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where Γ represents the Gamma function, p is an integer and the mark ! indicating factorial. However, the functions are also a

special solution of the equation:
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This equation is sometimes called Gauss’ differential equation. Solutions have three regular points [e.g.,Wylie 1966, p. 653,745

Mathews and Walker 1970, p. 187]; z = 0,1,∞. The solution 2F1[a,b;c;z] behaves as a constant near z = 0. If this constant is

equal to unity, we formally arrive at the hypergeometric function 2F1.

We may treat  as a ratio of two integers, m and n where m< n, and both n and m are positive. In our case a= 1,

b= (n+m)n and c= (2n+m)n. There is no advantage to this substitution other than it provides a way to solve special

cases of the one point boundary value problem750
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with the condition

Υ(0) = 1 (S15)

For example, when m = 1, n = 4 (= 1
4 ), then the solution for Υ(z) is
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Possibly a more illustrative example is whenm = 1, n = 3 (= 1
3 ). A more complicated expression is generated. The solution

is
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where i is the imaginary unit
√
−1. Clearly, complex arithmetic should be fully implemented when using the simplications

owing to a Gauss’ differential equation solution method for generating the special cases that arise in the power law distribution760

function of EBM theory. Figure S1 shows a comparison of the two methods, one which we term ’exact’ is obtained in a

function call in Mathematica computing language and the Gauss’ differential equation method for the case = 1
3 . Some of the

expressions generated by this method are more complicated than in our two examples, but these will always be more efcient

than general call to functions generating 2F1[1,1+;2+;−τjsτM ]. This is especially important due to the necessity of

inverting the Laplace transforms numerically in order to generate time-dependent GIA solutions.765

While transcendental equations and hypergeometric functions assume complex argument, computation of the imaginary

parts reveal they are numerically near zero. EBM cases for = 1
3 , for example, reveal the following results using the Gauss

method;

Υ(−100010) = 0000377533 + 16263× 10−19i, (S18)

770

Υ(−0001) = 0999943 − 263911× 10−11i, (S19)

with the default precision in Mathematica on a MacBook Pro with Apple M1 Max chip.

In addition to the cases of  at values 1
4 ,

1
3 ,

1
2 , as discussed here, we also give three additional solutions using the Gauss

differential equation method. Case = 1
8 has the solution
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Case = 2
3 has the solution
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and case = 3
4 , the solution;780
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It is also possible to pursue an examination of the case of  = 0 by taking the limit of the -dependent part of Equation (19)

of Ivins et al [2022]. This leads to a form that contains the sum on the low and high cutoff times (τL and τH) of Ei[−tτj ]
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Figure S1. A comparison of the hypergeometric function computation options required of EBM/GIA.

with sum on the two cutoff times, τj . To complete this solution for  = 0, then requires convolving the load function with

this exponential integral function, Ei[−tτj ], a task we can leave to the reader. It is noted that laboratory torsion experimental785

values of  are all larger than 1
8 .
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