

Supplement S1: Alternative analytical form of hypergeometric functions for EBM rheology

This supplement describes a simple procedure to be implemented for the hypergeometric function, $\Upsilon = {}_2F_1[1, 1 + \alpha; 2 + \alpha; z]$; $z = -s\tau_{H,L}$ for the extended Burgers Material model with $0 < \alpha < 1$ without requiring a function call to software for the general case of the hypergeometric function. The main purpose of avoiding such a function call is to gain some computational efficiency by tailoring the replacement to the detailed requirements of the EBM/GIA ensemble for Bayesian analysis. While past experience suggests that the α -dependency is weak, further testing is required. A method relied upon here is to employ Mathematica software.

735 For example, Mathematica returns the specific case of $\alpha = \frac{1}{2}$:

$${}_2F_1[1, \frac{3}{2}; \frac{5}{2}; z] = \frac{3(-z + \sqrt{2}\text{ArcTan}\sqrt{z})}{z^2}. \quad (\text{S11})$$

We remind the reader that all actions on the variable, z , for transcendental equations assume complex computation, and similarly for the hypergeometric function. There are no straightforward simplifications for ${}_2F_1$ offered by Mathematica 13.1, or earlier versions. Furthermore no useful reductions may be derived from Abramowitz and Stegun (1970) in any obvious way.

740 The functions ${}_2F_1[a, b; c; z]$ may be recovered from the following definition

$${}_2F_1[a, b; c; z] \equiv \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{p=0}^{\infty} \frac{\Gamma(a+p)\Gamma(b+p)}{\Gamma(c+p)} \frac{z^p}{p!}. \quad (\text{S12})$$

where Γ represents the Gamma function, p is an integer and the mark ! indicating factorial. However, the functions are also a special solution of the equation:

$$z(1-z) \frac{d^2\Upsilon}{d^2z} + [c - (a + b + 1)z] \frac{d\Upsilon}{dz} - ab\Upsilon = 0. \quad (\text{S13})$$

745 This equation is sometimes called Gauss' differential equation. Solutions have three regular points [e.g., Wylie 1966, p. 653, Mathews and Walker 1970, p. 187]; $z = 0, 1, \infty$. The solution ${}_2F_1[a, b; c; z]$ behaves as a constant near $z = 0$. If this constant is equal to unity, we formally arrive at the hypergeometric function ${}_2F_1$.

We may treat α as a ratio of two integers, m and n where $m < n$, and both n and m are positive. In our case $a = 1$, $b = (n+m)/n$ and $c = (2n+m)/n$. There is no advantage to this substitution other than it provides a way to solve special 750 cases of the one point boundary value problem

$$nz(1-z) \frac{d^2\Upsilon}{d^2z} + [2n + m - (3n + m)z] \frac{d\Upsilon}{dz} - (n + m)\Upsilon = 0, \quad (\text{S14})$$

with the condition

$$\Upsilon(0) = 1. \quad (\text{S15})$$

For example, when $m = 1$, $n = 4$ ($\alpha = \frac{1}{4}$), then the solution for $\Upsilon(z)$ is

$$755 \quad \Upsilon(z) = -\frac{5}{2z^{\frac{5}{4}}} \cdot \{2z^{\frac{1}{4}} - \text{ArcTan}[z^{\frac{1}{4}}] - \text{ArcTanh}[z^{\frac{1}{4}}]\}. \quad (\text{S16})$$

Possibly a more illustrative example is when $m = 1, n = 3$ ($\alpha = \frac{1}{3}$). A more complicated expression is generated. The solution is

$$\Upsilon(z) = -\frac{2}{9z^{\frac{4}{3}}} \cdot \{(\sqrt{3} - 6i)\pi + 3(6z^{\frac{1}{3}} - 2\sqrt{3}\text{ArcTan}[\frac{2z^{\frac{1}{3}} + 1}{\sqrt{3}}] + 2\ln[z^{\frac{1}{3}} - 1] - \ln[z^{\frac{1}{3}} + z^{\frac{2}{3}} + 1])\} \quad (\text{S17})$$

where i is the imaginary unit $\sqrt{-1}$. Clearly, complex arithmetic should be fully implemented when using the simplifications owing to a Gauss' differential equation solution method for generating the special cases that arise in the power law distribution function of EBM theory. Figure S1 shows a comparison of the two methods, one which we term 'exact' is obtained in a function call in Mathematica computing language and the Gauss' differential equation method for the case $\alpha = \frac{1}{3}$. Some of the expressions generated by this method are more complicated than in our two examples, but these will always be more efficient than general call to functions generating ${}_2F_1[1, 1 + \alpha; 2 + \alpha; -\tau_j s/\tau_M]$. This is especially important due to the necessity of inverting the Laplace transforms numerically in order to generate time-dependent GIA solutions.

While transcendental equations and hypergeometric functions assume complex argument, computation of the imaginary parts reveal they are numerically near zero. EBM cases for $\alpha = \frac{1}{3}$, for example, reveal the following results using the Gauss method;

$$\Upsilon(-10001.0) = 0.000377533 + 1.6263 \times 10^{-19}i, \quad (\text{S18})$$

770

$$\Upsilon(-.0001) = 0.999943 - 2.63911 \times 10^{-11}i, \quad (\text{S19})$$

with the default precision in Mathematica on a MacBook Pro with Apple M1 Max chip.

In addition to the cases of α at values $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$, as discussed here, we also give three additional solutions using the Gauss differential equation method. Case $\alpha = \frac{1}{8}$ has the solution

$$\begin{aligned} 775 \quad \Upsilon(z) = & -\frac{9}{z} + \frac{9}{16z^{\frac{9}{8}}} \{ \sqrt{2}(\pi + 2\text{ArcCoth}[\frac{1+z^{\frac{1}{4}}}{\sqrt{2}z^{\frac{1}{8}}}]) \\ & + 4(\text{ArcTan}[z^{\frac{1}{8}}] + \text{ArcTanh}[z^{\frac{1}{8}}]) + 2\sqrt{2}\text{ArcTanh}[\frac{\sqrt{2}z^{\frac{1}{8}}}{1+z^{\frac{1}{8}}}] \}. \end{aligned} \quad (\text{S110})$$

Case $\alpha = \frac{2}{3}$ has the solution

$$\begin{aligned} \Upsilon(z) = & -\frac{1}{18z^{\frac{5}{3}}} \cdot \{(\sqrt{3} - 6i)\pi + 9z^{\frac{2}{3}} + \text{ArcTan}[\frac{1+2z^{\frac{1}{3}}}{\sqrt{3}}] \\ & + 3(2\ln[-1+z^{\frac{1}{3}}] - \ln[1+z^{\frac{1}{3}}+z^{\frac{2}{3}}])\}, \end{aligned} \quad (\text{S111})$$

780 and case $\alpha = \frac{3}{4}$, the solution;

$$\Upsilon(z) = -\frac{7}{6z^{\frac{7}{4}}} \cdot \{2z^{\frac{3}{4}} + 3(\text{ArcTan}[z^{\frac{1}{4}}] - \text{ArcTanh}[z^{\frac{1}{4}}])\}. \quad (\text{S112})$$

It is also possible to pursue an examination of the case of $\alpha = 0$ by taking the limit of the α -dependent part of Equation (19) of Ivins et al [2022]. This leads to a form that contains the sum on the low and high cutoff times (τ_L and τ_H) of $Ei[-t/\tau_j]$

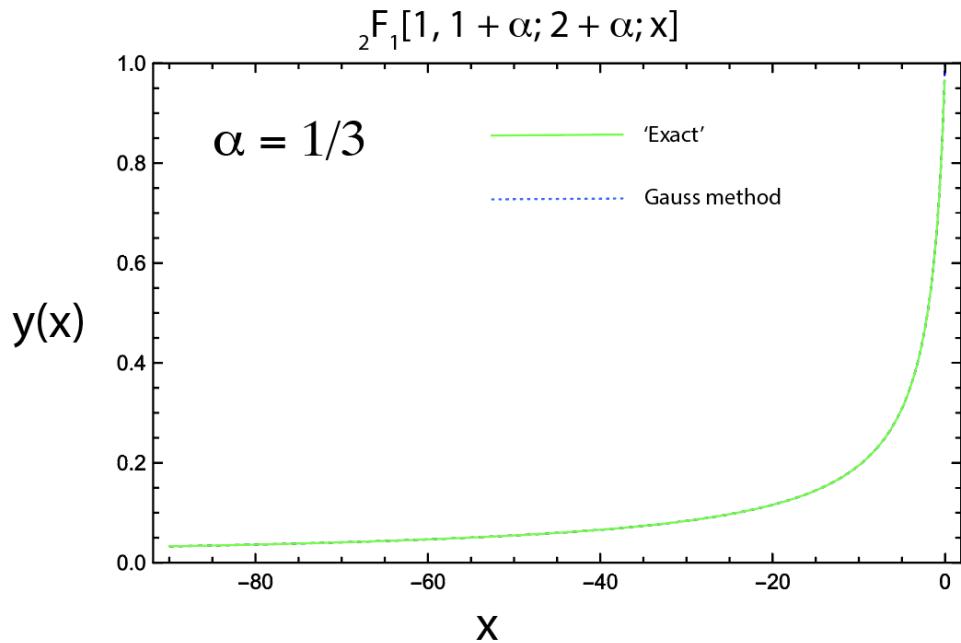


Figure S1. A comparison of the hypergeometric function computation options required of EBM/GIA.

with sum on the two cutoff times, τ_j . To complete this solution for $\alpha = 0$, then requires convolving the load function with
 785 this exponential integral function, $Ei[-t/\tau_j]$, a task we can leave to the reader. It is noted that laboratory torsion experimental
 values of α are all larger than $\frac{1}{8}$.