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Abstract.

Ice velocity is a crucial observation as it controls glacier mass redistribution and future geometry. While glacier annual

velocities are now available in open-source worldwide, sub-annual velocity time series are still highly uncertain and available

at heterogeneous temporal resolutions. This hinders our ability to understand flow processes, such as basal sliding or surges,

and integration of these observations in numerical models. We introduce an open source and operational Python package called5

TICOI (Temporal Inversion using Combination of Observations and Interpolation). TICOI fuses multi-temporal and multi-

sensor image-pair velocities produced by different processing chains, using the temporal closure principle. In this article, we

provide extensive examples of TICOI application on the ITS_LIVE dataset and in-house velocity products. The results are

validated using GNSS data collected on three glaciers with different dynamics in Yukon and western Greenland, including a

surging glacier. Comparison with GNSS observations demonstrates a reduction in error by up to 50% in comparison with the10

raw image-pair velocities and other post-processing methods. This increase in performance comes from the development of

methodological strategies to enhance TICOI’s robustness to temporal decorrelation and abrupt non-linear changes. TICOI also

proves to be able to retrieve monthly velocity when only annual image-pair velocities are available. This package opens the

door to the regularization of various datasets, enabling the creation of standardized sub-annual velocity products.

1 Introduction

Glacier surface velocity monitoring is key to understand how glaciers are changing in a warming climate. Global glacier

thinning (Hugonnet et al., 2021) is expected to lead to large changes in ice flow, which in turns affect mass redistribution and

glacier geometry (Dehecq et al., 2019). Documenting ice velocity and changes in ice velocity is thus important to understand
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the future evolution of glaciers. Regional to global mapping of glacier surface velocity from remote sensing helped to constrain20

estimates of glacier thickness (Millan et al., 2022) and ice fluxes into the ocean (Gardner et al., 2018; Mouginot et al., 2019;

Kochtitzky et al., 2022), which led to reductions on present and future glacier contribution to sea level rise.

While these applications rely on multi-annual velocity averages, many glacier processes should be studied at sub-annual

scales, in particular to study calving events (Provost et al., 2024; Riel et al., 2021), glacier response to lake drainage (Maier

et al., 2023; Main et al., 2023; Wendleder et al., 2023), surface runoff (Wendleder et al., 2023), changes in the efficiency of25

subglacial hydrological networks (Nanni et al., 2023; Maier et al., 2023) or glacier surges (Copland et al., 2011; Quincey

et al., 2015; Beaud et al., 2021). Additionally, many recent methodological and modelling developments stress the need for

precise and temporally resolved velocity products to infer basal conditions (Jay-Allemand et al., 2011; Goldberg et al., 2015)

or near-future projection (Choi et al., 2023), for example using transient inverse methods (Goldberg et al., 2015; Choi et al.,

2023).30

So called image-pair velocities are derived by calculating the displacement of features between two images. Recent improve-

ments in satellite image quality and resolution, with the launch of Landsat-8 in 2013, Sentinel-1 in 2014 and Sentinel-2 in 2015,

amongst others, have made it possible to derive image-pair velocities, with an enhanced signal-to-noise ratio at a relative high

frequency (5 to 16 days at the best). Despite the recent increase in available velocity datasets, post-processed time series of

sub-annual glacier velocities, sampled on fixed time intervals, are not yet available at a global scale. Only individual image-pair35

velocities have been released, such as those from the ITS_LIVE project, which provides velocities derived from correlating

Landsat-4,5,6,7,8, and Sentinel-1,2 image pairs, separated by temporal baselines of 5 to 400 days. These products remain noisy

and sparse, especially over mountain glaciers. Moreover, image-pair velocities are difficult to interpret because they contain

velocities measured using image pairs from different satellites, with different temporal baselines. For these reasons, many

research teams processed their own image-pair velocities instead of using existing datasets (Yang et al., 2022; Nanni et al.,40

2023; Wallis et al., 2023; Derkacheva et al., 2020; Halas et al., 2023; Provost et al., 2024; Beaud et al., 2021), to reach a better

signal-to-noise ratio and improve interpretability. However, this requires high computational and storage resources, and often

suffers from a lack of reproducibility. For the same reason, image-pair velocities with variable dates are difficult to include into

models, whereas seasonal velocity could aid in retrieving basal conditions (Derkacheva et al., 2021) or ice rheology properties

(Bolibar et al., 2023). This calls for a standardized framework dedicated to the processing of available image-pair velocity45

products to produce consistent sub-annual time series of glacier velocity.

Several methods have been proposed to produce velocity time-series: cubic spline or LOWESS regression (Derkacheva

et al., 2020), regression using a dictionary of B-splines (Riel et al., 2021), sinusoidal regression (Greene et al., 2020), Bayesian

recursive smoother (Wallis et al., 2023) or temporal closure (Altena et al., 2019; Charrier et al., 2022b). However, most of

these methods use only a subset of the available data, such as velocities quantified using small temporal baselines (<100 days)50

(Derkacheva et al., 2020; Riel et al., 2021; Nanni et al., 2023; Wallis et al., 2023), or use strong assumptions about glacier

behavior, such as sinusoidal variations in seasonal motion (Greene et al., 2020). Moreover, even though efforts have been

undertaken to compare some of the image correlation algorithms (Zheng et al., 2023; Heid and Kääb, 2012; Jawak et al.,
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2018), no study has tried to fuse datasets produced by different research teams to obtain sub-annual time-series. Finally, few

of these methods are open-source.55

The objective of this study is to propose an open-source and operational package able to fuse image-pair velocities computed

using different satellite images, with different temporal baselines, and possibly using different processing chains, in order to

obtain regularized (i.e., sampled at regular time steps) velocity time-series with an associated quality indicator. To do this,

we rely on a method based on the temporal closure of the displacement network, also known as a Small BAseline Subset

(SBAS)-like approach, which originated from the Interferometric Synthetic Aperture Radar (InSAR) community (Berardino60

et al., 2002; Doin et al., 2011). These approaches have previously been adapted and applied to glaciers to retrieve 2D or

3D velocity time-series (Charrier et al., 2022b, a; Guo et al., 2020; Samsonov et al., 2021), but have not been applied in an

operational framework because: 1) they remain sensitive to temporal decorrelation (i.e., very low velocity values which can

be measured when strong surface changes occur, or near the margins of the moving object. This phenomenon is especially

visible when the temporal baseline is large and/or when the velocity is low.); 2) they often include a regularization term which65

assumes acceleration to be zero in time (which is not true for surging glaciers or glaciers with a strong seasonality pattern), or

a pre-defined mathematical model (i.e. a periodical model) which requires a priori knowledge on the glacier dynamic; 3) they

have never been evaluated against global navigation satellite system (GNSS) data; and 4) computational costs are high.

To overcome these issues, we present a new method called Temporal Inversion using Combination of Observations and

Interpolation (TICOI) to derive regularized glacer velocity time series. First, we detail our methodological strategy to increase70

the robustness of previous developments against temporal decorrelation and abrupt non-linear changes. We also propose three

criteria to evaluate the quality of our results, including an error propagation, that is based on a robust theoretical framework.

Then, we validate this new approach against seven GNSS (Global Navigation Satellite System) stations located on three differ-

ent glaciers, including one with an active surge phase, and two others showing seasonal variations. We carry out a sensitivity

analysis, and illustrate our results along glacier center flowlines. Then, we discuss the interest of fusing datasets originating75

from different processing chains and the possibility to retrieve sub-annual velocity time-series from annual image-pair veloci-

ties only. Finally, we discuss the potential application of TICOI at a regional and global scale.

2 Method

In this section, we describe the TICOI workflow (Fig. 1). The first part builds on previous developments (Charrier et al.,

2022b, a), the second part presents methodological strategies to improve the computational performance and robustness of80

the method to abrupt non- linear changes in surface velocities and temporal decorrelation. The aim is to provide a robust

post-processing package that does not require a priori knowledge of the ice flow behavior.
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2.1 Previous developments

2.1.1 Temporal closure’s principle

The temporal inversion is based on the temporal closure of the displacement measurement network (Berardino et al., 2002).85

Temporal closure links n measured displacements in Y to p estimated displacements in X (Fig. 1), by a system of linear

equations. This system of linear equations can also be written as AX = Y , with A the design matrix linking X to Y . To

understand the structure of A, let’s take an example with three displacements represented in Figure 1. Assuming that the

displacement is cumulative in time, it can be written that:




dt0,t6 = d̂t0,t4 + d̂t4,t5 + d̂t5,t6

dt0,t4 = d̂t0,t4

dt4,t6 = d̂t4,t5 + d̂t5,t6

(1)90

with dti,tj a measured displacement between dates ti and tj , and d̂tk,tl
a displacement estimated between dates tk and tl.

This is equivalent to AX = Y , which is in this example:




1 1 1

1 0 0

0 1 1







d̂t0,t4

d̂t4,t5

d̂t5,t6


 =




dt0,t6

dt0,t4

dt4,t6


 (2)

It is important here to highlight the temporal redundancy between the measured displacements dt0,t6 , dt0,t4 and dt4,t6 . The

estimated displacement d̂t0,t4 can be obtained from these three displacements. This is the main interest of using temporal95

inversion: reducing the noise by using the redundancy between displacement measurements computed with different temporal

baselines. Note that X contains either the East/West displacements or the North/South displacements.

2.1.2 Inversion of the system

Most of the time, the system AX = Y is ill-posed, i.e. rank(A)< p (the number of linearly independent rows of the matrix A

is lower than the number of estimations p), and the system has an infinite number of solutions. To overcome this problem, the100

system can be solved either with a Singular Value Decomposition (SVD) (Berardino et al., 2002), a Least Square (LS) approach

(Bontemps et al., 2018; Doin et al., 2011; Samsonov and d’Oreye, 2017; Charrier et al., 2022b) or a L1-norm solution (Lauknes

et al., 2010). The L1-norm is more robust to outliers, but computationally expensive, as it requires computing the absolute of the

residuals, which is not a differentiable piece-wise function. The SVD solution is equivalent to the minimum-norm LS solution

(i.e. it tends to minimize the norm of X) (Berardino et al., 2002). In order to have a more flexible regularization strategy, we105

use a Weighted Least Square (WLS) approach. The cost function is:

argmin(||W (AX −Y )||2 +λ||Γ(X −X0)||2) (3)

4
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Figure 1. TICOI workflow. In this example, displacements have been measured using images from satellites 1 and 2, which have a repeat

cycle of 2 and 5 days, respectively. Outliers have been removed in the displacement dataset, for example from areas impacted by clouds

(shown in yellow on the image subsets). The TICOI workflow is applied pixelwise (in this example on the pixel P ). First, the system

AX = Y is inverted to obtain an irregular time series [section 2.1.2]. Second, the time series is interpolated to obtain a regular time series

with a homogeneous and optimal temporal sampling [section 2.1.3]. Note that the temporal sampling of the final time-series τ can be chosen

by the end-user.

where W is a n× p matrix standing for the weight given to each value in Y , λ is a scaling constant and Γ is a p× p matrix

representing the regularization matrix, and X0 is first guess solution detailed in section 2.2.2.

Different regularization matrix Γ and weights W can be used. The choice of Γ will be discussed in section 2.2.2. As for the110

weights, W could be equal to the identity (Berardino et al., 2002), in which case the WLS solution is equivalent to an Ordinary

Least Square. But this ignores the heteroscedasticity of the measurements (i.e. the fact that they have unequal variances).

Therefore, it is common to use a priori knowledge of the data quality, for example the InSAR coherence (Yunjun et al., 2019),

the shape of the similarity map used in image correlation (Bontemps et al., 2018), errors computed over stable areas, the cosine

of the angle between each displacement vector and the spatio-temporal median, or the modified zscore (Charrier et al., 2022a).115

However, these metrics do not always accurately represent the errors of the measurements. Another complementary strategy is

to use the inverse of the residuals (Bontemps et al., 2018; Liang et al., 2020), which can be expressed as the vector of dimension

n:

5
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R=AX̂ −Y (4)

In the TICOI workflow, the weights can be a combination of a priori knowledge of the data quality and residuals. To be120

more robust to outliers, we use an Iterative Re-weighted Least Square (IRLS) approach, i.e. we update the weights iteratively

using the residuals from the previous inversion.

In the first iteration of the inversion, if the data quality is known, the diagonal elements of the weights, W0, corresponds to

the errors scaled between 0 and 1.

In the second iteration, and all following iterations, each diagonal element of the weighted matrix, at the position m,m and125

iteration u is updated as:

Wu
m,m = ψ (Zu

m, c) (5)

In this equation, Z is a standardized residual vector of dimension n computed as:

Z =
R

NMAD(R)
(6)

with NMAD being the Normalized Median Absolute Deviation of the residuals, equal to 1.483MAD.130

ψ is the Tukey’s biweight function, which is a common down-weight function (Liang et al., 2020) robust to large outliers,

defined as:

ψ(Zu
m, c) =





[1− (Zu
m/c)

2]2, |Zu
m|< c

0, |Zu
m|> c

(7)

where c is a tuning constant which is usually set to 4.685, producing 95% efficiency for a normal distribution (Huber, 1992).

The iterations stop when (mean(|X̂u− X̂u−1|)< δ or (u > 10)) where X̂u corresponds to the results of a given iteration u135

and X̂u−1 the results of the previous one. δ is set to 0.1 m.

2.1.3 Interpolation of the irregular time series

The inversion results in an irregular displacement time series, i.e. the vector X contains displacement between each measured

dates (all dates with an image acquisition minus dates rejected by outlier removal) (Fig. 1). However, irregular time series are

not always relevant (Charrier et al., 2022a). To study variations of fast moving objects such as glaciers we are interested in140

velocity time series (Derkacheva et al., 2020; Greene et al., 2020), more than cumulative displacement time series (Lacroix

et al., 2019; Doin et al., 2011). When looking at velocities, it is necessary to compare velocities with the same temporal

sampling (Charrier et al., 2022a) for three main reasons: 1) velocities with different temporal sampling are not comparable

6
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because they correspond to the integral of the instantaneous velocity; 2) velocities with very short temporal sampling can be

very noisy because noise decreases with increasing temporal sampling; and 3) the dates between which the displacements are145

inverted can be different from one pixel to another because of outliers removal.

To overcome this problem, some studies have proposed to use fractions of displacements inside the network (Samsonov

et al., 2021). However, this assumes the velocity to be constant over the corresponding temporal sampling, which is wrong

for long temporal windows due to seasonal variations or glacier surges (Charrier et al., 2022c). Therefore, we propose to:

1) compute the cumulative displacement time series by summation of the irregular time series; 2) interpolate this cumulative150

displacement time series (here using a cubic spline); and 3) obtain a regular time series with a given temporal sampling, using

a discrete derivative. See Charrier et al. (2022a) for more details.

The resulting time series has a constant temporal sampling, for example 4 days in Figure 1. The larger the temporal sampling,

the smoother the time series, i.e. the signal-to-noise ratio increases, but the temporal resolution decreases. By analyzing the

Root Mean Square Error (RMSE) over stable areas, we have shown that the RMSE according to the temporal sampling has155

an asymptotic behavior which converges after around 30 days for glaciers with medium average velocity (∼100 to 200 m

yr−1) (Charrier et al., 2022a, b).

2.2 Improved robustness and computational performance

The approach presented above performs poorly in some extreme cases, such as temporal decorrelation or abrupt non-linear

changes with few image-pair velocities. Below, we show improvements to the method that overcome these challenges.160

2.2.1 Robustness to temporal decorrelation

Using a LS approach to solve AX = Y assumes the errors of Y to be normally distributed. However, this assumption is not

always true in a real case scenario (Fig. A1). Robust LS regression, like IRLS using Tukey’s bi-weight function, helps to reduce

the effect of outliers in case of random errors (Liang et al., 2020; Charrier et al., 2022b). Still, errors can also be systematic,

especially when temporal decorrelation occurs: the displacements tend to be lower than expected and the distribution of errors165

will be heavy-tailed, with a strong kurtosis (Fig. A1). To overcome this problem, we propose to carry on a first LS with

small temporal baselines only (lower than 180 days), to automatically detect temporal decorrelation. We compute the residual

between each observation (with short and long temporal baselines), to this first small baseline LS solution. Displacements

impacted by temporal decorrelation have large residuals, because they do not satisfy temporal closure.

2.2.2 New regularization term robust to abrupt non-linear changes170

A crucial choice is the regularization matrix (Γ in Eq. 3). The most common regularization matrix is the first order Tikhonov

regularization, which assumes the acceleration to be null in time (Bontemps et al., 2018; Charrier et al., 2022b; Lacroix et al.,

2019; Samsonov et al., 2021). For this regularization, Γ corresponds to a first order derivative operator. The diagonal elements

of Γ in Eq. 1 are: Γk,k = 1/∆τ and the element above the diagonal will be Γk,k+1 =−1/∆τ with ∆τ the temporal sampling

7
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of time series. When using the Tikhonov regularization, X0 is a vector filled with 0 in the cost function shown in Eq. 3. In175

other words, this strategy minimizes the difference between adjacent estimated velocities, i.e. the acceleration. However, the

assumption of an acceleration close to 0 is not always affordable, especially when abrupt non-linear changes occur (e.g., for

surge-type glaciers, or those with strong spring speedups). López-Quiroz et al. (2009) and Pepe et al. (2016) proposed to use a

model-based regularization, but it also requires a priori knowledge of the displacement behavior.

Therefore, we propose a new regularization strategy. We constrain the acceleration of the estimated time-series, X , with180

the acceleration of an initial guess, X0. In the regularization term ||Γ(X −X0)||2) from Eq. 3, Γ is identical to the Tikhonov

regularization matrix but X0 is not null anymore. The latest is estimated from the spatio-temporal smoothing of linearly

interpolated measurements, to ensure that X0 and X correspond to the same time intervals. We have tested different filters

and have obtained the best results with a spatial window of 3x3 pixels and a third-order Savitzky–Golay filter with a temporal

window of 90 days (see appendix B1). We use only velocity measurements with temporal baselines <180 days to avoid long185

temporal baselines, which will be close to the long-term average of velocity, resulting in an over-smoothed solution (see

Fig. A2).

2.2.3 Improved computational time

When velocities are derived from images acquired by different satellites, spanning different temporal baselines (e.g., from 5 to

400 days in the ITS_LIVE dataset), the length of Y can be very large (e.g., on the order of 10,000 over Kaskawulsh Glacier,190

Yukon, between 2013 and 2022). This will result in very long computational time (several seconds per pixel). To mitigate this

challenge, we solve the Least Square problem using LSMR, a conjugate-gradient method for sparse least-squares problems,

that leverages the fact that the matrix A is generally sparse, i.e. contains mainly 0. Additionally, we implement embarrassingly

parallel processing at the pixel level. Besides, the lazy mode from Dask, an open-source Python library for parallel computing,

allows the user to directly apply TICOI on ITS_LIVE data sets stored in the Amazon cloud (López et al., 2023), without the195

need to download the data locally. Dask also allows out-of-memory processing by splitting the data in chunks.

2.3 Automatic selection of the regularization coefficient

The choice of the regularization coefficient λ in Eq. 3 can be empirical (Bontemps et al., 2018; Lacroix et al., 2019) or based on

an L-curve (Samsonov et al., 2021), which aims to compare ||W (AX−Y )||2 and ||Γ(X−X0)||2 in Eq. 3. However, L-curves

do not always converge (Vogel, 1996). As an alternative solution, we propose to use the Velocity Vector Coherence (Charrier200

et al., 2022b; Dehecq et al., 2015) defined as:

VVC = mean(i,j)∈ω

∥∥∥∥∥
N∑

t=0

V (i, j, t)
∥V (i, j, t)∥

∥∥∥∥∥ (8)

with ω the area over which the VVC is computed. The VVC varies from 0 to 1, with 1 corresponding to a perfect coherence of

the direction in time.
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When the regularization coefficient increases, the solution tends to be smoother. Therefore, the direction of the velocity205

vectors tends to be constant in time, and the VVC tends to be close to 1. To find a compromise between smoothing and

temporal resolution, we need to find the inflection point of this function, which is approximated by:

V V Coptimal_coef =max(V V C)− 0.05 ∗ (max(V V C)−min(V V C)) (9)

2.4 Uncertainty

Three metrics are proposed to evaluate the uncertainties of the estimated velocity time-series: 1) the VVC of the time-series;210

2) the number of image-pair velocities that have contributed to each estimation; and 3) the a posteriori covariance matrix.

The VVC has been defined in Eq. 8. The number of image-pair velocities that have contributed to each estimation is defined

as:

Xcount=ATW (10)

This is computed for North/South and East/West components separately. Then, the number of image-pair velocities of the215

velocity magnitude is taken as the average number of image-pair velocities of two velocity components.

The a posteriori covariance matrix is defined by assuming the errors to be independent (Gavin, 2023; Liang et al., 2020):

ΣX̂ =N−1ATWΣŶ WAN−1 (11)

with N =ATWA+λΓT Γ, which contains a data fidelity term ATWA, and a regularization term λΓT Γ. ΣŶ is the covari-

ance matrix of the image-pair velocities, which contains the square of the errors provided with the raw image-pair velocities,220

converted in meters. If the errors are independent, this matrix is diagonal. The demonstration of this formula is provided in

appendix A.

The a posteriori covariance matrix is computed for each of the components separately and interpolated using the same

strategy described in 2.1.3. Then, the a posteriori covariance matrix of the velocity magnitude is computed following the

propagation of uncertainty:225

Σv̂ =
√

(
vx

v
∗Σv̂x

)2 + (
vy

v
∗Σv̂y

)2 (12)

with vx and vy the x- and y- velocity component, v the velocity magnitude and Σk the a posteriori covariance matrix of the

variable k.

Finally, the confidence intervals are defined for each estimated velocity as: ±t(1−α/2),n−p

√
Σv̂ , with t(1−α/2),n−p the value

of the student’s t-distribution for a degree of freedom of n− p at a confidence level of 100(1−α)%. Here, we chose α to be230

equal to 0.05, i.e., we provide a 95% confidence interval.
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3 Data and study sites

The package is validates on three glaciers with medium velocity magnitude (∼100 to 200 m yr−1) (Fig. 2). We chose these

glaciers because they have been monitored with continuous GNSS data over multi-year periods and represent both seasonal

and surge type dynamics. The possible sites available for this comparison are rare since few glaciers are monitored this way. In235

the following section we describe each of the glaciers, their associated GNSS data, and surface velocity measurements derived

from remote sensing.

3.1 Lowell and Kaskawulsh glaciers in Yukon, Canada

Lowell and Kaskawulsh glaciers are two large valley glaciers located in Kluane National Park, at the eastern edge of the St

Elias Mountains, in Yukon, Canada. Lowell glacier, also known as Nàłùdäy in Southern Tutchone, is a∼ 65 km long surge-type240

glacier. It is composed of a southern and a northern arm divided by a medial moraine. The northern arm joins the main trunk by

a ∼ 200 m high icefall, whereas the southern arm originates from a large high-accumulation basin. The terminus of Lowell is

divided in two by a large nunatak (Bevington and Copland, 2014). The last 6 surges have been observed in 1948-50, 1968-70,

1983-84, 1997-98, 2009-10 (Bevington and Copland, 2014), and 2021-22 (Van Wychen et al., 2023). During the 5 surges that

occurred between 1948 and 2009, the length of the surge active phase ranged from 0.6 to 2 years and the quiescent phase from245

11 to 18 years. Bevington and Copland (2014) note that the surge cycle (quiescent + active phase) seems to have decreased

in time, which was supported by the start of the most recent surge in 2021. Surges show a rapid terminus advance starting in

summer to early fall (late June to early October), continuing through the winter, and ending in June or July of the following

year. Velocity peaks during the surge phase are typically >3500 m yr−1 in the terminus region, and the fastest-recorded motion

is of 11 000 m yr−1 in the lowest part of the south arm during the 1983–84 surge (Bevington and Copland, 2014).250

Kaskawulsh, also known as Tänshį in Southern Tutchone language, is approximately 70 km long, with altitudes ranging

from 800 to 2500 m above sea level (a.s.l) and flowing eastwards. It is divided into three main tributaries (North, Central, and

South Arms) (Foy et al., 2011; Flowers et al., 2014). It is believed to be temperate, at least across its ablation area, and has

been monitored for many decades (Clarke, 2014; Foy et al., 2011; Flowers et al., 2014; Arendt et al., 2002), starting with the

Icefield Ranges Research Project in the 1960s and the 1970s (Clarke et al., 1967; Anderton, 1973). Annual velocities are about255

10 to 50 m yr−1 near the terminus, and range between 100 and 200 m yr−1 over the rest of the centerline (Millan et al., 2022;

Waechter et al., 2015; Main et al., 2023). Its surface velocity remained stable between 1960 and 2012, except for the lower part

of the ablation area (up to 10 km upstream of the terminus; Waechter et al., 2015). Annual average velocities across the lower

glacier increased at a rate of 5.5 m yr−2 between 2010 and 2015, followed by a decrease between 2016 and 2018 of about 8

m yr−2, mainly in the northern lobe (Main et al., 2023). The main cause of these changes can be explained by the drainage of260

proglacial Slims lake, located northwest of the terminus, according to Main et al. (2023).
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3.2 Land-terminating margin in western Greenland

The land-terminating region in western Greenland is characterized by an absence of marine outlet glaciers where annual

velocities are on the order of 100-200 m/yr (Joughin et al., 2018). The considered study area is located inland of Issunguata

Sermia, a land-terminating outlet glacier, particularly well studied over the last two decades using both satellite and in situ265

instrumentation. Data from this region serves as the foundation for a better understanding of hydrology-dynamic coupling in

Greenland, where melt-forced velocity changes have been observed from daily to decadal timescales (Davison et al., 2019).

Surface lake drainage and intense melt events drive flow accelerations as high as 10 times above background across daily to

weekly timescales as the subglacial drainage system is temporarily overwhelmed by the rapid influx of meltwater (Doyle et al.,

2015; Tedstone et al., 2013). Seasonal velocity cycles (two-three times winter velocities) driven by summer melt production270

have been well-documented and attributed to basal pressure changes modulated by melt supply variability and seasonally

evolving drainage (Bartholomew et al., 2012, 2010; Sole et al., 2013; van de Wal et al., 2015; Maier et al., 2022). Across

decadal timescales, gradual velocity decreases (20 percent) have been found in response to periods of elevated melt rates

(Tedstone et al., 2015; Halas et al., 2023; Williams et al., 2020). These variations are hypothesized to be caused by increases

in summer drainage efficiency, which gradually depressurizes the ice-base (Tedstone et al., 2015; Williams et al., 2021).275

3.3 Surface velocity measurements

3.3.1 Datasets

We demonstrate the TICOI method with two datasets of surface flow velocity: 1) the Institut des Geosciences de l’Environnement

(IGE) dataset (Millan et al., 2022, 2019; Derkacheva et al., 2020; Halas et al., 2023, 2022) and 2) the NASA MEaSUREs project

Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) dataset (Gardner et al., 2018, 2022). The first one de-280

rived displacement using a modified version of the Normalized Cross-Correlation (NCC) algorithm AMPCOR from ROI_PAC

(Millan et al., 2019, 2022). In the Yukon, it is based on images from Sentinel-2 and Landsat-8 and the correlation window

size is 16x16 pixels. In Greenland, the image-pair velocities are based on Landsat-7, Sentinel-2, Landsat-8 and Sentinel-1 data

and corresponds to datasets published by Halas et al. (2023); Derkacheva et al. (2020). Image-pair velocities span temporal

baselines from 5 to 100 days and from 330 to 400 days in Yukon, from 5 to 32 days (Derkacheva et al., 2020) and from 330285

to 400 days over western Greenland (Halas et al., 2023). The spatial sampling of the velocity maps is 50 m in Yukon and 150

m in Greenland. In the dataset, a previous outlier filtering has been performed: displacements that deviate more than three

pixels from the median velocity computed over a spatial window of 9× 9 pixels are considered to be outliers (Millan et al.,

2019; Mouginot et al., 2012). The uncertainties depend on the spatial resolution of the images and the temporal baselines as

explained in Millan et al. (2019), by assuming the uncertainty in displacement to be around 1/10 pixels.290

The second dataset, ITS_LIVE v2.0 (Gardner et al., 2022), contains velocities measured using the NCC algorithm “au-

toRIFT” (autonomous repeat image feature tracking) on images from Sentinel-1, Sentinel-2, Landsat-7 and 8. Results from the

sparse search guide a dense search (Gardner et al., 2018). The size of the correlation window is increased iteratively according

to the normalized displacement coherence, an indicator of the quality of the correlation (Gardner et al., 2018). The temporal
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Figure 2. Study areas of three selected glaciers: Kaskawulsh and Lowell glaciers in the Yukon; Issunguata Sermia Glacier in western

Greenland. Black lines represent the center flow-line of Kaskawulsh and Lowell glaciers according to the Randolph Glacier Inventory

version 7 (RGI 7.0 Consortium, 2023). It has been slightly modified for Kaskawulsh to reach Slims lake. Orange lines represent the glacier

outlines from RGI v7. Blue dots show time evolving locations of GNSS stations. The three main GNSS locations are named Kask L, M,

U for the lower, middle and the upper of Kaskawulsh glacier, and Lowell L, M, U for the lower, middle and upper of Lowell glacier. Blue

squares represent areas including all GNSS stations for each site, they are used in section B. The background of each site is the 2017-2018

average velocity from Millan et al. (2022) overlaid over Sentinel-2 images.

baselines range between 5 and 546 days. The spatial sampling of the velocity maps is 240 m resampled at a resolution of 120295

m using a cubic spline approach (Lei et al., 2022). Only velocities that agree within 4 times the centered 5× 5 mean absolute

deviation are retained. The uncertainty of each image-pair velocity corresponds to the standard error of velocities relative to

the stable or slow moving areas.

3.3.2 Pre-processing of datasets

In the TICOI method, we optionally apply a filtering to the input data. Two main types of strategies for deleting outliers are300

implemented : the Modified Zcore (Mzscore), which filters the velocity components 3.5 NMAD away from the median of the
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entire time period (Maronna et al., 2019), and the Median Angle (MA) that removes image-pair velocities that deviate more

than 45° from the median vector (Rabatel et al., 2023; Charrier et al., 2022a). In this study, we use the MA filter.

The IGE and ITS_LIVE datasets are reprojected using a nearest-neighbor interpolation on the same coordinate system:

the polar stereograpghic North projection (EPSG code 3413) for both Greenland and Yukon. This implies reprojecting both305

the coordinates of the dataset and each of the velocity components. To reproject velocity components, we first compute the

coordinates of the start and end point of each vector in the new coordinate system, then we compute the difference between

these two coordinates along the axis of the new coordinate system.

3.4 GNSS data

On Kaskawulsh and Lowell glaciers (Yukon), up to six dual frequency GNSS receivers recorded their position at 15 s intervals310

for 2 or 3 hours per day in winter, and 24 hours per day in summer (Waechter et al., 2015; Van Wychen et al., 2023), from

2013 to 2022. The positions were post-processed using Natural Resources Canada’s Precise Point Positioning service (http://

webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php ), resulting in an accuracy of∼1–2 cm in horizontal and∼5 cm in vertical.

We removed any position derived from a daily record of <1.5 hours, which sometimes occurs in winter due to low battery power.

Prior to 2017, the stations were Trimble R7 units mounted on poles drilled into the glacier surface. From 2017 onwards, the315

stations were replaced with Trimble NetR9 units mounted on tripods ’floating’ on the glacier surface. Every few years they

were manually moved up glacier to compensate for the glacier displacement, to ensure that they remained in approximately

the same location. This creates artifacts in the position time-series, which we remove using the Local Outlier Filter (LOF)

(Breunig et al., 2000), which computes the local density deviation of a given data point with respect to its neighbors. We apply

it on the gradient of the East/West and North/South position. A daily position is considered to be an artifact if LOF > 5. Then,320

velocities are derived from the discrete derivative of the position time-series, and averaged using a temporal window of 5 days,

which corresponds to the minimal repeat cycle of the satellites used. Time spans with less than 80% available daily velocities

are removed.

In western Greenland, we derived velocities from 15 s position data collected at a field site located 33 km from the terminus

of Issunguata Sermia using five Trimble NetR9 GNSS receivers mounted on a poles frozen into the ice. The position data from325

each receiver was processed against an off-ice base station using TRACK v1.29 differential kinematic processing software

(previously detailed in (Maier et al., 2019, 2022)). From the GPS positions, ice velocity is estimated on a daily basis (Halas

et al., 2022). While the collection period was from 2014-2017, no data are available from each winter due to power limitations.

Since the Yukon GNSS stations typically move around 100-150 m yr−1, we compare them to remote sensing velocities or

TICOI results located at the averaged GNSS location of the corresponding year. The GNSS station in Greenland is supposed330

to be stable spatially because the period of measurements is shorter and the sampling of the velocity maps coarser (considering

a spatial sampling of 150 m, an average velocity of 125 yr−1, the GNSS stations have likely moved by 2.5 pixels between

2014-17). Then, we average daily GNSS velocities to match the same temporal baselines as remote sensing velocities, or the

temporal sampling of TICOI time-series, which in this study is 30 days.
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4 Results335

4.1 Robustness of TICOI method

4.1.1 Robustness to temporal decorrelation

One of the main improvements of TICOI compared to previous methods is its ability to eliminate artifacts caused by temporal

decorrelation in the input datasets. The strategy detailed in section 2.2.1 rejects biased long-temporal-baseline velocities. These

velocities tend to have large errors when compared to the temporal closure solution derived using only short-baseline velocities.340

This results in large residuals (Eq. 4) relative to the initial solution with small temporal baselines, and as a result, Tukey’s

biweight function assigns a weight of 0 to these raw image-pair velocities.

We applied TICOI to a large area around Kaskawulsh Glacier for the period 2013-22 considering two implementations: with

and without automatic detection of temporal decorrelation. Then, we computed the averaged velocity magnitude of TICOI

results obtained with the two implementations. The median difference between the two is 0.0 m yr−1 (Fig. 3b). However, the345

difference can reach up to 100 m yr−1 near glacier margins or in narrow, steep areas, where temporal decorrelation is more

likely to occur (Fig. 3a), as in point A (Fig. 3c). Over stable areas, the difference has median values of 0.0 m yr−1 and a MAD

of 0.8 m yr−1.

Notably, TICOI remains robust to temporal decorrelation without this specific strategy, when decorrelated image-pairs are

in the minority (Fig. 8). In such cases, the Tukey biweight function is able to effectively filter out the decorrelated image-pairs.350

4.1.2 Robustness to strong changes in velocity

The traditional regularization penalizes abrupt changes in velocity, and is thus unable to resolve the peak of velocity for a surge

event. For instance, for the surge of the lower station of Lowell glacier, the traditional regularization retrieves a continuous

increase in velocity from mid-2021 onward, while TICOI captures well a sudden increase in velocity and the rapid glacier

slow-down in summer 2022 (Fig. 4). In this example, few velocity measurements are available in 2022-23, because the outlier355

removal step of ITS_LIVE rejected many image-pair velocities (see section 3.3), therefore the solution is strongly impacted by

the regularization term, which minimizes the acceleration in the traditional approach. The TICOI regularization (described in

section 2.2.2) relaxes this assumption of minimal acceleration by using an initial guess about the acceleration, which makes it

possible to capture the peak of the surge even with limited image-pair velocities (Fig. 4).

4.2 Validation with GNSS time-series for different glacier dynamics360

We evaluate TICOI time-series with seven GNSS time-series on three different glaciers (Table 1). The metrics for evaluation

are the RMSE (in m yr−1) and Kling–Gupta efficiency (KGE) (no unit). The KGE is a goodness-of-fit indicator, widely used

to calibrate hydrological models, in order to make sure that they well capture peak flows, as well as the seasonality of the flow.

It is defined as:
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Figure 3. Illustration of the robustness to temporal decorrelation over Kaskawulsh glacier: a) represents the difference between TICOI with

and without an automatic detection of temporal decorrelation. White lines correspond to glacier outlines according to RGI v.7 (RGI 7.0

Consortium, 2023). b) illustrates the histogram of this difference over the area. c) provides an example of the time-series of ITS_LIVE

image-pairs (yellow), TICOI (purple) and TICOI with an automatic detection of temporal decorrelation ("TICOI_detect_temp", red). The

time-series are located at point A represented in a).

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (13)365
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(a) (b)

Figure 4. (a) Example of velocity time series retrieved on the lower part of Lowell glacier (Lowell L GNSS station) with TICOI regularization

term based on an initial guess about the acceleration (red crosses) and with the traditional regularization term (blue triangles), i.e., the first

order Tikhonov regularization. The orange dots show the GNSS data averaged to match TICOI temporal sampling (note data gaps during the

first part of the surge). (b) Image-pair velocities from ITS_LIVE at Lowell L. Dots and bars represent the central date and temporal baseline,

respectively, of each image-pair velocity.

with r the Pearson’s coefficient, α= σe

σo
with σe and σo the variance of the estimated and observed time-series, respectively,

and β = µe

µo
with µe and µo the mean of the estimated and observed time-series, respectively. α represents the variability of the

estimation and β is the bias term. A perfect agreement between two time-series would lead to a KGE of 1.

TICOI leads to a reduction in RMSE from 9 to 69% in comparison with the image-pair velocities, with a median improve-

ment of 52%, and an increase in KGE from -16 to 87%, with a median improvement of 62% (Table 1). This improvement is370

less significant for the Lowell L and M stations, due to a larger density of TICOI estimation during the surge in comparison

with the image-pair velocities. Besides, TICOI leads to a reduction of RMSE from 11 to 81% in comparison with a rolling

median, with a median improvement of 40%, and an increase in KGE from 21 to 84%, with a median improvement of 55%.

For the point Lowell U, the rolling median provides better results than TICOI, this could be due to the low signal-to-noise ratio

of image-pair velocities over this area. A strategy to improve this result is discussed in section 5.2.375

We note that a rolling median using all temporal baselines gives slightly better RMSE than a rolling median with small

baselines only, for some of the considered points, as illustrated in Figure A2. However, the solution using all baselines tends to

underestimate the largest velocities, because they include annual temporal baselines which are close to the annual average of

the signal. These results show the strength of TICOI: taking advantage of all temporal baselines, without over-smoothing the

solution.380
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RMSE

TICOI Image-pairs Moving median

Kask L 21.3 68.4 28.3

Kask M 28.4 62.5 31.8

Kask U 43.1 90.5 55.5

Lowell L 58.8 64.5 308.7

Lowell M 44.7 60.2 155.7

Lowell U 78.7 119.9 53.7

Iss 12.5 28.8 28.2

KGE

TICOI Image-pairs Moving median

Kask L 0.84 -0.27 0.71

Kask M 0.78 -0.14 0.72

Kask U 0.08 -1.79 -0.36

Lowell L 0.92 0.86 0.5

Lowell M 0.93 0.94 0.66

Lowell U 0.49 0.53 0.74

Iss 0.86 0.63 0.59

Table 1. Comparison of the RMSE (in m yr−1, left) and KGE (unitless, right) of the velocity magnitude between GNSS and: 1) TICOI

time-series; 2) image-pairs with a temporal baseline lower than 180 days, and 3) a moving 30 days median applied on image-pairs with a

temporal baseline lower than 180 days. The lowest values are in bold. The surface velocity measurements used are the ITS_LIVE data in the

Yukon, and IGE data in Greenland.

4.3 Sensitivity analysis and automated choice of the hyperparameters

TICOI was developed as a flexible method, with processing options that can be changed by the user. Several options can be

modified: the coefficient of regularization, the possibility to set an initial weight, the strategy to delete outliers, the type of

spatio-temporal filter, and the solver.

The regularization coefficient has the greatest impact on the TICOI solutions. To illustrate this, we compute the median385

RMSE and KGE for the velocity magnitude at the six Yukon GNSS stations (Fig. 5 a). Both RMSE and KGE improve

significantly, by factors of 3 and 8 respectively, when the regularization coefficient increases from 0.1 to the optimal value of

100. This optimal coefficient corresponds to 1.1min(RMSE) and 0.9max(KGE).

Notably, the RMSE increases slightly and the KGE decreases slightly (by about 5%) when the coefficient is further increased

to 10,000, indicating the relative stability of the solution even with large regularization coefficients in general scenarios. How-390

ever, for surge-type glaciers, using a coefficient greater than 1000 increases the risk of over-smoothing the solution (Fig. B1).

The comparison between TICOI results and GNSS data helps to identify an optimal regularization coefficient of 100. In

many cases, though, GNSS observations are unavailable to optimize the regularization coefficient. In such cases, we suggest

that the optimal coefficient can also be determined as the approximate point of inflection of the VVC curve, defined in Eq. 9.

This method similarly yields an optimal value of 100 for the coefficient. Thus, the VVC approach provides a reliable method395

for selecting an optimal regularization coefficient (Fig. 5 b).

We analyzed the sensitivity of the results to various options in appendix B. Our analysis shows that the choice of weight and

solver has no impact on the results for the tested cases. The selection of spatio-temporal filters introduces a standard deviation

in RMSE of approximately 2.6 m yr−1 on average between filters (i.e. 8% of the averaged RMSE). For non-surge glaciers,
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(a) (b)

Figure 5. (a) Evolution of the RMSE and KGE of TICOI results with respect to the six Yukon GNSS stations according to the regularization

coefficient. (b) Evolution of the VVC computed over the six red squares shown in Figure 2 as a function of the regularization coefficient.

The optimal coefficient corresponds to max(V V C)−0.05∗(max(V V C)−min(V V C)). The optimal coefficient found is 100 using both

approaches (a) and (b), which confirms the value of using VVC for selecting the regularization coefficient.

using MA filters increases the RMSE by up to 2 m yr−1 compared to a strategy that does not filter outliers. This is largely400

because the Tukey biweight function, which is applied, already acts as an outlier filter.

4.4 Uncertainty of the final product

To provide insights into the uncertainty of TICOI velocity time-series, we first use the VVC per pixel. This highlights areas

where the direction of TICOI results has a poor temporal coherence. In Figure 6 we can see that the VVC is lower near

the terminus, the borders and the upper parts of the glaciers. We also notice low VVC values (around 0.7) just before the405

confluence between the southern arm and the main trunk of Lowell glacier. This corresponds to the approximate position of

the equilibrium-line altitude, therefore leading to strong changes in surface state (between wet snow, dry snow and bare ice)

(NASA Earth Observatory, 2018) that are difficult to tackle. It is also the only part of the glacier showing a northern aspect, so

is more likely to be impacted by shadows and illumination changes (Lacroix et al., 2019).

Then, to estimate the uncertainty of each TICOI retrieved velocity, in time and space, we propagate the covariance matrix as410

described in section 2.4. We tested this approach on simulated data with correlated noise described in appendix C, for different

percentage of image-pair velocities and different noise levels. In controlled conditions, the 95% confidence interval includes

both estimated and true velocity for more than 95% of the estimation, except for low percentage of data and low noise where

the confidence tends to be slightly underestimated (Fig. 7). This synthetic case provides confidence of the relevance of the

theoretical framework.415

In order to test the relevance of the uncertainty calculation, we calculate the 95 % confidence intervals for the real dataset

of Kask L (Fig. 8). Confidence intervals are larger before the launch of Sentinel-2 in 2015/2016, when the number and quality
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Figure 6. Spatial variability of VVC, overlaid with the glacier outlines in white according to the RGI v.7 (RGI 7.0 Consortium, 2023), over

the same areas as in Figure 2. The top and bottom panels represent Lowell and Kaskawulsh glaciers, respectively. The coordinates correspond

to the projection EPSG:32607.

of data were lower. They are also larger in wintertime for the same reason. However, only 48% of the confidence intervals

include both the estimated and the GNSS velocities, which is much below the expected 95%. On average, over the six GNSS

stations, the percentage is 27%. The confidence intervals fail to include estimated and true velocity, especially when the number420

of image-pair velocities is low, and the solution less strongly constrained. This is a limitation of our approach to calculate

confidence intervals that is discussed in section 5.2.
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Figure 7. Percentage of the estimated 95% confidence intervals that include both the estimated and the true displacement values, using simu-

lated data described in appendix C. The displacement noise factors correspond to a factor of the simulated instantaneous velocity amplitude.

A factor of 1, 0.1 and 0.02 are equivalent to a standard deviation of 4.6 m, 0.4 m and 0.09 m, respectively. The percentage of data corre-

sponds to the percentage of simulated image-pair displacements in comparison with the total number of possible image-pair displacements.

The value of each configuration of displacement noise factor and percentage of image-pair displacements relies on 50 experiments.

4.5 Application to different glacier dynamics

In this section, we apply the TICOI method to pixels sampled regularly along the centerlines of Lowell and Kaskawulsh glaciers

(Fig. 9). On Lowell glacier, we observe an upward propagation of the surge in 2021-2022 (Fig. 9a). This surge was first reported425

by Van Wychen et al. (2023) using Radarsat Constellation Mission data, but since that data was only available from winter 2022

the start of the surge was poorly defined. From TICOI results, it is clear that there is a strong positive velocity anomaly in June

2021, with maximum anomalies of 400 m yr−1 at around 2 km from the terminus (Fig. 9a). Velocity anomalies range between

100 and 400 m yr−1 from 1 to 7 km upglacier from the terminus. They remain positive up to 27 km from the terminus, at a

location which corresponds to the confluence between the northern and southern arm of Lowell. This positive anomaly remains430

stable until December 2021 (with an average monthly acceleration of 15 m yr−2) except in the 2 last kilometers before the

terminus, where the average acceleration was of 1500 m yr−2. The entire glacier starts to accelerate in December 2021, with

an acceleration front propagating upglacier. Anomalies > 300 m yr−1 are recorded up to 27 km from the terminus, just one

month later, in January 2022. However, this acceleration front seems to propagate at a slower rate in the southern arm of Lowell

glacier, even if this observation has to be interpreted cautiously regarding the low VVC values obtained in this area (Fig. 6).435
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Figure 8. (a) 95% confidence interval for velocities on the point Kask L. The blue dots and bar correspond to the central date and temporal

baselines of the image-pair velocities. GNSS data are represented by orange crosses. Light magenta intervals represent the confidence

intervals defined in 2.4. The colors from light red to dark red correspond to the number of image-pair velocities used to constrain the

velocity estimations. The upper and lower limits of the y-axis are defined according to the average ± the standard deviation of the image-pair

velocities. (b) TICOI velocity magnitude as a function of the GNSS velocity magnitude. Vertical grey bars correspond to the confidence

intervals, which should intersect the red line 1:1 if they are not underestimated. Underestimated confidence intervals are displayed in red,

correct one are represented in grey.

In October 2022, anomalies > 300 m yr−1 are recorded up to at least 47 km from the terminus. In addition, we observe slight

positive anomalies occurring each spring before the surge. The intensity of these anomalies increases from 2016 until the start

of the surge, especially near the terminus, with annual maximum velocity magnitudes raising from 90 m yr−1 between 2014-16

to 275 m yr−1 in 2020, at a rate of 9, 33, 70 and 70 m yr−2 in 2017, 2018, 2019 and 2020 (Fig. 10a). The annual maximum

over the entire glacier rises later in time (Fig. 10a). The surge event ends near the terminus in winter 2022, while anomalies440

remain high in the upper part of the glacier.

On Kaskawulsh glacier, there is a long-term trend towards decreasing velocities (Fig. 9b), particularly over the lower part of

the ablation area, which is likely related to the thinning of the glacier (Main et al., 2023; Dehecq et al., 2019). In the 0 to 5 km

section upglacier from the terminus this decrease in velocity between 2015 and 2018 is particularly marked, from 170-180 m

yr−1 to 120 m yr−1 (Fig. 10b). This is consistent with the results of Main et al. (2023), who found a significant change in445

velocity near the terminus after drainage of the adjacent proglacial Slims Lake in 2016. We also observe a marked seasonal

velocity increase every spring (around April), with maximum of yearly anomalies between 30 and 70 m yr−1. The anomalies

propagate up glacier, but the interpretation is more difficult above km 30 from the terminus because the signal becomes noisier
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(Fig. 9b). The high temporal resolution also reveals very abrupt positive anomalies in March at a position situated from 6 to 9

km from the terminus. This is especially the case for the year 2019, but it can be also noticed in 2017, 2020, 2021, and 2022.450

This phenomenon is also visible in the GNSS time series (Fig. 8).

(a) (b)

Figure 9. Spatio-temporal evolution of monthly velocity anomalies with respect to the averaged velocity magnitude over the period (as

defined in Dehecq et al., 2019) over the centerline of: (a) Lowell glacier, and (b) Kaskawulsh glacier, plotted as distance from the terminus.

The centerline is represented in black on Figure 2. Note the logarithm scale in (a).

(a) (b)

Figure 10. Average yearly maximal velocity magnitude over the entire glacier in blue, and near the terminus in red, for: (a) Lowell glacier,

(b) Kaskawulsh glacier.
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4.6 Estimating monthly velocities from annual velocities

The TICOI method can be used to study sub-annual velocities even if long temporal baselines of velocity only are available.

This is important because over slow moving areas, velocities quantified with small temporal baseline mainly show low signal-

to-noise ratio, and are frequently filtered out in open-source datasets such as ITS_LIVE (Gardner et al., 2018; Millan et al.,455

2019). For those reasons, previous research chose to perform image correlation on images spaces by long time intervals only,

for example between 330 and 400 days (Halas et al., 2023), privileging accuracy over temporal resolution. This strategy is

adapted when assessing multi-annual or decadal velocity trends, but hinders the seasonal variations and rapid summer velocity

changes (Fig. 11). In the case of Issunguata Sermia glacier, the satellite observations show an average velocity of∼125 m yr−1

with slight variations from year to year (Fig. 11). The application of TICOI to this dataset provides monthly velocities which460

match very well with the GNSS data after 2016, when Sentinel-2 images become available (Sentinel-2A was launched in June

2015), resulting in an increasing number of image-pair velocities (red and dark red in Figure 11). The RMSE between GNSS

and TICOI time series is 25.8 m yr−1 between 2014 and 2017, and 17.7 m yr−1 between 2016 and 2017, with stronger errors

in wintertime when optical images are impacted by night and clouds. Hence, TICOI can retrieve monthly velocities using

only image-pair velocities with long temporal baselines. It takes advantage of the temporal closure which relies on redundancy465

of annual velocities, having Sentinel-2 providing new images every 5 days in optimal conditions. However, it still requires a

sufficient amount of observation to obtain a reliable time-series (> 500).

5 Discussion

5.1 Fusion of velocity measurements from different processing chains

Datasets from several processing chains can be included as input in TICOI, with the datasets reprojected on the same grid470

as explained in section 3.3.2. Fusing different datasets, like the ones from IGE and ITS_LIVE, can particularly improve the

signal-to-noise ratio in the upper parts of glaciers (Tab. 2). For example, this provides an improvement in RMSE of 11%

for the upper part of Lowell glacier, and 32% for the upper part of Kaskawulsh glacier. Over these two areas the surface is

snow-covered most of the year, which produces poor results from image correlation algorithms. Fusing velocity results from

different processing chains takes advantage of the different sets of correlation parameters used and strategies to delete outliers.475

However, we do not see improvements in the middle and lower parts of the glaciers when applying this technique, where the

RMSE even slightly decreases (Tab. 2). Considering the increasing computational time when including additional dataset, this

technique may only be suited for very noisy areas or areas with a low number of image-pair velocities.

5.2 Uncertainty

Despite providing satisfying confidence intervals on synthetic data, our framework to calculate TICOI confidence intervals480

underestimates uncertainties on real data when compared to GNSS measurements (see section 4.4). Here, we discuss the

different limitations in our approach that could explain these discrepancies. First, the error of the input image-pair velocities
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Figure 11. Example of monthly velocity time series (in red) retrieved using annual velocities from Halas et al. (2023) (in blue) on the

Issunguata Sermia glacier. GNSS data are represented by orange crosses. The colors from light red to dark red correspond to the number of

image-pair velocities used to constrain the velocity estimations.

ITS_LIVE IGE & ITS_LIVE

Lowell U 46.2 41.5

Kask U 46.7 35.3

Kask M 26.0 28.5

Lowell M 30.1 33.7

Table 2. Comparison of the RMSE of the velocity magnitude (in m yr−1) between GNSS and TICOI time-series, with datasets from 1)

ITS_LIVE and 2) IGE & ITS_LIVE over upper GNSS stations of Lowell and Kaskawulsh glaciers. We consider the time-period which is

common between the two datasets, i.e. 2016-22. The lowest values are in bold.

may be underestimated. These errors are computed either using stable areas, which may not be representative of the glacier

texture (Altena et al., 2019, 2022) or by assuming a 1/10 pixel error, which corresponds to an error of 10 m for Sentinel-2 and

30 m for Landsat-8. To estimate the underestimation of the errors provided with image-pair velocities, we consider the true485

error as the difference between ITS_LIVE and GNSS data. The averaged RMSE between the errors provided by the ITS_LIVE

dataset and the true errors are 9 m and 7 m for the East/West and North/South components, respectively. The difference
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between the average true error and ITS_LIVE error is of 1.8 and 2.6 m, highlighting a clear underestimation in ITS_LIVE

errors. Moreover, there are no strong temporal correlations between the provided errors and the true errors, with Pearson’s

coefficient of 0.27 on average for both components. Second, the underestimation of our confidence intervals could be caused490

by biases in the image-pair velocities, for example due to seasonal illumination changes (Lacroix et al., 2019). Our confidence

interval only account for random errors and not systematic biases. Third, the real errors may have a stronger correlation in time

than what has been simulated, for instance due to seasonal source of errors (shadows, surface changes), since we only take

into account the correlation of errors between displacement with common acquisition dates. In case of highly correlated errors,

the a priori covariance matrix cannot be diagonal anymore, leading to much higher computational cost. The cost of explicitly495

computing the inverse of the error covariance matrix is proportional to n (the number of image-pair velocities) if the matrix is

diagonal and to n3 in the general case (Ruggiero et al., 2016).

To address this issue, a potential solution involves scaling the confidence interval by a specific correction factor. This factor

could be a function of the VVC, as the VVC serves as an effective proxy for the relative uncertainty between pixels. Indeed, the

RMSE decreases linearly with the VVC, until reaching a vertical asymptote close to 1, which is the VVC maximum value (Fig.500

12a). To estimate this correction factor, we determine the 95th quantile of the theoretical 95% confidence intervals divided by

the true errors, for each GNSS stations (Fig. 12b). We then perform a linear regression on the resulting seven points. Although

the RMSE of the linear regression is around 3 and the sample size is small, this method provides an empirical correction factor.

By multiplying the confidence intervals by this factor, the confidence intervals contain both estimated and GNSS data with an

average percentage of 86% (against 27% without a correction factor). Additionally, the reliability of the confidence intervals505

derived with the correction factor appears to improve with the number of observations used. For example, when selecting only

TICOI estimations with more than 500 observations, the confidence intervals encompass both estimated and GNSS data with

an average coverage of 91%.

Another strategy could be to augment the observation vector with the first- and second-order spatial derivatives of the original

observations, as described in Ruggiero et al. (2016); Brankart et al. (2009). However, this requires proper characterization of510

the spatial and temporal correlation of errors of surface velocities, which could be the scope of future research. With the current

state of knowledge in velocity errors, we recommend relying on the VVC and number of contributed image-pair velocities.

5.3 Large scale application

Here, we discuss the possibility of applying TICOI at a large scale. We have shown that it can be applied to all kinds of glacier

dynamics because it does not include any a priori information about the glacier behavior, unlike a wide range of post-processing515

approaches (Greene et al., 2020; Riel et al., 2021; López-Quiroz et al., 2009; Samsonov et al., 2021). This flexibility also allows

for the detection of unexpected events and trends, such as the annual acceleration in March over Kaskawulsh glacier. However,

data-driven approaches may encounter limitations when data density is very low. In this case, a priori information, if available,

may help to constrain the time-series. The regularization term can be modified to include a model, similar to López-Quiroz

et al. (2009). An example is given in Eq. C1. By doing so, the inversion solves both the temporal closure and a parametric520
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Figure 12. (a) Scatter plot of VVC and RMSE over the seven stations analyzed in this study, from 2013 to 2022. The RMSE corresponds

to the comparison between TICOI results and GNSS data, while the VVC is an indicator of the temporal coherence of the directions of the

TICOI results. (b) Correction factor that should be applied to the theoretical 95% confidence intervals so that they include both the TICOI

estimate and the GNSS data.

regression problem. For more flexibility, it may also be possible to use a dictionary of functions (Riel et al., 2021; Hetland

et al., 2012).

TICOI can be applied in a nearly automatic way, at a reasonable computational cost. We proposed a general strategy to

automatically select the regularization coefficient. Moreover, the computational time of the TICOI processing chain including

loading, pre-processing, inversion and saving is about 0.1 seconds per pixel by using 32 CPUs (on a Intel(R) Xeon(R) Gold525

6426Y with a processing rate of 3.3 GHz), for datasets containing 80,000 layers in time (corresponding to the period 2013-

24). This means that the processing over a region of 100 km x 100 km requires around 19h. Note that the processing time

per pixel scales with the size of the data in time, and that the 2013-24 period has high density of measurements compared to

previous years. This computation time remains affordable at the regional scale, but may be more limiting at the global scale.

For application at global scale the computational time could be reduced, for instance, by taking advantage of GPUs, or by530

reducing the number of input data by using a stricter outlier filter.
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With these two points in mind, it appears relevant to apply TICOI at a large scale. First, it reduces the size of the data in

comparison with raw image-pair velocities by removing redundant information. On average, for our study sites, the size of

the data is reduced by a factor 100. Second, it produces regularized velocity time-series, with relevant quality indicators. This

would make the integration of sub-annual velocities in numerical models much more affordable.535

6 Conclusion

To derive sub-annual velocity variations over glaciers, we propose an operational Python package, called TICOI, based on the

temporal closure principle. This package fuses multi-temporal and multi-sensor image-pair velocities computed by different

processing chains to generate regularized velocity time-series (i.e., sampled at regular time steps).

We improved previous methods based on two strategies: (1) a regularization term based on a coarse initial estimate, which540

enhances the resilience of the temporal closure inversion to abrupt non-linear changes; and (2) an iteratively reweighted ap-

proach, which automatically detects temporal decorrelation. TICOI is entirely data-driven, making it applicable to any glacier

dynamics. The validation of TICOI results using GNSS data highlights an improvement in RMSE and KGE of around 50% in

comparison with both the raw image-pair velocities and a rolling median. Furthermore, TICOI implies a change in paradigm by

providing the ability to retrieve monthly velocities using annual image-pair velocities only. This could be especially useful for545

slow moving areas, where annual image-pair velocities may be of better quality than image-pair velocities with short temporal

baselines. Moreover, TICOI can be used to combine datasets from different processing chains. This has the potential to reduce

the uncertainty in the upper part of glaciers, such as in the accumulation area, where image-pair velocities are more noisy.

We recommend to use three criteria to assess the quality of the retrieved velocity series: (1) the VVC, a proxy of the

temporal coherence of the direction; (2) the number of contributing image-pair velocities, and (3) a 95% confidence interval550

derived from the a posteriori covariance matrix. The application of TICOI provides velocity time-series with an unprecedented

temporal resolution. On the Lowell glacier (Yukon, Canada), we are able to observe that summer velocities near the terminus

started to increase five years before the surge. On Kaskawulsh glacier (Yukon, Canada), we are able to resolve velocity peaks

in March in a very localized part of the lower ablation area.

Finally, the TICOI workflow offers reasonable computational time for application at the regional scale. The code is open-555

source and can be applied to any datasets and regions. This paves the way for the integration of a wide range of image-pair

velocities and the production of standardized post-processed sub-annual velocity time-series.

Code and data availability. The TICOI package will be available on https://github.com/ticoi/ticoi once the paper has been accepted. ITS_LIVE

data are available on https://its-live.jpl.nasa.gov/
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Appendix A: Demonstration of the posteriori covariance matrix formula

We demonstrate how the posteriori covariance matrix formula (eq. 11) has been derived. First, the analytic solution of a least755

square problem with a Tikhonov regularization is:

X̂ =N−1ATWY (A1)

with N =ATWA+λΓT Γ

The posteriori covariance matrix is:

ΣX̂ =

[
∂X̂

∂Y

]
ΣŶ

[
∂X̂

∂Y

]T

(A2)760

It corresponds to:

ΣX̂ =N−1ATWΣŶ WAN−1 (A3)

Appendix B: Sensitivity analysis and automated choice of the hyperparameters

B1 Spatio-temporal filter

We compared the performance of five types of spatio-temporal filters: Savitzky–Golay, Gaussian, Locally Weighted Scatterplot765

Smoothing (LOWESS), and median. The choice of filter results in a standard deviation in RMSE of about 2.6 m yr−1 on

average (i.e., 8% of the averaged RMSE), except for the GNSS station Lowell L, where the LOWESS filter produces an RMSE

approximately 170 m yr−1 higher than the other filters (Tab. B1).

LOWESS is a non-parametric moving regression that fits a model to the k nearest points (Derkacheva et al., 2020), which

tends to over-smooth data during periods with low observation density. For example, the LOWESS solution flattens the surge770

peak of Lowell L, due to the limited number of observations available during that time (Fig. B2b).

We note that both the LOWESS and median filters can provide slightly better results for non-surge type glaciers, with

improvements ranging from 0.8 to 4.5 m yr−1 (i.e., 3% to 10%). However, they can also lead to over-smoothing (Fig. B2a) and

require 1.5 times more computational time. Therefore, we recommend using the Savitzky–Golay filter, which offers a good

balance between computational efficiency and accuracy in general scenarios.775

B2 Solver

We compare four differents solvers: the Least Square solver (LS), LSMR, LSMR with an initialisation and LSQR. The RMSE

between GNSS and TICOI time-series are really similar among GNSS stations. However, the computational time of the LS
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savgol gaussian median LOWESS std

Lowell L 61,4 76,7 72,9 229,6 70,7

Lowell M 43,5 46,1 36,5 31,7 6,0

Lowell U 85,7 86,0 88,4 87,4 1,0

Kask L 22,3 23,8 20,1 20,0 1,8

Kask M 26,0 27 25,2 25,4 0,8

Kask U 42,2 46,1 37,7 39,7 3,6

Computional time

[s]

67.8 67.2 69.4 101.6

Table B1. Comparison of RMSE of the velocity magnitude between GNSS and TICOI time-series in m yr−1 for different spatio-temporal

filters (columns) and GNSS stations (rows). The averaged computional time betwwen all the GNSS stations are given in the last row in s. The

filter svagol corresponds to the Savitzky–Golay filter. The LOWESS filter correspond to the statsmodel.nonparametric implementation and

the Savitzky–Golay to scipy.signal implementation. The fraction used for the LOWESS filter is 60/N with N the number of observations

over the period. The temporal window of the Savitzky–Golay, median and gaussian filters are of 90 days. We note that the better performance

obtained by the median and LOWESS filters on Lowell M is mainly due to the absence of GNSS data during the maximum of the surge.

is twice larger than for the other solvers. Therefore, we recommend using LSMR, LSMR_ini or LSQR for a question of

computational time.780

LSMR LSMR_ini LSQR LS

Lowell L 61.16 61.39 61.11 61.13

Lowell M 46.0 45.99 46.0 46.0

Lowell U 86.24 86.24 86.24 86.25

Kask L 20.9 20.89 20.9 20.91

Kask M 25.03 25.03 25.03 25.04

Kask U 40.12 40.15 40.13 40.14

Comptutional time

[s]

40.8 48.8 43.0 85.2

Table B2. Comparison of RMSE of the velocity magnitude between GNSS and TICOI time-series in m yr−1 for different solvers (columns)

and GNSS stations (rows). The average computional time between all the GNSS stations are given in the last row in s. The solver Least

Square (LS) corresponds to the function lstsq of numpy.linalg, the solvers LSMR and LSQR are respectively the functions lsmr and lsqr of

scipy.linalg and scipy.sparse. LSMR_ini corresponds to the solver LSMR with an initialisation, corresponding to the spatio-temporal filtering

observations X0 defined in section 2.2.2.
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B3 Strategy to delete outliers

We compared two strategies for outlier removal: the Modified Z-score (Mzscore), which filters out values more than 3.5 NMAD

away from the median of the entire time period, and the Median Angle (MA), which removes observations deviating by more

than 45° from the median vector (Charrier et al., 2022a). We strongly advise against using the Mzscore for surge-type glaciers.

For non-surge glaciers, the improvement is at most 2 m yr−1 compared to a strategy that does not filter outliers, largely because785

the Tukey biweight function, which is used, already acts as an outlier filter. Nevertheless, we recommend applying at least the

MA filter to reduce the number of observations input into TICOI.

median_angle mz_score no_delete_outliers

Lowell L 58.79 711.44 59.15

Lowell M 44.71 511.52 44.8

Lowell U 78.72 96.74 81.72

Kask L 21.27 23.2 21.93

Kask M 28.37 25.46 27.36

Kask U 43.15 41.25 43.2

Iss 12.53 15.1 15.4

Table B3. Comparison of RMSE of the velocity magnitude between GNSS and TICOI time-series in m yr−1 for different strategy to delete

outliers (columns) and GNSS stations (rows). The minimal values are displayed in blod.

Appendix C: Simulated data

Synthetic instantaneous velocity and position time-series

The synthetic instantaneous velocity is taken as: v(t) = a+ bsin( 2π
T t) + ccos( 2π

T t) with T = 365.25 as in Greene et al.790

(2020). To make sure that the coefficients a,b and c represent well the data, instead of an arbitrary choice, these coefficients are

estimated by an IRLS inversion by adding a regularization term corresponding to a displacement model with the coefficients

a,b and c as parameters as performed in López-Quiroz et al. (2009). The corresponding system of equations is given in equation

C1. The system is solved for Sentinel-2 data on the point represented in blue in Charrier et al. (2022c) Fig S1. The coefficients

are found to be: a=−0.49, b=−0.0788 and c= 0.018.795




1 1 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0 0 0

λ 0 0 . . . 0 −[τ1+∆τ − τ1] − T
2π [sin( 2π

T τ1+∆τ )− sin( 2π
T τ1)] − T

2π [cos( 2π
T τ1+∆τ )− cos( 2π

T τ1)] 1
...

...
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...
...
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...

0 0 0 . . . λ −[τ1+n∆τ − τ1+(n−1)∆τ ] − T
2π [sin( 2π

T τ1+n∆τ )− sin( 2π
T τ1+(n−1)∆τ )] − T

2π [cos( 2π
T τ1+n∆τ )− cos( 2π

T τ1+(n−1)∆τ )] 1
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(C1)

where T is the period of the sinusoidal signal. a,b,c,d are the coefficients of the model.

The position time-series is defined as the integral of the instantaneous velocity.

Selection of acquisition dates

Then, we randomly select the acquisition dates in a list of dates ranging from the 1 January 2015 and 31 December 2020,800

every 5 days. By doing so, some dates between the 1 January 2015 and 31 December 2020 will not be included in the simulated

dataset. It represents the effect of clouds: the pixels covered by clouds will be systematically rejected.

Noise

For each acquisition date, we add a Gaussian noise to the position value. This accounts for the fact that the noise depends

mainly on the image texture (clouds, snow, crevasses, etc.). Therefore, the noise of each displacement is the sum of the noises805

of each date of the pair.

Image-pair velocity: We randomly select a temporal baseline between 5 and 400. Then, we compute image-pair velocity by

taking the difference between the position at the second date of acquisition and the first date of acquisition.
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Figure A1. Distribution of the errors estimated by comparing measured displacements from remote sensing images and GNSS displacements.

The left column shows errors in East/West (Dx) and North/South (Dy) displacements according to the temporal baseline. The right column

shows the distribution of this error. Skewness is a measure of the symetry of a distribution, a value of 0 indicates a symetric distribution.

Kurtosis refers to the degree of "tailedness" of a distribution relative to a normal distribution. Strong kurtosis (>3) reveals heavy-tailed

distribution.
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Figure A2. Scatterplot of GNSS velocity magnitude and 30 days rolling median applied to velocity magnitude observations, on the left with a

temporal baseline lower than 180 days and on the right with every temporal baseline. The RMSE is better while using all temporal baselines,

but there is a clear underestimation for velocities larger than 180 m yr−1.
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Figure B1. Evolution of the RMSE and KGE of TICOI results with respect to GNSS data for station Lowell L, where a surge occurs. When

the coefficient increases the acceleration of the TICOI estimations tend to be close the initial guess of acceleration, which in this case slightly

oversmooths the peak of the surge. This is why the RMSE and KGE reach a plateau after a coefficient of around 5000.

(a) (b)

Figure B2. (a) Visual comparison of the filters for the point Lowell M. (b) Visual comparison of the filters for the point Lowell L.
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