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Abstract.

Glacier velocity is a crucial observation as it controls the mass redistribution and future evolution of the geometry of a

glacier. While glacier annual velocities are now available in open data worldwide, sub-annual velocity time series are still

highly uncertain and available at heterogeneous temporal resolutions. This hinders our ability to understand flow processes

such as basal sliding and surges, as well as the integration of these observations into numerical models. The latest could help5

to better constrain future projections of sea level rise. We introduce an open source and operational Python package called

TICOI (Temporal Inversion using linear Combinations of Observations, and Interpolation). TICOI fuses multi-temporal and

multi-sensor image-pair velocities produced by different processing chains, using the temporal closure principle. In this article,

we provide extensive examples of TICOI applications on the ITS_LIVE dataset and in-house velocity products, to generate

monthly velocity time series. The results are evaluated against GNSS data collected on three glaciers with different dynamics10

in Yukon and western Greenland, including a surging glacier. Comparison with GNSS observations demonstrates a reduction

in error by up to 50% in comparison with the raw image-pair velocities and other post-processing methods. This increase in

performance comes from the development of methodological strategies to enhance TICOI’s robustness to temporal decorrela-

tion and abrupt non-linear changes. In addition, TICOI can retrieve monthly velocity using annual image-pair velocities only,

when there is sufficient temporal redundancy. This package opens the door to the harmonization of various datasets, enabling15

the creation of standardized sub-annual velocity products.
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1 Introduction

Glacier velocity monitoring is key to understand how glaciers are changing in a warming climate. Global glacier thinning (The

GlaMBIE Team, 2025; Hugonnet et al., 2021) is expected to lead to large changes in ice flow, which, in turn, affect glacier20

mass redistribution and future geometry (Dehecq et al., 2019; Morlighem et al., 2011). Documenting ice velocity and changes

in ice velocity is thus important to understand the future evolution of glaciers. Regional to global mapping of glacier surface

velocity from remote sensing helped to constrain estimates of glacier thickness (Millan et al., 2022) and ice fluxes into the

ocean (Kochtitzky et al., 2022; Mouginot et al., 2019; Gardner et al., 2018), which led to reductions on present and future

glacier contribution to sea level rise.25

While these applications rely on multi-annual velocity averages, many glacier processes should be studied at sub-annual

scales, in particular to study calving events (Provost et al., 2024; Riel et al., 2021), glacier response to lake drainage (Maier

et al., 2023; Main et al., 2023; Wendleder et al., 2023), surface runoff (Wendleder et al., 2023), changes in the efficiency of sub-

glacial hydrological networks (Nanni et al., 2023; Maier et al., 2023) or glacier surges (Beaud et al., 2021; Quincey et al., 2015;

Copland et al., 2011). Sub-annual ice velocity is crucial for the monitoring of natural hazard such as glacier detachment (Kääb30

et al., 2021; Gilbert et al., 2018), glacier lake outburst flood (Rashid et al., 2020; Round et al., 2017) and potentially volcanic

eruption, when glaciers are located nearby (Martin et al., 2025). Additionally, several recent methodological and modeling

developments stress the need for precise and temporally resolved velocity products to infer basal conditions (Goldberg et al.,

2015; Jay-Allemand et al., 2011) or near-future projection (Choi et al., 2023), for example using transient inverse methods

(Choi et al., 2023; Goldberg et al., 2015). This could help to better constrain future sea-level rise.35

So called image-pair velocities are derived by calculating the displacement of features between two images. Recent im-

provements in satellite image quality and resolution, with the launch of Landsat-8 in 2013, Sentinel-1 in 2014 and Sentinel-2

in 2015, among others, have made it possible to derive image-pair velocities, with an enhanced signal-to-noise ratio at a relative

high frequency (5 to 16 days at the best). Despite the recent increase in available velocity datasets, post-processed time series

of sub-annual glacier surface velocities, sampled on fixed time intervals, are not yet available at a global scale. Only individual40

image-pair velocities have been released, such as those from the ITS_LIVE project, which provides velocities derived from

correlating Landsat-4,5,6,7,8, and Sentinel-1,2 image pairs, separated by temporal baselines of 5 to 400 days. These products

remain noisy and sparse, especially over mountain glaciers. Moreover, image-pair velocities are difficult to interpret because

they contain velocities measured using image pairs from different satellites, with different temporal baselines. For these rea-

sons, many research teams processed their own image-pair velocities instead of using existing datasets (Provost et al., 2024;45

Nanni et al., 2023; Halas et al., 2023; Wallis et al., 2023; Yang et al., 2022; Beaud et al., 2021; Derkacheva et al., 2020), to

reach a better signal-to-noise ratio and interpretability. However, this requires high computational and storage resources, and

often suffers from a lack of reproducibility. For the same reason, image-pair velocities with variable dates are difficult to in-

clude into models, whereas seasonal velocity could aid in retrieving basal conditions (Derkacheva et al., 2021) or ice rheology

properties (Bolibar et al., 2023). This calls for a standardized framework dedicated to the processing of available image-pair50

velocity products to produce consistent sub-annual time series of glacier surface velocity.
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Several methods have been proposed to produce velocity time series: cubic spline or LOWESS regression (Derkacheva

et al., 2020), regression using a dictionary of B-splines (Riel et al., 2021), sinusoidal regression (Greene et al., 2020), Bayesian

recursive smoother (Wallis et al., 2023), iterative weighted monthly averaging (Van Wyk de Vries and Wickert, 2020), or

temporal closure (Altena et al., 2019; Charrier et al., 2022b). However, most of these methods use only a subset of the available55

data, such as velocities quantified using short temporal baselines (<100 days) (Nanni et al., 2023; Wallis et al., 2023; Riel et al.,

2021; Derkacheva et al., 2020), or use strong assumptions about glacier behavior, such as sinusoidal variations in seasonal

motion (Greene et al., 2020). Moreover, even though efforts have been undertaken to compare some of the image correlation

algorithms (Zheng et al., 2023; Jawak et al., 2018; Heid and Kääb, 2012), no study has tried to fuse datasets produced by

different research teams to obtain sub-annual time series. Finally, few of these methods are open source.60

The objective of this study is to propose an open source and operational package able to fuse image-pair velocities computed

using different satellite images, with different temporal baselines, and possibly using different processing chains, in order

to obtain regular (i.e., sampled at regular time steps) velocity time series with an associated uncertainty and relative quality

indicators. To do this, we rely on a method based on the temporal closure of the displacement network, also known as a

Small BAseline Subset (SBAS)-like approach, which originated from the Interferometric Synthetic Aperture Radar (InSAR)65

community (Doin et al., 2011; Berardino et al., 2002). These approaches have previously been adapted and applied to glaciers

to retrieve 2D or 3D velocity time series (Provost et al., 2024; Charrier et al., 2022b, a; Samsonov et al., 2021; Guo et al., 2020),

but have not been applied in an operational framework because: 1) they remain sensitive to temporal decorrelation (i.e., very

low velocity values which can be measured when strong surface changes occur, or near the margins of the moving object. This

phenomenon is especially visible when the temporal baseline is large and/or when the velocity is low.); 2) they often include70

a regularization term which assumes acceleration to be zero in time (which is not true for surging glaciers or glaciers with a

strong seasonality pattern), or a pre-defined mathematical model (i.e. a periodical model) which requires a priori knowledge

on the glacier dynamic; 3) they have never been evaluated against Global Navigation Satellite System (GNSS) data; and 4)

computational costs are high.

To overcome these issues, we present a new method called Temporal Inversion using linear Combinations of Observations,75

and Interpolation (TICOI) to derive regular glacier velocity time series. First, we detail our methodological strategy to increase

the robustness of previous developments against temporal decorrelation and abrupt non-linear changes. We also propose three

criteria to evaluate the quality of our results, including an error propagation, that is based on a robust theoretical framework.

Then, we validate this new approach against seven GNSS (Global Navigation Satellite System) stations located on three differ-

ent glaciers, including one with an active surge phase, and two others showing seasonal variations. We carry out a sensitivity80

analysis, and illustrate our results along glacier center flowlines. Then, we show that TICOI is able to retrieve sub-annual ve-

locity time series from annual image-pair velocities only. To finish, we discuss the interest of fusing datasets originating from

different processing chains, and the potential application of TICOI at a regional and global scale.
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2 Method

In this section, we describe the TICOI workflow (Fig. 1). The first part builds on previous developments (Charrier et al.,85

2022b, a), the second part presents methodological strategies to improve the computational performance and robustness of

the method to temporal decorrelation and abrupt non- linear changes in surface velocities. The aim is to provide a robust

post-processing package that does not require a priori knowledge of the ice flow behavior.

2.1 Previous developments

2.1.1 Temporal closure’s principle90

The temporal inversion is based on the temporal closure of the displacement measurement network (Berardino et al., 2002).

Temporal closure links n measured displacements in Y to p estimated displacements in X (Fig. 1), by a system of linear

equations. This system of linear equations can also be written as AX = Y , with A the design matrix linking X to Y . To

understand the structure of A, let’s take an example with three displacements represented in Figure 1. Assuming that the

displacement is cumulative in time, it can be written that:95




dt0,t6 = d̂t0,t4 + d̂t4,t5 + d̂t5,t6

dt0,t4 = d̂t0,t4

dt4,t6 = d̂t4,t5 + d̂t5,t6

(1)

with dti,tj a measured displacement between dates ti and tj , and d̂tk,tl a displacement estimated between dates tk and tl.

This is equivalent to AX = Y , which is in this example:




1 1 1

1 0 0

0 1 1







d̂t0,t4

d̂t4,t5

d̂t5,t6


=




dt0,t6

dt0,t4

dt4,t6


 (2)

It is important here to highlight the temporal redundancy between the measured displacements dt0,t6 , dt0,t4 and dt4,t6 . The100

estimated displacement d̂t0,t4 can be obtained from these three displacements. This is the main interest of using temporal

inversion: reducing the noise by using the redundancy between displacement measurements computed with different temporal

baselines. Note that X contains either the East/West displacements or the North/South displacements.

2.1.2 Inversion of the system

Most of the time, the system AX = Y is ill-posed, i.e. rank(A)< p (the number of linearly independent rows of the matrix A105

is lower than the number of estimations p), and the system has an infinite number of solutions. To overcome this problem, the

system can be solved either with a Singular Value Decomposition (SVD) (Berardino et al., 2002), a Least Square (LS) approach

(Bontemps et al., 2018; Samsonov and d’Oreye, 2017; Doin et al., 2011) or a L1-norm solution (Lauknes et al., 2010). The
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Figure 1. TICOI workflow. In this example, displacements have been measured using images from satellites 1 and 2, which have a repeat

cycle of 2 and 5 days, respectively. Outliers have been removed in the displacement dataset, for example from areas impacted by clouds

(shown in yellow on the image subsets). The TICOI workflow is applied pixelwise (in this example on the pixel P ). First, the system

AX = Y is inverted to obtain an irregular time series [section 2.1.2]. Second, the time series is interpolated to obtain a regular time series

with a homogeneous and optimal temporal sampling [section 2.1.3]. Note that the temporal sampling of the final time series τ can be chosen

by the end-user.

L1-norm is more robust to outliers, but computationally expensive, as it requires computing the absolute of the residuals, which

is not a differentiable piece-wise function. The SVD solution is equivalent to the minimum-norm LS solution (i.e. it tends to110

minimize the norm of X) (Berardino et al., 2002). In order to have a more flexible regularization strategy, we use a Weighted

Least Square (WLS) approach. The cost function is:

argmin(||W (AX −Y )||2 +λ||Γ(X −X0)||2) (3)

where W is a n× p matrix standing for the weight given to each value in Y , λ is a scaling constant and Γ is a p× p matrix

representing the regularization matrix, and X0 is first guess solution detailed in section 2.2.2.115

Different regularization matrix Γ and weights W can be used. The choice of Γ will be discussed in section 2.2.2. As for the

weights, W could be equal to the identity (Berardino et al., 2002), in which case the WLS solution is equivalent to an Ordinary

Least Square. But this ignores the heteroscedasticity of the measurements (i.e. the fact that they have unequal variances).

Therefore, it is common to use a priori knowledge of the data quality, for example the InSAR coherence (Yunjun et al., 2019),
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the shape of the similarity map used in image correlation (Bontemps et al., 2018), errors computed over stable areas, the cosine120

of the angle between each displacement vector and the spatio-temporal median, or the modified zscore (Charrier et al., 2022a).

However, these metrics do not always accurately represent the errors of the measurements. Another complementary strategy is

to use the inverse of the residuals (Bontemps et al., 2018; Liang et al., 2020), which can be expressed as the vector of dimension

n:

R=AX̂ −Y (4)125

In the TICOI workflow, the weights can be a combination of a priori knowledge of the data quality (e.g., image correlation

score or velocity in stable areas (Gardner et al., 2018)) and residuals. To be more robust to outliers, we use an Iterative Re-

weighted Least Square (IRLS) approach, i.e. we update the weights iteratively using the residuals from the previous inversion.

In the first iteration of the inversion, if the data quality is known, the diagonal elements of the weights, W0, corresponds to

the errors scaled between 0 and 1.130

In the second iteration, and all following iterations, each diagonal element of the weighted matrix, at the position (m,m)

and iteration u is updated as:

Wu
m,m = ψ (Zu

m, c) (5)

In this equation, Z is a standardized residual vector of dimension n computed as:

Z =
R

NMAD(R)
(6)135

with NMAD being the Normalized Median Absolute Deviation of the residuals, equal to 1.483MAD.

ψ is the Tukey’s biweight function, which is a common down-weight function (Liang et al., 2020) robust to large outliers,

defined as:

ψ(Zu
m, c) =




[1− (Zu

m/c)2]2, |Zu
m|< c

0, |Zu
m|> c

(7)

where c is a tuning constant which is usually set to 4.685, producing 95% efficiency for a normal distribution (Huber, 1992).140

The iterations stop when (mean(|X̂u− X̂u−1|)< δ or (u > 10)) where X̂u corresponds to the results of a given iteration u

and X̂u−1 the results of the previous one. δ is set to 0.1 m.

2.1.3 Interpolation of the irregular time series

The inversion results in an irregular displacement time series, i.e. the vector X contains displacement between each measured

dates (all dates with an image acquisition minus dates rejected by outlier removal) (Fig. 1). However, we need regular time145
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series to study glacier dynamics. To study variations of fast moving objects such as glaciers we are interested in velocity time

series (Derkacheva et al., 2020; Greene et al., 2020), more than cumulative displacement time series (Lacroix et al., 2019;

Doin et al., 2011). When looking at velocities, it is necessary to compare velocities with the same temporal sampling for three

main reasons: 1) velocities with different temporal sampling are not comparable because they correspond to the average of the

instantaneous velocity over different time intervals (e.g., annual image pair-velocities are close to the annual average of the150

instantaneous velocity whereas short temporal baseline velocity are close to the instantaneous velocity) (Charrier et al., 2022a)

; 2) velocities with very short temporal sampling can be very noisy because noise decreases with increasing temporal sampling

(Millan et al., 2019); and 3) the dates between which the displacements are inverted can be different from one pixel to another

because of outliers removal.

To overcome this problem, some studies have proposed to use fractions of displacements inside the network (Samsonov155

et al., 2021). However, this assumes the velocity to be constant over the corresponding temporal sampling. This assumption

is most of the time inaccurate, particularly over long time periods or in cases of surge behavior or seasonal variations, as

demonstrated in (Charrier et al., 2022c). Therefore, we propose to: 1) compute the cumulative displacement time series by

summation of the irregular time series; 2) interpolate this cumulative displacement time series (here using a cubic spline); and

3) obtain a regular time series with a given temporal sampling, using a discrete derivative. See Charrier et al. (2022a) for more160

details.

The resulting time series has a constant temporal sampling, for example 4 days in Figure 1. The larger the temporal sampling,

the smoother the time series, i.e. the signal-to-noise ratio increases, but the temporal resolution decreases. By analyzing the

Root Mean Square Error (RMSE) over stable areas, we have shown that the RMSE according to the temporal sampling has

an asymptotic behavior which converges after around 30 days for glaciers with medium average velocity (∼100 to 200 m165

yr−1) (Charrier et al., 2022a, b). Note that this asymptote could be reached with a smaller temporal sampling for faster glaciers.

2.2 Improved robustness and computational performance

An IRLS with a first order Tikhonov regularization term performs poorly in some extreme cases, such as temporal decorrelation

or abrupt non-linear changes, especially when there are few image-pair velocities. Below, we show improvements to the method

that overcome these challenges.170

2.2.1 Robustness to temporal decorrelation

Using a LS approach to solve AX = Y assumes the errors of Y to be normally distributed. However, this assumption is not

always true in a real case scenario (Fig. A1). Robust LS regression, like IRLS using Tukey’s bi-weight function, helps to reduce

the effect of outliers in case of random errors (Charrier et al., 2022b; Liang et al., 2020) but may be inefficient for systematic

errors. For example, when temporal decorrelation occurs, the measured displacement is systematically close to 0, instead of175

the true glacier velocity, which results in a heavy-tailed distribution of errors with a strong kurtosis (Fig. A1). To overcome this

problem, we propose to carry on a first LS with short temporal baselines only (lower than 180 days), to automatically detect

temporal decorrelation. We compute the residual between each observation (with short and long temporal baselines), to this
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first small baseline LS solution. Displacements impacted by temporal decorrelation have large residuals, because they do not

satisfy temporal closure.180

2.2.2 New regularization term robust to abrupt non-linear changes

A crucial choice is the regularization matrix (Γ in Eq. 3). The most common regularization matrix is the first order Tikhonov

regularization, which assumes the acceleration to be null in time (Charrier et al., 2022b; Samsonov et al., 2021; Lacroix et al.,

2019; Bontemps et al., 2018). For this regularization, Γ corresponds to a first order derivative operator. The diagonal elements

of Γ in Eq. 1 are: Γk,k = 1/∆τ and the element above the diagonal will be Γk,k+1 =−1/∆τ with ∆τ the temporal sampling185

of time series. When using the Tikhonov regularization, X0 is a vector filled with 0 in the cost function shown in Eq. 3.

In other words, this strategy minimizes the difference between adjacent estimated velocities, i.e. the acceleration. However,

the assumption of an acceleration close to 0 is not always valid, especially when abrupt non-linear changes occur (e.g., for

surge-type glaciers, or those with strong spring speedups). Pepe et al. (2016) and López-Quiroz et al. (2009) proposed to use a

model-based regularization, but it also requires a priori knowledge of the displacement behavior.190

Therefore, we propose a new regularization strategy. We constrain the acceleration of the estimated time series, X , with

the acceleration of an initial guess, X0. In the regularization term ||Γ(X −X0)||2) from Eq. 3, Γ is identical to the Tikhonov

regularization matrix but X0 is not null anymore. The latest is estimated from the spatio-temporal smoothing of linearly

interpolated measurements, to ensure that X0 and X correspond to the same time intervals. We have tested different filters

and have obtained the best results with a spatial window of 3x3 pixels and a third-order Savitzky–Golay filter with a temporal195

window of 90 days (see appendix B2). We use only velocity measurements with temporal baselines <180 days to avoid long

temporal baselines, which will be close to the long-term average of velocity, resulting in an over-smoothed solution (see

Fig. A2).

2.2.3 Improved computation time

When velocities are derived from images acquired by different satellites, spanning different temporal baselines (e.g., from 5 to200

400 days in the ITS_LIVE dataset), the length of Y can be very large (e.g., on the order of 10,000 over Kaskawulsh Glacier,

Yukon, between 2013 and 2022). This will result in very long computation time (several seconds per pixel). To mitigate this

challenge, we solve the Least Square problem using LSMR, a conjugate-gradient method for sparse least-squares problems,

that leverages the fact that the matrix A is generally sparse, i.e. contains mainly 0. Additionally, we implement embarrassingly

parallel processing at the pixel level. Besides, the lazy mode from Dask, an open source Python library for parallel computing,205

allows the user to directly apply TICOI on ITS_LIVE data sets stored in the Amazon cloud (López et al., 2023), without the

need to download the data locally. Dask also allows out-of-memory processing by splitting the data in chunks.
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2.3 Automatic selection of the regularization coefficient

The choice of the regularization coefficient λ in Eq. 3 can be empirical (Lacroix et al., 2019; Bontemps et al., 2018) or based on

an L-curve (Samsonov et al., 2021), which aims to compare ||W (AX−Y )||2 and ||Γ(X−X0)||2 in Eq. 3. However, L-curves210

do not always converge (Vogel, 1996). As an alternative solution, we propose to use the Velocity Vector Coherence (Dehecq

et al., 2015) defined as:

VVC=mean(i,j)∈ω







NX

t=0

V (i, j, t)

∥V (i, j, t)∥






 (8)

with ω the area over which the VVC is computed. The VVC varies from 0 to 1, with 1 corresponding to a perfect coherence of

the direction in time.215

When the regularization coefficient increases, the solution tends to be smoother. Therefore, the direction of the velocity

vectors tends to be constant in time, and the VVC tends to be close to 1. To find a compromise between smoothing and

improved signal-to-noise ratio, we need to find the inflection point of this function, which is approximated by:

V V Coptimal_coef =max(V V C)− 0.05 ∗ (max(V V C)−min(V V C)) (9)

If there is a real change in velocity direction over time, the VVC curve will converge before 1, but the curve will still have220

an inflection point. For better robustness, it is advisable to calculate the VVC over a relatively large area.

2.4 Uncertainty

Three metrics are proposed to evaluate the uncertainties of the estimated velocity time series: 1) the VVC of the time series; 2)

the number of image-pair velocities that have contributed to each estimation; and 3) the a posteriori covariance matrix.

The VVC has been defined in Eq. 8. The number of image-pair velocities that have contributed to each estimation is defined225

as:

Xcount=ATW (10)

This is computed for North/South and East/West components separately. Then, the number of image-pair velocities of the

velocity magnitude is taken as the average number of image-pair velocities of two velocity components.

The a posteriori covariance matrix is defined by assuming the errors to be independent (Gavin, 2023; Liang et al., 2020):230

ΣX̂ =N−1ATWΣŶ WAN−1 (11)

with N =ATWA+λΓTΓ, which contains a data fidelity term ATWA, and a regularization term λΓTΓ. ΣŶ is the covari-

ance matrix of the image-pair velocities, which contains the square of the errors provided with the raw image-pair velocities,
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converted in meters. If the errors are independent, this matrix is diagonal. The demonstration of this formula is provided in

appendix A.235

The a posteriori covariance matrix is computed for each of the components separately and interpolated using the same

strategy described in 2.1.3. Then, the a posteriori covariance matrix of the velocity magnitude is computed following the

propagation of uncertainty:

Σv̂ =

r
(
vx
v

∗Σv̂x)
2 +(

vy
v

∗Σv̂y )
2 (12)

with vx and vy the x- and y- velocity component, v the velocity magnitude and Σk the a posteriori covariance matrix of the240

variable k.

Finally, the confidence intervals are defined for each estimated velocity as: ±t(1−α/2),n−p

√
Σv̂ , with t(1−α/2),n−p the value

of the student’s t-distribution for a degree of freedom of n− p at a confidence level of 100(1−α)%. Here, we chose α to be

equal to 0.05, i.e., we provide a 95% confidence interval.

3 Data and study sites245

The package is validated on glaciers with low to medium velocity magnitude (∼100 to 200 yr−1) (Fig. 2). We chose these

glaciers because they have been monitored with continuous GNSS data over multi-year periods and represent both seasonal

and surge type dynamics. The possible sites available for this comparison are rare since few glaciers are monitored this way. In

the following section we describe each of the glaciers, their associated GNSS data, and surface velocity measurements derived

from remote sensing.250

3.1 Lowell and Kaskawulsh glaciers in Yukon, Canada

Lowell and Kaskawulsh glaciers are two large valley glaciers located in Kluane National Park, at the eastern edge of the St

Elias Mountains, in Yukon, Canada. Lowell glacier, also known as Nàłùdäy in Southern Tutchone, is a ∼ 65 km long surge-type

glacier. It is composed of a southern and a northern arm divided by a medial moraine. The northern arm joins the main trunk by

a ∼ 200 m high icefall, whereas the southern arm originates from a large high-accumulation basin. The terminus of Lowell is255

divided in two by a large nunatak (Bevington and Copland, 2014). The last 6 surges have been observed in 1948-50, 1968-70,

1983-84, 1997-98, 2009-10 (Bevington and Copland, 2014), and 2021-22 (Van Wychen et al., 2023). During the 5 surges that

occurred between 1948 and 2009, the length of the surge active phase ranged from 0.6 to 2 years and the quiescent phase from

11 to 18 years. Bevington and Copland (2014) note that the surge cycle (quiescent + active phase) seems to have decreased

in time, which was supported by the start of the most recent surge in 2021. Surges show a rapid terminus advance starting in260

summer to early fall (late June to early October), continuing through the winter, and ending in June or July of the following

year. Velocity peaks during the surge phase are typically >3500 m yr−1 in the terminus region, and the fastest-recorded motion

is of 11 000 m yr−1 in the lowest part of the south arm during the 1983–84 surge (Bevington and Copland, 2014).
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Kaskawulsh, called Tänshį in Southern Tutchone language, is approximately 70 km long, with altitudes ranging from 800

to 2500 m above sea level (a.s.l) and flowing eastwards. It is divided into three main tributaries (North, Central, and South265

Arms) (Flowers et al., 2014; Foy et al., 2011). It is believed to be temperate, at least across its ablation area, and has been

monitored for many decades (Clarke, 2014; Flowers et al., 2014; Foy et al., 2011; Arendt et al., 2002), starting with the Icefield

Ranges Research Project in the 1960s and the 1970s (Anderton, 1973; Clarke et al., 1967). Annual velocities are about 10 to

50 m yr−1 near the terminus, and range between 100 and 200 m yr−1 over the rest of the centerline (Main et al., 2023; Millan

et al., 2022; Waechter et al., 2015). Its surface velocity remained stable between 1960 and 2012, except for the lower part of270

the ablation area (up to 10 km upstream of the terminus; Waechter et al., 2015). Annual average velocities across the lower

glacier increased at a rate of 5.5 m yr−2 between 2010 and 2015, followed by a decrease between 2016 and 2018 of about 8

m yr−2, mainly in the northern lobe (Main et al., 2023). The main cause of these changes can be explained by the drainage of

proglacial Slims lake, located northwest of the terminus, according to Main et al. (2023).

3.2 Land-terminating margin in western Greenland275

The land-terminating region in western Greenland is characterized by an absence of marine outlet glaciers where annual

velocities are on the order of 100-200 m/yr (Joughin et al., 2018). The considered study area is located inland of Issunguata

Sermia, a land-terminating outlet glacier, particularly well studied over the last two decades using both satellite and in situ

instrumentation. Data from this region serves as the foundation for a better understanding of hydrology-dynamic coupling in

Greenland, where melt-forced velocity changes have been observed from daily to decadal timescales (Davison et al., 2019).280

Surface lake drainage and intense melt events drive flow accelerations as high as 10 times above background across daily to

weekly timescales as the subglacial drainage system is temporarily overwhelmed by the rapid influx of meltwater (Doyle et al.,

2015; Tedstone et al., 2013). Seasonal velocity cycles (two-three times winter velocities) driven by summer melt production

have been well-documented and attributed to basal pressure changes modulated by melt supply variability and seasonally

evolving drainage (Maier et al., 2022; van de Wal et al., 2015; Sole et al., 2013; Bartholomew et al., 2012, 2010). Across285

decadal timescales, gradual velocity decreases (20 %) have been found in response to periods of elevated melt rates (Tedstone

et al., 2015; Halas et al., 2023; Williams et al., 2020). These variations are hypothesized to be caused by increases in summer

drainage efficiency, which gradually depressurizes the ice-base (Williams et al., 2021; Tedstone et al., 2015).

3.3 Surface velocity measurements

3.3.1 Datasets290

We demonstrate the TICOI method with two datasets of surface flow velocity: 1) the Institut des Geosciences de l’Environnement

(IGE) dataset (Halas et al., 2023; Millan et al., 2022; Halas et al., 2022; Derkacheva et al., 2020; Millan et al., 2019), available

on-demand and 2) the NASA MEaSUREs project Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE)

dataset (Gardner et al., 2018, 2022), available on-line. The first one derived displacement using a modified version of the

Normalized Cross-Correlation (NCC) algorithm AMPCOR from ROI_PAC (Mouginot et al., 2019; Millan et al., 2019). In the295
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Figure 2. Study areas of three selected glaciers: Kaskawulsh and Lowell glaciers in the Yukon; Issunguata Sermia Glacier in western

Greenland. Black lines represent the center flow-line of Kaskawulsh and Lowell glaciers according to the Randolph Glacier Inventory

version 7 (RGI 7.0 Consortium, 2023). It has been slightly modified for Kaskawulsh to reach Slims lake. Orange lines represent the glacier

outlines from RGI v7. Blue dots show time evolving locations of GNSS stations. The three main GNSS locations are named Kask L, M,

U for the lower, middle and the upper of Kaskawulsh glacier, and Lowell L, M, U for the lower, middle and upper of Lowell glacier. Blue

squares represent areas including all GNSS stations for each site. They are used in section B. The background of each site is the 2017-2018

average velocity from Millan et al. (2022) overlaid over Sentinel-2 images.

Yukon, it is based on images from Sentinel-2 and Landsat-8 and the correlation window size is 16x16 pixels (Mouginot et al.,

2023) and corresponds to the dataset published by (Millan et al., 2022). In Greenland, the image-pair velocities are based on

Landsat-7, Sentinel-2, Landsat-8 and Sentinel-1 data and corresponds to datasets published by Halas et al. (2023); Derkacheva

et al. (2020). Image-pair velocities span temporal baselines from 5 to 100 days and from 330 to 400 days in Yukon, from 5 to

32 days (Derkacheva et al., 2020) and from 330 to 400 days over western Greenland (Halas et al., 2023). The spatial sampling300

of the velocity maps is 50 m in Yukon and 150 m in Greenland. In the dataset, a previous outlier filtering has been performed:

displacements that deviate more than three pixels from the median velocity computed over a spatial window of 9× 9 pixels

are considered to be outliers (Millan et al., 2019; Mouginot et al., 2012). The uncertainties depend on the spatial resolution of
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the images and the temporal baselines as explained in Millan et al. (2019), by assuming the uncertainty in displacement to be

around 1/10 pixels.305

The second dataset, ITS_LIVE v2.0 (Gardner et al., 2022), contains velocities measured using the NCC algorithm “au-

toRIFT” (autonomous repeat image feature tracking) on images from Sentinel-1, Sentinel-2, Landsat-7 and 8. Results from the

sparse search guide a dense search (Gardner et al., 2018). The size of the correlation window is increased iteratively according

to a treshold on the Normalized Displacement coherence, an indicator of the quality of the correlation (Gardner et al., 2018)

(i.e., there are uneven correlation window sizes which could lead to unveven smoothing in space). The temporal baselines310

range between 5 and 546 days. The spatial sampling of the velocity maps is 240 m resampled at a resolution of 120 m using a

cubic spline approach (Lei et al., 2022). Only velocities that agree within 4 times the centered 5× 5 mean absolute deviation

are retained. The uncertainty of each image-pair velocity corresponds to the standard error of velocities relative to the stable or

slow moving areas.

The strength of ITS_LIVE is to be available worldwide in open access from 1980s to 2023, while the IGE dataset, published315

in Millan et al. (2019), covers only two years. The strength of the IGE dataset is its spatial resolution (50 m against 240 m)

which allows velocities of relatively small glaciers to be captured. A more detailed comparison is beyond the scope of this

paper.

3.3.2 Pre-processing of datasets

In the TICOI method, we optionally apply a filtering to the input data. Two main types of strategies for deleting outliers are320

implemented : the Modified Zcore (Mzscore), which filters the velocity components 3.5 NMAD away from the median of the

entire time period (Maronna et al., 2019), and the Median Angle (MA) that removes image-pair velocities that deviate more

than 45° from the median vector (Rabatel et al., 2023; Charrier et al., 2022a). In this study, we use the MA filter.

The IGE and ITS_LIVE datasets are reprojected using a nearest-neighbor interpolation on the same coordinate system: the

polar stereograpghic North projection (EPSG code 3413) for both Greenland and Yukon. This process requires reprojecting325

both the grid coordinates and the values of the EW and NS velocity components. These velocity components are defined relative

to the orientation of the grid, i.e., the EW (NS) component is the projection along the x (respectively y) axis. Consequently, it

is necessary to reproject the grid and recalculate the velocity vector projections along the new axes. To achieve this, we first

compute the coordinates of the start and end points of each velocity vector in the new coordinate system. We then calculate the

difference between these coordinates along the axes of the reprojected grid to obtain the new component values.330

3.4 GNSS data

On Kaskawulsh and Lowell glaciers (Yukon), up to six dual frequency GNSS receivers recorded their position at 15 s intervals

for 2 or 3 hours per day in winter, and 24 hours per day in summer (Van Wychen et al., 2023; Waechter et al., 2015), from

2013 to 2022. The positions were post-processed using Natural Resources Canada’s Precise Point Positioning service (http://

webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php ), resulting in an accuracy of ∼1–2 cm in horizontal and ∼5 cm in vertical.335

We removed any position derived from a daily record of <1.5 hours, which sometimes occurs in winter due to low battery power.
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Prior to 2017, the stations were Trimble R7 units mounted on poles drilled into the glacier surface. From 2017 onwards, the

stations were replaced with Trimble NetR9 units mounted on tripods ’floating’ on the glacier surface. They were manually

moved up glacier every few years to compensate for the glacier displacement, to ensure that they remained in approximately

the same location. This creates artifacts in the position time series, which we remove using the Local Outlier Filter (LOF)340

(Breunig et al., 2000), which computes the local density deviation of a given data point with respect to its neighbors. We apply

it on the gradient of the East/West and North/South position. A daily position is considered to be an artifact if LOF > 5. Then,

velocities are derived from the discrete derivative of the position time series, and averaged using a temporal window of 5 days,

which corresponds to the minimal repeat cycle of the satellites used. Time spans with less than 80% available daily velocities

are removed.345

In western Greenland, we derived velocities from 15 s position data collected at a field site located 33 km from the terminus

of Issunguata Sermia using five Trimble NetR9 GNSS receivers mounted on a poles frozen into the ice. The position data from

each receiver was processed against an off-ice base station using TRACK v1.29 differential kinematic processing software

(previously detailed in (Maier et al., 2022, 2019)). From the GNSS positions, ice velocity is estimated on a daily basis (Halas

et al., 2022). While the collection period was from 2014-2017, no data are available from each winter due to power limitations.350

Since the Yukon GNSS stations typically move around 100-150 m yr−1, we compare them to remote sensing velocities or

TICOI results located at the averaged GNSS location of the corresponding year. The GNSS station in Greenland is supposed

to be stable spatially because the period of measurements is shorter and the sampling of the velocity maps coarser (considering

a spatial sampling of 150 m, an average velocity of 125 yr−1, the GNSS stations have likely moved by 2.5 pixels between

2014-17). Then, we average daily GNSS velocities to match the same temporal baselines as remote sensing velocities, or the355

temporal sampling of TICOI time series, which in this study is 30 days.

4 Results

4.1 Robustness of TICOI method

4.1.1 Robustness to temporal decorrelation

One of the main improvements of TICOI compared to previous methods is its ability to eliminate artifacts caused by temporal360

decorrelation in the input datasets. The strategy detailed in section 2.2.1 rejects long temporal baseline velocities which are

biased. These velocities tend to have large errors when compared to the temporal closure solution derived using only short

temporal baseline velocities. This results in large residuals (Eq. 4) relative to the initial solution with short temporal baselines,

and as a result, Tukey’s biweight function assigns a weight of 0 to these raw image-pair velocities.

To evaluate the performance of this strategy, we applied TICOI to a large area around Kaskawulsh Glacier for the pe-365

riod 2013-22 considering two implementations: with and without an automatic detection of temporal decorrelation. Then, we

computed the averaged velocity magnitude of TICOI results obtained with the two implementations (Fig. 3a). The median

difference between TICOI with and without an automatic detection of temporal decorrelation is -0.53 m yr−1. However, the
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difference can reach up to 100 m yr−1 near glacier margins or in narrow, steep areas, where temporal decorrelation is more

likely to occur (Fig. 3a), as in point A (Fig. 3c). To assess the uncertainty of each strategy, we compute the NMAD and the370

median of velocities over stable areas (i.e. areas outside of glaciers boundaries defined by the RGI v.7) for each date of the

time series. These indicators are traditionally used to assess the uncertainty of the observations. The maximum and the median

value in time of both the NMAD and the median slightly decrease (Fig. A3) with the use of the automatic detection of temporal

decorrelation, highlighting a reduction of uncertainty. Note that the conclusions are similar if we calculate the statistics for the

EW and NS components instead of the magnitude.375

Notably, TICOI remains robust to temporal decorrelation without this specific strategy, when decorrelated image-pairs are

in the minority (Fig. 6). In such cases, the Tukey biweight function is able to effectively filter out the decorrelated image-pairs.

4.1.2 Robustness to strong changes in velocity

The traditional regularization penalizes abrupt changes in velocity, and is thus unable to resolve the peak of velocity for a surge

event. For instance, for the surge of the lower station of Lowell glacier, the traditional regularization retrieves a continuous380

increase in velocity from mid-2021 onward, while TICOI captures well a sudden increase in velocity and the rapid glacier

slow-down in summer 2022 (Fig. 4). In this example, few velocity measurements are available in 2022-23, because the outlier

removal step of ITS_LIVE rejected many image-pair velocities (see section 3.3), therefore the solution is strongly impacted

by the regularization term, which minimizes the acceleration in the traditional approach. The TICOI regularization (described

in section 2.2.2) relaxes this assumption of minimal acceleration by using an initial guess for the acceleration, which makes it385

possible to capture the peak of the surge even with limited image-pair velocities (Fig. 4).

4.2 Validation with GNSS time series for different glacier dynamics

We evaluate TICOI time series with seven GNSS time series on three different glaciers (Table 1). The metrics for the evaluation

are the RMSE (in m yr−1) and Kling–Gupta efficiency (KGE) (no unit) (Gupta et al., 2009). The KGE is a goodness-of-fit

indicator, widely used to calibrate hydrological models, in order to make sure that they well capture peak flows, as well as the390

seasonality of the flow. It is defined as:

KGE = 1−
p

(r− 1)2 +(α− 1)2 +(β− 1)2 (13)

with r the Pearson’s coefficient, α= σe

σo
with σe and σo the variance of the estimated and observed time series, respectively,

and β = µe

µo
with µe and µo the mean of the estimated and observed time series, respectively. α represents the variability of the

estimation and β is the bias term. The KGE values range between −∞ and 1. A perfect agreement between two time series395

would lead to a KGE of 1.

TICOI leads to a reduction in RMSE from 9%, in the least favorable case, to 69%, in the most favorable case, in compar-

ison with the image-pair velocities. The median improvement is of 52% (corresponding to a reduction from 5 to 47 m yr−1,

with a median reduction of 34 m yr−1). The KGE increases up to 1.87, with a median improvement of 0.57 (Table 1). This
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Figure 3. Illustration of the robustness to temporal decorrelation over Kaskawulsh glacier: a) represents the difference between the averaged

velocity magnitude computed using TICOI with and without an automatic detection of temporal decorrelation. Grey lines correspond to

glacier outlines according to RGI v.7 (RGI 7.0 Consortium, 2023). b) ITS_LIVE image-pair velocities on the point A represented in (a) c)

time series of TICOI without (purple) and with an automatic detection of temporal decorrelation ("TICOI_detect_temp", red) over the same

point A. The coordinates of point A is 139.6458°W, 60.6991°N). The coordinates of the grid correspond to the projection EPSG:4326.

improvement is less important for the Lowell L and M stations, due to a larger density of TICOI estimation during the surge,400

when the velocity magnitude is higher, in comparison with the image-pair velocities. Besides, TICOI leads to a reduction of

RMSE from 11 to 81% in comparison with a rolling median, with a median improvement of 40% (3 to 250 m yr−1, 14 m yr−1

in median). The KGE increase up to 0.44, with a median improvement of 0.27. For the point Lowell U, the rolling median
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(a) (b)

Figure 4. (a) Image-pair velocities from ITS_LIVE at Lowell L. Dots and bars represent the central date and temporal baseline, respectively,

of each image-pair velocity. (b) Example of velocity time series retrieved on the lower part of Lowell glacier (Lowell L GNSS station) with

TICOI regularization term based on an initial guess about the acceleration (red crosses) and with the traditional regularization term (blue

triangles), i.e., the first order Tikhonov regularization. The orange dots show the GNSS data averaged to match TICOI temporal sampling.

provides better results than TICOI. This could be due to the low signal-to-noise ratio of image-pair velocities over this area. A

strategy to improve this result is discussed in section 5.2.405

We note that a rolling median applied on all temporal baseline velocities gives slightly better RMSE than a rolling median

with small baselines only, for some of the considered points, as illustrated in Figure A2. However, the solution using all

baselines tends to underestimate the largest velocities, because they include annual temporal baselines which are close to the

annual average of the signal. These results show the strength of TICOI: taking advantage of all temporal baselines, without

over-smoothing the solution.410

4.3 Sensitivity analysis and automated choice of the hyperparameters

TICOI was developed as a flexible method, with processing options that can be changed by the user. Several options can be

modified: the coefficient of regularization, the possibility to set an initial weight, the strategy to delete outliers, the type of

spatio-temporal filter, and the solver.

The regularization coefficient has the greatest impact on the TICOI solutions. To illustrate this, we compute the median415

RMSE and KGE for the velocity magnitude at the six Yukon GNSS stations (Fig. B1 a). Both RMSE and KGE improve

drastically, by factors of 3 and 8 respectively, when the regularization coefficient increases from 0.1 to the optimal value of

100. This optimal coefficient corresponds to 1.1min(RMSE) and 0.9max(KGE).
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RMSE

TICOI Image-pairs Moving median

Kask L 21.3 68.4 28.3

Kask M 28.4 62.5 31.8

Kask U 43.1 90.5 55.5

Lowell L 58.8 64.5 308.7

Lowell M 44.7 60.2 155.7

Lowell U 78.7 119.9 53.7

Iss 12.5 28.8 28.2

KGE

TICOI Image-pairs Moving median

Kask L 0.84 -0.27 0.71

Kask M 0.78 -0.14 0.72

Kask U 0.08 -1.79 -0.36

Lowell L 0.92 0.86 0.5

Lowell M 0.93 0.94 0.66

Lowell U 0.49 0.53 0.74

Iss 0.86 0.63 0.59

Table 1. Comparison of the RMSE (in m yr−1, left) and KGE (unitless, right) of the velocity magnitude between GNSS and: 1) TICOI time

series; 2) image-pairs with a temporal baseline lower than 180 days, and 3) a moving 30 days median applied on image-pairs with a temporal

baseline lower than 180 days. The lowest values are in bold. The surface velocity measurements used are the ITS_LIVE data in the Yukon,

and IGE data in Greenland.

Notably, the RMSE increases slightly and the KGE decreases slightly (by about 5%) when the coefficient is further increased

to 10,000, indicating the relative stability of the solution even with large regularization coefficients in general scenarios. How-420

ever, for surge-type glaciers, using a coefficient greater than 1000 increases the risk of over-smoothing the solution (Fig. B2).

The comparison between TICOI results and GNSS data helps to identify an optimal regularization coefficient of 100. In

many cases, though, GNSS observations are unavailable to optimize the regularization coefficient. In such cases, we suggest

that the optimal coefficient can also be determined as the approximate point of inflection of the VVC curve, defined in Eq. 9.

This method similarly yields an optimal value of 100 for the coefficient. Thus, the VVC approach provides a reliable method425

for selecting an optimal regularization coefficient (Fig. B1 b).

We analyzed the sensitivity of the results to various options in appendix B. Our analysis shows that the choice of weight and

solver has no impact on the results for the tested cases. The selection of spatio-temporal filters introduces a standard deviation

in RMSE of approximately 2.6 m yr−1 on average between filters (i.e. 8% of the averaged RMSE). For non-surge glaciers,

using MA filters reduces the RMSE by up to 2 m yr−1 compared to a strategy that does not filter outliers. This is largely430

because the Tukey biweight function, which is applied, already acts as an outlier filter.

4.4 Uncertainty of the final product

To provide insights into the uncertainty of TICOI velocity time series, we first use the VVC per pixel. This highlights areas

where the direction of TICOI results has a poor temporal coherence. In Figure 5 we can see that the VVC is lower near

the terminus, the borders and the upper parts of the glaciers. We also notice low VVC values (around 0.7) just before the435

confluence between the southern arm and the main trunk of Lowell glacier. This corresponds to the approximate position of

the equilibrium-line altitude, therefore leading to strong changes in surface state (between wet snow, dry snow and bare ice)
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(NASA Earth Observatory, 2018) that are difficult to tackle. Besides, this is the only part of the glacier that faces north. It is

therefore more susceptible to changes in shadows and illumination. (Lacroix et al., 2019). Note that real changes in velocity

direction are expected over time in areas of variable flow, such as near confluences, glacier edges or terminus. It could cause a440

low VVC which is not related to measurement error.

Figure 5. Spatial variability of VVC, overlaid with the glacier outlines in white according to the RGI v.7 (RGI 7.0 Consortium, 2023), over

the same areas as in Figure 2. The top and bottom panels represent Lowell and Kaskawulsh glaciers, respectively. The coordinates of the grid

correspond to the projection EPSG:4326.

Therefore, to estimate the uncertainty of each TICOI retrieved velocity, in time and space, we propagate the covariance

matrix as described in section 2.4. We tested this approach on simulated data with correlated noise described in appendix C, for

different percentage of image-pair velocities and different noise levels. In controlled conditions, the 95% confidence interval

includes both estimated and true velocity (i.e. are correct) for more than 95% of the estimation, in cases of a low percentage445
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of data and a low noise level, where the confidence interval tends to be slightly underestimated(Fig. B4). This synthetic case

provides confidence of the validity of the theoretical framework.

In order to test the validity of the uncertainty calculation, we calculate the 95 % confidence intervals for the real dataset of

Kask L (Fig. 6). Confidence intervals are larger before the launch of Sentinel-2 in 2015/2016, when the number and quality of

data were lower. They are also larger in wintertime for the same reason. However, only 48% of the confidence intervals include450

both the estimated and the GNSS velocities (i.e. are correct), which is much below the expected 95%. On average, over the

six GNSS stations, the percentage is 27%. The confidence intervals fail to include estimated and true velocity, especially when

the number of image-pair velocities is low, and the solution is less strongly constrained. This is a limitation of our approach to

calculate confidence intervals that is discussed in section 5.2.

Figure 6. (a) 95% confidence interval for velocities on the point Kask L. The blue dots and bar correspond to the central date and temporal

baselines of the image-pair velocities. GNSS data are represented by orange crosses. Light magenta intervals represent the 95% confidence

intervals defined in 2.4. The colors from light red to dark red correspond to the number of image-pair velocities used to constrain the

velocity estimations. The upper and lower limits of the y-axis are defined according to the average ± the standard deviation of the image-pair

velocities. (b) TICOI velocity magnitude as a function of the GNSS velocity magnitude. Vertical grey bars correspond to the confidence

intervals, which should intersect the red line 1:1 (i.e., encompass the true velocity value) if they are not underestimated. Underestimated

confidence intervals are displayed in red, correct one are represented in grey.

20



4.5 Application to different glacier dynamics455

In this section, we apply TICOI to pixels sampled regularly along the centerlines of Lowell and Kaskawulsh glaciers (Fig. 7).

On Lowell glacier, we observe an upward propagation of the surge in 2021-2022 (Fig. 7a). This surge was first reported by

Van Wychen et al. (2023) using Radarsat Constellation Mission data. However, since this data was only available from winter

2022, the start of the surge was poorly defined. From TICOI results, it is clear that there is a strong positive velocity anomaly

in June 2021, with maximum anomalies of 400 m yr−1 at around 2 km from the terminus (Fig. 7a). Velocity anomalies range460

between 100 and 400 m yr−1 from 1 to 7 km upglacier from the terminus. They remain positive up to 27 km from the terminus,

at a location which corresponds to the confluence between the northern and southern arm of Lowell. This positive anomaly

remains approximately stable until December 2021 (with an average monthly acceleration of 15 m yr−2) except in the 2 last

kilometers before the terminus, where the average acceleration was of 1500 m yr−2. The entire glacier starts to accelerate in

December 2021, with an acceleration front propagating upglacier. Anomalies > 300 m yr−1 are recorded up to 27 km from465

the terminus, just one month later, in January 2022. However, this acceleration front seems to propagate at a slower rate in the

southern arm of Lowell glacier, even if this observation has to be interpreted cautiously regarding the low VVC values obtained

in this area (Fig. 5). In October 2022, anomalies > 300 m yr−1 are recorded up to at least 47 km from the terminus. In addition,

we observe slight positive anomalies occurring each spring before the surge. The intensity of these anomalies increases from

2016 until the start of the surge, especially near the terminus, with annual maximum velocity magnitudes raising from 90 m470

yr−1 between 2014-16 to 275 m yr−1 in 2020, at a rate of 9, 33, 70 and 70 m yr−2 in 2017, 2018, 2019 and 2020 (Fig. 8a). The

annual maximum over the entire glacier rises later in time (Fig. 8a). The surge event ends near the terminus in winter 2022,

while anomalies remain high in the upper part of the glacier.

On Kaskawulsh glacier, there is a long-term trend towards decreasing velocities (Fig. 7b), particularly over the lower part of

the ablation area, which is likely related to the thinning of the glacier (Main et al., 2023; Dehecq et al., 2019). In the 0 to 5 km475

section upglacier from the terminus this decrease in velocity between 2015 and 2018 is particularly marked, from 170-180 m

yr−1 to 120 m yr−1 (Fig. 8b). This is consistent with the results of Main et al. (2023), who found a large change in velocity

near the terminus after drainage of the adjacent proglacial Slims Lake in 2016. We also observe a marked seasonal velocity

increase every spring (around April), with maximum of yearly anomalies between 30 and 70 m yr−1. The anomalies propagate

up glacier, but the interpretation is more difficult above km 30 from the terminus because the signal becomes noisier (Fig. 7b).480

The high temporal resolution also reveals very abrupt positive anomalies in March at a position situated from 6 to 9 km from

the terminus. This is especially the case for the year 2019, but it can be also noticed in 2017, 2020, 2021, and 2022. This

phenomenon is also visible in the GNSS time series (Fig. 6).

4.6 Estimating monthly velocities from annual velocities

The TICOI method can be used to study sub-annual velocities even if long temporal baseline velocities only are available.485

This is important because in slow moving areas, velocities quantified with short temporal baseline mainly show low signal-to-

noise ratio, and are frequently filtered out in open data datasets such as ITS_LIVE (Millan et al., 2019; Gardner et al., 2018).
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(a) (b)

Figure 7. Spatio-temporal evolution of monthly velocity anomalies with respect to the averaged velocity magnitude over the period (as

defined in Dehecq et al., 2019) over the centerline of (a) Lowell glacier, and (b) Kaskawulsh glacier, plotted as distance from the terminus.

The centerline is represented in black on Figure 2. Note the logarithm scale in (a).

(a) (b)

Figure 8. Average yearly maximal velocity magnitude over the entire glacier in blue, and near the terminus in red, for (a) Lowell glacier, (b)

Kaskawulsh glacier.

For these reasons, previous research chose to perform image correlation on images separated by long time intervals only, for

example between 330 and 400 days (Halas et al., 2023), privileging accuracy over temporal resolution. This strategy is adapted

when assessing multi-annual or decadal velocity trends, but hinders the seasonal variations and rapid summer velocity changes490

(Fig. 9). In the case of Issunguata Sermia glacier, satellite observations show an average velocity of ∼125 m yr−1 with slight

22



variations from year to year (Fig. 9). The application of TICOI to this dataset provides monthly velocities that match very

well with the GNSS data after 2016, when Sentinel-2 images become available (Sentinel-2A was launched in June 2015),

resulting in an increasing number of image-pair velocities (red and dark red in Figure 9). The RMSE between GNSS and

TICOI time series is 25.8 m yr−1 between 2014 and 2017, and 17.7 m yr−1 between 2016 and 2017, with stronger errors in495

winter time when optical images are impacted by night and clouds. Hence, TICOI can retrieve monthly velocities using only

image-pair velocities with long temporal baselines. It takes advantage of the temporal closure that relies on redundancy of

annual velocities. However, it still requires a sufficient amount of observations (> 500) to obtain a reliable time series (Fig. 9

and C1). This is also illustrated over the Lower part of Kaskawulsh glacier using ITS_LIVE dataset (Fig. C1).

Figure 9. Example of monthly velocity time series (in red) retrieved using annual velocities from Halas et al. (2023) (in blue) on the

Issunguata Sermia glacier. GNSS data are represented by orange crosses. The colors from light red to dark red correspond to the number of

image-pair velocities used to constrain the velocity estimations.
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5 Discussion500

5.1 Fusion of velocity measurements from different processing chains

Datasets from several processing chains can be included as input in TICOI, with the datasets reprojected on the same grid

as explained in section 3.3.2. Fusing different datasets, like the ones from IGE and ITS_LIVE, can particularly improve the

signal-to-noise ratio in the upper parts of glaciers (Tab. 2). For example, this provides an improvement in RMSE of 11%

for the upper part of Lowell glacier, and 32% for the upper part of Kaskawulsh glacier. Over these two areas the surface is505

snow-covered most of the year, which produces poor results from image correlation algorithms. Fusing velocity results from

different processing chains takes advantage of the different sets of correlation parameters used and strategies to delete outliers.

However, we do not see improvements in the middle and lower parts of the glaciers when applying this technique; the RMSE

even slightly increases (Tab. 2). Considering the increasing computation time when including additional dataset, this technique

may only be suited for very noisy areas or areas with a low number of image-pair velocities.510

ITS_LIVE IGE & ITS_LIVE

Lowell U 46.2 41.5

Kask U 46.7 35.3

Kask M 26.0 28.5

Lowell M 30.1 33.7

Table 2. Comparison of the RMSE of the velocity magnitude (in m yr−1) between GNSS and TICOI time series, with datasets from 1)

ITS_LIVE and 2) IGE & ITS_LIVE over upper and middle GNSS stations of Lowell and Kaskawulsh glaciers. We consider the time-period

which is common between the two datasets, i.e. 2016-22. The lowest values are in bold.

5.2 Uncertainty

Despite providing satisfying confidence intervals on synthetic data, our framework to calculate TICOI confidence intervals

underestimates uncertainties on real data when compared to GNSS measurements (see section 4.4). Here, we discuss the

different limitations in our approach that could explain these discrepancies. First, the error of the input image-pair velocities

may be underestimated. These errors are computed either using stable areas, which may not be representative of the glacier515

texture (Zheng et al., 2023; Altena et al., 2022, 2019) or by assuming a 1/10 pixel error, which corresponds to an error of 1 m

for Sentinel-2 and 3 m for Landsat-8. To estimate the underestimation of the errors provided with image-pair velocities, we

consider the true error as the difference between ITS_LIVE and GNSS data. The averaged RMSE between the errors provided

by the ITS_LIVE dataset and the true errors are 9 m and 7 m for the East/West and North/South components, respectively.

The difference between the average true error and ITS_LIVE error is of 1.8 and 2.6 m, highlighting a clear underestimation520

in ITS_LIVE errors. Moreover, there are no strong temporal correlations between the provided errors and the true errors,

with Pearson’s coefficient of 0.27 on average for both components. Second, the underestimation of our confidence intervals
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could be caused by biases in the image-pair velocities, for example due to shadows or seasonal illumination changes (Lacroix

et al., 2019). The errors in the ITS_LIVE dataset are based on the standard error in component velocities relative to stable

surface velocity; they characterize random errors. Therefore, our confidence intervals only account for random errors and not525

systematic biases. Third, the real errors may have a stronger correlation in time than what has been simulated in section 4.4,

for instance due to seasonal source of errors (shadows, surface changes), since we only take into account the correlation of

errors between displacement with common acquisition dates. In case of highly correlated errors, the a priori covariance matrix

cannot be diagonal anymore, leading to much higher computational cost. The cost of explicitly computing the inverse of the

error covariance matrix is proportional to n (the number of image-pair velocities) if the matrix is diagonal and to n3 in the530

general case (Ruggiero et al., 2016).

To address this issue, a potential solution involves scaling the confidence interval by a specific correction factor. This factor

could be a function of the VVC, as the VVC serves as an effective proxy for the relative uncertainty between pixels. Indeed, the

RMSE decreases linearly with the VVC, until reaching a vertical asymptote close to 1, which is the VVC maximum value (Fig.

B5a). To estimate this correction factor, we determine the 95th quantile of the theoretical 95% confidence intervals divided by535

the true errors, for each GNSS stations (Fig. B5b). We then perform a linear regression on the resulting seven points. Although

the RMSE of the linear regression is around 3 and the sample size is small, this method provides an empirical correction factor.

By multiplying the confidence intervals by this factor, the confidence intervals contain both estimated and GNSS data with an

average percentage of 86% (against 27% without a correction factor). Additionally, the reliability of the confidence intervals

derived with the correction factor appears to improve with the number of observations used. For example, when selecting only540

TICOI estimations with more than 500 observations, the confidence intervals encompass both estimated and GNSS data with

an average coverage of 91%.

Another strategy could be to augment the observation vector with the first- and second-order spatial derivatives of the original

observations, as described in Ruggiero et al. (2016); Brankart et al. (2009). However, this requires proper characterization of

the spatial and temporal correlation of errors of surface velocities, which could be the scope of future research.545

With the current state of knowledge in velocity errors, we recommend relying on the VVC and number of contributed

image-pair velocities. The VVC is a quality metric which characterize random errors, by analazing the temporal coherence of

the direction. The number of contributed image-pair velocities indicates the robustness of the TICOI estimation: the solution

seems to be correctly constrained by the observations when this number is higher than 100.

Note, that the TICOI package also offers the possibility to compute the Normalized Median Absolute Deviation (MAD)550

over stable areas. This is a widely used and robust metric for characterizing random errors in glacier velocity fields (Dehecq

et al., 2015). However, as previously demonstrated for ITS_LIVE scene-pair velocities, such errors are often underestimated

due to the differences in texture between glacier surfaces and stable ground. Moreover, the NMAD over stable ground do not

capture the spatial variability in errors because they provide only one value for the entire scene at a given time. For example, the

RMSE between TICOI and the GNSS is about 43 m yr−1 on the upper of Kaskawulsh glacier, which is 20 m yr−1 below the555

maximal NMAD obtained in the area (Fig. A3 b)). To enhance the flexibility of the package, the application of the along-flow
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shear strain rate proposed by Zheng et al. (2023) is also implemented. It provides insight into the smoothness of the velocity

solution.

5.3 Large scale application

Here, we discuss the possibility of applying TICOI at a large scale. We have shown that it can be applied to all kinds of glacier560

dynamics because it does not include any a priori information about the glacier behavior, unlike a wide range of post-processing

approaches (Riel et al., 2021; Samsonov et al., 2021; Greene et al., 2020; López-Quiroz et al., 2009). This flexibility also allows

for the detection of unexpected events and trends, such as the annual acceleration in March over Kaskawulsh glacier. However,

data-driven approaches may encounter limitations when data density is very low. In this case, a priori information, if available,

may help to constrain the time series. The regularization term can be modified to include a model, similar to López-Quiroz565

et al. (2009). An example is given in Eq. C1. By doing so, the inversion solves both the temporal closure and a parametric

regression problem. For more flexibility, it may also be possible to use a dictionary of functions (Riel et al., 2021; Hetland

et al., 2012).

TICOI can be applied in a nearly automatic way, at a reasonable computational cost. We proposed a general strategy to

automatically select the regularization coefficient. Moreover, the computation time of the TICOI processing chain including570

loading, pre-processing, inversion and saving is about 0.1 seconds per pixel by using 32 CPUs (on a Intel(R) Xeon(R) Gold

6426Y with a processing rate of 3.3 GHz), for datasets containing 80,000 layers in time (corresponding to the period 2013-24).

This means that the processing over a region of 100 km x 100 km requires around 19h using 32 CPUs only. Note that the

processing time per pixel scales with the size of the data in time, and that the 2013-24 period has high density of measurements

compared to previous years. This computation time remains affordable at the regional scale, and even at the global scale with575

a large number of CPUs. The computation time could be further reduced, for instance, by taking advantage of GPUs, or by

reducing the number of input data with a stricter outlier filter.

With these two points in mind, it appears relevant to apply TICOI at a large scale. First, it reduces the size of the data in

comparison with raw image-pair velocities by removing redundant information. On average, for our study sites, the size of the

data is reduced by a factor 100. Second, it produces regular velocity time series, with relevant quality indicators. This would580

make the integration of sub-annual velocities in numerical models much more affordable.

6 Conclusion

To derive sub-annual velocity variations over glaciers, we propose an operational Python package, called TICOI, based on the

temporal closure principle. This package fuses multi-temporal and multi-sensor image-pair velocities computed by different

processing chains to generate regular velocity time series (i.e., sampled at regular time steps).585

We improved previous methods based on two strategies: (1) a regularization term based on a coarse initial estimate, which

enhances the resilience of the temporal closure inversion to abrupt non-linear changes; and (2) an iteratively reweighted ap-

proach, which automatically detects temporal decorrelation. TICOI is entirely data-driven (i.e., it does not require strong apriori
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information on the glacier dynamic), making it applicable to any glacier dynamics. The validation of TICOI results using GNSS

data highlights an improvement in RMSE and KGE of around 50% and 0.4, respectively, compared to both the raw image-pair590

velocities and a rolling median. Furthermore, it is able to retrieve monthly velocities using annual image-pair velocities only

when there is sufficient temporal redundancy in the dataset. This could be especially useful for slow moving areas, where an-

nual image-pair velocities may be of better quality than image-pair velocities with short temporal baselines. Moreover, TICOI

can be used to combine datasets from different processing chains. This has the potential to reduce the uncertainty in the upper

part of glaciers, such as in the accumulation area, where image-pair velocities are more noisy.595

We recommend using three criteria to assess the quality of the retrieved velocity series: (1) the VVC, a proxy of the temporal

coherence of the direction; (2) the number of contributing image-pair velocities, and (3) a 95% confidence interval derived from

the a posteriori covariance matrix. The application of TICOI provides velocity time series with an unprecedented temporal

resolution. On Lowell glacier (Yukon, Canada), we are able to observe that summer velocities near the terminus started to

increase five years before the surge. On Kaskawulsh glacier (Yukon, Canada), we are able to resolve velocity peaks in March600

in a very localized part of the lower ablation area.

Finally, the TICOI workflow offers reasonable computation time for application at the regional to global scale (0.1 seconds

per pixel for large dataset with 80,000 layers in time on 32 CPUs). The code is open source and can be applied to any datasets

and regions. This paves the way for the integration of a wide range of image-pair velocities and the production of standardized

post-processed sub-annual velocity time series.605

Code and data availability. The TICOI package is available on github at https://github.com/ticoi/ticoi. ITS_LIVE data are available on

https://its-live.jpl.nasa.gov/
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