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Abstract. In the Gulf of Trieste the sea surface currents are observed by High Frequency Radar for almost two years (2021-

2022) at a temporal resolution of 30 min. We developed a hierarchy of idealized models to simulate the observed sea surface

currents, combining a deterministic and a stochastic approach, in order to reproduce the externally forced motion and the

internal variability, which is characterized by a fat-tailed statistics. The deterministic signal includes tidal and Ekman forcing

and resolves the slowly varying part of the flow, while the stochastic signal represents the fast-varying small-scale dynamics,5

characterized by Gaussian or fat-tailed statistics, depending on the statistical used. This is done using Langevin equations and

modified Langevin equations with a Gamma distributed variance parameter. The models were adapted to resolve the dynamics

under nine tidal and wind Forcing Protocols in order to best fit the observed forced motion and internal variability Probability

Density Function (PDF). The stochastic signal requires 2 stochastic degrees of freedom when the averaged tidal forcing is

adopted, while it needs 1/2 stochastic degree of freedom when the complete tidal forcing is used. Despite its idealization, the10

deterministic-stochastic model with stochastic fat-tailed statistics captures the essential dynamics and permits to mimic the

observed PDF. Moreover, a Fluctuation Response Relation is valid when the stochastic signal is perturbed, showing that the

response to an external perturbation can be obtained by considering the fluctuations of the unperturbed system.

1 Introduction15

The Gulf of Trieste is a shallow, semi-enclosed basin in the northern Adriatic Sea (Mediterranean Sea, Fig. 1). Its surface circu-

lation is influenced by the broader Adriatic cyclonic (counter-clockwise) circulation and the basin’s thermohaline stratification

and circulation (Cosoli et al., 2012; Querin et al., 2021). Due to its shallowness and small scale (horizontal length scale of

around 20 km and depth of around 25 m), its current dynamics highly depend on two external forcings: the wind forcing and

the Isonzo/Soc̆a river freshwater input (Querin et al., 2006; Cosoli et al., 2012, 2013; Querin et al., 2021).20
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The Bora and the Sirocco are the main strong wind patterns affecting the dynamics in the Gulf of Trieste. The Bora is an

East-North-Easterly katabatic wind, bringing cold and dry air from the continent over the sea (Poulain and Raicich, 2001). Its

strength is heavily influenced by local topography, making it particularly powerful over the Gulf of Trieste where it can reach

gusts up to 180 km/h. When it blows, surface water is pushed out of the Gulf towards the Adriatic basin, and a compensating

bottom counter-current flows in, causing upwelling on the coastal side (Malačič et al., 2001; Querin et al., 2006; Reyes Suárez25

et al., 2022). The Sirocco is a moist, warm and relatively mild southerly wind, channeled by the Adriatic coastal mountains.

It causes sea level rise in the northern Adriatic, leading to a strong southward return flow when the wind diminishes (Cosoli

et al., 2012).

In recent years, the Gulf of Trieste has benefitted from an abundance of observational data, particularly High Frequency Radar30

(HFR) sea surface currents. The amount of data will strongly increase in the near future. This large amount of data allowed for

a statistical approach to characterize the data (Flora et al., 2023). In particular, the authors found the analytical Probability Den-

sity Function (PDF) of the observed HFR sea surface velocity increments using a superstatistical (a superposition of statistics)

analysis and the principle of maximum entropy. Superstatistical analysis (Beck et al., 2005) considers a system with a clear

time scale separation: at fast time scale a Gaussian PDF is observed of which the variance evolves slowly, on the long time35

scale. In the Gulf of Trieste the fast time scale of around 2 h is consistent with the turbulence of the mixed layer dynamics. The

slow time scale of almost 2 days is consistent with the variability of the synoptic wind forcing, and the variance is distributed

according to a Gamma distribution with shape parameter equal to 2. The Gaussian is the minimum entropy PDF with a finite

variance and the Gamma distribution is the minimum entropy PDF for a positive variable, as is the variance, with a specified

mean. The total PDF of the sea surface velocity increments is a fat-tailed PDF, that means that extreme events occur more often40

than in a Gaussian statistics. The superstatistical analysis however is descriptive and has no predictive skills.

When modelling the turbulent ocean currents subject to a known wind forcing, there is part of the dynamics which can be

described by a deterministic model and the unresolved turbulent processes that have to be described stochastically. This con-

cept is reflected in Stochastic Differential Equations (SDEs) and the corresponding Fokker-Planck equations. The former45

consider the evolution of many possible realizations which allow to construct a time evolving PDF, while the latter describe the

deterministic evolution of the PDF. The use of SDEs in air-sea interaction was pioneered by Hasselmann (1976), who initiated

a strand of scientific research on stochastic climate models. Taking into account the coupled ocean-atmosphere-cryosphere-

land system, he divided it into a fast varying "weather" system and a slowly responding "climate" system, clearly separated

by a fast and a slow time scale. In his modelization the slow climate variables play the role of large particles interacting with50

an ensemble of smaller particles, the fast weather variables in the analogy, of the so-called Brownian motion problem. In this

picture, the dispersion of the climate variables is inferred from the statistics of the weather variables with which they interact.

Brownian motion was first analytically described by Einstein (1905) and Langevin et al. (1908) (see Einstein (1956) and

Lemons and Gythiel (1997) respectively for an English translation). Since that time, the SDE of the motion of a Brownian par-

ticle is called the "Langevin equation". The SDE approach, adopted also in this paper, has been widely used in the past decades55
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in a variety of scientific fields: statistical mechanics (Baldovin et al., 2018), condensed matter physics (Silveira and Aarão

Reis, 2012), marine biology and oceanography (Brillinger and Stewart, 2010), space weather science (Alberti et al., 2018),

biophysics (Ham et al., 2022) and finance (Wand et al., 2024) to name a few. Regarding climate science, the Langevin equation

has been widely used (Berglund and Gentz, 2002; Wirth, 2019; van den Berk et al., 2021) and great improvements have been

achieved. Franzke et al. (2015) and Palmer (2019) show that including stochasticity into the parameterized representations of60

subgrid processes of physical climate systems has improved the skill of forecasts and reduced systematic model error. It is

important to remark that the use of additive noise in linear SDE has limitations in terms of extreme events predictability, since

it leads to a Gaussian statistics. Adopting multiplicative noise or nonlinear damping, taking into account non-linear interac-

tions between resolved and unresolved modes of variability (Franzke et al., 2005; Wirth, 2018) leads to non-Gaussian statistics

increasing the fatness of the PDF tails of the modelled variables (Sura, 2013).65

Modern concepts of non-equilibrium statistical mechanics have been applied to environmental fluid dynamics and to com-

ponents of the climate system. Often these considerations are limited to conceptual pertinence and tested on idealized models,

such as the Lorentz models (Lorenz, 1996) and others, or on data from numerical models. In the present work we apply a

hierachy of idealized models for the sea surface current observations from the Gulf of Trieste, starting with a deterministic70

modelization and then adding increasingly complex stochasticity. For solving these models we rely on analytical calculations

where possible and proceed with solutions of involved SDEs. This approach enables connecting observational data in a sys-

tematic way to the underlying principles of physics.

Our modelization is idealized and local: it considers one point in the space, evolving in time, with wind shear and tidal deter-

ministic forcing and a stochastic signal that mimics all the smaller unresolved scale dynamics. The aim of the modelization is75

to simulate the evolution of the forced motion and of the observed analytical PDF. It is based on the slow evolution of a short

time scale Gaussian and can be interpreted by a SDE. This enables us to understand which is the role of the stochasticity in the

simulation of the Gulf of Trieste wind-and-tide-driven circulation. The model is finally used to test the Fluctuation Response

Relation (FRR), described by Lacorata and Vulpiani (2007), that relates the system’s reaction to external perturbations to spon-

taneous fluctuations of the unperturbed system. An evaluation of the ocean currents forecasting based on the SDE predictability80

is also given.

In Sect. 2 the observed HFR sea surface data and the model forcing atmosphere data are presented. In Sect. 3 the mod-

elization is explained with some FRR background and predictability evaluation methodology, while the computational results

and their discussion are given in Sect. 4. The conclusions are reported in Sect. 5. In the Appendixes the details and methods of85

the analytical calculations are shown.
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2 The data

Two classes of time series are used: the observed sea surface horizontal HFR current data and the forecasted wind data in the

Gulf of Trieste (Northern Adriatic Sea, Fig. 1a). The data sets used are identical to those presented in Flora et al. (2023) and

refer to a selected grid point in the Gulf of Trieste (point P and point WRFP in Fig. 1b) and cover a time range of almost two90

years: from January 1, 2021 to October 18, 2022.

Figure 1. (a) Gulf of Trieste location (red rectangular) in the Adriatic Sea; (b) Gulf of Trieste zoom with percentage of available HFR data

(in multiple colors) in the selected period. The HFR baseline is shown with the red line between Aurisina and Piran. The HFR "P" grid point

is shown with the black asterix and the closest WRF grid point is marked with the blue star and called "WRFP" (Flora et al., 2023).

Sea surface currents are measured by two beamforming WEllen RAdar stations operating in the Gulf of Trieste (Lorente et al.,

2022) (Fig. 1b, red dots). The HFR system combines the radial sea surface currents of the two stations to obtain the longitudinal

u and the latitudinal v components, with a space resolution of 1.5 km and a time resolution of 30 min. The data are open access,

further details can be found in OGS et al. (2023). The quality control standards from the EU high-frequency node (Corgnati95

et al., 2018) were applied to the data set. In addition, any remaining spikes were removed. The measured u and v time series

used in this article are from the P grid point (Fig. 1b).

The atmosphere data consist of the forecasted wind velocity field at 10 m above the surface in the Gulf of Trieste from the

Weather Research and Forecasting (WRF) model (https://www.mmm.ucar.edu/models/wrf), version 4.2.1. The forecasting is

performed daily by the Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia (ARPA FVG) using100

initial and boundary conditions from the National Oceanic and Atmospheric Administration Global Forecasting System (https:

//www.ncei.noaa.gov/products/weather-climate-models/global-forecast) and provides the wind time series for the same day
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and the following one. The field has a spatial resolution of 2 km and a temporal resolution of 1 h. Additional technical details

can be found in Goglio (2018). The wind components time series used in this article are from the WRFP grid point (Fig. 1b)

and account for the one-day forecasting.105

3 Methods

This Section provides the model definition, the FRR background with details on how it is dealt within this study and some

methodology to evaluate the predictability of the developed model.

3.1 The model hierarchy

The aim of the present work is to numerically simulate observed sea surface currents with a slow dynamics, that is governed110

by the slow components of the forcings and with fast variations that parameterise the remaining, unresolved, processes. This

is achieved when the time averaged dynamics as well as the statistics of the time increments of the model agrees with the

observation. In the following, the time series prefix "δ" gives the increment time-series, δu(t) = u(t+ δ)−u(t), and we call

the observed fat-tailed PDF of the sea surface current increments, from Flora et al. (2023), as the "Exp-Lin" PDF, since it is

composed of an exponential and a linear term.115

When modelling a natural process, as the currents, through a SDE, part of the dynamics is resolved and part of it is param-

eterized by noise. What is deterministic and what is noise depends on the degree of coarse-graining. In our previous work

(Flora et al., 2023) all the dynamics was paramerterized and the model has no predictability. The other extreme is a purely

deterministic model that includes all the processes involved. Such model is unattainable. We implemented a hierarchy of three

idealised local models (two velocity components at one point in space, evolving in time) for the sea surface current in the Gulf120

of Trieste. The first is the purely DETerministic (DET) model, taking into account the tidal signal and the wind-forced Ekman

dynamics, while the unresolved processes are negleted. The second is the GAUssian (GAU) model, that adds Gaussian additive

stochastic noise for which the corresponding SDE can be solved analytically. The third is the SUPerstatistical (SUP) model that

considers a deterministic signal with the most realistic stochastic noise. The stochastic part of this model is partially resolvable

analytically. Furthermore, these models are forced by nine different Forcing Protocols (FPs) (see Sect. 4). The deterministic125

and stochastic models come in pairs, the more processes and time-scales are resolved deterministically, the less have to be

parameterised stochastically.

More precisely, the total sea surface current vector uo is given in terms of the tidal current uM , the wind-forced Ekman

sea surface current uE and the stochastic current uS , as detailed in Table 1 for the different models. The tidal signal is an130

analytic and linear combination of n tidal components uM (t) =
∑n
i=1 au,i cos(ωit−φu,i) (analogously for vM ), where a, ω

and φ are the amplitude, the frequency and the phase of each tidal component, respectively.

The Ekman current, subject to the wind forcing, the Coriolis force and the friction with the underlying water-masses, is mod-
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elled by:

d

dt


uE
vE


=


−

CB
h̃
ũ f

−f −CB
h̃
ũ




uE
vE


+

1
h̃


Fu
Fv


 . (1)135

In Eq. (1), CB = ρocb where cb is the underlying ocean layer drag coefficient, h̃= ρoh where ρo is the ocean density and

h is the considered ocean surface layer depth, ũ is the total speed of the surface layer as defined in Table 1. The last does

not include the tidal current, since it is assumed that the tidal signal is constant along the water column and does not create

shear, while the Ekman and stochastic signals are present in the surface layer only. Finally f is the Coriolis parameter and

F = ρaca|ua−uo|(ua−uo) is the wind forcing (ρa is the atmosphere density, ca the atmosphere drag coefficient and ua the140

wind velocity at 10 m above the sea surface). Eq. (1) is an ordinary differential equation of the DET model, while it includes

the stochastic quantity ũ in the GAU and SUP models. If the wind forcing were to cease, the modelled mean flow would fall to

the tidal signal.

The Ekman modelization in Eq. (1) is only valid on frequency scales comparable to the Coriolis parameter. The stochastic145

velocity, representing the fast unresolved turbulent dynamics and present in the GAU and SUP models, is defined by the

following set of equations:

d


x
y


=−γx


x
y


dt+



√
Qu 0

0
√
Qv




dWx

dWy


 (2)

d

dt


uS
vS


=−γu


uS
vS


+ η


x
y


 (3)150

In Eq. (2) and Eq. (3) the variables dWx and dWy are derived from independent Wiener stochastic processes. For every

independent realization of the Wiener processes Wx and Wy , we obtain a solution of the dynamics, named a random walker.

The collection of all the random walkers forms the stochastic ensemble and allows to construct a PDF. The coefficient γx = 1/τ

is the inverse of the characteristic short time scale τ (short compared to the long time scale discussed below in connection with

the SUP model) whose numerical value is determined from the observations (Flora et al., 2023), γu is a coefficient which is155

adjusted to obtain the observed decay of the autocorrelation function of the SUP model sea surface currents and η is a proper

constant discussed below. The difference between the GAU and the SUP model lies in the terms Q. In the GAU model, that is

a simplification of the SUP model, Qu and Qv are constants: they are the mean values of the SUP model Q variables as given

in Table 1. The GAU model is a system of linear SDEs and all variables are Gaussian and are determined by their means and

variances. All the dependencies for means and variances on the original parameters are given in Appendix A. Furthermore in160

Eq. (A32) the analytical condition on η for which the Gaussian variable δuS has the same mean and variance as x (analogously

δvS with y), given a fixed γu, is shown. This also helps to adjust the parameters of the SUP model.
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In the SUP model, the Q terms originate themselves from stochastic processes αi governed by:

dαi =−µαidt+βdWi, i= 1, · · · ,2ν and β =




βu for the u component

βv for the v component
(4)

where the variables dWi are derived from independent Wiener stochastic processes, βu and βv are constants whose values are165

determined empirically, µ= 1/T is the inverse of the characteristic long time scale T (i.e. τ � T ), corresponding to the varia-

tion time-scale of the variance in the superstatistical approach. Its numerical value is determined from the observations (Flora

et al., 2023). The variables αi are solutions of the Langevin equation: they are Ornstein-Uhlenbeck processes, characterized by

a Gaussian statistics:

pα(αi) =
√

µ

πβ2
e−µα

2
i /β

2
. (5)170

In the SUP model the variables Q=
∑2ν
i=0α

2
i depend on the variables ν and αi (see Eq. 4), as shown in Table 1. The variable

ν gives the degrees of freedom (dof), according to the interpretation of Flora et al. (2023): the system has one dof if its positive

variable characterizing the variability of the system maximazes the entropy, i.e. it is exponentially distributed. The Q variables

are distributed according to a Gamma distribution with shape parameter equal to ν, given in Eq. (B5) and Table B1. In Eq. (B6)

we give the computation for 〈Q〉 used in the GAU model. In Appendix B the PDFs of the variable x (and y) are derived for175

ν = 2 and ν = 1/2. In the case of 2 dof, the variables x and y are Exp-Lin distributed with a PDF given by:



pν=2(x) =

√
µγx

2βu
e−2
√
µγx|x|/βu

(
2
√
µγx
βu
|x|+ 1

)

pν=2(y) =
√
µγx

2βv
e−2
√
µγx|y|/βv

(
2
√
µγx
βv
|y|+ 1

)
.

(6)

In the case of 1/2 dof, the variables x and y are distributed according to a modified Bessel function of the second kind of zero

order K0(|z|):



pν= 1

2
(x) = 2

√
µγx

πβu
K0

(
2
√
µγx
βu
|x|
)

pν= 1
2
(y) = 2

√
µγx

πβv
K0

(
2
√
µγx
βv
|y|
)
.

(7)180

The SDEs for the variables uS and vS in Eq. (3) contain a linear drag term and are forced by a coloured non-Gaussian noise.

We do not know an analytical distribution of uS and vS . Nevertheless, thanks to the definition of the constant η in Eq. (A32)

discussed in connection with the GAU model, the distributions of δuS and δvS are numerically similar to the PDFs of x and y

(shown in Sect. 4.1).

As it can be seen in Eq. (6) and Eq. (7), the final stochastic PDFs depend on the β parameter, that is linked to the variable’s185

second order moment, by E[x2] = β2

µγx
for ν = 2. For this case, it will be shown in Sect. 4.1 that the PDF of the total velocity

increment is given mainly by the stochastic velocity increment PDF, only. For this reason in the numerical simulations with

2 dof in the stochastic part of the model the value of β is therefore fixed by the observed variance s2 of the HFR velocity

increment found in Flora et al. (2023): β = s
√
µγx. In the case of 1/2 dof in the stochastic signal, the tidal and Ekman signal
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contribute more to the variance of the total velocity increment, but their contribution is unknow analytically. For this reason in190

this case the β coefficient is increased empirically.

In Table 1 the definition of the variables distinguishing the DET, GAU and SUP models is given with a summary of the main

uo ũ Q x and y distribution δuS and δvS distribution

DET uE +uM |uE | no stochasticity no stochasticity no stochasticity

GAU uE +uM +uS |uE +uS | 〈Q〉SUP = νβ2/µ Gaussian, Eq. (A28) Gaussian, Eq. (A30)

SUP uE +uM +uS |uE +uS |
∑2ν
i=1α

2
i ν = 2: Exp-Lin, Eq. (6)

ν = 1/2: Bessel, Eq. (7)

not analytical,

but numerically similar

to the x and y PDF
Table 1. Variables definition distinguishing the different models and x, y, δuS and δvS PDFs’ characteristics. The variable ν indicates the

degrees of freedom of the stochastic signal.

properties of the models’ variables. For all the models we can consider, or not, the eddy depletion term in the wind stress term,

i.e. the relative velocity of the wind with respect to the sea surface current, causing a reduction of kinetic energy injection into

the ocean (Zhai et al., 2012), in contrast to the absolute wind velocity. We report the results just with the eddy depletion term,195

since it is the theoretically most correct formulation and it does not significantly burden the computational calculation.

In summary, we developed three types of models: the DET model is purely deterministic with tidal and Ekman currents, the

GAU model adds a Gaussian stochastic signal, while the SUP model considers a stochastic sea surface current with fat-tailed

increments instead of the Gaussian noise (Table 1).

3.2 The FRR background and methods200

The FRR relates the response of a system pertubed by an external perturbation to internal fluctuations of the unperturbed

system. Exploring the FRR is particularly challenging and interesting when considering natural systems where perturbation

experiments cannot be performed and statistical ensembles are not available. Our SUP model is an example of a subcomponent

of the climate system and it is instructive to explore the FRR for such model. We refer to Lacorata and Vulpiani (2007) for the

theoretical background concerning FRRs. We show here some foundamentals of the theoretical concepts and the methodology205

we applied to the most involved of the SUP models (FP9, Table 2, Sect. 4).

In the present case, given the SUP model evolutionary system with the SUP variables uo = uE +uM +uS and vo = vE +

vM + vS , a small fixed perturbation ∆uS or either ∆vS is imposed at t= t0 to each walker. Then the system is left free to

evolve and, for each time, the separation ∆uo(t|t0) = uo,P (t)−uo(t) and ∆vo(t|t0) = vo,P (t)− vo(t) between the perturbed210

(uo,P and vo,P ) and the unperturbed (uo and vo) systems is computed. We emphasise that the methodology requires one ve-

locity component to be perturbed and not both in the same perturbed simulation. It is possible to obtain the mean value of the

8

https://doi.org/10.5194/egusphere-2024-3391
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



perturbed variables through a mean response function Ruu(t) or Rvv(t):

〈∆uo(t)〉=Ruu(t)∆uS when uS is perturbed

〈∆vo(t)〉=Rvv(t)∆vS when vS is perturbed (8)

where the angle brackets 〈· · · 〉 indicate the ensemble mean. The FRR is concerned with expressing the mean response function215

in terms of correlation functions of the unperturbed system.

In practice, the mean response functions is computed as follows. After the first perturbation at t0, again at tk = t0 + k∆t the

selected variable, in the perturbed system, is perturbed with the same variation and the separation between the perturbed and

the unperturbed systems is computed. The procedure is repeatedM = 1311� 1 times with ∆t= 12 h, ∆uS = ∆vS = 8 cm/s.

The diagonal mean response functions are computed as follows:220

Ruu(t) =
1
M

M−1∑

k=0

〈∆uo(tk + t|tk)〉
∆uS

when uS is perturbed

Rvv(t) =
1
M

M−1∑

k=0

〈∆vo(tk + t|tk)〉
∆vS

when vS is perturbed. (9)

According to Lacorata and Vulpiani (2007), the FRR holds if the mean response functions have a connection with some

suitable correlation functions computed in the unperturbed system. In particular, in the case of multivariate Gaussian variables,

the mean response functions are a linear combination of the variables correlations. In Sect. 4.2 the results with unperturbed

initial condition uo(t= 0) = 0 and when the stochastic signal is initially perturbed, as described before, is shown. Some brief225

comments for the case when the Ekman system is initially perturbed are also provided.

3.3 Predictability evaluation methods

In order to test predictability capabilities of the SUP model, data assimilation methods are adopted with the following assump-

tion: the HFR observations are not affected by observational uncertainty and represent the reality. Every ∆t time the perturbed

system (uo,P ) is updated to the observed HFR velocities (both the uo and vo components in the same simulation), in particular230

it is the stochastic signal to be perturbed. The method may appear equivalent to the FRR method, but the equivalence is not

valid, since: (i) the initial perturbation is not a constant, but changes for each ∆t time window and for each walker; (ii) we are

perturbing both the uo and vo components (in the stochastic signal) in the same perturbed simulation. We define the following

functions:

ξ(t) =

√√√√
1
M

∑M−1
k=0 〈(uo,P (tk + t)−uo(tk + t))2〉

1
M

∑M−1
k=0 〈(uo,P (tk−1 + ∆t)−uHFR(tk))2〉

(10)235

ε(t) =

√√√√
1
M

∑M−1
k=0 〈(uo,P (tk + t)−uHFR(tk + t))2〉

1
M

∑M−1
k=0 〈(uo,P (tk−1 + ∆t)−uHFR(tk))2〉

(11)
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where the time tk−1 + ∆t means tk right before the perturbation. The function ξ(t) quantifies the difference between the

perturbed and the unperturbed system, while the function ε(t) computes the difference between the perturbed system and the

observations. Both are normalized through the mean initial perturbation over all the time windows. In Sect. 4.3 the results are240

presented. Some brief comments for the case when the Ekman system is initially perturbed are also provided.

4 Results and discussion

We test the different models imposing different Forcing Protocols (FPs) in the tidal and wind signal (Table 2). In the most

complete FP the complete tidal and wind forcing is included (FP9), in the other FPs the forcing signal is either averaged by a

moving average over 12 h or completely omitted.245

Forcing Protocol 1 2 3 (n.s.) 4 (n.s.) 5 6 (n.s.) 7 (n.s.) 8 9

Forcings
tide 7 7 7 12h 12h 12h 3 3 3

wind 7 12h 3 7 12h 3 7 12h 3

Results
dof ν 2 2 2 2 2 2 1/2 1/2 1/2
β

s
√
µγx

1 1 1 1 1 1 1.5 1.5 1.5

Table 2. Settings and results of the experiments on the models: the 7 symbol means that the forcing is set to 0, the 12h symbol means that the

forcing is filtered with a 12 h moving average, the 3 symbol means that we use the original forcing. The variable s is the observed standard

deviation of the HFR velocity increment found in Flora et al. (2023). The abbreviation n.s. stays for "not shown".

The numerical values of the coefficients common to all the models and to all the runs are described here. Tidal harmonic

analysis calculations on the HFR sea surface currents were done using the MatLab programme t_tide (Pawlowicz et al., 2002).

The resultant tidal ellipse parameters are shown in Table 3. The S1, M2 and S2 tidal components show a sufficiently high

Signal-to-Noise Ratio (SNR) and are therefore included to be considered in our modelization. The conversion from the ellipse

parameters to the sinusoidal tidal coefficients is applied according to Foreman (1978). The non-filtered tidal signal consists250

of the S1, M2 and S2 components, while the 12 h moving averaged signal is characterized by the diurnal oscillation only.

The wind velocity ua time series is linearly interpolated from its 1 h original resolution or from a 12 h moving average to the

tide ω [h−1] SEMA [cm s−1] SEMI [cm s−1] INC [°] PHA [°] SNR

S1 0.0426667 6.732± 0.692 −2.522± 0.66 −26.46± 6.65 233.62± 7.64 95

M2 0.0805114 3.537± 0.407 0.296± 0.39 47.84± 6.05 151.27± 5.96 76

S2 0.0833333 3.389± 0.454 −0.167± 0.39 23.67± 7.22 130.69± 7.59 56
Table 3. Tidal ellipse parameters with 95 % confidence interval estimates, extracted from the HFR data.

integration time step of the numerical model (2.5 min). The determination of h̃ and CB as best linear fit functions of the wind

speed is given in Appendix C. The algorithm to determine the wind regimes Bora, Sirocco, Mistral and Low wind is explained
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in Flora et al. (2023): if the daily wind speed is higher than the threshold value of 3 m/s, then it is defined as Bora, Sirocco or255

Mistral depending on its direction; if it is lower, it is classified as Low wind. Mistral occures just for a few days in almost two

years, it is therefore considered statistically not significant. In the numerical integration the parameters shown in Table 4 are

used and a Runge-Kutta method of the second order is adopted for the Ekman system.

parameter value

total integration time 656 days

Runge Kutta time step 3×102 s

δ 1.44×104 s

ρa 1.3 kg m−3

ca 10−3

ensemble size 105

stochastic time step dt 1.5×102 s

T 1.746×105 s

τ 6.6×103 s

µ= 1/T 5.728× 10−6 s−1

γx = 1/τ 1.515×10−4 s−1

su 12.265× 10−2 m s−1

sv 9.6696× 10−2 m s−1

su
√
µγx 3.612× 10−6 m s−2

sv
√
µγx 2.848× 10−6 m s−2

γu 1.166×10−4 s−1

η 1.660×10−4 s−1

Table 4. Involved parameters in the numerical modelization. The numerical values of δ, τ , T , su and sv are taken from (Flora et al., 2023).

4.1 Comparison of the DET, GAU and SUP models on different focings time scales

All the models start from the initial condition uo(t= 0) = uHFR(t= 0), where uHFR is the observed HFR sea surface velocity,260

with uS(t= 0) = 0. The obtained numerical sea surface currents are then compared to the HFR measurements. We start this

section commenting FP1 which has no tides and no wind forcing (see Table 2) and compare the DET, GAU and SUP models

in the FP5 and FP9 cases (see Table 2). We conclude this section with a discussion on the change of the stochastic dof when

the tidal forcing is modified. We only show time series for the u-component of the sea surface current variables, results for the

v-component are similar.265

The stochastic model has to be adapted to the FPs to best represent the dynamics unresolved by the deterministic part of
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the model. The FP1 does not take into account any physical forcings and the deterministic part vanishes. The DET model

is therefore trivial, while the GAU and SUP models have a non-trivial stochatic part. The SUP model best fits the observed

data when ν = 2 dof are chosen (see Flora et al. (2023)), as we obtain a total velocity increment (δuo = δuS , because in FP1270

δuM = δuE = 0) distributed according to the Exp-Lin PDF (as summarized in Table 1). The result is shown in Fig. 2 left

column, in which SUP δuo of FP1 coincides with SUP δuS of FP5 (as shown in Table 2 and commented below, they both have

ν = 2 stochastic dof). The GAU model in FP1 (Eq. (A30) and Fig. 2 left column, in which GAU δuo of FP1 coincides with

GAU δuS of FP5) fails in reproducing the fat-tailed Exp-Lin PDF.

275

Figure 2. PDFs of the stochastic variables of the GAU and SUP models for FP5 (left column) and FP9 (right column) in lin-lin plots (top

row) and lin-log plots (bottom row). In particular, analytical solution of the GAU δuS variable from Eq. (A30) (blue continuous line) and

PDFs of the models variables: numerical GAU δuS (blue dots), SUP x (yellow continuous line), SUP δuS (red continuous line). PDFs of

the analytical superstatistical Exp-Lin PDF from Eq. (6) (black dotted line with crosses) and of the analytical superstatistical Bessel function

from Eq. (7) (black dotted line with circles) are also shown. Note that in FP5 (FP9) the SUP x, the SUP δuS and the Exp-Lin (Bessel) lines

almost superpose.
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In the FP5 a 12 h moving-averaged tidal and wind forcing is applied to the models, while the FP9 includes the forcings

without averaging (see Table 2). For the different types of forcings we choose the dof that best fitted the superstatistical Exp-

Lin PDF from Flora et al. (2023). In particular, for FP5 ν = 2, while for FP9 ν = 1/2 give the best fits. In Fig. 2 the PDFs

of the stochastic variables of the GAU and SUP models for FP5 and FP9 are compared to the analytical PDFs. The figures

validate the choice of the parameters in our model hierarchy for the different forcings, as summarized in Table 1: (i) the GAU280

δuS follows the analytical Gaussian from Eq. (A30); (ii) in FP5 the stochastic variable SUP x is Exp-Lin distributed while

in FP9 it is Bessel distributed; (iii) the SUP δuS are distributed as SUP x in both the simulations, showing the validity of the

choice of η (fixed according to the analytical condition from the GAU model in Eq. (A32), its choice is discussed in Sect. 3.1 in

connection with the GAU and SUP models). This also validates the numerical model through the cases where the ananalytical

solution is known.285

13

https://doi.org/10.5194/egusphere-2024-3391
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 3. Sea surface currents time series (u-component) during eleven days of April 2021 of the HFR observations with their measure

accuracy (blue sticks with error bars) and from the models for FP5 (top) and for FP9 (bottom): DET model uo with the Gaussian GAU

model ensemble standard deviation of the stochastic velocity (yellow lines), GAU model ensemble mean of uo with their ensemble standard

deviation (blue lines), SUP model ensemble mean of uE+uM with their ensemble standard deviation (light blue lines), SUP model ensemble

mean of uo with their ensemble standard deviation (red lines). The SUP uo path of two random walkers is reported (light and dark green

dotted lines). The symbol 〈· · · 〉 in the legend stands for the ensemble mean. The blue and red shadings represent Bora and Sirocco wind

regimes respectively, seen in Flora et al. (2023).
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Figure 4. Normalised 2D histograms of the correlation between the HFR observations and the DET model u-component velocities from the

simulated period (almost two years), from FP5 (top) and from FP9 (bottom). The r correlation coefficient is reported. The light blue line is

the linear regression of the scattered data, while the red line is the bisector.

In Fig. 3 the time series of the observed and model velocities for some days of April 2021 are reported. The difference in the

forcing time scale is clearly visible in the deterministic DET model velocities variability: smoother in FP5 than in FP9. They

both follow the slow variability of the observed HFR currrents. In fact, looking at Fig. 4, the linear regression of the scattered

data has a lower slope with respect to the bisector, meaning that the DET model is not able to simulate the observed extremes.

Nevertheless, their 2D histograms have an elongated peak along the bisector and their correlation coefficient reaches 55 % in290

FP5 and 56 % in FP9 for the u-component (29 % and 35 % for the v-component, respectively). Moreover, it is possible to see

that sometimes (e.g. 3rd of April 2021 from Fig. 3) the observed uHFR sea surface current shows a negative peak at the begin-

ning of Bora events. This behaviour is missing in the DET model uo velocity. This fact can be due to the model istantaneous

change of the values of h̃ and CB with the wind speed, while the sea surface system in nature takes some time to adjust to the

wind forcing through vertical mixing (the thin surface layer suddenly accelerates, then thickens and the speed decreases).295

Regarding the ensemble averaged sea surface currents of the GAU and SUP models, they follow closely the DET model time

series. This shows that the stochastic models increase the variability to observed values, but have little influence on the aver-

aged dynamics. The SUP ensemble standard deviation of the uE +uM velocity (light blue band) is smaller than the SUP total

velocity ensemble standard deviation σuo (red band), as expected, since the tidal velocity is purely deterministic and in the

Ekman velocity the stochasticity enters only through the drag. What is particularly interesting is that the GAU σuo ensemble300

standard deviation (blue band) almost completely coincides with the SUP σuo (red band) and not with the GAU σuS (yellow

band) ensemble standard deviation. A clear example of that is visible on the 3rd, 4th, 6th and 13th of April 2021 in Fig. 3 for

the u-component, where the wind forcing increases and the GAU and SUP σuo standard deviations (blue and red bands respec-
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tively) reduce with respect to the GAU σuS statistics (yellow band). In this case it originates from the stochasticity present in

the Ekman drag term.305

Figure 5. PDFs of the observed, analytical and numerical velocity-increments from FP5 (left column) and FP9 (right column) in lin-lin plots

(top row) and lin-log plots (bottom row). In particular, we show the PDFs of the observed HFR velocity-increment (black crosses), of the

analytical superstatistical PDF from Eq. (6) (black line), of the analytical Gaussian of the GAU δuS variable from Eq. (A30) (blue dashed

line) and of the models variables: DET δuo (yellow line), GAU δuo (blue line), SUP δuE + δuM (dotted red line), SUP δuo (full red line).

Looking at the PDFs of the velocity increments in Fig. 5, it can be seen that the DET model PDF in the FP5 is more peaked

around zero, as compared to FP9 which is closer to the observations. This is because the latter model has a higher variability due

to the inclusion of higher frequency forcing data. Despite the rather high correlation of the DET currents with the observations,

the DET model does not explain most of the variability seen in the HFR data, especially the tails, the extreme events, are not310

well reproduced.

From Fig. 5 one can also observe that in FP5 the GAU δuo PDF is similar to the analytical PDF N(0,σδuS ) from Eq. (A30),

while in FP9 it deviates, showing a lower peak and fat tails. The reason of that is explained in more detail for the SUP model
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in the next paragraph, but in summary it is due to the capacity in the FP9 of the tidal and Ekman modelization to resolve large

part of the variability. For both the FPs, although the first and second moments of the velocities are comparable to the SUP315

model (Fig. 3) and the shape of the PDF of the velocity increments has improved as compared to the results of the DET model

(Fig. 5), the tails of the GAU velocity increment PDFs are (by construction) not fat enough to resemble the superstatistical

Exp-Lin PDF and the occurance of extreme events is strongly under estimated.

Regarding the SUP model, in FP5 the SUP δuE+δuM PDF is very peaked, due to the 12 h forcing time scale that suppresses a

large part of the variability. Hence, the SUP δuE+δuM PDF contributes little to the SUP δuo PDF, that is distributed similar to320

the SUP δuS Exp-Lin PDF, having fat tails (compare Fig. 2 and Fig. 5). In FP9 the SUP δuE +δuM PDF is distributed closely

to the DET δuo PDF (larger with respect to the FP5 case), meaning that a large part of the SUP δuo variability is resolved by

the deterministic model. The SUP δuS PDF is given by the Bessel function of Eq. (7) and shown in Fig. 2. The SUP δuo PDF,

shown in Fig. 5, is a convolution of the SUP δuE + δuM PDF (no analytical form available) and the Bessel function. This

PDF shows a lower and shifted peak with respect to the observed and superstatistical Exp-Lin PDFs (due probably to the SUP325

δuE + δuM PDF), but its tails deviate slightly from the observed and Exp-Lin ones.

The percentages of the observed HFR velocity increments inside the SUP σδuo (and σδvo ) ensemble standard deviation band

are measured from the model results:

FP5





Pr(δuo−σδuo ≤ δuHFR ≤ δuo +σδuo)FP5
SUP ' 73%

Pr(δvo−σδvo ≤ δvHFR ≤ δvo +σδvo)FP5
SUP ' 73%

(12)

330

FP9





Pr(δuo−σδuo ≤ δuHFR ≤ δuo +σδuo)FP9
SUP ' 61%

Pr(δvo−σδvo ≤ δvHFR ≤ δvo +σδvo)FP9
SUP ' 62%

(13)

Repeating the calculation in Eq. (12) and Eq. (13) without the eddy depletion term, we obtain a difference of less than 1 %

with respect to the shown case, in which the relative velocity between the sea and the atmosphere is considered. For FP5 the

percentages compare well to the analytical superstatistical Exp-Lin values:

Pr(−σ ≤ x≤ σ) =

+σ∫

−σ

e−2|x|/σ
(

2|x|
σ + 1

)

2σ
dx =

+σ∫

0

e−2x/σ
(

2x
σ + 1

)

σ
dx =

1
2

2∫

0

e−z(z + 1)dz' 73% (14)335

This fact quantitatively confirms that the SUP model in FP5 needs ν = 2 dof in the stochastic signal, producing a reliable PDF

with respect to the observations. In this respect, the observations are therefore indistinguishable from a single walker of the

SUP model ensemble. The percentages of the FP9 case, that has ν = 1/2 dof in the stochastic signal, show small discrepancies

with respect to the analytical ones. Despite the deviations from the analytical superstatistical Exp-Lin PDF, the SUP model

in FP9 reproduces the PDF tails of the velocity increments with even greater fidelity to the observations than in the FP5 case340

(Fig. 5).
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Figure 6. PDFs of the observed uHFR (black crosses) and numerical models sea surface currents from FP5 (left column) and FP9 (right

column) in lin-lin plots (top row) and lin-log plots (bottom row): DET uo (yellow line), GAU uo (blue line), SUP uo (red line).

We move now our attention from the PDFs of the velocity increments to the PDFs of the velocities (Fig. 6). The DET model

is not able to represent the observed PDFs, with a FP5 clearly missing the most of the variability and a FP9 (full forcing)

improving the situation, but still not reproducing the fat tails. A stochastic part is needed to represent unresolved processes and

to increase the variability. The GAU and SUP models can reproduce better the observations. The GAU model shows a good345

pattern around the peak, while it fails in the reproduction of the extreme events, with errors of around one and three orders

of magnitude for the occurance of extreme velocities of 0.5 m s−1 in the FP5 and FP9, respectively. The SUP model in FP5

confirmes, also with this variable, to be able to catch the observed statistics. In FP9 the SUP model shows a higher peak, but

demonstrates to reproduce some details that FP5 can not, as the PDF decay with two different slopes.
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Figure 7. Temporal auto-correlation function of the u-component of the HFR sea surface velocities (black asterisks) and of the models

variables from FP5 (left) and FP9 (right): auto-correlation of the DET uo (continuous yellow line) and of the SUP uo (continuous red line).

The components of the DET uo auto-correlation are reported: the auto-correlation of the DET uM (dotted yellow line), of the DET uE

(dashed yellow line), and the cross-correlation of the DET uM and uE (yellow dotted line with dots), where the normalization is based on

the DET uo auto-correlation.

Regarding the deterministic DET model uo temporal auto-correlation functions shown in Fig. 7, the periodicity of the350

peaks are consistent with what is observed from the HFR data, while the amplitude of the peaks is higher with respect to the

observations. This fact is mainly due to the high auto-correlation of the tidal signal and the absence of stochastic variability.

The cross-correlation between the DET uM and the DET uE velocities shows a clear undamped periodicity of 1 day. This

is due to the daily update of the forecast wind data set: it introduces a spurious artificial periodicity that perfectly correlates

with the daily S1-component tidal variability. The observed temporal decay (with correlation time scale of approximately 5355

h) is well reproduced by the DET model uo auto-correlation from FP9, while it is overestimated by FP5. This can be easily

explained: FP5 has a 12 h forcing time scale that brings spurious memory to the system.

The time decay and the modulation of the SUP uo and vo temporal auto-correlation functions are well reproduced in both

simulations. The fact that the SUP initial decay is comparable with the HFR pattern shows that the value of the γu coefficient

shown in Table 4 is well chosen. The amplitudes in FP5 underestimate the observed ones, while in FP9 the daily peaks are360

present. In both the simulations the SUP auto-correlation is more damped in time with respect to the DET one, due to the

introduction of the stochasticity, as expected. The long time variability of the correlation functions of the idealized models is
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not expected to be similar to the observed ones, since the model space domain is zero-dimensional and the equations do not

include the dynamics of eddies and other coherent two-dimensional structures.

Figure 8. PDFs of the HFR (black crosses) and SUP model total velocity increments δu (left column) and sea surface velocities u (right

column) in lin-lin plots (top row) and log-lin plots (bottom row) from: FP2 (blue line), FP5 (orange line) and FP8 (yellow line). The analytical

superstatistical PDF from Eq. (6) is also reported (black line).

We have seen that moving from longer forcing time averaging FP5 to no forcing averaging FP9, the stochastic model needs365

less dof. In particular, the number of stochastic dof must decrease when the unaveraged tidal components are considered, as

reported in Table 2. This can be seen numerically in Fig. 8, where all the PDFs are able to fit appropriately the observations.

The rest of the FPs presented in Table 2 (FP3, FP4, FP6 and FP7) are not shown, because of the following reasons. FP4 and

FP7 do not take into account any wind forcing, so they are not able to mimic the observed velocities. FP3 and FP6, looking at

the PDFs of SUP δuo and uo, give very similar results to FP5, where the main differences are in the height of the PDFs peaks.370
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Figure 9. Ekman angle as a function of the daily WRF wind speed using the HFR (sticks with errorabars) and the models sea surface

currents from FP5 (left) and FP9 (right): DET model Ekman angle (yellow line) and SUP model ensemble mean Ekman angle (black line

with coloured dots, the colours indicate the present wind regime). The grey area indicates the SUP model ensemble standard deviation for

the Ekman angle. The errors are calculated as shown in Appendix D. The horizontal black line is the observed HFR Ekman angle average.

In order to check if the models capture the observed veering angle, the angle between the daily averaged wind and the daily

averaged selected sea surface current is computed (a positive Ekman angle means that the sea surface current is on the right

with respect to the wind). As seen in Fig. 9, the observed HFR Ekman angle shows a large spread for low wind regimes, while

it accumulates around the observed mean value with stronger wind speeds. In both simulations the Ekman angle obtained

from the DET model (yellow line) collapses towards the same angle range for high wind speeds but with less variability with375

respect to the observations. The SUP mean Ekman angle is almost the same as for the DET model and converges towards

the observed mean Ekman angle with increasing wind speed. The SUP modelled standard deviation (grey area) reflects the

observed variability on the entire domain of the Ekman angle for low wind speeds and shows a decrease of variability for

stronger wind speeds. The SUP modelled Ekman angle includes, most of the times, the observed Ekman angles inside the one

standard deviation band. FP5 shows, both for the DET and SUP model, higher variability bands with respect to FP9 due to the380

higher number of stochastic dof.
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4.2 The FRR and the SUP model

In this section the FRR is tested on the SUP model under the forcings of FP9. In Fig. 10 the perturbation methodology on

the time series, described in Sect. 3.2, and the effects on the total sea surface velocity are visualized. In this figure, it is the

uS velocity component to be perturbed, while the independent vS component remains unperturbed. The total SUP uo velocity385

component is affected by a clearly visible perturbation that decays in time, while the total SUP vo velocity component is

slightly perturbed through the Ekman drag term.

Figure 10. SUP model FP9 stochastic velocities uS (left); HFR (crosses) and SUP FP9 total sea surface velocities uo (right): u-component

in blue, v-component in red. The SUP model time series are from the first walker in the: unperturbed system (dashed lines) and perturbed

system (continuous lines with circles).

In Fig. 11 the diagonal response functions Ruu(t) and Rvv(t) with the correlations of the observed, unperturbed Ekman,

stochastic and total velocities and analytical functions discussed further are reported. The diagonal response functions show

an exponential decay with time scale corresponding to the stochastic velocity drag coefficient γu (i.e. 1/γu ' 140 min, see390

exponential fit in Fig. 11). When it is uE or vE that is perturbed, the diagonal response functions show an exponential decay

with time scale corresponding to the mean Ekman drag term CB ũ

h̃
(i.e. h̃

CB ũ
' 65 min, not shown). This reveals that any external

perturbation is decaying due to the corresponding model drag (γu if we perturbe the stochastic velocity, CB ũ
h̃

if we perturbe

the Ekman velocity).
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Figure 11. Diagonal response functions (thick dotted lines) and temporal autocorrelations in lin-lin plots (left) and lin-log plots (right) of

HFR (asterisks) and unperturbed SUP model FP9 velocities: uE (dashed and dotted line), uS (thick dashed line), uo (continuous line). The

blue indicates the u-component, while the red the v-component. The analytical autocorrelation function of the stochastic velocity from Wirth

(2019) is reported with the black continuous line. The exponential decay with the stochastic drag coefficient γu is shown with the black thin

dotted line.

As expected, since uo and vo are not Gaussian variables and include terms that are not affected by the perturbation, as the tidal395

signal, the diagonal response functions’ behaviour is different from the corresponding auto-correlations. It is then not possible

to describe the response functions as linear combinations of the correlations in the unperturbed system.

What is particularly interesting to observe in Fig. 11 is that the SUP uS and vS auto-correlations coincide with the analytical

auto-correlation function for a stochastic Gaussian variable, defined through a linear SDE with coloured Gaussian noise, found

by Wirth (2019) in his Appendix C2:400

CuS (t) =
γue
−γxt− γxe−γut
γu− γx

, (15)

showing a dependence on the drag coefficients only and not on the variance of the coloured Gaussian. This result seems

surprising, since our stochastic velocities are obtained through a linear SDE with Bessel, and not Gaussian, coloured noise.

Our interpretation of the fact is the following: the stochastic velocity drag time scale 1/γu ' 140 min is one order of magnitude
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smaller than the superstatistical gaussianity time scale T ' 2 days of the superstatistical analysis. This means that, under the405

correlation point of view, the stochastic velocity does not have the time to develop the non-gaussian characteristics, but operates

at an almost constant variance. As a consequence, after the decay time of about 5 h, the SUP uS and vS auto-correlations

collapse exponentially with the same γu coefficient of the diagonal response functions. This can be checked also analytically,

through Eq. (15) and knowing that γu < γx:

CuS (t) =
γx

γu− γx

(
γu
γx
e−γxt− e−γut

)
t→∞−−−→ γx

γx− γu
e−γut ∝ Ruu(t) (16)410

So, knowing the auto-correlation function of the stochastic velocity, it is possible to obtain the response function of the total

velocity. It is then possible to state that the FRR holds in the SUP model when the perturbation is applied to the stochastic

signal.

4.3 Predictability evaluation results

In Fig. 12 the data assimilation perturbation methodology on the time series, described in Sect. 3.3, and the effects on the total415

sea surface velocities are visualized. In this figure, it is the uS and vS velocity components to be perturbed. Both the total SUP

uo and vo show the data assimilation perturbation subject to an evident decay in time.

Figure 12. SUP model FP9 stochastic velocities (left); HFR (crosses) and SUP FP9 total sea surface velocities (right): u-component in blue,

v-component in red. The SUP model time series are from the first walker in the unperturbed system (dashed lines) and perturbed system

using a data-assimilation method (continuous lines with circles).
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Figure 13. Temporal autocorrelations in lin-lin (left) and lin-log plots (right) of the HFR (asterisks) and SUP model stochastic (thick dashed

lines) and total (continuous lines) u (blue) and v (red) sea surface velocities with the ξ (purple thick continuous line) and ε (green thick

continuous line) functions. The exponential fits of the ξ function are shown (purple thin continuous lines). The exponential decay with the

stochastic drag coefficient γu is shown with the black thin dotted line.

The ξ(t) and ε(t) functions are reported in Fig. 13 and represent the normailzed distance between the perturbed-unperturbed

and the perturbed-observed systems, respectively. The function ξ(t) can be considered as a generalization of the response

function in the FRR when both the components are perturbed of a quantity not known a priori. It is possible to see that the ξ(t)420

function has an exponential decay with time scale 1/γu ' 140 min. When it is the Ekman signal to be perturbed, we obtain two

exponential decays: τ1 ' 75 min for t < 2 h and τ2 ' 140 min for t > 4 h (not shown). The external perturbation, due to the

observed data assimilation, decays with the stochastic drag coefficient when we perturbe the stochastic velocity, while a clear

correspondance with the drag coefficient is not found when the Ekman signal is perturbed. The ε(t) function increases its value

in time from zero and, after about 5 hours, saturates to one, showing that after that time the perturbed system has completely425

lost the memory of the initialization to the observations. This time of 5 hours coincides with the auto-correlation time scale of

the SUP stochastic and total velocities.

25

https://doi.org/10.5194/egusphere-2024-3391
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



5 Conclusions

In the Gulf of Trieste the analytical superstatistical PDF of the observed HFR sea surface current increments is known (Flora

et al., 2023) and is here called Exp-Lin PDF. The Exp-Lin PDF is non-Gaussian with fat-tails (the extreme events occur more430

often with respect to a Gaussian statistics), it provides all the statistical moments but does not give any predictive information.

In this study we have developed a hierarcy of idealized models whose aim is to mimic the sea surface current time series,

characterized by the observed statistics.

The hierarchy is organized as follows: the DET model is purely deterministic and includes tidal and Ekman signals, the GAU

model adds a coloured-in-time Gaussian stochastic velocity, while the SUP model adds a stochastic sea surface velocity with435

superstatistical fat-tailed increments that simulate the unresolved dynamics. This is done using Langevin equations in the

GAU model, whose solutions are Gaussian distributed Ornstein-Uhlenbeck processes, and modified Langevin equations with

coloured non-Gaussian noise in the SUP model, whose solutions are superstatistical variables. A variable is superstatistical if it

is locally (in time) Gaussian with a variance evolving over a longer time scale. In our case the variance is obtained through the

sum of 2ν squared Ornstein-Uhlenbeck processes and results to be Gamma distributed with a shape parameter equal to ν. The440

parameter ν identifies the dof of the stochastic system. The models are then tested imposing nine FPs combining different types

of tidal and wind forcings: complete, 12 h moving-averaged time series or omitted forcing (Table 2). The stochatic models are

adjusted for each FP in order to best fit the observed PDF.

In the following we point out the general differences between the models’ results. The DET model is able to simulate the445

slow variability of the observed HFR currents, reaching the 55-56% of correlation coefficient (Fig. 4). The GAU and SUP

stochastic models increase the variability to observed values, but, since their ensemble means almost coincide with the DET

model results, they show little influence on the slow dynamics (Fig. 3).

The main differences between the models are evident looking at the PDFs of their variables. Regarding the total velocity incre-

ment PDFs (Fig. 5), the DET model does not explain the variability of the observed superstatistical Exp-Lin PDF, which results450

in a stark underestimation of the variability. The GAU model improves the results, but without the observed fat tails, that is

the occurence of extreme events is underestimated. When we consider the SUP model, in order to fit the observed statistics,

the stochastic modelization requires ν = 2 stochastic dof when the tidal forcing is omitted or averaged, while it needs ν = 1/2

stochastic dof when the complete tidal signal is considered (Table 2). This result affects the shape of the SUP stochastic ve-

locity increment PDF (Fig. 2) that is Exp-Lin when ν = 2 and Bessel when ν = 1/2. The SUP model shows a total velocity455

increment PDF that is representative of observations (Fig. 5): it is almost Exp-Lin when the FP considers averaged forcings and

ν = 2 stochastic dof, while it has a shifted and slightly lower peak but tails that satisfactorily fit the observed data when the FP

consideres the complete forcings and ν = 1/2 stochastic dof. The convergence to the PDF and, in particular, the enlargement

of the PDF tails to the observed ones in the progression from the DET model to the GAU and then to the SUP model is also

visible in the PDFs of the velocities (Fig. 6). In addition, we obtain that the FP with complete forcings (FP9) and, consequently,460

with ν = 1/2 stochastic dof, enables the SUP model to catch the tails with a double slope in the velocity PDF, as seen from the
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observations.

The velocities temporal auto-correlation functions under the FP9 (Fig. 7) show for both the DET and the SUP models a realistic

time decay of around 5 h, but for longer times the stochasticity allows for a better representation in amplitude of successive

modulations, mitigating the underestimates and overestimates of the DET model peaks. In relation to Ekman dynamics (Fig. 9),465

both the DET model and the SUP model ensemble mean replicate the tendency to form an angle between the wind and the sea

surface current that closely corresponds to the time averaged observed value. The SUP model shows a large standard deviation

under low wind forcing, which decreases with stronger wind forcing. This indicates that strong wind increases the likelihood of

the SUP model generating trajectories that match the observed average Ekman state. This pattern aligns with the HFR Ekman

angle data, where lower wind forcing results in more variability, while higher wind forcing brings values closer to the average.470

The SUP model under the most complete forcings and, consequently, with ν = 1/2 dof (FP9) is then explored applying exter-

nal perturbations to the stochastic signal. The response function trend can be obtained as the time limit (with time that tends

to infinity) of the stochastic velocity auto-correlation, see Fig. 11 and Eq. (16). The implication is that the FRR holds when

the stochastic signal is perturbed, showing that the response to an external perturbation can be obtained by considering the475

fluctuations of the unperturbed system. In particular, the SUP model response function decays with the stochastic velocity drag

time scale (1/γu), indicating a clear memory time scale for external stochastic perturbations.

The simplified data assimilation exercise shows that the SUP model, given any external correction to the HFR values, reaches

an equilibrium distance from the observations, converges to the unperturbed realization, after 5 hours (Fig. 13). This time value

is consistent with the auto-correlation decay of the observed and SUP stochastic and total velocities.480

From the predictive point of view, we should remark that our modelling is extremely idealised: it is local in space and does

not take into account other external forcings besides wind and tides, such as river discharge. The modelling can be further

developed including the Isonzo/Soc̆a river influence, other air-sea interaction processes as wave generation, moving the space

domain from one point (0 dimension) to 2 dimensions including advection, eddy dynamics and also incorporating the broader485

Adriatic circulation.

Despite its idealization, the SUP model presented in this study can reproduce part of the deterministic (tide-wind-forced) large

scale dynamics and the observed fat tails of the HFR velocity increments PDFs and is eventually able to simulate extreme

events. One of the most interesting results is that when we have a more detailed deterministic signal (given by the complete

forcings), a larger part of the dynamics is resolved and the stochastic part of the model must not only have less variability, it490

must also decrease its dof. The SUP model can therefore be taken as an example for the modelling community to reflect on

how stochasticity can be used to reproduce extreme events and how its characteristics vary depending on the coarse graining

of the forcings. Various applications can be found to the SUP model, for example it is currently used to explore the role of

extreme events in the kinetic energy fluxes between the atmosphere and the sea.
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Code and data availability. The exact version of the model used to produce the results used in this paper is archived on Zenodo (Flora

et al., 2024), as are input data and scripts to run the model for all the simulations presented in this paper. In particular: twd_model.f90

is the code implementing the DET model, twg_model.f90 is the code implementing the GAU model, tws_model.f90 is the code

implementing the STO model with ν = 2 and twb_model.f90 is the code implementing the STO model with ν = 1/2. Additionally,500

twb_FRRD_model.f90, twb_FRRS_model.f90, twb_datassD_model.f90 and twb_datassS_model.f90 are the codes

implementing the STO model with ν = 1/2 in the FRR and data assimilation applications (applied to the deterministic or stochastic signals).

The HFR sea surface current data of the Gulf of Trieste are freely available from the European HFRadar node (OGS et al., 2023). The WRF

forecasted wind field is obtainable upon request from ARPA FVG (https://www.arpa.fvg.it, last access: 29 October 2024, CRMA).

Appendix A: An analytical idealized case

This is the idealized case of the stochastic system described in Sect. 3, Eq. (2) and Eq. (3) in which:
√

Σ2ν
i=1α

2
i =

√
Q' constant (A1)

This approximation and the following analysis permits to find the analytical distribution of the variables x, uS and δuS .510

Considering the u-components, independent from the v-components, Eq. (2) and Eq. (3) can be written as follows:



dx=−γxxdt+

√
QdWx

duS =−γuuSdt+ ηxdt

d


 x

uS


=


−γx 0

η −γu




 x

uS


dt+



√
Q

0


dWx

=M


 x

uS


dt+



√
Q

0


dWx

(A2)
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where M =


−γx 0

η −γu


 can be diagonalized:

det(M −mI) = det


−γx−m 0

η −γu−m


= (γx +m)(γu +m) = 0 (A3)

obtaining two eigenvalues m1 =−γx and m2 =−γu and the following eigenvectors (with γx 6= γu):515

Me1 =m1e1

−γx 0

η −γu




e1x

e1y


=−γx


e1x

e1y







−γxe1x =−γxe1x

ηe1x− γue1y =−γxe1y




e1y =− η

γx−γu e1x

e2
1x + e2

1y = 1

e2
1x

(
1 +

η2

(γx− γu)2

)
= 1





e1x =− γx−γu√
η2+(γx−γu)2

e1y = η√
η2+(γx−γu)2

e1 =



− γx−γu√

η2+(γx−γu)2

η√
η2+(γx−γu)2




Me2 =m2e2

−γx 0

η −γu




e2x

e2y


=−γu


e2x

e2y







−γxe2x =−γue2x

ηe2x− γue2y =−γue2y




e2x = 0

e2y = 1

e2 =


0

1




(A4)

For γx 6= γu, the system in Eq. (A2) is diagonalizable and it is possible to write M = T ·D ·T−1 where:

T =



− γx−γu√

η2+(γx−γu)2
0

η√
η2+(γx−γu)2

1


 D =


−γx 0

0 −γu


 T−1 =


−
√
η2+(γx−γu)2

γx−γu 0
η

γx−γu 1


 (A5)

and so, hypothizing γu < γx (the final distributions do not change with γx < γu, what is changing is just the sign of the Wiener

processes in the diagonalised system):520

d


 x

uS


= T ·D ·T−1


 x

uS


dt+



√
Q

0


dWx (A6)

d


T−1


 x

uS




=D


T−1


 x

uS




dt+T−1



√
Q

0


dWx (A7)
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
 x̃

ũS


= T−1


 x

uS


=


−
√
η2+(γx−γu)2

γx−γu x

uS + η
γx−γux


 ;


−
√
Qx

√
Qu


= T−1



√
Q

0


=


−
√
η2+(γx−γu)2

γx−γu
√
Q

η
γx−γu

√
Q


 (A8)525

obtaining:

d


 x̃

ũS


=D


 x̃

ũS


dt+


−
√
Qx

√
Qu


dWx




dx̃=−γxx̃dt−

√
QxdWx

dũS =−γuũSdt+
√
QudWx

(A9)

The approximation for which
√
Q= constant leads to

√
Qx and

√
Qu also constants. This fact leads to the Gaussianity of the

variables x̃ and ũS (they are Ornstein-Uhlenbeck processes):



x̃∼N

(
0,σ2

x̃

)
=N

(
0, Qx2γx

)
=N

(
0, η

2+(γx−γu)2

(γx−γu)2
Q

2γx

)

ũS ∼N
(
0,σ2

ũS

)
=N

(
0, Qu2γu

)
=N

(
0, η2

(γx−γu)2
Q

2γu

) (A10)530

From Eq. (A8) it is possible to write x and uS in terms of x̃ and ũS , resulting as linear combinations of Gaussian variables:




x=− γx−γu√
η2+(γx−γu)2

x̃

uS = ũS + r̃

r̃ =− η
γx−γu x= η√

η2+(γx−γu)2
x̃

(A11)

It leads to the Gaussianity of the variables x, r̃ and uS with the following variances:




x∼N
(
0,σ2

x

)

r̃ ∼N
(
0,σ2

r̃

)

uS ∼N
(
0,σ2

uS

)
(A12)

535




σ2
x = (γx−γu)2

η2+(γx−γu)2 σ
2
x̃ = Q

2γx

σ2
r̃ = η2

η2+(γx−γu)2 σ
2
x̃ = η2

(γx−γu)2
Q

2γx

σ2
uS = σ2

ũS
+σ2

r̃ + 2 limt→∞ corr(ũS(t), r̃(t))

= η2

(γx−γu)2
Q

2γu
+ η2

(γx−γu)2
Q

2γx
+ 2 η√

η2+(γx−γu)2
limt→∞ corr(ũS(t), x̃(t))

= η2(γx+γu)
(γx−γu)2

Q
2γxγu

− 2η2

(γx−γu)2(γx+γu) Q

= η2

(γx−γu)2
(γx+γu)2−4γxγu

2γxγu(γx+γu) Q

= η2

2γxγu(γx+γu) Q

(A13)
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where, since x̃ and ũS are Ornstein-Uhlenbeck processes:




x̃(t) =−e−γxt
∫ t

0
eγxt

′√
QxF (t′)dt′

ũS(t) = e−γut
∫ t

0
eγut

′√
QuF (t′)dt′

E[F (t′)F (t′′)] = δ(t′− t′′)

(A14)

we have that:

corr(ũS(t), x̃(t)) =−e−(γx+γu)t
√
QxQu

t∫

0

t∫

0

eγxt
′
eγut

′′
E[F (t′)F (t′′)]dt′dt′′

=−η
√
η2 + (γx− γu)2

(γx− γu)2
Qe−(γx+γu)t e

(γx+γu)t− 1
γx + γu

=−η
√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu

(
1− e−(γx+γu)t

)

t→∞−−−→−η
√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu
(A15)540

Now, it is possible to express the δuS variable, starting from its definition and using Eq. (A13), in terms of the diagonalized

variables x̃ and ũS :

δuS(t) = uS(t+ δ)−uS(t)

= ũS(t+ δ) +
η√

η2 + (γx− γu)2
x̃(t+ δ)− ũS(t)− η√

η2 + (γx− γu)2
x̃(t)

= [ũS(t+ δ)− ũS(t)] +
η√

η2 + (γx− γu)2
[x̃(t+ δ)− x̃(t)]

= ˜δuS(t) +
η√

η2 + (γx− γu)2
δ̃x(t) (A16)

where:




˜δuS(t) = ũS(t+ δ)− ũS(t)

δ̃x(t) = x̃(t+ δ)− x̃(t)
(A17)545
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Since ˜δuS and δ̃x are linear combinations of Gaussian viariables, they are Gaussian variables themselves:





˜δuS ∼N(0,σ2
˜δuS

)

σ2
˜δuS

= 2σ2
ũS + 2 lim

t→∞
corr(ũS(t+ δ), ũS(t))

= 2
η2

(γx− γu)2

Q

2γu

(
1− e−γuδ

)

δ̃x∼N(0,σ2
δ̃x

)

σ2
δ̃x

= 2σ2
x̃ + 2 lim

t→∞
corr(x̃(t+ δ), x̃(t))

= 2
η2 + (γx− γu)2

(γx− γu)2

Q

2γx

(
1− e−γxδ

)

(A18)

where:

corr(ũS(t+ δ), ũS(t)) =
η2Q

(γx− γu)2 e
−2γut e−γuδ

t+δ∫

0

t∫

0

eγut
′
eγut

′′
δ (t′− t′′)dt′dt′′

=
η2Q

(γx− γu)2 e
−2γut e−γuδ

t∫

0

e2γut
′
dt′

=
η2Q

(γx− γu)2 e
−γuδ e−2γut

e2γut− 1
2γu

=
η2Q

(γx− γu)2

e−γuδ

2γu

(
1− e−2γut

)

t→∞−−−→ η2

(γx− γu)2

Q

2γu
e−γuδ (A19)

550

corr(x̃(t+ δ), x̃(t)) =
η2 + (γx− γu)2

(γx− γu)2 Q e−2γxt e−γxδ
t+δ∫

0

t∫

0

eγxt
′
eγxt

′′
δ (t′− t′′)dt′dt′′

=
η2 + (γx− γu)2

(γx− γu)2 Q e−2γxt e−γxδ
t∫

0

e2γxt
′
dt′

=
η+ (γx− γu)2

(γx− γu)2 Q e−γxδ e−2γxt
e2γxt− 1

2γx

=
η2 + (γx− γu)2

(γx− γu)2

Q

2γx
e−γxδ

(
1− e−2γxt

)

t→∞−−−→ η2 + (γx− γu)2

(γx− γu)2

Q

2γx
e−γxδ (A20)
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Now, according to Eq. (A16) and Eq. (A18), since δuS is a linear combination of Gaussian variables, it is Gaussianly distributed

itself:



δuS ∼N(0,σ2

δu)

σ2
δu = σ2

δ̃u
+ η2

η2+(γx−γu)2 σ2
δ̃x

+ 2η√
η2+(γx−γu)2

limt→∞ corr( ˜δuS(t), δ̃x(t))
(A21)

where:555

lim
t→∞

corr( ˜δuS(t), δ̃x(t)) = lim
t→∞

corr(ũS(t+ δ)− ũS(t), x̃(t+ δ)− x̃(t))

= lim
t→∞

[corr(ũS(t+ δ), x̃(t+ δ))− corr(ũS(t+ δ), x̃(t))− corr(ũS(t), x̃(t+ δ)) + corr(ũS(t), x̃(t))]

(A22)

lim
t→∞

corr(ũS(t+ δ), x̃(t+ δ)) = lim
t→∞

corr(ũS(t), x̃(t))

=−
η

√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu
(A23)

corr(ũS(t+ δ), x̃(t)) =−
η

√
η2 + (γx− γu)2

(γx− γu)2 Q e−γu(t+δ) e−γxt
t+δ∫

0

t∫

0

eγut
′
eγxt

′′
δ(t′− t′′)dt′dt′′

=−
η

√
η2 + (γx− γu)2

(γx− γu)2 Q e−γuδ e−(γx+γu)t

t∫

0

e(γx+γu)t′dt′

=−
η

√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu
e−γuδ

(
1− e−(γx+γu)t

)

t→∞−−−→−
η

√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu
e−γuδ (A24)560

corr(ũS(t), x̃(t+ δ)) =−
η

√
η2 + (γx− γu)2

(γx− γu)2 Q e−γut e−γx(t+δ)

t+δ∫

0

t∫

0

eγut
′
eγxt

′′
δ(t′− t′′)dt′dt′′

t→∞−−−→−
η

√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu
e−γxδ (A25)

And so, continuing Eq. (A22):

lim
t→∞

corr(ũS(t+ δ), x̃(t+ δ)) =−
η

√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu

[
2−

(
e−γxδ + e−γuδ

)]
(A26)
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It is now possible the calculation started in Eq. (A21):565

σ2
δu =σ2

δ̃u
+

η2

η2 + (γx− γu)2 σ
2
δ̃x

+
2η√

η2 + (γx− γu)2
lim
t→∞

corr( ˜δuS(t), δ̃x(t))

=
2η2

(γx− γu)2

Q

2γu

(
1− e−γuδ

)
+

η2

η2 + (γx− γu)2

2
[
η2 + (γx− γu)2

]

(γx− γu)2

Q

2γx

(
1− e−γxδ

)
+

+
2η√

η2 + (γx− γu)2
(−)

η

√
η2 + (γx− γu)2

(γx− γu)2

Q

γx + γu

[
2−

(
e−γxδ + e−γuδ

)]

=
2η2Q

(γx− γu)2

[
1

2γu

(
1− e−γuδ

)
+

1
2γx

(
1− e−γxδ

)
− 1
γx + γu

(
1− e−γxδ

)
− 1
γx + γu

(
1− e−γuδ

)]

=
2η2Q

(γx− γu)2

[
γx− γu

2γu (γx + γu)
(
1− e−γuδ

)
− γx− γu

2γx (γx + γu)
(
1− e−γxδ

)]

=
η2Q

γ2
x− γ2

u

(
1− e−γuδ

γu
− 1− e−γxδ

γx

)
(A27)
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Figure A1. Gaussian PDFs of the stochastic variables x (in blue), uS (in red) and δuS (in green): the continuous lines are the analytical

Gaussian PDFs in Eq. (A28, Eq. A29 and Eq. A30), while the points are the histograms of the simulated variables described in Eq. (A2) and

Eq. (A16) in the case Q=constant. The used parameters are shown in Table A1, the simulation with η = η1 results are shown in (a) and (b),

while in (c) and (d) the results with η = η2 are shown. In (a) and (c) the plots are lin-lin, while in (b) and (d) the plots are lin-log.
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parameter value

ensemble size 105

total integration time ∼ 656 days

time step dt 1.5×102 s

τ 6.6×103 s

γx = 1/τ 1.515×10−4 s−1

Q 2.6×10−6 m2s−3

γu 5.152×10−5 s−1

η1 1.333×10−4 s−1

η2 =
√

γ2
x−γ2

u

2[ γxγu (1−e−γuδ)−(1−e−γxδ)] 1.247×10−4 s−1

δ 1.44×104 s
Table A1. Involved parameters in the idealized analytical stochastic modelization.

In a summary, in the idealized case of the stochastic system, in which Q is constant, the variables x, uS and δuS are

Gaussianly distributed:

x∼N
(
0,σ2

x

)
=N

(
0,

Q

2γx

)
(A28)

570

uS ∼N
(
0,σ2

uS

)
=N

(
0,

η2Q

2γxγu(γx + γu)

)
(A29)

δuS ∼N
(
0,σ2

δu

)
=N

(
0,

η2Q

γ2
x− γ2

u

(
1− e−γuδ

γu
− 1− e−γxδ

γx

))
(A30)

It is possible to find a condition for which δuS is distributed as x:

σ2
δu =

η2Q

γ2
x− γ2

u

(
1− e−γuδ

γu
− 1− e−γxδ

γx

)

=
Q

2γx
2η2

γ2
x− γ2

u

[
γx
γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)]

= σ2
x

2η2

γ2
x− γ2

u

[
γx
γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)]
(A31)575

σ2
δu = σ2

x ⇐⇒
2η2

γ2
x− γ2

u

[
γx
γu

(
1− e−γuδ

)
−
(
1− e−γxδ

)]
= 1

⇐⇒ η =

√√√√ γ2
x− γ2

u

2
[
γx
γu

(1− e−γuδ)− (1− e−γxδ)
] (A32)
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All these facts are confirmed by the numerical simulations results, shown in Fig. A1 using the numerical parameters in Ta-

ble A1.

Appendix B: Ornstein–Uhlenbeck processes and colored noise580

Let’s consider the stochastic part for the u-component (analogously for the v-component) of the SUP model:

dαi =−µαidt+βudWi (B1)

dx=−γxxdt+
√

Σ2ν
i=1α

2
i dWx (B2)

585

duS =−γuuSdt+ ηxdt (B3)

Since β and µ are constants, Eq. (B1) is a Langevin equation and the variables αi are Ornstein–Uhlenbeck processes, so their

distribution in the stationary state is Gaussian:

pα(αi) =
√

µ

πβ2
u

e−µα
2
i /β

2
u (B4)

Defining the new variable Q as the sum of 2ν squared identically distributed Gaussian variables Q= Σ2ν
i=1α

2
i , it results as a590

variable distributed with a Gamma distribution with shape parameter equal to ν in the stationary state:

pQ(Q) = Γν,λ̃(Q)

=
λ̃νQν−1 e−λ̃Q

Γ(ν)

=
(
µ

β2
u

)ν
Qν−1

Γ(ν)
e−µQ/β

2
u (B5)

where λ̃= µ
β2
u

and with first moment:

〈Q〉=

∞∫

0

(
µ

β2

)ν
Qν

Γ(ν)
e−µQ/β

2
dQ=

νβ2

µ
. (B6)

It is possible to write Eq. (B2) in the following way:595

dx=−γxxdt+
√
QdWx (B7)

If Q were a constant, then the equation above would be a Langevin equation and x would represent an Ornstein-Uhlenbeck

process. But for construction Q is slowly varying respect x (because τ = 1
γx
� T = 1

µ ). So it is possible to assume that locally
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in time Q is constant and so locally x has a Gaussian distribution, given a certain variance σ2
x = Q

2γx
determined by the value

of Q:600

p(x|σ2
x) =N

(
0,σ2

x

)

=
1√

2πσ2
x

e−x
2/2σ2

x

=
√

γx
πQ

e−γxx
2/Q (B8)

In order to obtain the total x PDF, the σ2
x PDF f(σ2

x) is needed. Thanks to its dependence with Q, it is possible to obtain it:

f(σ2
x) = Γν,λ(σ2

x) =
λνσ

2(ν−1)
x e−λσ

2
x

Γ(ν)
=
(

2µγx
β2
u

)ν
σ

2(ν−1)
x

Γ(ν)
e
− 2µγx

β2
u
σ2
x (B9)

where λ= 2µγx
β2
u

. It follows that:

pν(x) =

∞∫

0

f(σ2
x)p(x|σ2

x)dσ2
x

=
λν

Γ(ν)
√

2π

∞∫

0

σ2(ν−1)
x e−λσ

2
x

1√
σ2
x

e−x
2/2σ2

x d(σ2
x)

=
λν

Γ(ν)
√

2π

∞∫

0

zν−3/2e−λz−x
2/2z dz (B10)605

that, for ν = 2, it gives the following result (Gradshteyn and Ryzhik (2014) page 369, Eq. (3.471.16), called, in this article,

Exp-Lin PDF:

pν=2(x) =− λ
2

√
2
∂

∂λ

(
λ−1/2e−

√
2λ|x|

)

=

√
2λe−

√
2λ|x|(

√
2λ|x|+ 1)

4

=
√
µγx

2βu
e−2
√
µγx|x|/βu

(
2
√
µγx

βu
|x|+ 1

)
(B11)

while, for ν = 1/2 (Gradshteyn and Ryzhik (2014) page 370, Eq. 3.478.4):

pν= 1
2
(x) =

√
2λ
π

K0

(√
2λ|x|

)

=
2
√
µγx

πβu
K0

(
2
√
µγx

βu
|x|
)

(B12)610

where K0(z) is the modified Bessel function of the second kind of 0 order. A summary of the results of this Appendix for the

cases ν, 2 and 1/2 degrees of freedom (dof) is given in Table B1. Finally, Eq. (B3) does not present any analytic solution.

38

https://doi.org/10.5194/egusphere-2024-3391
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



dof pQ(Q) 〈Q〉 p(x)

ν
(
µ
β2
u

)ν
Qν−1

Γ(ν)
e−µQ/β

2
u νβ2/µ

(2µγx/β
2)ν

Γ(ν)
√

2π

∫∞
0
zν−3/2e

− 2µγx
β2 z− x2

2z dz

2
(
µ
β2
u

)2

Q e−µQ/β
2
u 2β2/µ

√
µγx

2βu
e−2
√
µγx|x|/βu

(
2
√
µγx
βu
|x|+1

)

1
2

√
µ
πβ2
u

e−µQ/β
2
u√

Q
β2/2µ

2
√
µγx

πβu
K0

(
2
√
µγx
βu
|x|
)

Table B1. Analytical PDFs and means of the variable Q and analytical PDFs of the variable x for ν, 2 and 1/2 degrees of freedom.

Appendix C: The Ekman system of the deterministic model - the coefficients linear relation with the wind speed

Defining the energyE = h̃ |uo|2
2 for the DET model in Eq. (1) and supposing, as a first approximation, the tidal signal negligible

uo ' uE (daily time scale), a slowlying varying sea surface layer depth ∂th̃= 0 and neglecting the eddy depletion term615

F = ρaca|ua|ua, so the energy variation in time can be expressed as follows:

∂tE = h̃ ∂t
|uE |2

2
= h̃(uE∂tuE + vE∂tvE) =−CB |uE |3 +uEFu + vEFv (C1)

from which:

CB

h̃
=
uEFu + vEFv

h̃|uE |3
− ∂t|uE |2

2|uE |3
(C2)

Discretizing Eq. (C1) and Eq. (C2) around the time step ti (where ∆t= ti+1− ti) and using the centered scheme for the620

temporal derivative ∂t|uE |2 = |uE(ti+1)|2−|uE(ti−1)|2
2∆t ), it results:

h̃
|uE(ti+1)|2− |uE(ti−1)|2

4
=−CB(ti) |uE(ti)|3∆t+ [uE(ti) Fu(ti) + vE(ti) Fv(ti)]∆t (C3)

and:

CB(ti)
h̃

=
uE(ti) Fu(ti) + vE(ti) Fv(ti)

h̃|uE(ti)|3
− |uE(ti+1)|2− |uE(ti−1)|2

4|uE(ti)|3∆t

=
α(ti)
h̃
− ζ(ti) (C4)

where α(ti) = uE(ti) Fu(ti)+vE(ti) Fv(ti)
|uE(ti)|3 , ζ(ti) = |uE(ti+∆t)|2−|uE(ti−∆t)|2

4|uE(ti)|3∆t and h̃ has a low dependence on the time. Approx-625

imating the daily-averaged observed sea surface current as the daily deterministic Ekman sea surface current, it is possible to

calculate the coefficients α(ti) and ζ(ti) directly from the observations and the daily-averaged wind forcing.
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Eq. (1) results in:

∂tuE
∂tvE


=


−

(
α
h̃
− ζ
)
|uE | f

−f −
(
α
h̃
− ζ
)
|uE |




uE
vE


+



Fu
h̃
Fv
h̃


 (C5)

630



∂tuE =−α

h̃
|uE |uE + ζ|uE |uE + fvD + Fu

h̃

∂tvE =−α
h̃
|uE |vE + ζ|uE |vE − fuE + Fv

h̃

(C6)




∂tuE − ζ|uE |uE − fvE = Fu−α|uE |uE

h̃

∂tvE − ζ|uE |vE + fuE = Fv−α|uE |vE
h̃

(C7)

From which it is possible to obtain the slowly varying h̃:



h̃= Fu−α|uE |uE

∂tuE−ζ|uE |uE−fvE

h̃= Fv−α|uE |vE
∂tvE−ζ|uE |vE+fuE

(C8)635

The discretization gives:



h̃(ti) = Fu(ti)−α(ti) |uE(ti)| uE(ti)

[uE(ti+∆t)−uE(ti−∆t)]/2∆t−ζ(ti) |uE(ti)| uE(ti)−fvD(ti)

h̃(ti) = Fv(ti)−α(ti) |uE(ti)| vE(ti)
[vE(ti+∆t)−vE(ti−∆t)]/2∆t−ζ(ti) |uE(ti)| vE(ti)+fuE(ti)

(C9)

The two expressions in Eq. (C9) should give a unique value for h̃ in function of the time directly from the daily-averaged

observed currents and the daily-averaged wind forcing. In practice, they almost agree and we calculated h̃(ti) as the average

of these two expressions. From h̃(ti) it is possible to obtain also CB(ti):640

CB(ti) = α(ti)− ζ(ti) · h̃(ti) (C10)

Having the h̃, the CB and the wind speed time series, it is possible to calculate the mean values of h̃ and CB in function of the

wind speed, obtaining a linear fit after deleting the values exceeding one standard deviation (Fig. C1).
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Figure C1. Dependence on the wind speed of the model coefficients CB and h̃, calculated accordingly to Eq. (C10) and to the mean of

Eq.s (C9) respectively, and their linear regressions.

Appendix D: On the Ekman angle standard deviation

In this study the Ekman angle is defined as the angle between the daily wind and the daily sea surface current, it is positive645

if the sea surface current is on the right respect the wind direction. For semplicity it is here assumed that the wind does not

contribute with any error and is perfectly known. It follows that the standard deviation of the Ekman angle coincides with the

standard deviation of the daily sea surface current angle. Under this assumption, the given Ekman angle standard deviation

is an underestimation of its real error. So, in order to obtain this estimation of the Ekman angle standard deviation, starting

from the modelled (HFR measured) sea surface current components with 5 min (30 min) time resolution and their stochastic650

variability (measure accuracy), two points must be followed: (i) the daily average transformation and (ii) the polar coordinates

transformation.

Let’s take into consideration the sea surface currents time series of a single day x= {u1, ...,un,v1, ...,vn}, where n= 288

for the 5 min time resolution modelled sea surface currents and n= 48 for the 30 min HFR observed sea surface currents, with655
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their 2n× 2n symmetric covariance matrix:

Σx =




σ2
u1

· · · σu1un σu1v1 · · · σu1vn

...
. . .

...
...

...

σunu1 · · · σ2
un σunv1 · · · σunvn

σv1u1 · · · σv1un σ2
v1

· · · σv1vn

...
...

...
. . .

...

σvnu1 · · · σvnun σvnv1 · · · σ2
vn




=


Σxuu Σxuv

Σxuv Σxvv


 (D1)

Here the sea surface currents are the ensemble averaged values for each time and the covariance matrix values are the relative

ensemble variances and covariances, while for the observations the sea surface currents are simply the indipendent HFR

measured sea surface currents (each measurement is independent from the others) with their HFR accuracy and 0 covariances660

(so Σx reduces to a diagonal matrix).

Calling f =


ū
v̄


 the daily average sea surface currents for a single day, its linear transformation (here the transformation

matrix is called A) can be written as:

f =A ·x (D2)

665


ū
v̄


=

1
n




n︷ ︸︸ ︷
1 · · ·1

n︷ ︸︸ ︷
0 · · ·0

0 · · ·0︸ ︷︷ ︸
n

1 · · ·1︸ ︷︷ ︸
n







u1

...

un

v1

...

vn




(D3)
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So, the covariance matrix of the transformed variable Σf =


 σ2

ū σūv̄

σūv̄ σ2
v̄


 can be obtained in the following way:

Σf =A ·Σx ·AT

=
1
n2


1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1







σ2
u1

· · · σu1un σu1v1 · · · σu1vn

...
. . .

...
...

...

σunu1 · · · σ2
un σunv1 · · · σunvn

σv1u1 · · · σv1un σ2
v1

· · · σv1vn

...
...

...
. . .

...

σvnu1 · · · σvnun σvnv1 · · · σ2
vn







1 0
...

...

1 0

0 1
...

...

0 1




=
1
n2


1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1







σ2
u1

+ · · ·+σu1un σu1v1 + · · ·+σu1vn

...
...

σunu1 + · · ·+σ2
un σunv1 + · · ·+σunvn

σv1u1 + · · ·+σv1un σ2
v1

+ · · ·+σv1vn

...
...

σvnu1 + · · ·+σvnun σvnv1 + · · ·+σ2
vn




=
1
n2


 σ2

u1
+ · · ·+σu1un + · · ·+σunu1 + · · ·+σ2

n σu1v1 + · · ·+σu1vn + · · ·+σunv1 + · · ·+σunvn

σv1u1 + · · ·+σv1un + · · ·+σvnu1 + · · ·+σvnun σ2
v1

+ · · ·+σv1vn + · · ·+σvnv1 + · · ·+σ2
vn




=
1
n2


sum(Σxuu) sum(Σxuv)

sum(Σxuv) sum(Σxvv)


 (D4)

670

Once obtained the daily sea surface current components


ū
v̄


 and their covariance matrix


 σ2

ū σūv̄

σūv̄ σ2
v̄


, it is possible to

change from cartesian to polar coordinates:



r =
√
ū2 + v̄2

θ = arctan
(
v̄
ū

) (D5)

The transformation now is not linear and one must resort to the jacobian matrix:

J =



∂r
∂ū

∂r
∂v̄

∂θ
∂ū

∂θ
∂v̄


=




ū√
ū2+v̄2

v̄√
ū2+v̄2

− v̄
ū2+v̄2

ū
ū2+v̄2


 (D6)675
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to obtain the new covariance matrix (θ and σθ are in radiants):

 σ2

r σrθ

σrθ σ2
θ


= J


 σ2

ū σūv̄

σūv̄ σ2
v̄


JT

=




ū√
ū2+v̄2

v̄√
ū2+v̄2

− v̄
ū2+v̄2

ū
ū2+v̄2




 σ2

ū σūv̄

σūv̄ σ2
v̄






ū√
ū2+v̄2 − v̄

ū2+v̄2

v̄√
ū2+v̄2

ū
ū2+v̄2




=




ū√
ū2+v̄2

v̄√
ū2+v̄2

− v̄
ū2+v̄2

ū
ū2+v̄2





ūσ2

ū+v̄σūv̄√
ū2+v̄2

−v̄σ2
ū+ūσūv̄
ū2+v̄2

ūσūv̄+v̄σ2
v̄√

ū2+v̄2

−v̄σūv̄+ūσ2
v̄

ū2+v̄2




=




ū2σ2
ū+2ūv̄σūv̄+v̄2σ2

v̄

ū2+v̄2

−ūv̄σ2
ū+(ū2−v̄2)2

σūv̄+ūv̄σ2
v̄

(ū2+v̄2)3/2

−ūv̄σ2
ū+(ū2−v̄2)2

σūv̄+ūv̄σ2
v̄

(ū2+v̄2)3/2
v̄2σ2

ū−2ūv̄σūv̄+ū2σ2
v̄

(ū2+v̄2)2


 . (D7)

The Ekman angle standard deviation is then taken as follows:

σθE = min(σθ,π) . (D8)
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Reyes Suárez, N. C., Tirelli, V., Ursella, L., Ličer, M., Celio, M., and Cardin, V.: Multi-platform study of the extreme bloom of the barrel

jellyfish Rhizostoma pulmo (Cnidaria: Scyphozoa) in the northernmost gulf of the Mediterranean Sea (Gulf of Trieste) in April 2021,

Ocean Science, 18, 1321–1337, 2022.

Silveira, F. A. and Aarão Reis, F. D. A.: Langevin equations for competitive growth models, Phys. Rev. E, 85, 011 601,750

https://doi.org/10.1103/PhysRevE.85.011601, 2012.

Sura, P.: Stochastic Models of Climate Extremes: Theory and Observations, pp. 181–222, Springer Netherlands, Dordrecht, ISBN 978-94-

007-4479-0, https://doi.org/10.1007/978-94-007-4479-0_7, 2013.

van den Berk, J., Drijfhout, S., and Hazeleger, W.: Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics,

Earth System Dynamics, 12, 69–81, 2021.755

Wand, T., Wiedemann, T., Harren, J., and Kamps, O.: Estimating stable fixed points and Langevin potentials for financial dynamics, Physical

Review E, 109, 024 226, 2024.

Wirth, A.: A fluctuation-dissipation relation for the ocean subject to turbulent atmospheric forcing, Journal of Physical Oceanography, 48,

831–843, 2018.

Wirth, A.: On fluctuating momentum exchange in idealised models of air–sea interaction, Nonlinear Processes in Geophysics, 26, 457–477,760

https://doi.org/10.5194/npg-26-457-2019, 2019.

46

https://doi.org/10.5194/egusphere-2024-3391
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.



Zhai, X., Johnson, H. L., Marshall, D. P., and Wunsch, C.: On the Wind Power Input to the Ocean General Circulation, Journal of Physical

Oceanography, 42, 1357 – 1365, https://doi.org/10.1175/JPO-D-12-09.1, 2012.

47

https://doi.org/10.5194/egusphere-2024-3391
Preprint. Discussion started: 16 January 2025
c© Author(s) 2025. CC BY 4.0 License.


