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Abstract. Cloud fraction (CF) is an integral aspect of weather and radiation forecasting, but real time monitoring of CF is still 

inaccurate, expensive and exclusive to commercial sky imagers. Traditional cloud segmentation methods, which often rely on 10 

empirically determined threshold values, struggle under complex atmospheric and cloud conditions. This study investigates 

the use of a Random Forest (RF) classifier for pixel-wise cloud segmentation using a dataset of semantically annotated images 

from five geographically diverse locations. The RF model was trained on diverse sky conditions and atmospheric loads, 

ensuring robust performance across varied environments. The accuracy score was always above 85% for all the locations along 

with similarly high F1 score and Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) score establishing 15 

the efficiency of the model. Validation experiments conducted at three Atmospheric Radiation Measurement (ARM) sites and 

two Indian locations, including Gadanki and Merak, demonstrated that the RF classifier outperformed conventional Total Sky 

Imager (TSI) methods, particularly in high-pollution areas. The model effectively captured long-term weather and cloud 

patterns, exhibiting strong location-agnostic performance. However, challenges in distinguishing sun glares and cirrus clouds 

due to annotation limitations were noted. Despite these minor issues, the RF classifier shows significant promise for accurate 20 

and adaptable cloud cover estimation, making it a valuable tool in climate studies. 

1 Introduction 

Clouds are a fundamental constituent of our weather systems and one of the most critical climate variables influencing the 

Earth’s radiation budget. Cloud albedo influences the amount of solar radiation reflected into space and hence affects the 

energy budget at Earth's surface and in the atmosphere (Ramanathan et al., 1989). It also influences the atmospheric 25 

thermodynamics, surface fluxes and hence the water vapor and carbon cycle (Várnai and Marshak, 2015), thereby impacting 

the extent of many land-atmosphere processes, feedback and interactions at various spatio-temporal scales. Consequently, the 

scientific community requires specific devices to observe the fluctuations in cloud cover and other cloud properties at a high 
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spatial and temporal resolution. Typically, these devices fall into two categories: satellite-based and ground-based imagers. 

Satellite imagers observe clouds over larger spatial domains (Verma et al., 2018) with temporal resolutions as high as 30 

10minutes (Huang et al., 2019). Ground-based sky monitoring devices, on the other hand, capture data at high temporal 

resolutions, ranging from as frequent as 30 seconds to 5 minutes over a fixed point (Nouri et al., 2019).  

Over the years, researchers have developed numerous algorithms to detect clouds in images and classify them into broader 

categories of cloud types. These cloud detection algorithms primarily fall into two categories: thresholding techniques and 

classifier-based methods. The clear sky (CSL) threshold method, as outlined by (Shields et al., 2009), uses spectral 35 

information—particularly from the red and blue bands—to differentiate between cloudy and clear-sky conditions. This 

technique has been widely adopted by researchers (Chauvin et al., 2015; Chow et al., 2011; Ghonima et al., 2012; Kuhn et al., 

2018; Lothon et al., 2019). However, a notable limitation is that the threshold value can vary across an image, influenced by 

the relative distance between the sun and each pixel in the image. This dynamic adjustment is crucial because scattering 

properties change with variations in the path length and the angular position of the sun, as demonstrated by (Long et al., 2006). 40 

As such, an adaptive thresholding technique was proposed based on distance from the sun (Li et al., 2011; Yang et al., 2012). 

However, cloud images are inherently diverse, featuring complex spectral information. Due to this diversity, conventional 

image segmentation techniques, such as thresholding and shape differentiation methods, struggle to provide precise and 

consistent segmentation results.  

Modern algorithms integrate multiple features into building a classifier, including spectral, statistical, and Fourier-transformed 45 

features, in a supervised manner (Calbó et al., 2008). Many supervised algorithms have been used for recognising different 

cloud types. (Heinle et al., 2010) and (Rajini and Tamilpavai, 2018) have used a k-nearest neighbour (KNN) classifier to 

determine cloud type using statistical features. (Kazantzidis et al., 2012) proposed an improved KNN classifier for cloud-type 

determination where solar zenith angle and visible solar disk were considered. To improve the speed of classification, (Rajini 

and Tamilpavai, 2018) have used neighbourhood component analysis to optimize the feature selection. (Li et al., 2015) have 50 

established a cloud identification model based on the Otsu technique (Otsu, 1979) with the aim of increasing the accuracy of 

short-term solar power production. (Satilmis et al., 2020) have developed a hierarchical histogram merging method to classify 

cloud types in high dynamic range (HDR) images. While most authors have predominantly used RGB colour space or some 

derivative feature of RGB values, (Jayadevan et al., 2015) have suggested the use of hue-saturation-value colour space to 

increase the contrast between clouds and background sky. The use of machine learning for cloud classification has gained 55 

significant traction in recent years. (Taravat et al., 2015) and (Li et al., 2016) showcase the use of multi-layer perceptron neural 

networks as well as support vector machines in cloud detection. Artificial neural networks (ANN) have also been implemented 

to distinguish clouds from clear sky (Xia et al., 2015) using a hybrid KNN and ANN method. (Kliangsuwan and Heednacram, 

2018) introduced using Fourier-transformed features for classification using ANN. (Wan et al., 2020) combined several 

texture, colour and spectrum features to classify clouds as cirrus, cumulus, and stratus clouds. While many existing methods 60 

excel at classifying different cloud types, their accuracy tends to hover around 80-85% when it comes to precisely identifying 
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individual cloud pixels. A U-Net based convolutional neural network model developed by (Fa et al., 2019), (Fabel et al., 2022) 

and (Xie et al., 2020) have shown promising results of having nearly the same cloud fraction output as obtained by manual 

observations. An improvement in the encoder-decoder model has been developed by (Ye et al., 2022) where the decoding 

stage is branched into binary segmentation for cloud detection and attribute discrimination and feature learning. However, 65 

these CNN techniques require high-power graphical processing units to process. 

This paper's primary focus is on presenting a high accuracy cloud fraction retrieval approach that leverages the power of 

random forest for pixel-level cloud classification in sky images. The predicted cloud fractions are compared with semantically 

annotated sky images from five different locations with varying atmospheric and sky conditions to validate their accuracy and 

reliability. Moreover, a baseline comparison has been done between the output of the total sky imager used at the three ARM 70 

sites and our model’s output. A yearly comparison of trends in observed cloud fraction has also been conducted to demonstrate 

the stability of the classifier’s output under different climatic conditions.  To support these objectives, the remainder of the 

paper is structured as follows. Section 2 describes the data used in this study, including observing sites, datasets, preprocessing 

steps, and the creation of ground truth masks. Section 3 details the model selection process. Section 4 covers model training 

and evaluation, with Section 4.1 focusing on model validation and Section 4.2 discussing the application of the Random Forest 75 

classifier over the Merak site. Finally, Section 5 presents the conclusions drawn from this study. 

2 Data 

2.1. Observing sites and datasets 

The sky image data used in the current work are taken from three different ARM sites (Flynn & Morris, tsi sky imager (a1)). 

These are publicly available data with the following sites: the Black Forest, Germany (FKB; 48.54° N, 8.40° E, 511 masl); 80 

Southern Great Plains, Central Facility, Lamont, Canada (SGP; 36.61° N, 97.49° W, 315 masl); and Tropical Western Pacific, 

Central Facility, Darwin, Australia (TWP; 12.42° S, 130.89° E, 30 masl). We also took sky image data from National 

Atmospheric Research Laboratory (NARL; 13.48° N, 79.18° E, 375 masl) Gadanki, India. All four sites utilize the same type 

of instrument - a Total Sky Imager (TSI) - for capturing sky images. The TSI, used at all four locations, features a dome-

shaped, spherical mirror with a 180° field-of-view of the sky. A downward-facing CCD camera is placed above the dome 85 

mirror to take images. To prevent image saturation from direct sunlight, a rotating shadow band is used to track and block the 

sun continuously. This multi-site data collection enables the evaluation of the model’s robustness across various locations and 

their corresponding atmospheric conditions. 

Additionally, multi-year sky image data is taken from an all-sky camera (Ms. Prede, Japan) recorded for every 5 minutes 

interval from the National Large Solar Telescope site, Merak (33.800 N; 78.620 E; 4310 m, asl), Ladakh, India. Such cloud 90 

data in the high-altitude mountain sites in the Ladakh region is used for the astronomical site characterization program of the 

Indian Institute of Astrophysics, Bengaluru, India. There are several unique features of the observing site, such as low aerosol 
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content (~0.05 at 500 nm, (Ningombam et al., 2015)), with 61-68% of clear skies in a year (Ningombam et al., 2021), dry and 

cold atmospheric conditions, located in the rain shadow area of the Himalaya. A comprehensive statistical analysis is conducted 

on the model’s output for this site to show the effectiveness of capturing some of the intricate atmospheric conditions of this 95 

location. 

2.2. Preprocessing 

All sky images are organized using a timestamp-based naming convention to maintain chronological order. Any image 

captured before 6:00 AM and after 6:00 PM (local time) were removed because of bad lighting conditions. Additionally, 

images captured during rain were manually removed because of the undue distortions caused by the raindrops on the lens. 100 

Since images from different locations had varying image size, all the images were cropped and resized to 280 x 280 pixels to 

remove dead zones in the image. The images had lens glares and occasional occlusions from nearby structures and instruments. 

To mitigate these issues, a circular mask of radius 130 pixels is applied to all images, effectively removing potential 

interferences that could disrupt the training process. An example of one such pre-processed image is shown in Fig. S1 of the 

Supplementary document.  105 

2.3. Selection 

A large part of the uncertainty in this kind of supervised training is determining the optimal level of variability within the 

dataset to ensure the model learns effectively. A well-curated selection must be made, encompassing various scenarios, 

including clear skies, different cloud cover percentages and atmospheric/sky conditions for the ML model to understand the 

diverse data and increase its robustness. A systematic approach was followed to curate the image dataset for training our 110 

machine learning model. Initially, a thorough visual inspection of the entire image pool was performed. The goal was to ensure 

a balanced representation of cloud cover percentages in our dataset. Around 300 images from each site were carefully selected, 

ranging from no clouds to 100% cloud coverage (based on visual estimation). This approach allowed us to create a diverse and 

well-structured training dataset of different CF and different cloud types required for training. This would be essential in 

developing an effective machine-learning model for cloud cover classification. A set of 100 images, which also contains 115 

various cloud percentages between 0 to 100% and cloud types, was kept aside for validation of the model’s training.  

2.4. Ground truth masks 

About 2000 sky images, selected from all five locations, are meticulously annotated using the MATLAB image labeller app 

(The MathWorks Inc., 2022). This tool offers advanced capabilities for image annotation, allowing for annotations in the form 

of lines, rectangles, polygons, or pixel-level detail, with the added benefit of colour coding for a well-organized graphic user 120 

interface. 
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For images with complex cloud shapes, pixel-level annotation is the optimal selection. These annotations involve assigning 

numerical labels to different elements in the images, where 0 represents the sky, 1 represents the sun, 2 represents the clouds, 

and 3 represents occlusions. Given the diverse and complex nature of clouds, along with variations in experts' perspectives on 

cloud pixels within an image, the annotation process involves three different domain experts. An overlap of their annotations 125 

is taken to produce the final annotated image. 

These annotated images are saved as separate pixel matrix files, retaining the same name as the original image file. This is a 

crucial step to ensure that the correct annotations are cross-referenced during the model's training and testing phases. 

3 Model Selection 

RF is a machine-learning technique to solve classification problems (Breiman, 2001). It is an ensemble method that combines 130 

the predictions of multiple decision trees to produce a more accurate and stable prediction.  Here at every instance, a node is 

partitioned based on one optimal feature among several selected features. Hence, for each decision tree, there is maximum 

independence leading to generalized performance and a decreased chance of over-fitting (Dietterich, 2000). The final 

prediction is a result of the majority vote calculated using the probability of each kth class: 

𝑃𝑘 =
𝑤𝑘𝑁𝑘

∑ 𝑤𝑗𝑁𝑗
𝑚
𝑗=1

                                                                                                                                                   (1) 135 

Where 𝑚 is the total number of classes, 𝑁𝑗 , 𝑁𝑘 are the number of trees predicting the jth and kth class and 𝑤𝑗 , 𝑤𝑘 are the weights 

of the jth and kth class. For tuning the RF classifier, two of the most important parameters that need to be effectively chosen are 

number of decision trees (𝑁𝑡𝑟𝑒𝑒) and number of selected feature variables (𝑀𝑓𝑒𝑎𝑡). Higher  𝑀𝑓𝑒𝑎𝑡 implies an increased 

correlation between two decision trees resulting in poor categorization. Similarly, larger 𝑁𝑡𝑟𝑒𝑒 can provide increased accuracy 

at the cost of higher computational resources. It has been found that higher 𝑁𝑡𝑟𝑒𝑒 can lead to over-fitting in some cases (Scornet 140 

Erwan, 2017). (Fu et al., 2019) and (Ghasemian and Akhoondzadeh, 2018) have suggested choosing the two parameters such 

that they are large enough to capture the patterns and have a wide diversification, but small enough for the model to run at 

reduced computational power and prevent overfitting.  

A key limitation of Random Forests is that, due to their ensemble nature, it is difficult to trace individual pixel-level 

classifications back to specific features or decision paths. Even then, (Mu et al., 2017) explain that RF has lower time and 145 

computation costs when the data size is larger than most machine learning algorithms. (Wang et al., 2020) have used RF for 

cloud masking and study of cloud thermodynamics using satellite data which have shown good resemblance with the lidar 

observations. (Sedlar et al., 2021) have classified cloud types based on surface radiation measurements using RF. (Li et al., 

2022) have used RF to classify cloud types from images taken by an all-sky imager for astronomical observatory site selections. 
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While these findings demonstrate the prowess of RF in cloud type classification, they also serve as motivation to utilize the 150 

RF algorithm in this paper to predict cloud fraction from sky images by classifying cloud and non-cloud pixels.  

The process of selecting features from the images under examination is a pivotal step in image processing and in-depth 

understanding of the scenes observed through the sky imager.  These features can be spectral, textural or a combination of 

both. 

The selection done in the paper includes the fundamental red (R), green (G), and blue (B) colour channels, which provide 155 

insights into colour composition and distribution within the images. Additionally, the Hue, Value, and Saturation (HVS) model 

is considered, offering information about the dominant colour tone, brightness, and colour vividness, thus contributing to the 

interpretation of visual perception. To delve into spectral properties, the ratio of red (R) to blue (B) channels and its logarithmic 

counterpart are used, revealing variations that are indicative of cloud presence and atmospheric conditions. Notably, the RAS 

(Removal of Atmospheric Scattering) feature, as introduced by (Yang et al., 2017), emerges as a key component in this 160 

segmentation task. This composite parameter mitigates the influence of atmospheric scattering on image data by merging the 

panchromatic, bright, and dark channels. It minimizes the inhomogeneous sky background throughout the image and thereby 

enhances the distinction between cloud and sky regions. Each of these features brings a unique perspective to image analysis, 

encompassing a diverse array of image characteristics, that play distinct and indispensable roles in the decision tree.  

To evaluate the computational performance of the proposed model, the RF classifier’s inference benchmarks were run on a 165 

desktop machine with an Intel Core i7-11700 CPU (8 cores, 16 threads), 16 GB RAM, and no GPU acceleration, running 

Windows 11 (64-bit). Inference was performed on 280×280-pixel images (~78,400 pixels) with an average runtime of 0.113 

seconds per image, a peak memory usage of 41 MB, and an effective processing speed of approximately 800,000 pixels per 

second. These results reflect the classifier's suitability for real-time, low-power applications without the need for specialized 

hardware. An overview of the proposed RF based cloud detection pipeline is shown in Fig.1.  170 
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Figure 1: Workflow of the Random Forest-based cloud detection framework. Input images are pre-processed and annotated to 

create a master dataset, which is split into training, validation, and test sets. The Random Forest model is trained with 

hyperparameter tuning and evaluated on validation data. The trained model generates predicted cloud masks, from which cloud 

fraction is computed and compared against ground truth for output validation. 175 

 4 Model Training and Evaluation 

For each of the locations using TSI, a set of 300 images were selected of that particular location to train a random forest 

classifier. While the set of images are a representation of different cloud fractions, they also encompass various cloud types, 

weather conditions, and lighting scenarios of each location. The classifier was configured with 100 trees and a fixed random 

seed to ensure the reproducibility of results. A train-test split of 80:20 was applied on the dataset and after training, the model 180 

is used to classify cloud and non-cloud pixels of each sky image in the test set.   

Each model, trained specifically using images of that location, was used to predict the cloud pixels from the test images 

corresponding to that location. We computed various performance metrics, including accuracy, F1-score, precision, recall, 

ROC-AUC score and Intersection over Union (IoU) score to assess the classifier's effectiveness in distinguishing between 

cloud and non-cloud regions which is tabulated in Table 1. The confusion matrix for each location is provided in Fig.S2 of 185 

supplementary along with the description of each performance metric. 
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Table.1 shows the performance metrics for each dataset location 

Location Accuracy Precision Recall F1 Score ROC-AUC Score IoU Score 

Black Forest, Germany 0.93 0.88 0.88 0.88 0.88 0.79 

Lamont, Canada 0.89 0.84 0.90 0.87 0.85 0.76 

Darwin, Australia 0.91 0.88 0.93 0.90 0.87 0.80 

Gadanki, India 0.94 0.85 0.92 0.88 0.90 0.79 

While the accuracy score for all locations has been greater than 88%, the F1 score is also hovering around the same figure, 

suggesting that the model has been trained on a well-balanced dataset with different classes. The RF model is neither overly 

conservative nor too lenient in predicting cloud pixels as suggested by the precision and recall values lying between 0.84 to 190 

0.88 and 0.88 to 0.93 respectively. The ROC-AUC score is also high across all locations, indicating that the model has good 

discriminatory ability between different classes (e.g., cloud vs. no cloud). The IoU scores are all above 0.75, indicating a 

significant overlap between the predicted cloud regions and the ground truth. Overall, the model shows strong predictive ability 

across different geographical locations. 

The model's primary objective is to determine the cloud fraction, representing the proportion of the area covered by clouds 195 

relative to the total area. This effectively is a ratio between the number of pixels that are clouds to the total number of visible 

sky pixels. Thus, the location specific trained model was applied on the corresponding validation set and the predicted cloud 

and non-cloud pixels were used to measure cloud fraction (CF). The measured CF were compared against the ground truth 

annotated CF values for the validation set images of each location, providing a direct measure of the model's CF prediction 

accuracy. A scatter plot of the predicted CF vs the ground truth for each location is shown in Fig. 2. 200 

4.1 Model Validation 

Initially, a same-location RF classifier was trained using 300 images from individual sites using the TSI and validated on 

images from the same site. Subsequently, a unified training set of 300 images was created by combining some of the images 

from the training sets of all four sites that utilize the TSI. A new, multi-location trained RF model was developed using this 

merged training set, and its performance was evaluated on the validation set from each site. Additionally, the cloud fraction 205 

data provided by TSI of the ARM sites and Gadanki were used for comparison with the RF classifier outputs and the ground 

truth. The results of the comparative analysis from these experiments are shown in Fig. 2.  
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Figure 2: Comparison of cloud fraction output against ground truth, of single-location RF model (in blue dots), multi-location RF 210 
model (in green squares) and TSI output (in black plus symbol) of ARM sites located at Black Forest Germany, Lamont Canada, 

and Darwin Australia and Gadanki, India where a TSI has been used to get sky images.  

It can be inferred from the graphs that the same-location trained RF classifier has generally outperformed the multi-location 

trained RF classifier, which is expected. However, the difference in performance is not substantial, suggesting a location 
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agnostic behaviour of the classifier model. Furthermore, the RF classifier shows better accuracy compared to the TSI output, 215 

as indicated by the higher fit value (R2) of the RF classifier model in all four cases.   This is further illustrated in Fig. 3, which 

compares the outputs of our RF classifier and the TSI for three randomly selected sky images taken by the TSI at Gadanki, 

India. In these cases, the TSI struggled to detect all clouds, missing several significant cloud formations accurately. In contrast, 

our RF classifier performed notably better, closely aligning with the annotated clouds. 

 220 

Figure 3: Comparison of the detected clouds by the RF Classifier and by the TSI (at Gadanki, India) with the annotated clouds. The 

first column shows the actual images captured by TSI on 3rd July 2010 at 10:15 AM, 10:25 AM and 11:00 AM IST. The second 

column is the corresponding annotated image, with the white colour representing clouds and everything else in black. The third 

column is the RF classifier’s image output of the detected cloud pixels, with white colour representing clouds and everything else in 

black. The fourth column shows the cloud pixels detected by TSI software, with white colour as thin clouds, grey colour as thick 225 
clouds, blue as sky, sun’s position as yellow and everything else in black. The TSI is underestimating the cloud pixels in all three 

cases while the RF classifier is capturing them effectively. 
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Another intriguing observation that is highlighted in Fig. 2 is the variability of TSI’s output over various regions. The TSI 

outputs exhibit higher accuracy at locations characterized by lower pollution levels, such as Black Forest, Germany, and 

Lamont, Canada, compared to areas with elevated pollution loading, such as Gadanki, India, and Darwin, Australia. This 230 

observation suggests that the TSI may yield more reliable results in cleaner environments due to reduced atmospheric 

interference and greater clarity of sky images. However, locations with higher pollution levels may introduce complexities and 

uncertainties in TSI outputs, potentially compromising their accuracy. 

In contrast, the RF classifier model is relatively unaffected by location-specific pollution loading effects. Regardless of the 

environmental conditions or pollution levels, the RF classifier maintains its accuracy in estimating cloud fractions from sky 235 

images. This robustness highlights the adaptability and generalizability of the RF classifier model across different geographical 

locations with similar imaging equipment. 

The RF classifier is also able to capture the regional trends of cloud fraction across all four locations as evident in Fig. 4. It 

shows the median CF data as heatmaps with each row corresponding to one of the four locations and each column 

corresponding to median CF obtained from TSI data, median CF predicted by our RF classifier and the percentage difference 240 

between them respectively. The horizontal axis of the heatmap represents the months of the year (January to December) in 

numbers, and the vertical axis represents the hours of the day from 6 AM to 6 PM local time for each region. The heatmap 

colour gradient indicates the CF values, with darker shades representing higher cloud fractions. While the general patterns 

match, subtle regional differences become apparent in the percentage difference heatmaps. In the case of Australia, the TSI 

overestimates cloud cover in the first half of the year and underestimates it in the latter half. This is seen in the positive 245 

percentage differences (warmer colours) in the early months and negative differences (cooler colours) later in the year. 

Germany and Canada datasets show relatively stable agreement between TSI and RF, with only slight overprediction by TSI. 

This consistency suggests that the RF model is successfully capturing the general climate and cloud trends for these regions, 

with TSI performing reasonably well, though slightly skewed toward overprediction. In India, the RF and TSI heatmaps show 

a stark contrast. The RF classifier predicts higher cloud fractions throughout the year compared to the TSI data. 250 

The percentage difference heatmap for India shows predominantly negative values (cooler colours), indicating that TSI 

persistently underpredicts the cloud fraction in this region across all months and hours. This consistent underestimation 

suggests that TSI data struggles to capture Gadanki's cloud dynamics properly throughout the year. In turn, the RF classifier, 

having been trained on local data, is better adapted to handling the unique cloud patterns seen here.  
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 255 

Figure 4: Median Cloud Fraction (CF) heatmaps for four regions—Australia, Germany, Canada, and India—comparing CF 

estimates from TSI data, RF classifier output, and their percentage difference. The horizontal axis denotes the months (January to 

December), and the vertical axis indicates the local time of day (06:00–18:00). Distinct regional patterns emerge: TSI tends to 

overestimate CF in Australia (January–June) and in Germany and Canada, while underestimating CF in India. 
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4.2 Application of RF Classifier Model over Merak 260 

A crucial obstacle that has been encountered pertains to the compatibility of the RF model across different imaging equipment. 

This can be attributed to the inherent variations among sensors used in CMOS cameras and CCD cameras. This leads to 

discrepancies in the image characteristics such as colour, rendition, contrast, and resolution. Consequently, attempting to 

generalize the RF model to images from disparate sources becomes impractical due to the divergence in sensor specifications 

and calibration methodologies. That is why the RF classifier developed using the TSI image data cannot be used for Merak, 265 

which uses a CMOS-sensor based all-sky imager.  

Thus, the images of Merak underwent a similar process of data selection, training, testing, and validation to create a different 

model, specific to this location. After getting a good accuracy score of 95% for the test dataset, the model's effectiveness was 

verified by employing it to predict the cloud fraction for the validation set images. The scatter plot of the predicted cloud 

fraction vs the ground truth in Fig. 5(a) shows a good fit of about 0.98 with a root mean squared error as low as 0.05. This 270 

substantiates the high accuracy score of 95% and serves as verification of the model’s effectiveness at a different location with 

a different imaging instrument. A few accurately predicted outputs of the RF classifier have been shown in Fig. S3 of the 

supplementary document. 

Despite a good fit between the ground truth and the predicted output, as evident from Figs. 2 and 5(a), there are a few points 

in the plot that have significant disparities. A few of these disparities are illustrated in Fig. 5(b). A significant source of error 275 

affecting the predicted output can be attributed to sun glare and cirrus clouds. Although naturally occurring and often 

unavoidable, these elements introduce complexities and uncertainties that can pose challenges for accurate image analysis and 

interpretation. Sun glare often leads to overexposed or saturated pixels, making it challenging to extract meaningful 

information about the sky's properties. As a result, an inaccuracy is introduced in cloud detection. 

Cirrus clouds, on the other hand, add a layer of complexity due to their intricate filamentous structure and high altitude. These 280 

clouds, composed of ice crystals, present unique challenges for accurate classification and quantification. Their thin and 

translucent nature can make them challenging to distinguish from the background, especially when they partially obscure other 

cloud types or the sun. Consequently, annotation errors arise in interpreting cirrus clouds and achieving precise semantic 

annotations becomes a labour-intensive task. Therefore, the presence of cirrus clouds can lead to both false positives and false 

negatives in cloud detection, impacting the overall quality of cloud fraction estimates. Nonetheless, it's worth noting that in 285 

the validation set of 500 images of Merak India, 1.6% of the images had cirrus clouds, with a mean CF error of 0.14 ± 0.04. 

Similarly, about 4.2% of the validation set had sun glare with mean CF error of 0.12 ± 0.02 as evident from Fig.5(c). These 

errors collectively account for a very low percentage of the overall dataset, making them relatively insignificant in the broader 

context. 
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 290 

Figure 5: (a) Validation of RF classifier output for images taken at Merak, India (b) Representative failure cases: top row shows 

overprediction due to sun glare (highlighted by red circle in (a)), and the bottom row shows underprediction caused by cirrus clouds 

(highlighted by blue square in (a)). Red and blue pixels in the difference column, indicate misclassified pixels. (c) violin plot that 

compares CF errors for cirrus and sun glare cases 
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5 Conclusion 295 

CF is an essential climate variable required by the scientific community for studying climate change. It has numerous practical 

applications, including studying the Earth's radiation budget, predicting future climate patterns, monitoring agricultural 

activities, forecasting solar energy, and assessing resources. Additionally, cloud cover data is used as input in models for 

studying pollution and climate. While traditional cloud segmentation techniques often rely on empirically determined threshold 

values, their accuracy falters under complex atmospheric and cloud conditions. This study explores the efficiency of the 300 

Random Forest (RF) classifier in pixel-wise cloud segmentation, using a well-curated dataset of semantically annotated images 

from five different locations. Training data with diverse sky conditions and atmospheric loading, collected over a year for each 

location, was meticulously selected. Subsets of these training images were used for rigorous model evaluation across multiple 

metrics.  

The RF classifier demonstrates strong predictive ability across all locations, with accuracy and F1 scores consistently above 305 

88%, indicating a well-balanced dataset. High ROC-AUC scores of more than 0.85 and IoU scores of more than 0.79 further 

confirm the model's robust discriminatory ability between cloud and non-cloud classes. Additionally, the RF classifier showed 

strong accuracy and fit metrics, particularly in locations with high pollution levels, such as India and Australia. The model’s 

ability to generalize across diverse geographic sites highlights its location-agnostic nature, maintaining high performance even 

when trained on mixed datasets from multiple regions. Furthermore, the RF classifier demonstrated superior capability in 310 

capturing long-term weather and cloud patterns, making it a valuable tool for estimating cloud cover and broader climate 

studies.  

However, the model did encounter challenges in handling sun glares caused by incomplete shadow band coverage and 

distinguishing cirrus clouds, primarily due to annotation limitations. These shortcomings, while noteworthy, represent a minor 

fraction of the overall dataset (roughly 6%), and their impact on CF estimates remain minimal. Overall, the RF classifier proves 315 

to be a highly effective and adaptable tool for cloud segmentation, with significant potential for improving cloud cover analysis, 

especially in regions with complex atmospheric conditions.   
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