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Abstract.  15 

This study analyzes the directional properties of geological faults using triangulations to model displaced horizons. We 

investigate two scenarios: one without elevation uncertainties and one with such uncertainties. Through formal mathematical 

proofs and computational experiments, we explore how triangular surface data can reveal geometric characteristics of faults. 

Our formal analysis introduces four propositions of increasing generality, demonstrating that in the absence of elevation errors, 

duplicate elevation values lead to identical dip directions. For the scenario with elevation uncertainties, we find that the 20 

expected dip direction remains consistent with the error-free case. These findings are further supported by computational 

experiments using a combinatorial algorithm that generates all possible three-element subsets from a given set of points. The 

results offer insights into predicting fault geometry in data-sparse environments and provide a framework for analyzing 

directional data in topographic grids with imprecise elevation data. This work has significant implications for improving fault 

modeling in geological studies, particularly when dealing with limited or uncertain data. 25 
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1 Introduction 30 

Faults influence numerous practical aspects of subsurface geology, including groundwater flow (Bense et al., 2013), 

hydrocarbon entrapments (Aydin, 2000), and localized mineralization (Person et al., 2008). In areas with sparse geological 

data, such as subsurface regions between boreholes, inferring the geometric properties of faults presents significant challenges 

(Lark et al., 2013; Godefroy et al., 2019). Sparse environments often contain large epistemic uncertainty—uncertainty arising 

from a lack of knowledge—which can complicate the interpretation of geological structures (Bowden, 2004). While collecting 35 

more data can reduce uncertainty  (Bond, 2015; Dowd, 2018), practical constraints often make this infeasible. 

 

Recent studies have attempted to reduce epistemic uncertainty in structural geology using triangulations and combinatorial 

algorithms to analyze fault geometry (Michalak et al., 2021). For example, Michalak et al. demonstrated that triangles sampled 

from the walls (see terminology in Fig. 1) of a fault can exhibit counterintuitive behaviors, such as reversed dip directions 40 

(towards the upper wall – see Fig. 4b) and identical dip directions from different triangles. This raises intriguing questions 

about the geometric behavior of triangulated models under sparse data conditions. 

 

This paper builds on this work by providing formal mathematical evidence that a combinatorial algorithm can reduce epistemic 

uncertainty in sparse environments. We propose a robust framework for predicting fault geometry in data-limited scenarios. 45 

To support this, we present formal analyses of two scenarios: one with perfect elevation data (Proposition 1, Proposition 2) 

and one accounting for elevation uncertainties (Proposition 3, Proposition 4), and explore the statistical implications of our 

findings using directional data. Following the formal analysis, we demonstrate the consequences of these theoretical results in 

the analysis of 2D and 3D (Fig. 2) directional data derived from topographic grids, which typically consist of points with 

approximate elevations—commonly observed in bathymetric data sets (Gridded Bathymetry Data, 2024). 50 

2 Background 

Uncertainty in geological modeling is a widespread issue affecting various aspects of subsurface analysis. These 

uncertainties stem from incomplete data, particularly in sparse environments with limited borehole data or surface 

observations. A key challenge in such cases is accurately relating parts of the study area to lithological units or other geological 

structures (Wellmann and Regenauer-Lieb, 2012). For example, uncertainty can arise from errors in borehole paths (Pakyuz-55 

Charrier et al., 2018) or in the resulting geological models themselves  (Pakyuz-Charrier et al., 2019; Liang et al., 2021). To 

manage these uncertainties, several methods have been developed, including uncertainty propagation techniques, such as the 

https://doi.org/10.5194/egusphere-2024-3327
Preprint. Discussion started: 8 January 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

Markov Chain Monte Carlo (MCMC) method, which estimates uncertainty by feeding model generators with probabilistic 

input data (De La Varga and Wellmann, 2016; Pakyuz-Charrier et al., 2019). 

In sparse geological settings, combinatorial algorithms have emerged as a valuable tool for interpreting fault-related 60 

data. One notable example is Godefroy et al. (Godefroy et al., 2019), who developed a method to partition sparse fault evidence 

into fault clusters using combinatorial techniques. The authors demonstrated that this approach could handle sparse data, but 

the computational cost increases rapidly as data size grows, governed by Stirling numbers (Allenby and Slomson, 2010).  

Orientation measurements, such as dip and dip direction, are critical in subsurface geological modeling and are 

traditionally collected through fieldwork or outcrop analogs (La Fontaine et al., 2021). These measurements serve as input for 65 

co-kriging methods, which combine point data with orientation information to model subsurface structures  (de la Varga et al., 

2018). More recently, triangulated data has been widely used in geological modeling to represent 3D surfaces (Merland et al., 

2014; Collon et al., 2015; Aydin and Caers, 2017). Triangulations, created by connecting points sampled from geological 

surfaces, allow for the analysis of orientation data by calculating the normal vectors of triangles. This approach is valuable in 

detecting geological features like faults by clustering these vectors (Michalak et al., 2022). 70 

Despite its utility, triangulation-based analysis faces limitations, particularly when dealing with sparse data 

environments where the number of triangles available for analysis is reduced. The use of combinatorial algorithms offers a 

promising alternative by generating all possible triangle configurations from a given data set (Michalak et al., 2021). 

 

3 Methodology  75 

3.1 Lipski algorithm 

We applied the combinatorial Lipski algorithm to reduce epistemic uncertainty in determining fault orientations. This 

algorithm generates all possible three-element subsets (triangles) from a given set of boreholes (Lipski, 2004). This approach 

systematically creates every possible triangle configuration, enabling a comprehensive geometric analysis. We generated all 

𝑘-element subsets (𝑘=3) from an 𝑛-element set (where 𝑛 is the total number of borehole locations) to estimate the fault 80 
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orientation. The algorithm's efficiency allowed us to handle large datasets while ensuring that all potential fault-related 

triangles were analyzed. The full description of the Lipski algorithm can be found in Appendix A. 

3.2 Singular geometric effects 

Building on the results from Michalak et al. (Michalak et al., 2021), we extended the analysis of fault-related triangles to 

account for the observed phenomenon where approximately 8% of triangles exhibited reversed dip directions (Fig. 4b). We 85 

hypothesize that this behavior is controlled by two main factors: the orientation of the edge lying on the horizontal part of the 

fault (hanging or footwall) and the position of the third point relative to this edge (Proposition 1, Fig. 3a). Using formal proofs 

(see Appendix B), we validated this hypothesis and demonstrated that the dip direction depends on whether the third point lies 

to the left or right of the fault's edge. 

 90 

Figure 1 Presentation of the terminology used in the study: (I) the surface of the horizontal footwall, (II) the fault plane, (III) the surface of 

the horizontal hanging wall, (IV) a horizontal triangle that is genetically unrelated to the fault, (V) a triangle which is genetically related to 

the fault (a fault-related triangle), (VI) a vertex of the triangle (a point corresponding to a geological interface identified by a borehole). 

3.3 Statistical analysis 

Treating the normal vectors as 3D directional data makes it possible to calculate the mean of a group of these 3D vectors. It  95 

can be achieved by averaging the Cartesian coordinates of the normal vectors. Then, the resultant vector can be converted to 

dip direction and dip angle pairs (Allmendinger et al., 2011 - Chapter 2.4). We note that in this approach the directional 

components (𝑋 and 𝑌 coordinates) are not guaranteed to result in a vector of unit length. Therefore, every vector can contribute 
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differently to the resultant vector (Fig. 2). For example, 3D vectors corresponding to sub-horizontal triangles, have smaller 

values than more inclined triangles at directional components. Therefore, the contribution of sub-horizontal triangles to the 100 

resultant vector will be relatively small compared to more inclined triangles (Fig. 2). 

A different approach would be to conduct a statistical analysis of 2D unit vectors 𝑑1, … 𝑑𝑛  corresponding to the initially 

collected 3D unit normal vectors of triangles 𝑡1, … , 𝑡𝑛, where 𝑛 denotes the number of observations. The mean direction 𝜃 of 

2D unit vectors 𝑑1, … 𝑑𝑛 and their corresponding angles 𝜃1, … 𝜃𝑛 is defined as the direction of the resultant vector 𝑑1 +⋯+𝑑𝑛 

(Mardia and Jupp, 2008). First, the Cartesian coordinates of the centre of the mass (Mardia and Jupp, 2008) are calculated as 105 

follows:  

𝐶 =
1

𝑛
∑ 𝑐𝑜𝑠𝜃𝑗
𝑛
𝑗=1 , 𝑆 =

1

𝑛
∑ 𝑠𝑖𝑛𝜃𝑗
𝑛
𝑗=1 . We note that in our case the 𝑋 and 𝑌 axes are aligned with the North and East directions, 

respectively. Therefore, the 𝐶 and 𝑆 values correspond to North and East directions, respectively (a different convention is 

adopted in the textbook (Mardia and Jupp, 2008) ). To calculate the mean direction 𝜃 , we use the following formula (modified 

from Fisher, 1993)  110 

𝜃 =

{
 
 

 
 𝑎𝑡𝑎𝑛 (

𝑆

𝐶
) , 𝑆 > 0, 𝐶 > 0

𝑎𝑡𝑎𝑛 (
𝑆

𝐶
) + 𝜋, 𝐶 < 0

𝑎𝑡𝑎𝑛 (
𝑆

𝐶
) + 2𝜋, 𝑆 < 0, 𝐶 > 0

  (Eq. 1) 

The resultant length is the length of the resultant vector sum 𝑑1 +⋯+𝑑𝑛 and the mean resultant length is defined as the length 

of the centre of the mass vector 𝑅 = √𝐶
2
+ 𝑆

2
. We calculated the median direction as well using the circular package (Lund 

et al., 2017) and it is any angle 𝜙 such that (Mardia and Jupp, 2008): 

i) half of the data points lie in the arc [𝜙, 𝜙 + 𝜋] 115 

ii) the majority of the data points are nearer to 𝜙 than to 𝜙 + 𝜋.  

The sample circular standard deviation is defined as √−2𝑙𝑜𝑔⁡(1 − 𝑉) = √−2𝑙𝑜𝑔𝑅, where 𝑉 = 1 − 𝑅 denotes the sample 

circular variance (Mardia and Jupp, 2008). Using 1 − 𝑐𝑜𝑠(𝜃 − 𝜉) as a measure of the distance between angles 𝜃 and 𝜉, it can 

be shown that 𝑉  can be used as a measure of dispersion around the mean dip direction and it is equal to 𝑉 = 𝐷(𝜃) =

1

𝑛
∑ {1 − 𝑐𝑜𝑠⁡(𝜃𝑖 − 𝜃)}
𝑛
𝑗=1 . We calculate also the sample circular dispersion (Fisher, 1993) defined as 𝛿 =

1−𝑚2

(2𝑅
2
)
, where 𝑚2 120 

denotes the second central trigonometric moment and it is equal to 𝑚2 =
1

𝑛
∑ 𝑐𝑜𝑠2⁡(𝜃𝑖 − 𝜃)
𝑛
𝑗=1 . We also use the circular 

standard error defined as the square root of the sample circular dispersion divided by the number of samples 𝜎
2
=

𝛿

𝑛
. Using the 

above quantities, non-parametric methods can be used to estimate 100(1 − 𝛼)% confidence intervals for 𝜃: 

(𝜃 − 𝑎𝑟𝑐𝑠𝑖𝑛⁡ (𝑧1
2
𝛼
𝜎), 𝜃 + 𝑎𝑟𝑐𝑠𝑖𝑛⁡ (𝑧1

2
𝛼
𝜎)) , where 𝑧1

2
𝛼

 is the upper 100 (
1

2
𝛼)% point of the 𝑁(0,1) distribution. 

https://doi.org/10.5194/egusphere-2024-3327
Preprint. Discussion started: 8 January 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

 125 
Figure 2 Illustration of the difference between calculating the mean direction using 𝑋 and 𝑌 components of the 3D and 2D unit vectors. In 

the first approach, the vectors impact the resulting dip directions differently. Triangles with greater dip angles have a more significant 

impact, and more horizontally oriented triangles have minor 𝑋 and 𝑌 components making their contribution less important. In the 2D 

analysis, all vectors are equally important because they all have unit length. 

4. Results 130 

4.1 A guide to theoretical results 

This section summarizes the main theoretical findings from the four key propositions, focusing on their implications for fault-

related triangles (the workflow of the theoretical part is presented in Fig. 3) 

Proposition 1 shows that the dip direction of fault-related triangles is controlled by the orientation of the fixed edge on the 

footwall and the position of the third point on the hanging wall. The dip direction can only be one of two values, differing by 135 

180°, and is perpendicular to the fixed edge. The third point's position (left or right of the edge) determines which direction is 

observed (Fig. 4). 

Proposition 2 extends this by proving that adding horizontal triangles from the footwall does not alter the mean dip direction 

of the fault-related triangles. Since the normal vectors of footwall triangles are [𝟎, 𝟎, 𝟏], they do not influence the dip direction. 

Proposition 3 considers a fixed edge on the footwall and a third point on the hanging wall. It investigates the effect of elevation 140 

errors and concludes that the expected dip direction remains unchanged, even when elevation uncertainties are introduced. 

This demonstrates that fault analysis remains robust despite moderate elevation inaccuracies. 
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Proposition 4 generalizes Proposition 2 for cases with elevation uncertainties. Adding triangles with uncertain elevations does 

not affect the mean dip direction because their 𝑋 and 𝑌 components average to zero. 

Together, these propositions show that fault-related triangles reliably indicate dip direction, even in the presence of elevation 145 

uncertainties. 

 

 

 

 150 

Figure 3 Workflow in the theoretical part of the study (a) this panel relates to Proposition 1. In this proposition, an edge 𝑒 is fixed on the 

surface of the footwall. Then, the dip directions of triangles depend on whether the third point sampled from the hanging wall lies either to 

the left or right of 𝑒. The points on the surfaces of the hanging wall and footwall have constant elevation; (b) this panel relates to Proposition 

2 and it shows a more general scenario than presented in the (a) panel. Here, for a fixed edge 𝑒, dip directions of triangles depend on whether 

the third point lies either to the left or right of 𝑒. We do not require from the points to lie on the hanging wall because the [𝟎, 𝟎, 𝟏] vectors 155 

from the footwall will not affect the average dip direction of triangles. (c) Here, we add uncertainty to the elevation of points (Proposition 

3). Then, for a fixed edge 𝑒, we investigate the average dip direction of triangles with the third point from the hanging wall. (d) the last 
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scenario is the most general scenario (Proposition 4), in which points have uncertain elevations and are no longer required to be sampled 

from the surface of the hanging wall. In other words, for a fixed edge 𝑒, the dip directions of triangles depend on whether the third point lies 

either to the left or to the right of 𝑒. We no longer require from points to lie only on the hanging wall. This is because the expected values of 160 

𝑋 and 𝑌 coordinates associated with triangles on the footwall are zero. 

4.2 Formal results 

In the following analysis, we assume that the considered triangles are non-vertical and non-horizontal. The reason is that 

horizontal triangles give no information about the dip direction, and in the case of vertical triangles, there is no possibility of 

deciding which of the two directions corresponds to the direction of the dip. 165 

Proposition 1 

Let 𝑇 be a set of non-vertical and non-horizontal triangles genetically related to the fault and 𝑒 ≔ {𝑝1 , 𝑝2} be the fixed edge 

lying on the footwall. When the difference between the hanging wall and the footwall is constant, then the following facts 

hold: 

A) There are only two possible dip directions for triangles in 𝑇: 𝑑1 and 𝑑2 which have a dip direction difference of 170 

180°  

B) The two different dip directions 𝑑1 and 𝑑2 are perpendicular to 𝑒.  

C) Moreover, the specific value of the direction 𝑑1 or 𝑑2 depends on whether the third point p3 located at the hanging 

wall lies to the left or right of the line containing 𝑒. 

Proof. See Appendix B and the corresponding illustration (Fig. 4). 175 
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Figure 4. Illustration of Proposition 1. There are three triangles that share the same edge on the footwall. Two of the triangles 

(yellow and orange) have the same dip direction (302). In other words, the projections of the yellow and orange vectors onto 

the horizontal plane are parallel. We note that 𝑙(𝑒) denotes the line containing 𝑒. Then, the remaining points forming the yellow 180 

and orange triangles lie to the left to 𝑙(𝑒). The third triangle (pink) has the opposite direction (122) and the third point lies to 

the right of 𝑙(𝑒). On the panel (c), we presented the three orientation measurements from panels (a) and (b) on the spherical 

projection. The spherical projection was performed using the Stereonet software (Allmendinger et al., 2011; Cardozo and 

Allmendinger, 2013) 

  185 
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Observation 1. For a fixed edge on the footwall and a vertical fault dipping to the West (azimuth 270), the probability that a 

triangle will dip precisely to the East (azimuth 90) is zero. 

 

Proof. For a triangle to dip exactly to the East, one should have an edge aligned with the N-S direction. However, the third 

point must be to the right of such an edge. However, the hanging wall is to the left of this edge, so no appropriate points can 190 

be sampled from the surface of the hanging wall or the footwall. 

 

Proposition 2. Extending Proposition 1, we demonstrate that adding horizontal triangles from the footwall does not alter the 

mean dip direction of fault-related triangles.  

 195 

Proof.  The set of triangles on the right side of the edge can be divided into those with the third point on the hanging wall  

(indices from 1 to 𝑘) and those on the footwall (vertices from 𝑘 + 1 to 𝑛). 

𝒗𝟏 = [𝒙𝟏, 𝒚𝟏, 𝒛𝟏]   (Eq. 2) 

𝒗𝟐 = [𝒙𝟐, 𝒚𝟐, 𝒛𝟐] 

            ⋮ 200 

𝒗𝒌 = [𝒙𝒌, 𝒚𝒌, 𝒛𝒌] 

𝒗𝒌+𝟏 = [𝒙𝒌+𝟏, 𝒚𝒌+𝟏, 𝒛𝒌+𝟏] = [𝟎, 𝟎, 𝟏] 

            ⋮ 

𝒗𝒏 = [𝒙𝒏, 𝒚𝒏, 𝒛𝒏] = [𝟎, 𝟎, 𝟏] 

But we know that all vectors from the footwall starting from 𝒗𝒌+𝟏 to 𝒗𝒏 have the form [𝟎, 𝟎, 𝟏] and they contribute nothing to 205 

the dip direction. 
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Next, we can try to adapt and rewrite the Proposition 1 (the third point on the surface of the hanging wall) for uncertain 

elevation data. It means that we add normally distributed errors (with an expected value equal to zero) to the elevations. Using 210 

this assumption, the Proposition 1 can be rewritten in the following way. 

 

Proposition 3. 

When introducing elevation uncertainties, we find that the expected dip direction remains consistent with the error-free case. 

The third point is required to be from the surface of the hanging wall. 215 

 

Proof. See Appendix C.  

 

Proposition 4.  

This proposition generalizes Proposition 3, showing that adding footwall triangles with uncertain elevations still does not affect 220 

the mean dip direction. The 𝑋 and 𝑌 components of the footwall triangles’ normal vectors average to zero, further confirming 

the robustness of the method under elevation uncertainties. 

Proof. As in the deterministic example (Proposition 2), the set of triangles on the right side of the edge can be divided into 

those with the third point on the hanging wall (indices from 1 to 𝑘) and those with the third point on the footwall (vertices 

from 𝑘 + 1 to 𝑛). To complete the proof, we need to show that the expected values of the 𝑋 and 𝑌 coordinates of the normal 225 

vectors representing triangles with third points lying on the surface of the footwall (from 𝑣𝑘+1 to 𝑣𝑛) are zero. We present the 

desired proofs in Appendix D. 

𝒗𝟏 = [𝒙𝟏, 𝒚𝟏, 𝒛𝟏]  (Eq. 3) 

𝒗𝟐 = [𝒙𝟐, 𝒚𝟐, 𝒛𝟐] 

⋮ 230 

𝒗𝒌 = [𝒙𝒌, 𝒚𝒌, 𝒛𝒌] 

𝒗𝒌+𝟏 = [𝒙𝒌+𝟏, 𝒚𝒌+𝟏, 𝒛𝒌+𝟏]  

            ⋮ 

𝒗𝒏 = [𝒙𝒏, 𝒚𝒏, 𝒛𝒏] 

This implies that the sums of the 𝑋 and 𝑌 coordinates from 𝒗𝒌+𝟏 to 𝒗𝒏 are zero: ∑ 𝑥𝑖
𝑛
𝑘+1 = ∑ 𝑦𝑖

𝑛
𝑘+1 = 0. Therefore, as in the 235 

deterministic case, adding these sums will not change the first two coordinates of the expected normal vector. Appendix D 

provides further discussion on when the mean vector from 𝒗𝒌+𝟏 to 𝒗𝒏 is parallel to [𝟎, 𝟎, 𝟏]. 

 

 

 240 
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4.3 Experimental results 

 

Our first case study involves irregularly scattered points, commonly observed in borehole data sets, with a fault dipping to the 

West (Fig. 5). To better understand the impact of preferred edge orientation and the imbalance between points on the hanging 

wall and footwall, we also examined regularly scattered data with a fault trending obliquely to the main grid axes (Fig. 6). In 245 

these case studies, the true (ground truth) orientations of the faults were 270 and 340.43 degrees, respectively, which can be 

compared against the calculated statistics (Table 1). 

 

Standard statistical methods, including the estimation of confidence intervals, demonstrated promising utility in inferring the 

true dip direction. For example, the minor deviations of 1-2 degrees between error-free and with-error scenarios suggest that 250 

the model is robust in the presence of elevation errors, reinforcing the conclusions from Proposition 4. These minor deviations 

indicate that the method provides reliable dip direction estimates even under uncertain elevation conditions. 

 

However, limitations remain. The confidence intervals did not contain the true dip direction, with a mismatch ranging from 2 

to 5 degrees. It is unclear whether this mismatch is due to the dataset limitations or the elevation errors’ specific characteristics. 255 

Although both the directional dispersion and circular standard error increased slightly in the case studies with uncertain 

elevations (Table 1), the increase was not significant, and the circular standard error remained low, resulting in very narrow 

confidence intervals. 
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 260 

Figure 5 A geological horizon displaced by a vertical fault; its normal vector points to the West (azimuth 270) (a) a case study with elevation 

data without errors; (b) a case study with points having elevation data with errors (mean=0, standard deviation=0.05), (c) a spherical 

projection corresponding to data presented on panel (a), n=122304, (d) a spherical projection corresponding to data (n=161700) presented 

on panel (b). The small cloud at the centre of the plot (pink polygon) corresponds to almost flat triangles lying entirely on the same side of 

the fault. The spherical projection was conducted using Dips software (Rocscience, 2017). We used pole vectors, upper hemisphere and 265 

equal angle projection. 
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Figure 6 Orientation measurements using a combinatorial algorithm for a regular grid of points and a vertical fault trending obliquely to the 

main axes of the grid. The vertical fault has a normal vector with azimuth 340.43. (a) input points without elevation errors, (b) input points 

with elevation errors (mean=0, standard deviation=0.05), (c) a spherical projection for the orientation measurements (n=109111) without 270 

elevation errors corresponding to panel (a), (d) a spherical projection for the orientation measurements (n=157252) with elevation errors 

corresponding to panel (b). The small cloud at the centre of the plot (pink polygon) corresponds to almost flat triangles lying entirely on the 

same side of the fault. The spherical projection was conducted using Dips software (Rocscience, 2017). We used pole vectors, upper 

hemisphere and equal angle projection. 
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 275 

Table 1 Statistical results for the case studies presented in Figs 5 and 6. 

 Without error 

(Fig. 5a,c) 

With error  

(Fig. 5b,d) 

Without error 

(Fig. 6a,c) 

With error 

(Fig. 6b,d) 

Number of 

observations 

122304 161698 109111 157175 

Mean direction 

(3D) 

276.35 275.02 343.16 343.39 

Mean direction 

(2D) 

275.91 273.28 343.84 345.08 

Median 

direction (2D) 

276.16 274.04 345.96 345.81 

Resultant 

length (2D) 

84808.32 77634.55 76177.25 78671.65 

Mean resultant 

length (2D) 

0.69 0.48 0.70 0.50 

Sample circular 

variance (2D) 

0.31 0.52 0.30 0.50 

Circular 

standard 

deviation (2D) 

0.86 1.21 0.85 1.18 

Sample circular 

dispersion (2D) 

0.93 1.98 0.92 1.82 

Circular 

standard error 

(2D) 

0.0028 0.0035 0.0029 0.00339 

95% 

confidence 

intervals (2D) 

[275.60-276.22] [272.89, 273.68] 

  

[343.51, 344.16] [344.70, 345.47] 
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5. Discussion 

 

5.1. New insights from geometric and data analysis 280 

In planar structures such as triangles, the strike is defined by the intersection of the triangle and a horizontal plane. Therefore, 

a triangle with a flat-lying edge can be interpreted as having a strike parallel to this edge. The determination of the dip direction 

for such triangles requires solving a computational geometry problem: determining whether the third point lies to the left or 

right of this flat-lying edge. 

Our study shows that flat-lying edges parallel to the fault strike are privileged due to the greater number of points lying on one 285 

side of the edge. As a result, these directions carry more weight in statistical calculations and are more likely to represent the 

true dip direction. Identifying these privileged dip directions is essential for accurate fault orientation predictions, as the 

concentration of observations around the true dip direction indicates a reliable methodology. 

At this stage, it may be beneficial to complement standard statistical approaches with qualitative observations based on the 

distribution of dip directions. For example, in Figs. 5c,d and 6c,d, the directions opposite to the true dip direction (90 and 290 

160.43 degrees) are sparsely represented, which may help constrain the interpretation by highlighting directions that are 

unlikely to represent the true dip. This pattern aligns with the formal results from Proposition 1, which indicate that for a fixed 

edge parallel to the fault strike on the upper wall (hanging wall), no dip directions will point precisely toward the upper wall 

(Observation 1). This observation provides additional confidence in the reliability of the predicted dip directions. 

 295 

5.2 Comparison with similar approaches 

In most studies related to geological model uncertainty, multiple faults are considered to estimate the uncertainty of the fault 

network or geometry (Cherpeau and Caumon, 2015; Lecour et al., 2001). The variability of faults is typically expressed through 

their parametrization, which often includes the strike and dip of the fault (Cherpeau et al., 2012; Aydin and Caers, 2017; 

Goodwin et al., 2022). In contrast, in this study, we set the orientation of the fault constant to provide ground truth data, 300 

enabling us to investigate the mathematical relationships between points and dip directions of triangles genetically related to 

the fault. 

By keeping the fault orientation constant, we could isolate the effects of data uncertainties and mathematically investigate the 

relationship between points and dip directions. This controlled environment provides a more precise assessment of how data 

uncertainties, specifically elevation errors, influence dip direction calculations without the added complexity of variable fault 305 

parameters. 

To investigate the impact of data uncertainties on the calculated fault orientation, we added errors to the elevation values (𝑍 

coordinate), following a normal probability distribution with a mean equal to the measured elevation. In our case, the 
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geographical coordinates (𝑋 and 𝑌) are assumed to be known. Introducing uncertainties in the geographical coordinates, where 

locations follow a normal probability distribution (Allmendinger et al., 2011), would present a significant challenge; when 310 

coordinates are uncertain, it becomes difficult to define whether a point lies to the left or right of a line, as the vertices of that 

line are also uncertain.  
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5.3 Importance of the results in modelling spatial data 

The results of this study can be applied in GIS-based directional and statistical analyses of topographic vector data, such as 315 

Triangulated Irregular Network (TIN) objects frequently used in GIS software (e.g., ESRI ArcGIS). In particular, our findings 

support explaining singular statistical effects in azimuthal analyses of regular topographic data. To support this claim, we note 

the following: 

1. TIN models are used in the analysis of bathymetric GEBCO (Gridded Bathymetry Data, 2024) data (Fig. 7a) (Włodarczyk-

Sielicka et al., 2022; Idzikowska et al., 2024)  320 

2. GEBCO data points are often stored in quasi-regular point grids. Although these points are regularly spaced in geographic 

coordinates, when projected into a Cartesian system, the individual points are no longer regularly aligned. This leads to the 

formation of quasi-parallel edges in the TIN model (Fig. 7b). This quasi-regular alignment of points often results in triangles 

with nearly parallel edges, creating preferred directions for dip calculations. 

3.  Limited precision of the elevation measurements can lead to the rounding of elevation values to integers. If points within 325 

a specified neighborhood are recorded as having only two distinct integer values, then it results in a constant elevation 

difference between two sets of points. This rounding can lead to flat edges (edges with two identical elevation values) or flat 

triangles (triangles with three identical elevation values), as marked in Fig. 7b.  

For the specific combination of models, spatial distribution of points, and limited precision described above, the conditions 

from Proposition 1 may apply, explaining the concentration of dip direction values in azimuthal histograms (Fig. 7c). Only 330 

eight narrow groups of azimuth values are present in the entire dataset due to the eight preferred triangle edge directions in the 

TIN. Two groups (130° and 313°) are significantly underrepresented, likely due to the lack of flat edges striking NE-SW. This 

feature is purely based on the data representation. Users must take this into account during analysis to avoid skewed 

interpretations of fault orientations.  
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 335 

Figure 7 Triangulated network of example bathymetric GEBCO data stored in a quasi-regular grid (a) a repeating valley-ridge pattern with 

a marked rectangle analyzed on the panel (b); it is located at a curved axis of a negative landform as testified by opposing dip directions near 

the axis;  (b) a zoom at the rectangle marked on the panel (a); here we can see that triangles with the same elevations of nodes yield a flat 

triangle; triangles with a flat lying edge but a third vertex with a different elevation than the other two points have dip direction perpendicular 

to the flat edge; the interiors of triangles are filled with the color corresponding to the value of azimuth from panel (a); (c) a histogram of 340 

circular data related to the TIN model. The histogram shows narrow azimuthal groups with approximately 4° spacing corresponding to the 

edges of a regular grid. The length and color of each segment represent the amount of triangles in the corresponding group. 
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6 Conclusion 345 

This study aimed to bridge computational geometry and structural geology to explore the behavior of triangles related to a 

horizon displaced by a vertical fault. We conducted analyses under both idealized (two elevations) and uncertain conditions 

(added elevation error). A key challenge was adapting concepts from computational geometry, such as determining whether a 

point lies to the left or right of a line, to a geological context. 

Key findings from the study include: 350 

• This study shows that for TIN-based modeling, determining the dip direction of a triangle with a flat-lying edge 

requires solving a computational geometry problem: determining whether the third point lies to the left or right of the 

edge. 

• The problem of assessing fault orientation can be approached as an optimization task, where the fault orientation is 

estimated by identifying the edge with the maximum number of points on one side, leading to the maximum number 355 

of triangles with the same dip direction. 

• Our formal analysis shows that introducing measurement errors does not affect the expected dip direction of samples, 

which remains identical to the error-free case. Moreover, the statistical results and orientation distributions remain 

robust across different fault and study area orientations, suggesting practical applications. 

• The importance of these findings is particularly relevant for directional analyses of imprecise topographic data, such 360 

as azimuth maps of bathymetric point datasets distributed in regular grids. The concentration of azimuths around the 

N-S, W-E, NE-SE, and NE-SW directions corresponds directly to the triangulation’s edges in the regular grid. 

 

 

 365 
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Appendices 

Appendix A. 370 

To generate all possible triangles from a given set of boreholes, we used an algorithm to generate all 𝑘-element (𝑘 = 3) subset 

from an 𝑛-element set 𝑋 (𝑘 < 𝑛) in a lexicographic order (Lipski, 2004). To explain how the algorithm works, we first note 

that every 𝑘-element subset can be uniquely represented by an increasing sequence of length 𝑘 of elements from 𝑋. For 

example, the subset {3, 5, 1} can be represented as a sequence (1, 3, 5). The first step in the algorithm involves writing the 

first 𝑘  digits from 𝑋 . For example, if 𝑘 = 4 , the first sequence would be (1, 2, 3, 4). Then, the sequence succeeding 375 

(𝑎1, … , 𝑎𝑘)⁡is  

(𝑏1, … , 𝑏𝑘) = (𝑎1, … , 𝑎𝑝−1, 𝑎𝑝 + 1, 𝑎𝑝 + 2,… , 𝑎𝑝 + 𝑘 − 𝑝 + 1),     (Eq. 4)  where 

𝑝 = 𝑚𝑎𝑥{𝑖: 𝑎𝑖 < 𝑛 − 𝑘 + 𝑖}.         (Eq. 5) 

Likewise, the sequence which succeeds (𝑏1, … , 𝑏𝑘) is  

(𝑐1, … , 𝑐𝑘) = (𝑏1, … , 𝑏𝑝′−1, 𝑏𝑝′ + 1, 𝑏𝑝′ + 2,… , 𝑏𝑝′ + 𝑘 − 𝑝′ + 1),     (Eq. 6) 380 

where  

𝑝’ = 𝑝 − 1 when 𝑏𝑘 = 𝑛 and  

𝑝’ = 𝑘 when 𝑏𝑘 < 𝑛.         (Eq. 7) 

During the procedure, we assume that the sequences (𝑎1, … , 𝑎𝑘) and (𝑏1, … , 𝑏𝑘) are different from (𝑛 − 𝑘 + 1,… , 𝑛), the last 

sequence in our order. Here, 𝑝 and 𝑝’ can be conceptualized as indices where updates of digits starting from the largest (𝑘) 385 

index terminate. If  𝑝 or 𝑝’ are determined, then 𝑎𝑝 or 𝑏𝑝′ can easily be found, allowing to use it in the update procedure (Eq. 

4 and Eq. 6). We note that the number of 𝑘-element subsets from an 𝑛-element set can be determined using the binomial 

coefficient. For example, if 𝑛 = 6 and 𝑘 = 4, then 

(
𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
=

4!∗5∗6

4!∗2!
=

30

2
= 15.                    (Eq. 8) 

 390 

Appendix B. A formal proof of Proposition 1. 

Definitions 

First, we remind the definitions given in the article (Michalak et al., 2021): 

Property 1. (property of the models). A triangle is not horizontal if and only if not all of the three vertices lie on the same side 

of the fault.  395 

Equivalently, Property 1 can be expressed as follows: A triangle is not horizontal if and only if there exists a pair of vertices 

that do not lie on the same side of the fault. 
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Definition 1. (triangles genetically related to a fault in the model). A triangle is referred to as genetically related to fault if it 

is not horizontal.  

Proposition 1 400 

Proof. We note that, intuitively, the result from parts A and B is in line with the standard concept of a strike of a geological 

planar feature defined as the intersection of this planar feature and a horizontal plane (Fossen, 2006, see also Fig. 4 as an 

illustration of the proposition). 

To formally prove the proposition, in particular part C, we will first refer to the following orientation test (De Berg et al., 

2008): 405 

Fact 1 (orientation test). (De Berg et al., 2008) 

The sign of the determinant 

|𝑫| = 𝑑𝑒𝑡

𝟏 𝐭𝟏 𝐭𝟐
𝟏 𝐮𝟏 𝐮𝟐
𝟏 𝐬𝟏 𝐬𝟐

      (Eq. 9) 

determines whether 𝑠 lies left or right of the line 𝑡𝑢. 

Proof of Proposition 1. 410 

 Part A of Proposition 1. 

Let 𝑝1 = (𝑥1, 𝑦1 , 𝑧1), 𝑝2 = (𝑥2, 𝑦2 , 𝑧2), be points forming an edge. For simplicity, let’s assume that 𝑝1 and 𝑝2 are located on 

the surface of the footwall. The third point 𝑝3 = (𝑥3, 𝑦3, 𝑧3)  can be anywhere on the surface of the hanging wall. Therefore, 

we will consider a set of many triangles. Because the walls are horizontal and the difference between walls is constant, we can 

write 𝑝1 = (𝑥1, 𝑦1, 𝑎), 𝑝2 = (𝑥2, 𝑦2 , 𝑎), and 𝑝3 = (𝑥3, 𝑦3, 𝑏), where 𝑎 ≠ 𝑏. Let 𝑘 ≔ 𝑎 − 𝑏⁡be the positive constant being the 415 

elevation difference between walls. 

The two vectors spanning the triangle’s plane are as follows: 

𝒗𝟏 = [𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏, 𝟎],    (Eq. 10) 

𝒗𝟐 = [𝒙𝟑 − 𝒙𝟏, 𝒚𝟑 − 𝒚𝟏, −𝒌],    (Eq. 11) 

Using the cross product, the coordinates of the normal vector of the triangle defined by the above vectors can be calculated via 420 

the mnemonic rule: 

𝑑𝑒𝑡

𝒙𝟐 − 𝒙𝟏 𝒙𝟑 − 𝒙𝟏 𝒏𝟏[𝟏]

𝒚𝟐 − 𝒚𝟏 𝒚𝟑 − 𝒚𝟏 𝒏𝟏[𝟐]

𝟎 −𝒌 𝒏𝟏[𝟑]
= (𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) ∗ 𝑛1[3] + (𝑦2 − 𝑦1) ∗ −𝑘 ∗ 𝑛1[1] + 0 ∗ (𝑥3 − 𝑥1) ∗ 𝑛1[2] −

𝑛1[1] ∗ (𝑦3 − 𝑦1) ∗ 0 − 𝑛1[2] ∗ −𝑘 ∗ (𝑥2 − 𝑥1) − 𝑛1[3] ∗ (𝑥3 − 𝑥1) ∗ (𝑦2 − 𝑦1)  (Eq. 12) 

In summary: 

𝑛1[1] = (𝑦2 − 𝑦1) ∗ −𝑘 − (𝑦3 − 𝑦1) ∗ 0 = (𝑦2 − 𝑦1) ∗ −𝑘 = −𝑘 ∗ (𝑦2 − 𝑦1)  (Eq. 13) 425 

𝑛1[2] = 0 ∗ (𝑥3 − 𝑥1) − (−𝑘) ∗ (𝑥2 − 𝑥1) = 𝑘 ∗ (𝑥2 − 𝑥1)  (Eq. 14) 

𝑛1[3] = (𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) − (𝑥3 − 𝑥1)(𝑦2 − 𝑦1) = 𝑥2𝑦3 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥1𝑦1 − 𝑥3𝑦2 + 𝑥3𝑦1 + 𝑥1𝑦2 = 𝑥2𝑦3 +

𝑥3𝑦1 + 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 − 𝑥3𝑦2  (Eq. 15) 
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As of now, we have two notes: 

-  Every non-vertical triangle has two normal vectors: one is directed downwards and the other is directed upwards. 430 

We are only interested in normal vectors directed upwards to avoid duplicate representations and ensure consistent 

representation of observations. 

- Note that only the edge on the footwall is fixed and not the third point whose coordinates affect the sign of the third 

coordinate of the normal vector (Eq. 15). Therefore, it can be concluded that we don’t investigate a particular 

normal vector but a set of many normal vectors. Moreover, given only the position of the fixed edge, the normal 435 

vector’s third coordinate is unknown, and three cases must be considered: when it is positive, negative, or zero. We 

will now consider these three cases. 

I. If 𝑛1[3] > 0, then the coordinates of the normal vector look as above, which means that the vector is directed 

upwards. 

II. If 𝑛1[3] < 0, then it means that the normal vector is directed downwards, and the coordinates must be 440 

multiplied by minus 1 to adhere to the above rule that there is only one representation of normal vectors. 

III. If 𝑛1[3] = 0, then the normal vector is directed horizontally (orthogonal to the vectors 𝒗𝟏 =

[𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏] and 𝒗𝟐 = [𝒙𝟑 − 𝒙𝟏, 𝒚𝟑 − 𝒚𝟏] and the corresponding triangle is vertical, contrary to the 

initial assumption of considering only non-vertical triangles. Therefore, we no longer consider this scenario. 

Now, according to (II), we multiply coordinates from Eqs. 13-15 by minus 1. 445 

𝑛2[1] = 𝑘 ∗ (𝑦2 − 𝑦1)  (Eq. 16)  

𝑛2[2] = −𝑘 ∗ (𝑥2 − 𝑥1) (Eq. 17) 

𝑛2[3] = −(𝑥2𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 −−𝑥3𝑦2)  (Eq. 18) 

We observe that the coordinates of normal vectors (Eqs 13-15 and Eqs 16-18) are not the same which means that we obtained 

two distinct normal vectors directed upwards 𝑛1 and 𝑛2 and which have a dip direction difference of 180°. This is because 450 

𝑛1[1] = −𝑛2[1] and 𝑛1[2] = −𝑛2[2]. The vectors are directed upwards because the third coordinate is positive. So, part A of 

the Proposition 1 is proven.  

Part B of Proposition 1. 

As we already know from A), there are only two possible dip directions of the infinite set of triangles. These dip directions 

have a directional difference of 180°. Therefore, to prove that they are perpendicular to the edge 𝒑𝟏𝒑𝟐 = [𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏], 455 

it is enough to prove it for one vector: 𝑛1 or 𝑛2 projected on the horizontal plane (the projection of the normal vector onto the 

horizontal plane doesn’t change its direction). Using the dot product (∙), we can show it for 𝑛1̆ , where 𝑛1̆ denotes the projection 

of the first normal vector onto the horizontal plane: 

𝒑𝟏𝒑𝟐 ∙ 𝒏𝟏˘ = (𝑥2 − 𝑥1) ∗ −𝑘 ∗ (y2 − y1) + (𝑦2 − 𝑦1) ∗ 𝑘 ∗ (𝑥2 − 𝑥1) = −𝑘(𝑥2 − 𝑥1)(y2 − y1) + 𝑘(𝑥2 − 𝑥1)(y2 − y1) = 0 

   (Eq. 19) 460 

 

https://doi.org/10.5194/egusphere-2024-3327
Preprint. Discussion started: 8 January 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

 

Part C of Proposition 1. 

We have a fixed edge on the footwall, and we can consider two cases: when the point lies to the left or to the right of the line 

containing the edge. 465 

Using Fact 1 (orientation test), we can determine whether 𝑝3 = (𝑥3, 𝑦3) lies to the left, to the right, or on the edge 𝑝1𝑝2: 

|𝑫| = 𝑑𝑒𝑡

𝟏 𝒙𝟏 𝒚𝟏
𝟏 𝒙𝟐 𝒚𝟐
𝟏 𝒙𝟑 𝒚𝟑

= 𝑥2𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦2 − 𝑦1𝑥2 − 𝑦2𝑥3 − 𝑦3𝑥1  (Eq. 20) 

We note that the value can be positive, negative, or zero depending on whether the point 𝑝3 lies left, right, or on the edge 𝑝1𝑝2. 

Recall that in the part A this value was also the third coordinate of the first non-horizontal normal vector 𝑛1[3] and the additive 

inverse −(𝑥2𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 − 𝑥3𝑦2) was the third coordinate of the second normal vector. Therefore, the 470 

signs of the expressions 𝑠𝑔𝑛(𝑥2𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦2 − 𝑦1𝑥2 − 𝑦2𝑥3 − 𝑦3𝑥1) ≠ 𝑠𝑔𝑛(−(𝑥2𝑦3 + 𝑥3𝑦1 + 𝑥1𝑦2 − 𝑦1𝑥2 − 𝑦2𝑥3 −

𝑦3𝑥1)) simultaneously determine the position of the point 𝑝3 relative to the edge 𝑝1𝑝2 and the choice of one of two possible 

normal vectors. In the case of |D|=0 the points 𝑝1, 𝑝2 (footwall) and 𝑝3 (hanging wall) are collinear in 2D space but not in 3D 

space and the corresponding triangle is vertical, which is beyond the scope of our study.   
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Appendix C. 475 

Proposition 3. Analysis with elevation uncertainties restricted to the hanging wall regarding the free vertices. 

Similar calculations can be conducted for data with fixed geographical position but uncertain elevations. To achieve this, the 

uncertain elevations can be represented as sums of the measured constant elevations and a random variable 𝜀 with the normal 

distribution 𝑁(0, 𝜎2). 

Therefore, the uncertain elevations of n points are independent random variables  𝜀1, … , 𝜀𝑛 and their expected values are equal 480 

to zero, i.e., 𝐸[𝜀1] = ⋯ = 𝐸[𝜀𝑛] = 0. Here we consider 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2 as fixed constants. 

From a practical viewpoint, we first create the set of points from the uniform distribution displaced by a vertical fault and then 

add error to elevation data. 

From then on, we have points 𝑝1 = (𝑥1, 𝑦1, 𝑧1 + 𝜀1), 𝑝2 = (𝑥2, 𝑦2, 𝑧1 + 𝜀2) forming an edge on the footwall. The third point 

𝑝3 = (𝑥3, 𝑦3, 𝑧2 + 𝜀3) can lie anywhere on the hanging wall. For now, we consider the point 𝑝3  to be fixed, but ultimately, it 485 

will traverse the points on the hanging wall to compute their average. 

The random vectors spanning the plane of a random triangle are calculated as follows: 

𝒗𝟏 = [𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏, 𝜺𝟐 − 𝜺𝟏], and let 𝛼 ≔ 𝜀2 − 𝜀1. Then  𝒗𝟏 = [𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏, 𝜶],   (Eq. 21) 

𝒗𝟐 = [𝒙𝟑 − 𝒙𝟏, 𝒚𝟑 − 𝒚𝟏, 𝒛𝟐 + 𝜺𝟑 − 𝒛𝟏 − 𝜺𝟏],  and let 𝑘 ≔ −(𝑧2 − 𝑧1) with 𝛽 ≔ 𝜀3 − 𝜀1.  

  Then  𝒗𝟐 = [𝒙𝟑 − 𝒙𝟏, 𝒚𝟑 − 𝒚𝟏, −𝒌 + 𝜷],                 (Eq. 22) 490 

The normal vector can be calculated using the mnemonic rule for cross product: 

𝑑𝑒𝑡

𝒙𝟐 − 𝒙𝟏 𝒙𝟑 − 𝒙𝟏 𝒏𝟏[𝟏]

𝒚𝟐 − 𝒚𝟏 𝒚𝟑 − 𝒚𝟏 𝒏𝟏[𝟐]

𝜶 −𝒌 + 𝜷 𝒏𝟏[𝟑]
=  (𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) ∗ 𝑛1[3] + (𝑦2 − 𝑦1) ∗ (−𝑘 + 𝛽) ∗ 𝑛1[1] + 𝛼 ∗ (𝑥3 − 𝑥1) ∗ 𝑛1[2] −

𝑛1[1] ∗ (𝑦3 − 𝑦1) ∗ 𝛼 − (𝑥2 − 𝑥1) ∗ (−𝑘 + 𝛽) ∗ 𝑛1[2] − (𝑦2 − 𝑦1) ∗ (𝑥3 − 𝑥1) ∗ 𝑛1[3]   (Eq. 23) 

In summary, 

𝑛1[1] = (−𝑘 + 𝛽) ∗ (𝑦2 − 𝑦1) − 𝛼 ∗ (𝑦3 − 𝑦1)       (Eq. 24) 495 

𝑛1[2] = (𝑘 − 𝛽) ∗ (𝑥2 − 𝑥1) + 𝛼 ∗ (𝑥3 − 𝑥1)       (Eq. 25) 

𝑛1[3] = (𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) − (𝑥3 − 𝑥1)(𝑦2 − 𝑦1)       (Eq. 26) 

As in the deterministic case, we note that the third coordinate can be positive or negative. If it is positive, then the coordinates 

stay as they are. Otherwise, all coordinates must be multiplied by minus 1. Then, the coordinates are as follows: 

𝑛2[1] = (𝑘 − 𝛽) ∗ (𝑦2 − 𝑦1) + 𝛼 ∗ (𝑦3 − 𝑦1)       (Eq. 27) 500 

𝑛2[2] = (−𝑘 + 𝛽) ∗ (𝑥2 − 𝑥1) − 𝛼 ∗ (𝑥3 − 𝑥1)       (Eq. 28) 

𝑛2[3] = −(𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) + (𝑥3 − 𝑥1)(𝑦2 − 𝑦1)      (Eq. 29) 

For both cases, we can now calculate the expectations of the first two coordinates, given that the above expressions contain 

random variables.  

 505 
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The first case (positive Z value): 

 

     𝐸[𝑛1[1]] =       (Eq. 30) 

𝐸[(−𝑘 + 𝛽) ∗ (𝑦2 − 𝑦1) − 𝛼 ∗ (𝑦3 − 𝑦1)] = 510 

(−k + E[𝛽]) ∗ (𝑦2 ⁡− ⁡𝑦1) − 𝐸[𝛼] ∗ (𝑦3 − 𝑦1)= 

(−k + (𝐸[𝜀3] − 𝐸[𝜀1])) ∗ (𝑦2 ⁡− ⁡𝑦1) − ⁡(𝐸[𝜀2] − 𝐸[𝜀1]) ∗ (𝑦3 − 𝑦1)= 

−𝑘 ∗ (𝑦2 − 𝑦1). 

Since 𝐸[𝑛1[1]] does not depend on 𝑦3, averaging over all hanging wall points does not change the expected value, which will 

remain equal to −𝑘 ∗ (𝑦2 − 𝑦1).  515 

 

 𝐸[𝑛1[2]] =         (Eq. 31) 

𝐸[(𝑘 − 𝛽) ∗ (𝑥2 − 𝑥1) + 𝛼 ∗ (𝑥3 − 𝑥1)] = 

(𝑘 − (𝐸[𝜀3] − 𝐸[𝜀1])) ∗ (𝑥2 − 𝑥1) + (𝐸[𝜀2] − 𝐸[𝜀1]) ∗ (𝑥3 −⁡𝑥1) = 

⁡𝑘 ∗ (𝑥2 − 𝑥1). 520 

 

Since 𝐸[𝑛1[2]] does not depend on 𝑥3, averaging over all hanging wall points does not change the expected value, which will 

remain equal to 𝑘 ∗ (𝑥2 − 𝑥1).  

 

The second case (negative Z value): 525 

 

𝐸[𝑛2[1]] =       (Eq. 32) 

𝐸[(𝑘 − 𝛽) ∗ (𝑦2 − 𝑦1) + 𝛼 ∗ (𝑦3 − 𝑦1)] = 

𝑘 ∗ (𝑦2 − 𝑦1). 

As previously, 𝐸[𝑛2[1]] does not depend on 𝑦3, averaging over all hanging wall points does not change the expected value, 530 

which will remain equal to 𝑘 ∗ (𝑦2 − 𝑦1).   

 

     𝐸[𝑛2[2]] =        (Eq. 33) 

𝐸[(−𝑘 + 𝛽) ∗ (𝑥2 − 𝑥1) − 𝛼 ∗ (𝑥3 − 𝑥1)] = 

−𝑘 ∗ (𝑥2 − 𝑥1) 535 

Again,  𝐸[𝑛2[2]] does not depend on 𝑥3, averaging over all hanging wall points does not change the expected value, which 

will remain equal to −𝑘 ∗ (𝑥2 − 𝑥1).  
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Appendix D. 540 

Proposition 4. Analysis with elevation uncertainties with free points on the surfaces of the hanging wall or footwall. 

Here, we continue the analysis from the Sect. 4.2 by considering only triangles with third points lying on the surface of the 

footwall (from 𝒗𝒌+𝟏  to 𝒗𝒏 ). As we have n-k triangles, we need n-k+2 points on the footwall. Denote them by 𝑝𝑖 =

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 + 𝜀𝑖), where 𝑖 = 1,2, … , 𝑛 − 𝑘 + 2. 

We fix the edge 𝑒 on the surface of the footwall defined by two points: 𝑝1 = (𝑥1, 𝑦1, 𝑧1 + 𝜀1) and 𝑝2 = (𝑥2, 𝑦2, 𝑧1 + 𝜀2).  545 

Because the edge 𝑒 is fixed, the associated coordinates 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2 are considered fixed constants. The third point 𝑝3 

is sampled from the surface of the footwall. As previously, we fix the point 𝑝3  for a moment, but ultimately, it will traverse 

the points on the hanging wall to compute their average. 

The third point 𝑝3 = (𝑥3, 𝑦3, 𝑧1 + 𝜀3) is sampled from the surface of the footwall. We calculate the spanning vectors: 

 𝒗𝟏 = [𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏, 𝜶] and 𝒗𝟐 = [𝒙𝟑 − 𝒙𝟏, 𝒚𝟑 − 𝒚𝟏, 𝜷], with 𝛼 ≔ 𝜀2 − 𝜀1 and 𝛽 ≔ 𝜀3 − 𝜀1.  550 

The normal vector can be calculated using the mnemonic rule for cross product: 

𝑑𝑒𝑡

𝒙𝟐 − 𝒙𝟏 𝒙𝟑 − 𝒙𝟏 𝒏𝟏[𝟏]

𝒚𝟐 − 𝒚𝟏 𝒚𝟑 − 𝒚𝟏 𝒏𝟏[𝟐]

𝜶 𝜷 𝒏𝟏[𝟑]
=  (𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) ∗ 𝑛1[3] + (𝑦2 − 𝑦1) ∗ (𝛽) ∗ 𝑛1[1] + 𝛼 ∗ (𝑥3 − 𝑥1) ∗ 𝑛1[2] −

𝑛1[1] ∗ (𝑦3 − 𝑦1) ∗ 𝛼 − (𝑥2 − 𝑥1) ∗ (𝛽) ∗ 𝑛1[2] − (𝑦2 − 𝑦1) ∗ (𝑥3 − 𝑥1) ∗ 𝑛1[3]   (Eq. 34) 

In summary, 

𝑛1[1] = 𝛽 ∗ (𝑦2 − 𝑦1) − 𝛼 ∗ (𝑦3 − 𝑦1)       (Eq. 35) 555 

𝑛1[2] = −𝛽 ∗ (𝑥2 − 𝑥1) + 𝛼 ∗ (𝑥3 − 𝑥1)       (Eq. 36) 

𝑛1[3] = (𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) − (𝑥3 − 𝑥1) ∗ (𝑦2 − 𝑦1)      (Eq. 37) 

As previously, we start the calculations of excepted values of 𝐸[𝑛1[1]], 𝐸[𝑛1[1]], 𝐸[𝑛1[3]], and then the averages over all 

footwall points. 

 560 

𝐸[𝑛1[1]] =       (Eq. 38) 

𝐸[𝛽 ∗ (𝑦2 − 𝑦1) − 𝛼 ∗ (𝑦3 − 𝑦1)] = 

𝐸[𝛽](𝑦2 − 𝑦1) − 𝐸[𝛼](𝑦3 − 𝑦1) = 0 

Since E[n1[1]]=0, the average over all footwall points does not change and will remain equal to 0.  

 565 

     𝐸[𝑛1[2]] =         (Eq. 39) 

𝐸[−𝛽 ∗ (𝑥2 − 𝑥1) + 𝛼 ∗ (𝑥3 − 𝑥1)]= 

−𝐸[𝛽](𝑥2 − 𝑥1) + 𝐸[𝛼](𝐸[𝑥3 − 𝑥1]) = 0 

Since E[n1[2]]=0, the average over all footwall points does not change and will remain equal to 0.  

 570 
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   𝐸[𝑛1[3]] =        (Eq. 40) 

(𝑥2 − 𝑥1) ∗ (𝑦3 − 𝑦1) − (𝑥3 − 𝑥1) ∗ (𝑦2 − 𝑦1). 

Now, taking the average over all footwall points, we get: 

                                                      (𝑥2 ⁡− 𝑥1) ∗
(𝑦3−𝑦1)+⋯+(𝑦𝑛−𝑘+2−𝑦1)

𝑛−𝑘
−

(𝑥3−𝑥1)+⋯+(𝑥𝑛−𝑘+2−𝑥1)

𝑛−𝑘
∗ (𝑦2 ⁡⁡− ⁡𝑦1)    (Eq. 41) 575 

Observe that 𝐸[𝑛1[3]] = 0 if and only if 

 (𝑥2 ⁡− 𝑥1) ∗ [(𝑦3 − 𝑦1) + ⋯+ (𝑦𝑛−𝑘+2 − 𝑦1)] = [(𝑥3 − 𝑥1) + ⋯+(𝑥𝑛−𝑘+2 − 𝑥1)] ∗ (𝑦2 ⁡⁡− ⁡𝑦1),                  (Eq. 42) 

i.e.,⁡if and only either 𝒘 = [(𝒙𝟑 − 𝒙𝟏) + ⋯+(𝒙𝒏−𝒌+𝟐 − 𝒙𝟏), (𝒚𝟑 − 𝒚𝟏) + ⋯+ (𝒚𝒏−𝒌+𝟐 − 𝒚𝟏)] is the zero vector or it is non-

zero and parallel to the vector [𝒙𝟐 − 𝒙𝟏, 𝒚𝟐 − 𝒚𝟏],⁡which happens very seldom.  

One of the trivial cases for which ⁡𝐸[𝑛1[3]] ≠ 0 is when  580 

(𝑥3−𝑥1)+⋯+(𝑥𝑛−𝑘+2−𝑥1)

𝑥2−𝑥1
  ≠

(𝑦3−𝑦1)+⋯+(𝑦𝑛−𝑘+2−𝑦1)

𝑦2⁡⁡−⁡𝑦1
,                                                         (Eq. 43) 

assuming 𝑥2 ⁡≠ ⁡ 𝑥1 and 𝑦2 ⁡≠ 𝑦1. 

Another trivial case for which ⁡𝐸[𝑛1[3]] ≠ 0 is when 𝑥2 = 𝑥1and (𝑥3 − 𝑥1) + ⋯+(𝑥𝑛−𝑘+2 − 𝑥1) ≠ 0, or when⁡𝑦2 = 𝑦1  and 

(𝑦3 − 𝑦1) + ⋯+(𝑦𝑛−𝑘+2 − 𝑦1) ≠ 0. 

                                                       585 
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