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Abstract. Wetlands perform a vital array of ecosystem functions, but up to 50% of global wetlands have been lost and those 8 

that remain are under ongoing threat from development pressures. Accurate and comprehensive maps are critical for the 9 

management and protection of wetland resources. Conventional methods for wetland mapping are time consuming and 10 

resource intensive, and the common mapping methods that rely on the inspection of aerial imagery often miss forested and 11 

other wetland types that do not have a distinctive visual signature, i.e. cryptic wetlands. The use of machine learning and 12 

spatial data to map wetlands is a growing field that promises a fast and efficient complement to conventional methods and 13 

improved detection of forested and other cryptic wetlands. In this paper we demonstrate the use of a random forest model to 14 

generate a large-scale, state-wide map of wetland probabilities in the Commonwealth of Massachusetts, using widely 15 

available open source software and publicly accessible data. Through this model we also test the efficacy of multi-scale 16 

predictors, including not only terrain derivatives used in previous research but also multi-scale implementations of soil, 17 

vegetation, and spectral data. The random forest was trained on the official Massachusetts wetland inventory, and achieved 18 

an overall accuracy rate of 92% relative to that dataset. The model showed particular promise in detecting cryptic wetlands 19 

by identifying an additional 40% of probable wetland area statewide, and an additional 46% of forested wetland specifically. 20 

The use of diverse multi-scale predictors was supported by model performance, variable importance measures, and the 21 

feature selection process. This strategy for improving detection of cryptic wetlands and creating better estimates of wetland 22 

extent, using non-proprietary software and data, will be a vital adjunct to conventional methods for wetland mapping and 23 

monitoring.  24 

1 Introduction 25 

Wetlands perform an array of vital ecosystem functions, supporting biodiversity, regulating and stabilizing water flow, 26 

removing pollutants from surface waters, and sequestering carbon (Mitsch and Gosselink, 2015). In many areas, much of 27 

historic wetland area has been lost to development, and ongoing development continues to encroach further into wetlands. 28 

Global wetland loss since 1900 may be as high as 71% (Davidson, 2014), and the US is estimated to have lost 39% of its 29 

historic wetlands (Fluet-Chouinard et al., 2023). The protection of wetlands becomes increasingly important in the face of 30 
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climate change, as wetlands represent some of the most intense concentrations of sequestered carbon in the biosphere 31 

(Nahlik and Fennessy, 2016) as well as providing critical buffers against extreme weather events. Keeping sequestered 32 

carbon in wetlands and out of the atmosphere requires vigorous protection from persistent development pressures.  33 

 34 

Accurate and comprehensive maps are critical for the management and protection of wetland resources. Development of 35 

wetland inventories, however, is time-consuming and expensive, and wetland mapping efforts are constrained by limitations 36 

on the capacity of state agencies and non-governmental organizations. Recent advances in remote sensing and machine 37 

learning provide techniques and data sets for the rapid and efficient identification of wetlands and can complement and 38 

amplify investments in time-intensive field mapping and even conventional desk methods for wetland identification.  39 

 40 

The use of machine learning to map wetlands is a dynamic and fast-growing topic in research and planning at the state, 41 

national, and international level (Felton et al., 2019; Gale, 2021; Halabisky et al., 2023; Rapinel et al., 2023). Machine 42 

learning offers the opportunity to leverage existing datasets to generate or improve assessments of the location and extent of 43 

wetlands across large areas, quickly and efficiently. Not intended to replace other methods of wetland identification, 44 

machine learning can provide estimates of cryptic wetland area and help identify priority areas for closer inspection, 45 

including field inspection and delineation.  46 

 47 

In this paper we discuss an implementation of the machine learning algorithm random forest to produce a wetland 48 

probability map of the Commonwealth of Massachusetts. In order to estimate the extent of cryptic wetlands that do not 49 

appear on existing inventories, we developed a machine learning model making use of statewide spatial data and widely 50 

available open-source software. The wetland probability map can be combined with existing inventories to create a more 51 

accurate and inclusive estimate of total wetland area.  52 

1.1 Digital wetland mapping with random forest 53 

The growing field of digital wetland mapping has drawn on an array of machine learning algorithms. Any suitable algorithm 54 

must be able to handle large and complex datasets while making few assumptions about the distribution of variables. 55 

Random forest is an ensemble learning algorithm that meets these criteria, and is increasingly recognized as one of the most 56 

powerful and effective machine learning strategies for wetland detection (Jafarzadeh et al., 2022). Random forest creates an 57 

ensemble of decision trees, each trained on a random bootstrap sample of the data and a random subset of predictors 58 

(Breiman, 2001). The model prediction is the averaged prediction of all individual trees, with the prediction appearing as a 59 

probability value between 0 and 1. In addition to meeting the criteria outlined above, the bootstrapping and aggregating 60 

strategy reduces bias, avoids overfitting, accommodates correlated predictors, has been shown to produce highly accurate 61 

predictions without extensive tuning of hyperparameters, i.e. “out of the box,” with default settings, accounts for complex 62 
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multi-way interactions, and has a built-in variable importance mechanism that is useful for feature selection–all of which 63 

have led to extensive use of random forest in remote sensing (Belgiu and Drăguţ, 2016). Recent years have seen growing use 64 

of the random forest algorithm in state and regional wetland detection projects in the US (Maxwell et al., 2016; O’Neil et al., 65 

2018) and incorporation into a toolbox in popular proprietary GIS software (The Wetland Identification Model (WIM) – A 66 

New Arc Hydro Functionality for Predicting Wetland Locations Using LiDAR Elevation Data and Machine Learning, 2024).  67 

 68 

Digital mapping of wetlands can draw on a wide range of potential predictors. The presence of wetlands in the landscape is 69 

determined by the interaction of terrain and hydrology, and is in turn reflected in a range of soils, vegetation, hydrological 70 

characteristics, and spectral signatures, all of which have been used as inputs in various wetland mapping projects 71 

(Jafarzadeh et al., 2022). For all predictors, spatial scale is a key question. Wetlands are produced by the interaction of forces 72 

operating and combining across multiple spatial scales, and there is no clear cut method for determining which scale is most 73 

relevant across contexts. Choice of spatial scale for predictors is especially pertinent for approaches like random forest, 74 

which uses point-based intersections of predictors and does not natively account for contextual information. Using multi-75 

scale predictors, i.e. calculating, resampling, or smoothing spatial predictors at multiple scales, can therefore help address 76 

several challenges at once. In the case of terrain derivatives, it is clear that topography can control the accumulation and 77 

retention of water at the scale of local undulations in grade (e.g. 1-10 meter) or broader topographic depressions (e.g. 10-100 78 

meter, or larger). Other classes of predictors, such as vegetation height, soil type, or spectral data, can show similar multi-79 

scale neighborhood effects, where what matters at a given sample point is not the value of the predictor at that point, but the 80 

average value in the area that forms its context. In the case of soil-based predictors, multi-scale smoothing can also help by 81 

creating fuzzy boundaries between soil units, which has the potential to ameliorate some of the known challenges with the 82 

crisp and sometimes arbitrary delineations that soil maps impose on underlying heterogeneity and varying transition zones 83 

(Hunter et al., 2009; Nikiforova et al., 2020). As there is no way to know a priori which scales will be relevant for which 84 

predictors, the variable importance scores generated by the random forest algorithm can be used to select the most relevant 85 

predictors and scales.  86 

 87 

In the related domain of digital soil mapping, the use of such multi-scale terrain derivatives is becoming increasingly well 88 

established (Behrens et al., 2019), and has been shown to increase prediction accuracy dramatically (Miller et al., 2015). 89 

Application to other classes of predictors aside from terrain, however, remains somewhat neglected. Recent work has 90 

introduced the use of multi-scale terrain features specifically for digital wetland mapping (Halabisky et al., 2022).  91 

1.3 Study Area 92 

Massachusetts is a coastal state in the northeastern United States with a diverse range of soils, topography, and vegetation. 93 

While Massachusetts was among the first states to implement wetland protections in the mid-20th century, it’s estimated 94 
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Massachusetts has lost a third of its wetlands since colonial times (Protecting Wetlands in Massachusetts | Mass.gov, 2024). 95 

Roughly 30% of the state by area, in the western and north-central zones, is in the EPA Level III Ecoregion the Northeastern 96 

Highlands, characterized by high elevations, rugged topography, mixed deciduous and coniferous forests, and soils built on 97 

glacial till (Griffith et al., 2009). From the central through the eastern coastal zone, the Northeastern Coastal Zone makes up 98 

roughly 60% of the commonwealth. The Northeastern Coastal Zone is marked by lower elevations, less topographical 99 

variation, and a prevalence of sandy loams inland and sandy soils with low organic content in coastal areas. The remaining 100 

9% of the state is in the Atlantic Coastal Pine Barrens, a low-lying area with diverse coastal landforms including dunes, 101 

marshes, and bays, with vegetation dominated by scrubby oak-pine forests.  102 

1.4 Objectives 103 

Our principal objective was to demonstrate a method for generating a large-scale, state-wide map of wetland probabilities, 104 

using widely available open source software and publicly available data. Such a method could serve as a fast and efficient 105 

adjunct to conventional field and desk methods, and in turn support many goals for wetland monitoring, management, and 106 

conservation. A secondary objective was to use machine learning to leverage the utility of an existing wetland inventory by 107 

using it as training data that (together with the array of predictors) could identify additional probable wetland area missing 108 

from the same inventory. Our tertiary objective was to assess the multi-scale predictor approach using a broader swath of 109 

environmental variables than has previously been demonstrated in wetland detection efforts.  110 

2 Methods 111 

The data and modelling processes are represented in Fig. 1. All operations in this project were performed with free open 112 

source software. Acquisition and preprocessing of geospatial data were performed using QGIS (QGIS Development Team, 113 

2023), and data wrangling and modelling were conducted in the R statistical programming language (R Core Team, 2023). 114 

2.2 Data 115 

The Massachusetts Department of Environmental Protection (MassDEP) has produced an official state wetland inventory 116 

that represents a distinctively high-quality resource of state-level wetland information for planning and research in 117 

Massachusetts (Baker et al., 2019). The first version of the MassDEP Wetlands map was completed in 2006, based on visual 118 

assessment of 1:12,000 stereo imagery taken between 1990 and 2000. This original map featured field validation for up to 119 

10% of identified wetlands. Starting in 2007, MassDEP created an updated layer, using 2005 imagery at 1:5,000 scale. 120 

Production of the 2005 MassDEP Wetlands layers (MDW) did not feature any field validation. The layer compares favorably 121 

with the National Wetland Inventory (NWI), which is produced with similar methods but using older and larger-scale 122 

imagery. The present utility of the MDW is constrained by both the intrinsic limitations of the method that it shares with the 123 

NWI, and with the age of the imagery used to produce it. Numerous studies have confirmed that the NWI misses many 124 
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wetlands, particularly but not only forested and smaller wetlands (each of which may in aggregate make up a significant 125 

portion of total wetlands) (Kudray and Gale, 2000; Martin et al., 2012; Matthews et al., 2016; Stolt and Baker, 1995; Tiner, 126 

1990). While no comparison study has been conducted in Massachusetts, reports from field delineators, together with 127 

comparison with acquired field delineations, confirm that similar limitations apply to the MDW. Additionally, trends in 128 

wetland loss and gain are ongoing and dynamic, and the imagery on which the MDW is based is now nearly two decades old 129 

(Baker et al., 2019). 130 

 131 

Training and testing data were developed from the MDW. The layer was edited to remove open water according to the DEP 132 

Wetland designation. Given the scale of the study area, researchers opted for a moderately dense sampling approach, 133 

creating a training dataset of 30,000 points. Reference wetland data were assembled from 10,000 random points drawn from 134 

within wetland polygons, and background data were assembled from 20,000 random points not within wetland polygons. 135 

Non-wetland points are treated as ‘background’ or ‘pseudo-absence’ rather than true absence points, as it is expected that 136 

some of the 20,000 background points were placed within cryptic wetlands that do not appear in the MDW. This distinction 137 

was accommodated in our downsampling approach described in section 2.3 Model Fitting below. 138 

 139 
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 140 
 141 

Figure 1. Predictors and process flow for generating a statewide wetland probability layer. Using machine learning to 142 

generate a Wetland Probability Score at 4m resolution will support a more inclusive estimation of wetland extent across the 143 

state.  144 

 145 

 146 

We extend the logic of the multi-scale approach in digital soil mapping, and the application of multi-scale terrain derivatives 147 

to wetland mapping, by aggregating all predictors to multiple larger resolutions (whenever feasible based on the starting 148 

resolution of available layers), and including all resolutions in our initial model. Figure 2 illustrates three of the most 149 

important predictors rendered at multiple scales for the same area. Approaches to resampling included specification of 150 

neighborhood size for terrain derivatives and mean smoothing or filtering for other variables.  151 

 152 

Terrain variables were developed from the MassGIS LiDAR point cloud data. The point cloud was used to generate a digital 153 

elevation model (DEM) for the entire state, resampled to 4m resolution. The DEM was in turn used to generate derivative 154 
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measures at multiple scales, including Slope, Cartographic Depth to Water (DTW), Planoform Curvature, Profile Curvature, 155 

and Topographic Wetness Index. Cartographic Depth to Water is a metric that estimates the difference in elevation between 156 

the soil surface and the closest open water (Murphy et al., 2011). Topographic Wetness Index (TWI) is a predecessor of 157 

DTW that is used, like DTW, to model soil moisture conditions (Murphy et al., 2009). Profile and planform curvature 158 

quantify the curvature of the earth’s surface in the direction of slope, and perpendicular to slope, respectively (Maxwell et 159 

al., 2016). 160 

 161 

With one exception, soil variables were drawn from the Soil Survey Geographic Database (SSURGO) maintained by the US 162 

Natural Resources Conservation Service (Soil Survey Staff, n.d.). These variables included Depth to a Restrictive Soil Layer, 163 

Depth to Water Table, Percent Hydric Soils, and Hydraulic Conductivity (Soil Survey Staff, 2015). Depth to Restrictive Soil 164 

Layer is the estimated distance from the soil surface to a layer that impedes the movement of water (often bedrock). Percent 165 

Hydric Soils refers to the percent of the SSURGO map unit that is composed of hydric components. Hydraulic Conductivity 166 

is the volume of water that would move through the soil under saturation conditions in a standardized area and unit of time. 167 

The vector-based variables from SSURGO were modified to multiple scales by generating a raster layer for each of the 168 

relevant fields of the SSURGO vector layer, at 4m resolution, and then applying a mean filter at 12m and 60m. An additional 169 

variable, Surficial Geology, was acquired from the MassGIS Surficial Geology layer, which was in turn acquired from the 170 

US Geological Survey (Stone et al., 2018).  171 

 172 

Vegetation variables were acquired from multiple sources. The mean and median of NDVI Composite and Normalized 173 

Difference Water Index (NDWI) Composite were each acquired, based on 30m resolution LANDSAT 8 imagery, directly 174 

via Google Earth Engine. Normalized Difference Vegetation Index (NDVI) was calculated from 2021 MassGIS Leaf-Off 175 

Aerial Imagery, and aggregated to multiple scales. NDVI is a widely used metric of vegetation health that uses the red and 176 

near-infrared bands to monitor the level of photosynthetic activity. NDWI similarly uses the green and near-infrared bands to 177 

assess moisture levels. Vegetation height was calculated based on first returns from the MassGIS LiDAR point cloud data 178 

sets, and aggregated to multiple scales. The EPA US Level 3 Ecoregions for Massachusettswere also included as a three-179 

value categorical predictor: Atlantic Coastal Pine Barrens, Northeastern Coastal Zone, and Northeastern Highlands. In 180 

addition, bands one through four (red, green, blue, and near infrared, respectively) from 2021 MassGIS Leaf-Off Aerial 181 

Imagery were acquired and smoothed to multiple scales.  182 

 183 
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 184 
Figure 2. Multi-scale predictors. Three of the predictors included in the final model are shown for the same area, an 185 

approximately 2 km square centrally located in the Northeastern Coastal Zone. Predictors are shown across the range of 186 

scales that were each included in the model. The method of multi-scaling for each predictor is indicated in parentheses below 187 

the predictor name on the left side of the figure. Model predictions for the area shown here can be seen in callout (C) in Fig. 188 

4. 189 

 190 
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2.3 Training and testing 191 

Model testing was conducted with two different spatial configurations of holdout data. In the interest of a more rigorous 192 

assessment of model performance and generalizability, holdout data for testing the final model was based on the random 193 

selection of 20 km by 20 km tiles within each EPA Level 3 ecoregion (Fig. 3). Within each of the three ecoregions in 194 

Massachusetts, tiles were randomly selected for holdout until at least 10% of land area within that ecoregion was designated 195 

as holdout (Table 1). Points in these tiles were held back from the training data, comprising 23% of the 30,000 points. By 196 

using tile-based holdout, predictive performance could be assessed based on nearby but unsampled landscapes, rather than 197 

on holdout points interspersed within the same landscapes on which the model was trained. In order to assess the impact of 198 

the tile-based holdout on model performance, we fit a model with identical parameters but with testing data withheld fully 199 

randomly, ignoring tile structure, comprising 25% of sample points across the state.  200 

 201 

Table 1. Holdout areas for model testing 202 

 203 

  Holdout area Holdout points 

Ecoregion acres % acres tiles wetland background 

Atlantic Coastal Pine Barrens 488,314 ac 17% 80,647 4 181 293 

Northeastern Coastal Zone 3,134,117 ac 26% 813,232 9 1637 2959 

Northeastern Highlands 1,567,251 ac 21% 332,372 5 459 1484 

Total 5,189,682 ac 21% 1,226,251 18 2277 4736 
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 204 
Figure 3. EPA Level 3 Ecoregions for Massachusetts with Hold Out Areas  205 

2.3 Model fitting 206 

The wetland probability score was generated using a random forest (RF) model, using the canonical randomForest package 207 

in R (Liaw and Wiener, 2002). Before fitting the statewide model, researchers generated a succession of preliminary models 208 

covering progressively larger areas. Preliminary models were used as sanity checks, by examining out-of-bag (OOB, see 209 

section 2.4 Model validation and testing below) metrics, visual inspection of overlays with the DEP wetland map, aerial 210 

imagery, and field wetland delineations, and comparison with landscapes known to the researchers.  211 

 212 

The first statewide model was fit using all 63 predictors (23 variables, each at 1-4 scales). In order to reduce model 213 

complexity and processing time, feature selection was carried out using a holdout variable importance procedure that 214 

compares full ensembles fit with and without the predictor, using the randomForestSRC package (Ishwaran and Kogalur, 215 

2007). Through this process 34 predictors were found to be making no contribution to model accuracy. The reduced model 216 
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was fit with the remaining 29 predictors (Table 2), and compared to the full model to assess any impact on out-of-bag 217 

accuracy. 218 

 219 

While the more conservative and time-intensive holdout variable importance procedure was used for variable selection, the 220 

more widely used permutational variable importance measure was used to understand the relative influence of the 29 221 

variables included in the final model (Belgiu and Drăguţ, 2016). Permutational variable importance compares the OOB 222 

prediction accuracy using the original variable against the accuracy with the variable randomly permuted. The variable 223 

importance is calculated as the mean decrease in accuracy under permutation. As the stochastic nature of the random forest 224 

algorithm makes variable importance rankings shift across multiple runs of the model, nine additional models were fit with 225 

identical parameters, and variable importance measures extracted from each, in order to provide a sense of range and 226 

stability of the importance measure. 227 

 228 

The use of the DEP wetland map as training data meant that the training data lacked true absence points, necessitating the 229 

assumption that some of the ostensibly non-wetland points would fall in unmapped, cryptic wetlands. The use of background 230 

or pseudo-absence points is a common situation in the domain of species distribution modelling (SDM), which generally 231 

assumes that background points do not reliably represent true absence. Random forest is also used extensively in SDM, and 232 

researchers in that field have evaluated multiple approaches for dealing with the lack of true absence points. Among the best 233 

performing and simplest of these approaches is down sampling, or the downward adjustment of the bootstrap sample to 234 

match the number of presence points (Valavi et al., 2021, 2022). The default bootstrap size for the randomForest function 235 

used in this study is 0.632 of the number of observations in the training data. Use of the default setting would have produced 236 

a bootstrap sample size of 14,438. To implement down sampling, the bootstrap sample of the random forest model was set to 237 

7586, the number of wetland points in the training data. In order to assess any effect of down sampling on model 238 

performance, the full model was also fit without down sampling, i.e. with default bootstrap settings.  239 

2.4 Model validation and testing 240 

Model performance was assessed in several ways, using both out-of-bag prediction and test data. Out-of-bag prediction is a 241 

strength of the random forest approach, made possible by the bootstrap sampling process. At each iteration, a decision tree is 242 

grown using a subsample of the training data. Out-of-bag refers to the data which was not part of a given bootstrap sample, 243 

and therefore not used to grow the associated decision tree. Each decision tree can therefore be validated by using it to 244 

predict the OOB data, as they have not been used in its training. Averaging the error rate over all trees in the forest gives the 245 

OOB error rate for the model. While OOB metrics are sometimes used in place of external holdout testing data, for this 246 

project testing with external data was performed as well. 247 

 248 
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 249 

 250 

 251 

Table 2. Predictors used in the final model 252 

Name Description Type Source Data Scales 

In Final 

Model Scale Unit 

Depth_ 

Restrictive 

Estimated Depth to a Restrictive 

Soil Layer Soil NRCS SSURGO 4, 12, 60 12 meters 

Depth_ 

Water 

Estimated Depth to Mean Water 

Table Soil NRCS SSURGO 4, 12, 60 4, 12 meters 

Hydric_ 

Soils 

Percent Hydric Soils in Map 

Unit Soil NRCS SSURGO 4, 12, 60 4, 12, 60 meters 

KSat 

Estimated Hydraulic 

Conductivity Soil NRCS SSURGO 4, 12, 60 60 meters 

Surf_Geo Surficial Geology Soil 

MassGIS Surficial 

Geology 4 4 meters 

B2 Aerial Imagery: Green Band Spectral 

MA 2021 Leaf Off 

Aerial Imagery 4, 12, 60 12 meters 

B4 

Aerial Imagery: Near Infrared 

Band Spectral 

MA 2021 Leaf Off 

Aerial Imagery 4, 12, 60 60 meters 

DEV 

Deviation in Elevation Relative 

to the Neighborhood Pixels Terrain 

LiDAR Derived 

Elevation 

4, 12, 60, 

300, 1000 12, 60 meters 

DIF 

Difference in Elevation Relative 

to the Neighborhood Pixels Terrain 

LiDAR Derived 

Elevation 

4, 12, 60, 

300, 1000 12, 60 meters 

DTW Cartographic Depth to Water Terrain 

LiDAR Derived 

Elevation 

250, 1000, 

4000, 16000 

250, 1000, 

4000 

catchment 

area 

(pixels) 

Slope 

Slope of the Topography in a 

Neighborhood Terrain 

LiDAR Derived 

Elevation 

4, 12, 60, 

300, 1000 12, 60 meters 
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NDVI_ 

Mean 

Mean of the Landsat 8 

Normalized Difference 

Vegetation Index Composite Vegetation 

LANDSAT 8 from 

Google Earth 

Engine 30 30 meters 

NDVI_ 

Median 

Median of the Landsat 8 

Normalized Difference 

Vegetation Index Composite Vegetation 

LANDSAT 8 from 

Google Earth 

Engine 30 30 meters 

NDWI_ 

Mean 

Mean of the Landsat 8 

Normalized Difference Water 

Index Composite Vegetation 

LANDSAT 8 from 

Google Earth 

Engine 30 30m meters 

Veg_ 

Height Vegetation Height Vegetation 

LiDAR Derived 

Vegetation Height 4, 12, 60 

4m, 12m, 

60m meters 

 253 

 254 

As the model produces a 0-1 probability score and not a classification, in order to calculate accuracy metrics it is necessary 255 

to collapse the probability score into a dichotomous outcome (i.e. wetland/upland). The standard probability threshold of .5 256 

was used to bin pixels into wetland and non-wetland categories. Predictions can then be compared to the MDW. Model 257 

accuracy was explored through several metrics: overall accuracy, and true/false positive and negative rates. It is important to 258 

remember that true and false are here relative to the reference layer, and that some amount of over-prediction relative to that 259 

layer (i.e. identification of additional wetlands) is a fundamental goal of the project. The confusion matrix captures values 260 

for true and false negatives and positives in a table that crosses the values of the reference data with the model predictions 261 

(Ting, 2010). Accuracy and confusion matrices were also calculated for alternate parameterizations and sampling strategies 262 

in order to understand any impacts of different strategies on model performance.  263 

 264 

Additionally, the model was evaluated with a metric designed specifically for probabilistic binary classifiers, which does not 265 

require collapse of continuous probability scores into dichotomous outcomes. The measure known as area under the receiver 266 

operating characteristics curve (AUC) provides a metric that has been found useful for binary classifiers, including in digital 267 

wetland mapping (Maxwell et al., 2016). The curve from which the AUC is derived plots the true positive rate against the 268 

false positive rate across a spectrum of probability thresholds. For the purposes of interpretation, the AUC is equivalent to 269 

the probability that the model will assign a higher probability score to a randomly chosen wetland point than to a randomly 270 

chosen background point (Fawcett, 2006). An AUC of 1 indicates perfect prediction, while an AUC of .5 would mean model 271 

predictions are totally random. For our purposes, its utility is in generating a single measure of probabilistic model 272 
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performance. While there are no hard and fast thresholds for AUC scores in remote sensing, scores above 0.70 are often 273 

judged acceptable, above .80 good, and above .90 excellent (Hosmer et al., 2013). 274 

 275 

In the interest of understanding how the model performed on different wetland types and land covers, DEP wetland types 276 

were crosswalked with categories of land cover in the MassGIS 2016 Land Cover/Land Use dataset. The crosswalk was 277 

supplemented with coastal wetlands data accessed through the Northeast Oceans Data Portal, which were used to assign 278 

predicted additional wetlands to the category of salt marsh (Northeast Ocean Data Portal, 2024). In this way, model 279 

predictions of previously mapped DEP wetland classes could be compared with model predictions of additional wetlands 280 

that, as they do not appear in the DEP wetland inventory, have not been assigned a wetland type.  281 

 282 

In order to assess impact of model predictions on state-level wetland extents, the wetland probability map was post-283 

processed using the MA 2016 High Resolution Land Cover dataset to remove the land cover classes of impervious and 284 

barren, which were identified as areas where the prediction was likely misidentifying wetlands. Additionally, the areas 285 

identified as Open Water in the MDW were removed.  286 

3 Results 287 

Initial models were fit with 500 trees. After plots of error rate against number of trees showed that the model achieved 288 

stability after approximately 100 trees, subsequent models were fit with 400 trees to reduce processing time. Initial models 289 

were fit with 63 predictors, and after feature selection using holdout variable importance, a reduced model was fit with 29 290 

predictors. After confirming equivalent performance with the reduced model, the latter was selected as the final model. 291 

Model output of the Wetland Probability Score for the entire state is shown in Fig. 4.  292 

 293 

 294 
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 295 
Figure 4. Wetland Probability Score for Massachusetts. This map reflects the raw WPS without post-processing to 296 

remove conflicting land use designations, e.g. open water and impermeable surfaces. From west to east, callout (A) is in the 297 

Berkshires Hills of the Northeastern Highlands ecoregion; callouts (B-C) are in the Northeastern Coastal Zone, with (B) in 298 

the Connecticut River Valley, (C) in the Gulf of Maine Coastal Plain, and (D) in the Narragansett/Bristol Lowland; and 299 

callout (E) is in Atlantic Coastal Pine Barrens. Callout (C) shows the same area represented in Fig. 2. Multi-scale predictors.  300 

3.1 Accuracy and Prediction Outcomes 301 

Model performance met or exceeded all expectations for prediction. Generating predictions on the held-out testing data, and 302 

a dichotomized prediction (wetland/upland at a probability threshold of .5), the model achieved an overall accuracy rate of 303 
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92%, with a true positive rate of 87% and a true negative rate of 94%. Prediction accuracy based on the testing data was 304 

nearly identical to the out-of-bag accuracy score generated through the model fitting process. Performance was similar 305 

among all comparison models (Table 3). The probabilistic metric AUC was 0.971, i.e. there is a 97% chance that the model 306 

would assign a higher probability score to a randomly selected wetland point than to a randomly selected non-wetland point. 307 

While there are no hard and fast thresholds for acceptability and excellence for AUC scores, by any standard 0.971 indicates 308 

outstanding performance (Hosmer et al., 2013). 309 

 310 

Table 3. Confusion matrices and performance metrics for final model and comparison models  311 

    

 
Reference data (DEP 

Wetlands) Metrics 

 Train/test Bootstrap 
Type of 

test 

Model 

prediction 

Counts Rates Accuracy AUC 

 0 1 0 1 
  

Final model 

29 predictors 

Tile-based 

holdout 
Down sampled 

Holdout 
0 4476 289 95% 13% 

0.922 0.971 
1 259 1977 5% 87% 

Out-of-

bag 

0 14459 775 93% 11% 
0.918  

1 1068 6155 7% 89% 
 

           

Comparison 

models 

63 predictors 

Random 

holdout 
Down sampled 

Holdout 
0 4770 351 94% 13% 

0.919 0.973 
1 244 2010 6% 87% 

Out-of-

bag 

0 14210 745 93% 11% 
0.918  

1 1061 6067 7% 89% 
 

          
Tile-based 

holdout 

Default 

sampling 

Out-of-

bag 

0 14457 790 93% 11% 
0.918  

1 1077 6339 7% 89% 
 

           

         
True Neg False Neg 

         
False Pos True Pos 

 312 
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3.2 Variable Importance 313 

Terrain and soil variables were the most decisive predictors of wetland presence (Fig. 5). The LIDAR-derived cartographic 314 

Depth to Water (DTW), and the estimated percent of hydric soils from SSURGO, at various scales comprised the top six 315 

predictors and seven out of the top eight. Examination of the range of importance scores (mean decrease in accuracy) for 316 

each predictor, across 10 model fits, shows clusters of stability within rankings that shifted from iteration to iteration. 317 

DTW_1k held the top rank in every iteration, while Hydric_Soils_60m and DTW_4k each consistently held either the 2nd or 318 

3rd positions. Future investigations may focus primarily on the highest-performing variables from this predictor set.  319 

 320 

 321 

 322 

 323 
 324 

Figure 5. Variable importance in the final model. Permutational variable importance of the 29 variables used in the final 325 

model, across 10 models fit with identical parameterization. Plotting importance across multiple models allows for the 326 

assessment of relative importance while accounting for stochastic variability across model fittings. The red diamond 327 

indicates the mean importance for that variable across all 10 models, and the blue asterisk shows the importance within the 328 

final model itself.  329 

 330 
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Examining the relationship between important variables and prediction outcomes yields some understanding of patterns in 331 

over- and under-prediction. Figure 6 shows the distribution of predictor values across prediction outcomes, i.e. true and false 332 

positive, and true and false negative, for the three most important multi-scale predictors: cartographic depth to water, percent 333 

hydric soils, and slope. DEP wetland and background points show consistent separation across important predictors, with 334 

little or no overlap of interquartile ranges between true positives and true negatives. Unsurprisingly, atypical values for these 335 

predictors lead to divergent classifications. For example, background (nominally non-wetland) points typically have 336 

relatively higher cartographic depth to water, so background points with lower DTW values are more frequently over-337 

predicted by the model. However it must be remembered that divergent classification is relative to the MDW and some 338 

amount of divergence–especially over-prediction–is a fundamental goal of the analysis.  339 
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 340 

Figure 6. Distribution of predictor values across prediction outcomes for the three most important multi-scale 341 

predictors: cartographic depth to water, percent hydric soils, and slope. Prediction outcomes are based on binning the 342 

wetland probability score into a dichotomous (wetland/upland) outcome at a .5 threshold and comparing with the 2005 343 

MassDEP Wetland layer. Red boxes show the median and interquartile range of predictor values. Results show that atypical 344 

values for important predictors lead to classifications that diverge from the reference layer. 345 
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 346 

3.3 Model performance by wetland type and landcover  347 

DEP wetland types (as given in the MDW) were crosswalked with land cover categories in the MassGIS 2016 Land 348 

Use/Land Cover layer to facilitate comparison with model predictions (Fig. 7). To supplement the land cover crosswalk, 349 

predicted wetlands that overlapped with coastal wetlands appearing in the Northeast Oceans dataset were assigned to the Salt 350 

Marsh category. The model excelled at identifying additional forested wetland areas (i.e. ‘Wooded Swamp’), adding 167,329 351 

acres of probable wetland, representing a 46% increase over the state inventory. Conversely, the model only identified 84% 352 

(57,518 acres) of the mapped forested wetland area appearing in the DEP inventory, suggesting that the even combined DEP 353 

and model results might seriously underestimate the extent of some cryptic wetlands. To existing estimates of freshwater 354 

marsh, model predictions added 96,443 acres, a 12% increase, and correctly identified 91% of DEP-designated freshwater 355 

marsh area. For each of the other crosswalked categories (excluding ‘Other’), the model identified some but not all of the 356 

DEP-designated wetland area: Salt Marsh (94%), Cranberry Bog (93%), and Tidal Flat/Rocky Shore (46%). Results in the 357 

‘Other’ category include land use designations Impervious, Developed Open Space, Bare Land, Pasture/Hay, and Cultivated, 358 

and likely encompass many historic wetland areas that have been lost to agricultural, residential, or urban development. 359 

 360 

 361 

 362 
 363 

Figure 7. Comparison of DEP wetland layer and model predictions across wetland types. Comparison of raw Wetland 364 

Probability Score (dichotomized at 0.5) with DEP designation. Landcovers in the 'Other' category include, in descending 365 

order of acreage, Impervious, Developed Open Space, Bare Land, Pasture/Hay, Cultivated, Water, Palustrine Aquatic Bed, 366 

and Unconsolidated Shore. 367 
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3.4 Impact on estimates of wetland extent 368 

After post-processing to remove impervious surface and barren lands, the model identified an additional 225,781 acres of 369 

probable wetland compared to the MDW inventory–an increase of 40% (Table 4, ecoregions shown in Fig. 3). The 370 

Northeastern Highlands had the highest proportional increase at 49%, likely due to the dominance of the forested highland 371 

landscapes for which wetland detection via visual assessment methods is difficult. The Atlantic Coastal Pine Barrens, 372 

dominated by sandy soils, had the smallest absolute and proportional increase in wetland area. The 15% of additional 373 

wetland area here represents approximately 1/3rd of the proportional increase of the other two ecoregions.  374 

 375 

 376 

Table 4. Additional wetland area identified across the ecoregions of Massachusetts 377 

Ecoregion 2005 DEP 

2023 Additional 

predicted (at .5 

threshold) Total 

Percent 

increase 

Atlantic Coastal Pine Barrens 78,402 ac 11,430 ac 89,832 ac 15% 

Northeastern Coastal Zone 396,695 ac 171,085 ac 567,780 ac 43% 

Northeastern Highlands 88,153 ac 43,266 ac 131,419 ac 49% 

Total 563,250 ac 225,781 ac 789,031 ac 40% 

 378 

 379 

4 Discussion 380 

4.1 Overview  381 

A random forest model was trained on the 2005 MassDEP Wetlands layer (MDW), using widely available open source 382 

software and publicly available data, and generated a Wetland Probability Score for the entire state of Massachusetts at a 4m 383 

resolution. The model has performed well by all metrics, and provides support for the use of machine learning to quickly and 384 

efficiently generate large-scale maps of wetland probabilities that can serve as an adjunct to conventional field and desk 385 

methods. The balance of over- and under-prediction relative to the MDW suggests that model is fit for the purpose of 386 

providing a more inclusive estimate of wetland extent in Massachusetts by modeling the extent of additional wetlands that 387 

are not captured in the MDW. Our results suggest a promising avenue for bootstrapping existing wetland inventories by 388 

using them as training data to identify additional probable wetland acres.  389 

 390 
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Adding 46% to existing estimates of forested wetlands in the state, results suggest that models such as this may be especially 391 

useful for identifying cryptic, previously unmapped forested wetlands. These wetlands are especially difficult to identify via 392 

the methods used by both NWI and the MDW. Efforts to combat climate change make it critical to understand the extent and 393 

location of forested wetlands, as they represent greater stores of aboveground carbon than other wetland types and greater 394 

stores of soil organic carbon than other forests. The model also predicted 69,761 acres of wetland in developed and 395 

agricultural areas (i.e. the ‘Other’ category of Fig. 7), entirely absent from the MDW, suggesting that this model may also be 396 

of use to understand long-term land use change, by estimating the extent and location of wetlands that have been lost to 397 

development of various kinds. The identification of topographically suitable areas with a high wetland probability may also 398 

be useful for the identification of potential sites for wetland restoration.  399 

 400 

Examination of model performance and variable importance together provide support for the use of multi-scale terrain 401 

derivatives in wetland detection, and further expansion of multi-scalar approaches to other types of predictors. Variable 402 

importance scores show that model performance was dependent on the inclusion of terrain derivatives (e.g. cartographic 403 

depth to water and slope) at multiple scales, reinforcing the efficacy of multi-scale terrain derivatives established in previous 404 

work on wetland detection (Halabisky et al., 2023). More novel results include the positive performance of non-terrain multi-405 

scale predictors, principally the SSURGO-derived Hydric Soils. The model was improved by inclusion of Hydric Soils at 406 

three different scales, and the larger-scale versions (smoothed at 12m and 60m resolutions) scored higher on importance than 407 

the baseline 4m scale. This finding provides support for the use of multi-scale smoothing with soil map data, both to account 408 

for neighborhood effects and to ameliorate the issues caused by crisp boundaries and their tendency to obscure underlying 409 

heterogeneity and varying transition zones. 410 

4.2 Limitations 411 

The use of the MDW for training and testing has implications for interpretation of model results and accuracy metrics: all 412 

accuracy metrics are relative to the reference dataset. Over-prediction, or false positives, should therefore be assumed to be a 413 

mix of false positives and real, cryptic wetlands that are missing from MDW. Likewise, under-prediction or false negatives 414 

are inevitably a mix of the model failing to identify an existing wetland, and false positives in the MDW where the model 415 

correctly identifies an upland. We expect the MDW itself is much more prone to false negatives than false positives, and that 416 

over-prediction by our model is therefore more informative than under-prediction.  417 

 418 

Results show that the model failed to identify significant portions of DEP-designated wetlands: Tidal Flat/Rocky Shore 419 

(54%), Wooded Swamp (16%), Freshwater Marsh (9%), Cranberry Bog (7%), and Salt Marsh (6%). Researchers were also 420 

able to identify some patterns in over- and under-prediction through visual inspection of results and comparison with 421 

familiar sites and a small number of digitized field delineations. The model is prone to identifying low lying urban areas and 422 
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drained agricultural fields as wetlands. As noted above, these areas are topographically suited to be wetlands and prior to 423 

development they likely were. The model is also under-predicting certain wetland configurations, including sloped wetlands 424 

and small wetlands high in the drainage network. Future efforts to better capture these wetland types and/or environmental 425 

configurations could include oversampling these areas or fitting a weighted model. 426 

4.3 Next Steps for Machine Learning and Wetland Mapping 427 

The strong performance and relative speed of this approach suggest many useful avenues for further development. Releasing 428 

a publicly available GIS layer based on the Wetland Probability Score could be an aid to researchers as well as a useful 429 

screening tool for the town conservation commissions who, in Massachusetts, are charged with assessing the veracity of 430 

wetland delineations submitted by project proponents, as well as with desktop evaluation of potential wetlands requiring 431 

field delineation. Moving forward, this model or ones very similar to it are likely to be critical in large-scale assessments of 432 

soil carbon across the landscape–not only in wetlands (Stewart et al., 2024). It’s also possible that a very similar model, with 433 

additional development, could be used to predict not only wetland extent but also wetland type.  434 

 435 

In the domain of model performance and overall value, this project opens up several pathways for exploration and further 436 

improvement. First and foremost, the integration of field data into the training and/or validation process would almost 437 

certainly improve the performance of the model as well as reinforcing its validity for researchers, policymakers, and the 438 

public. One potential avenue for acquiring data at the necessary scale would be creating a centralized repository and unified 439 

format for field delineation data gathered for wetland permit applications. Conversely, a map of wetland probabilities could 440 

be used to inform a field sampling plan for ongoing carbon inventory and accounting (Stewart et al., 2024). 441 

 442 

The development of this model was focused narrowly on the goal of estimating the extent of cryptic wetlands in aggregate 443 

(and by implication providing proof of concept for digital wetland mapping using machine learning), rather than producing 444 

the most accurate predictions on a pixel-by-pixel basis, or producing the fastest or most parsimonious model. As such, 445 

results suggest several low hanging fruits for further investigation and improvement of model efficiency and performance. 446 

For example, it is possible to generate variable importance metrics on a pixel-by-pixel basis in the training and/or testing 447 

data. These case-level metrics would support more detailed understanding of key topics such as which predictors support the 448 

identification of atypical wetlands currently underpredicted by the model, and potentially improving predictive performance 449 

with variable weighting and/or oversampling strategies. Additionally, there are several other ways to further refine the 450 

feature selection process, such as testing the importance of highly correlated predictors by fitting models with only the single 451 

most important predictor from each family, i.e. terrain, vegetation, soils, and so on. This could also be applied to a deeper 452 

investigation of the impact of multi-scale approach, by fitting models with only the single most important scale for each 453 

predictor and assessing model performance. In the interest of identifying the most lightweight and parsimonious model that 454 
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can achieve required levels of accuracy, these investigations should be accompanied by assessment of other strategies for 455 

tuning model hyperparameters such as number of trees, size of bootstrap sample, and number of variables selected for each 456 

decision tree. 457 

5 Conclusion 458 

The status of wetlands is a critical issue that is only becoming more important as the climate crisis intensifies. Monitoring, 459 

managing, and protecting these vital ecosystems, safeguarding the many functions they perform, all depend on a strong 460 

understanding of their extent and location. This is a critical issue for cryptic wetlands that are missing from most inventories, 461 

often due to forest land cover, which represent especially dense pools of organic carbon. Fast and efficient processes for 462 

detecting probable wetlands, using free, open source software and publicly available data, are a needed adjunct to 463 

conventional methods for wetland mapping and monitoring.  464 
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