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Abstract 

Located in Peru’s Cordillera Blanca, the Queshque Glacier (~9.8˚S) has experienced nearly continuous retreat since the mid-20th 

century. More recently, this trend has accelerated after the glacier transitioned from land to lake terminating. We use observations 

of glacier surface height change (1962-2008), bed topography, and climatology to evaluate the relative drivers of Queshque’s 15 

evolution from 1962-2020. Six Open Global Glacier Model ensemble members differing in climatic sensitivity are calibrated to 

fit the mass balance rate of -442±16 mm w.e. a-1 calculated over the 2008 glacier area between 1962-2008. The models are then 

used to simulate monthly glacier mass balance over the entire study period and dynamic glacier evolution from 2008 to 2020. 

The models reproduce a typical outer-tropical glacier mass balance regime, showing continuous ablation throughout the year that 

increases during the pronounced wet season. Climatological trend analyses along with coupled mass balance and ice flow 20 

simulations indicate that temperature has been the predominant driver of mass loss since 2008 and that recent precipitation 

amounts have caused minor dampening of this trend. The strongest negative correlation between temperature and mass balance 

occurs during the wet season, while a positive correlation between precipitation and annual mass balance is most pronounced 

during the dry season. The influence of ENSO over mass balance trends appears to decline throughout the study period except 

during the wettest months, suggesting that wet season Pacific sea-surface temperatures are strong predictors of outer-tropical 25 

glacier mass balance variability. Finally, frontal ablation into the newly formed lake began in 2010. This caused ice acceleration 

at the glacier front, an average mass loss increase of 4%, and a significant narrowing of the model ensemble mass loss spread. 

We conclude that while Queshque’s trajectory remained coupled to climatic forcings, the new proglacial lake exacerbated and 

modified the retreat pattern regardless of the model climate sensitivity. 

1 Introduction 30 

Glacier-climate interactions in the tropics (23.5˚S-23.5˚N) have broad relevance across multiple timescales and applications 

(Mark, 2008). While tropical glaciers have varied considerably in size and extent during the Holocene (Stansell et al., 2023), they 

have retreated through most of the 20th and 21st centuries (Thompson et al., 2011; Vuille, 2018). Processes associated with these 

oscillations are of particular relevance in the Peruvian Andes, which host most of the world’s extant tropical ice (RGI 

Consortium, 2017). The present article focuses on a glacier in Peru’s Cordillera Blanca (CB), a mountain range that has been 35 

reworked by multiple phases of glaciation (Mark et al., 2024) but which has experienced nearly continuous glacier retreat since 

the 1920s (Burns and Nolin, 2014; Georges, 2004; Rabatel et al., 2013). Regional ice loss on the order of 29% between 2000 and 
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2016 (Seehaus et al., 2019) has triggered cascading socioenvironmental repercussions spanning hydrographic shifts (Baraer et 

al., 2012; Bury et al., 2011; Mark et al., 2017) and changing geohazard exposure (Drenkhan et al., 2019; Huggel et al., 2020), 

among other challenges. On longer timescales, glacier extents have fluctuated in accordance with the evolving tropical Andean 40 

paleoclimatic conditions, producing records of Quaternary climate history through the discontinuous moraine record (Stansell et 

al., 2022) as well as through continuous geologic proxies of ice extent (Rodbell et al., 2008).   

Whether for interpreting the tropical glacial geological record or understanding the trajectory of contemporary glacierized 

landscapes, disentangling the various drivers of glacier change is of primary concern. Like glaciers anywhere, those of the 

tropics and CB are controlled to the first order by the prevailing (hydro)climatological conditions (Kaser, 2001; Kaser and 45 

Georges, 1999). Superimposed on these dominant forcings, additional processes differentiate rates of change across timescales 

and between individual sites. These processes include climatic ones, most notably the South American Summer Monsoon 

(SASM) system, which brings moisture across the Andes from the Amazon basin on a seasonal basis (Vuille et al., 2008b; Zhou 

and Lau, 1998). Driven by the annual migration of the Inter-Tropical Convergence Zone and the related South Atlantic 

Convergence Zone (Kodama, 1992), the SASM produces stark hydroclimatic seasonality in outer-tropical latitudes, with over 50 

half of annual precipitation commonly occurring during DJF (wet-season) and negligible precipitation during JJA (dry-season). 

The El Niño-Southern Oscillation phenomenon (ENSO) modulates SASM strength while influencing temperature anomalies. 

The ENSO cycle is therefore a significant driver of inter-annual mass balance variability in the CB (Maussion et al., 2015; Vuille 

et al., 2008b). 

Between individual glaciers, responses to climatic conditions are differentiated by morphometric factors such as hypsometry, 55 

aspect, and slope. Mass loss feedbacks associated with terrain radiation (e.g., Aubry-Wake and others, 2017) and glacial lake 

formation (e.g., King and others, 2018) further dictate retreat patterns independently from climate. This latter factor has been 

shown to be particularly significant at the mountain range scale, where lake versus land terminating glaciers may respond 

differently to uniform climatic conditions (Brun et al., 2019). To interpret glacier responses to climate change, it is thus often 

necessary to account for independent processes like lake formation alongside the climatic mass balance (e.g., Sutherland et al., 60 

2020). A coupled mass balance and ice flow modeling approach is useful for parsing these diverse (climatic and non-climatic) 

influences over glacier change. Through transient simulations, coupled models can also facilitate interpolation between often 

discontinuous (paleo)glaciological observations. 

However, tropical glaciers present persistent mass balance modeling challenges. One simple and common approach to glacier 

mass balance modeling is the temperature-index (TI) model, which is built on the empirical relationship between surface 65 

temperature and a glacier’s ablation rate (Hock, 2003).  While the TI approach tends to perform well in the mid-latitudes, its 

applicability is less obvious in the tropics where the sensible heat flux plays a diminished role and melt does not immediately 

correlate with the continuously low temperatures (Fernández and Mark, 2016). Although other approaches such as the enhanced 

TI (ETI) model exist (Hock, 1999; Pellicciotti et al., 2005), there are compelling justifications for using simple TI models within 

the tropics. First, a practical data limit: the more rigorous approach of physical energy balance modeling requires data which are 70 

not readily available at the spatiotemporal scale relevant to the topics outlined above. Moreover, temperature does tend to 

correlate with ablation on inter-annual to decadal timescales (Rabatel et al., 2013; Sicart et al., 2008), suggesting that a well 

calibrated TI model could theoretically internalize the numerous indirect impacts of temperature change (Ohmura, 2001). 

The initial objective of our study is therefore to evaluate the performance of a coupled glacier mass balance and ice flow model 

using an empirical TI approach in an outer-tropical context. To do so, we present a case study of the CB’s Queshque Glacier, 75 
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simulating its evolution since 1962. Beyond offering an evaluation of our methodological approach, our analysis yields insight 

concerning the dominant (hydro)climatic processes influencing glacier mass balance trends in the outer-tropical Andes. 

Furthermore, it illuminates how the transition from land to lake termination has impacted rates of glacier retreat, irrespective of 

climate. 

2 Site Description 80 

The Queshque Glacier (9.79˚S, 77.25˚W) is situated in the southern CB’s Catac District and as of 2008, covered an area of 1.65 

km2 (Fig. 1a). From its headwall elevation of approximately 5460 m a.s.l., the glacier flows to the southwest, which provides 

optimal topographic shading, making it among the minority of glaciers in the range to retain a substantive ablation tongue. 

Located in the northern outer-tropical glacier region (Sagredo and Lowell, 2012), Queshque experiences the strong hydroclimatic 

seasonality described above and is therefore sensitive to fluctuations in the timing and intensity of moisture delivery by the 85 

SASM. While the glacier’s 20th century retreat trend can be explained by significant warming (Mark and Seltzer, 2005), 

interannual mass balance variability is likely related to the ENSO cycle and SASM dynamics. The present study revisits the topic 

of mass balance forcings of Queshque Glacier, incorporating new data, observations, and improved numerical modeling to 

investigate both climatic drivers of ice loss and the impacts of transitioning from land to a lake terminating conditions. 

 90 
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Figure 1: Location of Queshque Glacier on base imagery from 2023 (Sentinel 2). The position of calving fronts in 2018 

and 2020 (derived from Sentinel 2 imagery) also shown. Inset basemap courtesy of ESRI (a). Field photos from 2008 (b) 

and 2023 (c) are marked with stable reference points for comparison. Note that the 2008 glacier outline delineates only ice 

that was considered in our model, excluding other glaciers that existed at the time. 

We follow Queshque’s retreat history over two periods: 1962-2008 and 2008-2020. Between 1962 and 2008, Queshque retreated 95 

over 1 km and ice coverage in the valley was dramatically reduced. From 2008 through 2020, the glacier retreated an additional 

~350 m and as of 2020, terminated at approximately 4800 m a.s.l. (Fig. 1). Retreat patterns after 2008 were modified by the 

onset of frontal ablation into a new proglacial lake. Proglacial lake formation occurred in two phases. First, after 1990 a small 

lake formed between the southern valley wall and the left lateral side of the glacier. By 2008, thinning and retreat had separated 

the glacier from this lake, but a till-covered bedrock knob continued to dam the water above the ice terminus elevation. The lake 100 

began draining towards the glacier, resulting in a mixture of outflow and meltwater pooling against the terminal ice (Fig 1b). The 

second phase occurred after 2008, as further retreat revealed a significant overdeepening at the base of the glacier. Meltwater and 

outflow from the perched lake have continued to fill this overdeepening, forming a sizeable bedrock and till-dammed proglacial 

lake. As a result, lake calving became an observable component of total mass loss (Fig. 1c). By 2023, Sentinel 2 imagery shows 

that the lake had grown to about 300 m in width and 450 m in length, covering an area of approximately 100,500 m2.  105 

3 Data and Methods 

3.1 Geodetic Mass Balance 

A geodetic mass balance measurement between the dry seasons of 1962 and 2008 is derived by differencing digital elevation 

models (DEMs) from the respective years. Vertical aerial photographs taken on 12 July 1962 were used to produce a 

stereographic model of the glacier and surrounding terrain and extract a digital restitution of discrete point elevations over the 110 

glacier surface at a 30 m spacing using a Wild B8 analog plotter (Mark & Seltzer (2005) following Brecher and Thompson, 

1993). Points were then mapped to topographic contours at 25 m vertical resolution. Since the 1962 DEM was constructed using 

analog methods, we perform a quality comparison with a previously published digital version to guarantee the adequacy of the 

selected dataset. Huh et al. (2017) used the same imagery in ERDAS Leica Photogrammetry Suite version 11 software to 

construct a 10 m resolution DEM of the 1962 topography. Our comparison reveals considerable quality differences favoring our 115 

choice of DEM. We attribute quality concerns in the latter DEM to extremely low contrast in much of the accumulation zone that 

hampered the effectiveness of the DEM generation software. This resulted in obviously unnatural terrain artifacts that are absent 

from our chosen DEM product. A second DEM was produced using airborne light detection and ranging (LiDAR) data obtained 

in July of 2008 (Huh et al., 2017). The LiDAR point cloud was converted to a 1 m resolution DEM covering the Queshque 

valley, used to delineate the 2008 ice boundary, then resampled to a courser 10 m resolution for use in the glacier model. 120 

After aligning the DEMs using 3-dimensional coregistration (Figs. S1-S5), we subtract the 1962 topography from that of 2008. 

We then calculate the specific (area averaged) mass balance (SMB) between 1962 and 2008 using projected pixels falling within 

the 2008 glacier boundary by Eq. (1): 

𝑆𝑀𝐵 =
𝜌𝑤𝑎𝑡𝑒𝑟

𝜌𝑖𝑐𝑒

𝑑𝑥𝑑𝑦

∆𝑡
∑ ∆ℎ𝑖

𝑛
𝑖=1                                         (1) 

where 𝑑𝑥 and 𝑑𝑦 are the pixel resolution in the x and y dimensions of the local projection, ∆𝑡 is the timespan in years, and ∆ℎ𝑖 is 125 

the elevation change for a given pixel of the 𝑛 pixels within the 2008 glacier boundary. 𝜌𝑤𝑎𝑡𝑒𝑟  and 𝜌𝑖𝑐𝑒 are the densities of water 

and ice, taken respectively as 1000 and 900 kg m-3. 
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3.2 In-Situ Mass Balance Measurements 

Ablation stake and snow pit data for Queshque Glacier are available between the years 2015 through 2019. The data comprise 11 

individual point measurements spanning about 4700-5150 m in altitude that have been converted to water equivalence. Some 130 

measurements report altitudes occurring below the glacier terminus elevation in 2008. While lower altitudes in the stake data 

may be in part linked to glacier thinning, altitudes below the proglacial lake water level cannot be explained in this way. It 

appears, rather, that some level of inaccuracy or negative bias exists in the elevation data. We therefore apply a uniform bias 

correction of 26 m across all elevations reported in the stake data such that the lowest stake measurement reaches 4727 m, which 

is the elevation below the glacier terminus in 2008 (see section 3.5.3). We recognize that this correction is a source of 135 

considerable uncertainty, however, we determined it to be necessary since we lack additional GPS metadata. Due to 

inconsistencies in the duration of the stake measurements, ablation measurements were converted to m w.e. d-1 then multiplied by 

365 days to arrive at standard units of m w.e. a-1. Ablation stake data are reserved for validation purposes. 

3.3 Glacier Bed Topography and Ice Thickness 

A ground penetrating radar (GPR) survey using 10 MHz frequency was conducted over the Queshque Glacier tongue during the 140 

dry season of 2014 using the Radar HF from Unmanned Industrial LDTA (Fig. 1a). Coordinates and surface elevations 

associated with the radar scans are established by averaging values from two GPS receivers. We interpreted radar scans visually 

using RadarView 1.0 software and determined thickness profiles based on first reflectance. These values were subtracted from 

the GPS ice surface heights to derive the bed topography. We calculated ice thickness in 2008 (derived thickness) by subtracting 

the bed topography from the 2008 DEM (Fig. S6). We then randomly divided the 2014 GPR survey into equally sized calibration 145 

and validation datasets before downscaling the respective subsets by averaging observations located within the same 10x10 m 

grid cell. This aggregation method facilitates comparisons between ice thickness observations and models without altering the 

spatial patterning of the GPR data (Pelto et al., 2020). 

To ensure the accuracy of our derived thickness measurements, we evaluate them against a minimal GPR transect surveyed in 

2009 (Stansell et al., 2022). For each point observation from the 2009 transect, we average the values from the four closest grid 150 

cells that contain derived thickness measurements. We then evaluate derived ice thickness error (derived minus observed 

thickness) on a point-by-point basis. Error ranges from 13 m to -15 m, with a single outlier of -28 m (Fig. S7). Excluding the 

outlier, the datasets show strong agreement, with respective root mean squared error (RMSE), mean absolute error (MAE), and 

mean error (ME) values of 7 m, 5 m, and ~0 m. While we would expect to detect modest (<0.5 m) thinning in the ablation zone 

between 2008 and 2009, the resolution of the GPR datasets may preclude this observation. An elaboration of the GPR validation 155 

process is provided with the supplementary material.     

3.4 Climatology 

The SENHAMI-HSR-PISCO (hereafter PISCO) monthly gridded temperature, precipitation, and fixed gridded reference altitude 

datasets are adopted for the period 1980-2020 (Aybar et al., 2020; Huerta et al., 2023). Mean monthly temperatures are estimated 

by averaging the average minimum and maximum daily temperatures for each month. The PISCO climatology is extended to 160 

January 1960 using monthly temperature and precipitation standard anomalies from the downscaled Climate Research Unit 

(CRU) dataset (Harris et al., 2014; New et al., 2002). Both the PISCO and CRU datasets showcase typical outer-tropical Andean 

features, with stark precipitation seasonality (nearly all precipitation occurring during the austral summer) and only slight 

seasonal variation in temperature (Fig. S8). Despite its higher spatial resolution, PISCO runs a local warm bias as compared to a 
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completely overlapping timeseries from CRU. Temperature and precipitation bias correction are addressed during the mass 165 

balance model calibration. 

3.5 Glacier Model 

To evaluate drivers of glacier mass change and ice loss, we employ mass balance, ice flow, and calving models from the Open 

Global Glacier Model (OGGM) version 1.6.1 (Maussion et al., 2019). All simulations begin from the glacier state in 2008 and 

leverage the elevation band approach to create a flowline-based representation of the glacier (Huss and Farinotti, 2012; Huss and 170 

Hock, 2018). The glacier is divided into equally spaced elevation bands at 20 m intervals (half the resolution of the underlying 

map) and mean glacier attributes are calculated per band, beginning with elevation, width, area, and slope, all of which are 

derived from the 2008 DEM and glacier outline. Calibration of the model components is described below. Constant and 

calibrated parameters are listed respectively in Tables 1 and 2. 

3.5.1 Mass Balance Model Ensemble 175 

We employ the OGGM’s monthly TI scheme using the extended PISCO climatology. The mass balance 𝑚 during month 𝑖 at 

elevation 𝑧 is computed as:  

𝑚𝑖(𝑧) = 𝑝𝑓𝑃𝑖
𝑠𝑜𝑙𝑖𝑑(𝑧) − 𝜇 max((𝑇𝑖(𝑧) + 𝜀𝑇) − 𝑇𝑚𝑒𝑙𝑡 , 0)                                            (2) 

where 𝑃𝑖
𝑠𝑜𝑙𝑖𝑑(𝑧) and 𝑇𝑖(𝑧) are the monthly solid precipitation and average monthly temperature at a given elevation, 𝑇𝑚𝑒𝑙𝑡 is the 

temperature above which melt can occur, and 𝜇 is a positive degree-day factor (DDF; Hock, 2003). We assume orographic 180 

precipitation enhancement to be uniform across the glacier, allowing us to use a single precipitation factor (𝑝𝑓) to scale 𝑃𝑖  from 

the gridded climatological dataset. Lacking meteorological data to identify the “correct” 𝑝𝑓 parameter, we opt for a default value 

of 2.5, which is commonly adopted when using the CRU gridded precipitation product in glaciological applications (Marzeion et 

al., 2012; Maussion et al., 2019). All precipitation is assumed to be frozen when 𝑇𝑖(𝑧) < 0˚C and liquid when 𝑇𝑖(𝑧) > 2˚C. At 

intermediate temperatures, the proportion of solid to liquid precipitation is scaled linearly. 𝑇𝑖(𝑧) is calculated using a lapse rate of 185 

-6.5˚C for each km difference in altitude between a given point on the glacier and the climatology’s reference altitude of 5111m. 

Due to the warm bias identified previously, temperature is further reduced by a negative temperature bias parameter (𝜀𝑇). We 

note that lapse rates in the tropical Andes are a critical, yet highly uncertain parameter in tropical glaciological studies. 

Temperature sensor networks in the Cordillera Blanca, as well as atmospheric modeling using the WRF, show that regional lapse 

rates are seasonally variable, increasing in magnitude during the dry season. Measured lapse rates vary from ~-9.1˚C km-1 to ~-190 

6.0˚C km-1 between seasons, while modeled lapse rates varied from ~-7.5˚C km-1 to ~-5.8˚C km-1 (Hellström et al., 2017). One 

limitation of our model is that it cannot incorporate seasonal lapse rate variability during the mass balance model calibration, 

despite this playing a potentially crucial role in the tropical Andes. A compromise between the measured and modeled seasonal 

extremes was therefore selected and we opted for the conventional -6.5˚C km-1 for the sake of consistency and comparability 

with other studies. 195 

Annual modeled SMB is calculated by averaging the area weighted elevation band mass balance per month. Three free 

parameters, 𝜀𝑇, 𝜇, and 𝑝𝑓 are calibrated by fitting modeled mass balance between 1962 and 2008 to the observed geodetic SMB. 

To do so, we first determine reasonable 𝜀𝑇 values using a simple sensitivity test requiring that temperatures fall to ≤ 0˚C for a 

significant duration each year at the altitude range of the glacier.  Following the results of this test, we vary 𝜀𝑇 by increments of 

0.5˚C between -9.0 ˚C and -6.5˚C then calibrate 𝜇 under each temperature bias to fit the SMB from 1962 to 2008. If the model 200 
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cannot converge on a DDF satisfying the constraint on SMB, 𝑝𝑓 is subsequently calibrated. This procedure produces six mass 

balance models with differing variances (climatic sensitivities), but uniform mean SMB during the calibration period. Because 

each subsequent modeling step depends on the mass balance parameters, the six parameter sets become the basis for a model 

ensemble used in the remainder of the study. To evaluate the relationship between ensemble mean glacier mass balance 

variability, temperature, precipitation, and ENSO, we first use the Mann-Kendall test to evaluate significant (p<0.05) linear 205 

trends in the climate and ensemble mean SMB timeseries. To facilitate comparison with ENSO indices, we detrend and 

normalize all climate and mass balance variables by fitting them to 3rd order polynomials, subtracting the polynomial from the 

respective timeseries, then dividing the detrended data by their standard deviations (Dabernig et al., 2017; Wu et al., 2007). We 

then use Pearson correlations to compare the normalized SMB and climate timeseries to the ENSO indices including Niño-3.4, 

the Oceanographic Niño Index (ONI), the Southern Oscillation Index (SOI), and their seasonal values. 210 

3.5.2 Glacier Thickness and Flow Model 

The GPR dataset is leveraged to calibrate the ice flow model by minimizing error between modeled and observed ice thickness. 

We compute initial (2008) glacier ice thicknesses for each ensemble member following a well-documented continuity approach 

that leverages the calibrated mass balance models (Farinotti et al., 2009; Maussion et al., 2019). OGGM first evaluates the 

“apparent mass balance” (𝑚̃) per elevation band by assuming steady-state conditions (SMB=0). Ice flux (𝑞) at each band is then 215 

calculated as the cumulative apparent mass balance from the area (𝑎) above a given altitude (z). By continuity, we can assume 

that flux as cumulative mass balance above a given elevation band is balanced by ice flowing out of the band. OGGM therefore 

sets cumulative mass balance equal to ice flow using the shallow ice approximation (Hutter, 1981): 

𝑞 = ∫ 𝑚̃𝑑𝑎
𝑧𝑚𝑎𝑥

𝑧
= 𝑆 ∗  

2𝐴

𝑛+2
ℎ(𝜌𝑖𝑐𝑒𝑔ℎ𝛼)𝑛                                                    (3) 

Where 𝑧𝑚𝑎𝑥  is the maximum glacier altitude, S is elevation band width, 𝑔 is the acceleration due to gravity, 𝛼 is surface slope 220 

derived from the 2008 DEM, and ℎ is ice thickness. 𝐴 and 𝑛 are the creep parameter and exponent from Glen’s flow law, which 

describes the deformation of polycrystalline ice (Glen and Perutz, 1955). We adopt the conventional 𝑛 = 3, and leave 𝐴 as a free 

parameter. While total ice movement results from the combination of deformation (“creep”) and basal sliding, data scarcity limits 

our ability to estimate sliding. We therefore assume that all flow arises from deformation. As a result, it is likely that our models 

overestimate the magnitude of deformation while accurately predicting ice flux (Pelto et al., 2020). 225 

OGGM performs a glacier ice thickness inversion by solving Eq. (3) for ℎ at the center of each elevation band and extrapolating 

ice thickness by assuming a parabolic bed shape. The steady-state assumption can often lead to overestimated mass flux and 

therefore exaggerated overdeepenings located near the base of the glacier. To address this and achieve realistic proglacial lake 

depths, we set a minimum slope parameter of 7.5˚, which clips the glacier surface slope to ≥7.5˚ during the ice thickness 

inversion process, resulting in the flattest sections of ice retaining higher flow rates. This is necessary because otherwise the 230 

model will overestimate ice thickness to satisfy mass continuity with the steeper slopes above. The minimum slope parameter 

was determined after a series of sensitivity tests examining the impact of this parameter on terminus ice thickness, which, 

following sufficient glacier retreat, translates to eventual proglacial lake depth. In summary, this parameter decision increases ice 

velocity at the expense of thickness and aids to replicate observable ice dynamics. 

We calibrate the 𝐴 parameter during the inversion by minimizing ME in ice thickness against the GPR calibration dataset. 235 

Because the inversion is sensitive to the mass balance parameters, 𝐴 is calibrated individually for each of the model ensemble 

members. During calibration, the parameter is adjusted to ensure that modeled ice thickness matches observations despite 
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different ablation rates across models. The ablation rates themselves are a product of the DDF, which is directly influenced by the 

model temperature bias. The calibrated creep parameters are therefore direct outcomes of the previous mass balance calibration 

step. After identifying an optimal 𝐴 parameter for each member, we evaluate the resulting ice thickness map for ME and MAE 240 

against the GPR validation dataset. 

For dynamic glacier simulations, we use the OGGM Flux-Based model based on Glen’s flow law. For each model ensemble 

member, we therefore adopt the respective 𝐴 parameter calibrated during the inversion and continue to neglect sliding.  

3.5.3 Calving Model 

The OGGM implements a simple scheme developed by Oerlemans and Nick (2005) for calculating the calving flux (𝑞𝑐𝑎𝑙𝑣𝑖𝑛𝑔) at 245 

lake terminating glaciers:  

𝑞𝑐𝑎𝑙𝑣𝑖𝑛𝑔 =  𝑘𝑑ℎ𝑓𝑤                                       (4) 

where 𝑘 is a calving rate constant, ℎ𝑓 is ice thickness at the calving front, and 𝑤 is the width of the calving front. The 𝑑 

parameter is the water depth calculated from the water level (𝑧𝑤) and bed altitude at the glacier terminus (𝑧𝑏) as: 

𝑑 = 𝑧𝑤 − 𝑧𝑏                                        (5) 250 

While 𝑧𝑤 may vary on a seasonal basis, an examination of Sentinel 2 imagery shows negligible variation in the ice distal extent 

of surface water between the small pool visible in 2008 and the sizeable lake present in 2020. We therefore adopt the LiDAR 

DEM altitude at the site of pooling in 2008 as a constant 𝑧𝑤  throughout the duration of the study. 𝑧𝑏 is adjusted each month 

based on the position of the calving front and 𝑘 is adopted from a low-end estimate used in previous work (Table 1). Although 

this parameter could be calibrated to match observed glacier terminus positions, calving fluxes, or other metrics, we opt to 255 

maintain a general parameterization across all models. This decision ensures that calving model performance is not the result of 

calibration and instead reflects the impact of the process of frontal ablation on glacier retreat dynamics. 

Name (unit) Symbol Value Source 

Melt Threshold (˚C) 𝑇𝑚𝑒𝑙𝑡  -1.0 Maussion et al. (2019) 

Precipitation Factor 𝑝𝑓 2.5 Maussion et al. (2019) 

Glen’s Exponent 𝑛 3 Maussion et al. (2019) 

Calving Rate Constant (a-1) 𝑘 1.2 Oerlemans and Nick (2005) 

Water Level (m a.s.l.) 𝑧𝑤 4727 Sentinel 2 imagery and LiDAR DEM  

Table 1: Constant model parameters used in Eqs. (1-5).   

3.6 Glacier Evolution Experiments 

We run four dynamic ice flow modeling experiments to evaluate the relative drivers of ice loss from 2008 through 2020. To 260 

isolate the impact of frontal ablation, we force the glacier to evolve with and without lake calving under the historical 

climatology (sec. 3.3), for which we take the PISCO dataset between 2008 and 2020. The two additional experiments both 

neglect calving and isolate the temperature versus precipitation forcings by maintaining the monthly climatological temperature 

or precipitation levels as recorded during the first 30 years of the mass balance record (1962-1991). Experiments are performed 

independently for each of the six model ensemble members and the results are validated against glacier surface velocity 265 

measurements representative of 2017-2018 (Millan et al., 2022). 
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3.7 Glacier Terminus Positions 

Direct comparison of glacier terminus position (glacier length) to satellite imagery is complicated by the elevation band flowline 

method selected in this study. Although this method facilitates certain analyses such as comparisons of modeled and observed 

surface velocity, it limits OGGM’s accuracy concerning glacier length (Maussion et al., 2019 and online documentation). To 270 

circumvent this limitation, we have instead opted to estimate glacier length from 1962-2023 based on the elevation of the 2008 

DEM where it intersects historical glacier terminus positions derived from aerial imagery, Landsat 8, and Sentinel 2 satellites 

(Fig. S9). This is a more reliable approach for aligning modeled and observed glacier positions, as the elevation band flowline is 

built around the 2008 DEM. After identifying terminus surface altitudes with respect to the 2008 DEM (Fig. S10), we then locate 

the point along the elevation band flowline corresponding to the terminus position of each given year. To do so, we query the 275 

elevation band flowline such that the glacier surface elevation in 2008 is within ±2 m of the calculated terminus elevation of a 

given year since 2008. This small range accounts for the fact that not every possible elevation is included as an index in the 

elevation band model. The resulting glacier terminus position timeseries can then be directly compared to the glacier evolution 

experiments described in section 3.5. For further details regarding the construction of this timeseries, refer to section 1.4 in the 

supplementary material.       280 

4 Results 

4.1 Mass Balance Model Calibration and Validation 

After aligning the 1962 and 2008 DEMs through 3-dimensional coregistration (see Supplement section 1.1), differencing the 

DEMs shows that Queshque experienced a SMB rate of -442±16 mm w.e. a-1 between the two periods. This value provides a 

constraint on mean modeled SMB for each ensemble member throughout the calibration period, resulting in higher 𝜇 (DDF) as 285 

𝜀𝑇 becomes more negative (Table 2). As a result, models with less negative 𝜀𝑇 have less interannual SMB variability and we can 

therefore characterize them as lower climate sensitivity models. Alternatively, high magnitude (more negative) 𝜀𝑇 models 

showcase greater variability, or more exaggerated responses to the same variations in climate. We therefore characterize models 

with lower DDF parameters as less sensitive, and those with higher DDF parameters as more sensitive (Table. 2). As such, model 

1 is considered to be the least sensitive of our ensemble, while model 6 showcases greatest sensitivity. We note that this variation 290 

in sensitivity is a result of calibration, as models with less negative temperature biases are subject to warmer temperatures and 

therefore must have more muted responses to climate warming in order to fit the long-term geodetic mass balance. Furthermore, 

we note that additional parameter uncertainty exists in our fixed mass balance parameters, particularly 𝑇𝑚𝑒𝑙𝑡  (Pellicciotti et al., 

2008), but also derives from neglected processes such as avalanching. However, DDF calibration procedure should theoretically 

compensate for these uncertainties by matching long-term mass balance observations (Maussion et al., 2019).  295 

Although modifying the 𝑝𝑓 parameter leads to intuitive changes in climate sensitivity (higher values increasing sensitivity to 

temperature as compensation), doing so does not provide additional insight into the mass balance regime. Moreover, all models 

converged on DDF values fitting the observed SMB without needing to alter the default precipitation factor.  We recognize, 

however, that this parameter is highly uncertain, as very few reliable accumulation records exist from the tropical Andes. Our 

direct, though limited in duration, mass balance measurements introduced in section 3.2 record accumulation as high as 1.95 m 300 

w.e. a-1 at an elevation of 5150 m on Queshque Glacier. Using the precipitation factor of 2.5, our mass balance models produce 

average annual accumulation rates of 1.9±0.4 m w.e. a-1. This value is consistent with the limited direct accumulation 

measurements we have available. In contrast, the nearby Huascarán Col experiences lower annual accumulation of about 1.4 m 

w.e. a-1 (Thompson et al., 1995; Weber et al., 2023). Although the default precipitation factor of 2.5 does seem to produce 
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realistic accumulation values for Queshque Glacier, we note that changes in this parameter do not introduce bias into the mass 305 

balance model so long as the DDF is recalibrated, as we have done in the present study (Maussion et al., 2019).     

Parameter (less sensitive) - Model Number - (more sensitive) 

Name (unit) Symbol 1 2 3 4 5 6 

Temperature Bias 

(˚C) 

𝜀𝑇 -6.5 -7.0 -7.5 -8.0 -8.5 -9.0 

Degree-Day 

Factor  

(kg m-2 d-1 ˚C-1) 

𝜇 1.74 

 

2.58 

 

3.87 

 

5.92 

 

9.31 

 

15.31 

 

Creep Parameter 

(10-24 Pa-3s-1) 

𝐴 2.78 3.57 4.42 5.34 6.30 7.31 

Table 2: Calibrated model parameters used in Eqs. (2-3) for six-model ensemble. 

To assess mass balance model performance, we perform two validation analyses against the ablation stake data. First, we 

consider the magnitude of ablation in the lower altitudes (defined as 4800 m and below) of the ablation zone as a constraint on 

the realistic melt rates near the glacier terminus. We then consider the observed ablation gradient in comparison to our models. 310 

4.1.1 Magnitude of Ablation 

Observed annual melt rates below 4800 m range from about -11.4 to -3.5 m w.e. a-1, averaging at -7.5 m w.e. a-1. Melt rates are 

greatest during the El Niño year of 2016, which is consistent with our simulation of overall specific mass balance. This range 

provides a limit on the magnitude of ablation we should expect to obtain near the glacier terminus. Average modeled ablation 

rates at the lowest altitudes during the years 2015 through 2019 are presented in Table 3. We find that models 2, 3, 4, and 5 fall 315 

within the bounds of observations, with model 4 producing ablation rates closest to the observed mean. 

Model Number Degree-Day Factor 

(mm w.e. d -1 ˚C-1) 

Mean Terminus Ablation 

(m w.e. a-1) 

1 1.74 -3.1 

2 2.58 -4.2 

3 3.87 -5.5 

4 5.92 -7.3 

5 9.31 -9.7 

6 15.31 -13.0 

Table 3: Mean annual ablation produced by each model at the lowest altitudes (4727-4800 m) during the years 2015-2019 

which coincide with the timespan of in-situ mass balance measurements. The degree-day factors are included for 

reference. 

4.1.2 Ablation Gradient 320 

Although our models can reproduce the observed ablation rate at the glacier terminus, we find that their ability to reproduce the 

observed ablation gradient is limited. Fitting a linear trend to all negative stake observations, we calculate that on average 

ablation decreases (becomes less negative) by 8.5 mm w.e. d-1 for every 100 m gain in elevation. By dividing this value by the 

lapse rate of -0.65˚C per 100 m, we arrive at an estimated temperature sensitivity (degree-day factor) of approximately 13 mm 

w.e. d-1 ˚C-1. Based on the maximum lapse rate seasonality identified by Hellström et al. (2017), we note that this value could 325 
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range between 9.3 and 14.6 mm w.e. d-1 ˚C-1. However, our model mass balance calibration was performed under the assumption 

of seasonally consistent lapse rate, and we therefore adopted the conventional value. 

To ensure that our model matches the observed ablation gradient, we recalibrated the model by adjusting the temperature bias to 

fit the observed geodetic mass balance using a fixed temperature sensitivity parameter (DDF) of 13 mm w.e. d -1 ˚C-1. This DDF 

falls between models 5 and 6 (Table 3). We find, however, that this calibration overestimates the ablation rate at the glacier 330 

terminus (Fig. S11a). We next introduce an additional temperature bias, cooling the model until it approximates the observed 

average mass balance profile in both magnitude of accumulation and ablation, and the mass balance gradient. We find, however, 

that this model vastly overestimates the specific mass balance and would indeed induce glacier growth since 1962 (Fig. S11b). 

To further investigate the threshold between glacier growth and retreat, we conduct a sensitivity experiment wherein the fixed-

gradient model is cooled until balanced conditions are achieved between 1962 and 2008. The results indicate that if forced to 335 

match the observed ablation gradient, all stake observations except from the extreme El Niño year of 2016 show a more positive 

mass balance than would be required to model balanced conditions (Fig. S11). 

4.2 Climate and Mass Balance Variability 

Over the course of the mass balance simulation period (1962-2020), mean annual temperature (MAT) rose by approximately 

0.15˚C per decade based on a simple linear regression, with dry-season temperatures rising faster and more consistently than 340 

during the wet-season (Fig. S12a). While we detect no significant trend in total annual precipitation (TAP), a moderate, though 

statistically insignificant drying (wetting) trend is present during the dry (wet) season (Fig. S12b). These trends were associated 

with a model ensemble average SMB decline of approximately -221 mm w.e. a-1 per decade by 2020. 

After detrending the SMB and climatological timeseries, we find that SMB is tightly correlated with MAT (r = -0.93) (Fig. 2a). 

TAP maintains a moderate correlation with SMB throughout the simulation, increasing after 1991 to a correlation coefficient of 345 

0.59. Correlations also suggest that SMB is slightly more closely linked to dry season than it is to wet season precipitation (Fig. 

2b). Regarding ENSO, the most consistent predictor of annual mass balance is the wet-season Niño-3.4, which retains a strong 

anticorrelation with SMB throughout the duration of study (r< -0.70). While annual Niño-3.4 values serve as a moderate SMB 

predictor during the first 30 years after 1962, this relation appears to dampen over time, becoming insignificant in the latter 30-

year period. Alternatively, negative correlations with the wet-season ONI index reaches -0.86 in the last 30 years of the study 350 

period. Other ENSO indices appear to reverse in the sign of their correlation with SMB over the course of the study. Most 

notably, the dry season SOI index maintains a moderate positive correlation with SMB for the first 30 years before switching to a 

low to moderate (though not statistically significant) negative correlation after 1991 (Fig. 2c). Correlations are considered 

significant when p<0.05. 
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 355 

Figure 2: Correlations for annual, dry-season (JJA), and wet-season (DJF) detrended temperature (a), precipitation (b), 

and ENSO indices (c) with the detrended annual SMB ensemble mean. Insignificant correlations (p>0.05) are marked by 

crosses.   

4.3 Climate and Mass Balance Seasonality 

We evaluate monthly accumulation and ablation variability between 2008 and 2020, showing that the model reproduces an 360 

archetypical tropical glacier mass balance regime. Accumulation, taken as the total solid precipitation to fall on the glacier each 

month, follows the pattern controlled by the SASM. Across all models, 53-56% of accumulation between 2008 and 2020 fell 

during the core wet season (DJF), while less than 2% occurred in the core dry season of JJA (Fig. S13a). Following a similar 

though less pronounced pattern, 27-32% of all ablation occurred during the wet season, while 19-22% occurred in the dry season 

(Fig. S13b). Together, this seasonality produces a mass balance regime wherein ablation occurs continuously throughout the year 365 

but enhances during the wet season when virtually all accumulation occurs. As a result, the model produces consistent negative 

mass balance between May and November, with the exception of November 2010, which had a slight positive balance due to 

above average accumulation and below average temperature. Both positive and negative mass balance months occur between 

December and April and the net balance magnitudes are greater during this time (Fig. 3). As model sensitivity increases, 

accumulation and ablation seasonality are amplified, and net balance becomes increasingly variable. 370 
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Figure 3: Net mass balance as accumulation minus ablation for each month of each year (2008-2020). The low (left) and 

high (right) sensitivity models correspond to model numbers 2 and 5, respectively. 

4.4 Glacier Volume and Thickness Estimates 

Due to the ice thickness inversion procedure’s dependence on the mass balance parameters, the inverted bed topography differs 375 

across models, leading to differences in initial total glacier volume. Below 5100 m, however, ice thickness is constrained by the 

GPR observations. Model results at lower elevations are therefore consistent to one another, with mean thickness ranging 

negligibly between 73.5 and 73.6 m. Error against the validation GPR dataset is also consistent, with approximately 30 cm ME 

and 24-25 m MAE (Table 4). These metrics imply that while ice thickness at any given point is likely to be over or 

underestimated by about 25 m, the average ice thickness and therefore glacier volume is well constrained. This level of accuracy 380 

is comparable to similar work using GPR (Pelto et al., 2020). By contrast, observations are lacking in the accumulation zone, and 

ice thickness varies across models. Initial modeled ice volumes range from 7.7-8.1 x 107 m3, reducing as climatic sensitivity 

increases. Volume differences across models are mostly attributed to ice thickness differences in the accumulation zone. 

Relatedly, the calibrated creep parameter, 𝐴, increases with greater climate sensitivity, reflecting enhanced ice flux (Table 2). 

Model Number 

Validation 

ME (m) 

Validation 

MAE (m) 

Initial Ice Volume 

(107 m3) 

Mean Ablation 

Zone Thickness 

(m) 

1 (Least Climate Sensitive) 0.29 24.01 8.10  73.6 

2 0.29 24.18 8.02 73.6 

3 0.30 24.37 7.95 73.6 

4 0.30 24.56 7.88 73.5 

5 0.31 24.81 7.81 73.5 

6 (Most Climate Sensitive) 0.32 25.14 7.74 73.5 

Table 4: Ice thickness inversion results for each model ensemble member.   385 

4.5 Ice Dynamics 

The four glacier evolution experiments isolate different mass balance forcings, enabling us to parse their relative influences over 

glacier dynamics. Forced by the real-time monthly conditions recorded over the study period in the PISCO dataset, the ensemble 

mean glacier volume reduces by 26±6% between 2008 and 2020. Holding monthly precipitation to 1962-1992 climatological 

means derived from the combined CRU-PISCO dataset while retaining the monthly PISCO temperature values results in a 390 

similar trend with heightened volume loss of 30±6%. Alternatively, driving the model with climatological temperature and real-

time monthly precipitation yields a nearly steady-state ice volume oscillating around the ensemble initial conditions of 7.9±0.1 x 

107 m3, with more climatically sensitive models producing net glacier growth of up to nearly 8% (Fig. 4a). Finally, incorporating 

the effects of proglacial lake formation by implementing frontal ablation accelerates mass loss beginning in 2010 and produces a 

narrower model spread of 28-33% volume loss by 2020, constituting 0.4 x 107 m3 of additional volume loss (Fig. 4b). 395 

A comparison between elevation band average modeled and observed surface ice velocity profiles suggests that the model 

produces realistic local ice dynamics. Both models and observations show glacier surface velocity in 2018 increasing from a 

minimum at the beginning of the elevation band flowline (the top of the glacier), peaking at around 900 m downstream, then 

decelerating. Surface velocities spike again at the calving front (Fig. 5). In terms of magnitude, models 2, 3, and 4 stay truest to 
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observed velocities, showing RMSE values below 4 ma-1 (Table S1), though each overestimates the peak velocity at the glacier 400 

terminus. Note that the superior performance of models 2, 3, and 4 is consistent with the mass balance model validation 

presented in section 4.1.1. This is unsurprising, as the magnitude of ablation is related to overall ice flux, which controls surface 

velocity. An apparent positive terminus velocity bias is present in most models, which is likely related to the impact of lake depth 

on calving flux. 

When calving is excluded from the glacier evolution experiments, higher climate sensitivity ensemble members retreat faster 405 

than their low sensitivity counterparts. The addition of a calving mechanism impacts all ensemble members but reduces the 

ensemble variance by disproportionately accelerating the retreat of lower sensitivity models (Figs. 4, 6). Furthermore, the 

inclusion of calving results in much greater agreement between modeled and observed ice terminus positions. By 2020, the 

modeled glacier calving positions show close alignment with independent observations (Fig. 6a), though performance quality 

differs from year to year.  Specifically, it appears that our models exaggerate frontal retreat rates by 2018 (Fig. 5) but slow to 410 

match observations by 2020 (Fig. 6). By 2020, the higher sensitivity models retreat to a greater extent than their less sensitive 

counterparts. However, differences between models with calving are reduced as compared to when neglecting this process (Fig. 

6).   

 

Figure 4: Comparison of dynamic glacier evolution under the historical climate, constant climatological mean 415 

temperature, and constant climatological mean precipitation (a). Comparison of glacier evolution under the historical 

climate conditions with and without including frontal ablation (b). Solid lines represent ensemble mean values and 

shaded regions indicate the ensemble spread.  
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Figure 5: Surface velocity profiles of the 6-member model ensemble. Each profile is representative of mean altitude-420 

binned values. Observations (Obs.) come from Millan et al. (2022). Modeled velocity falls to zero at glacier terminus 

whereas observations reduce more gradually, owing to satellite image resolution and potentially the presence of ice 

mélange.  
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Figure 6: Details of the glacier lateral cross section in 2020 produced by each model ensemble member with (a) and 425 

without (b) calving. The observed ice surface in 2008 is depicted in bold black and referential calving front positions are 

depicted as vertical dashed lines. Note that the x and y axes are not to scale, and that the first 1000 m of the glacier are 

excluded to highlight differences at the glacier terminus.  

5 Discussion 

5.1 Tropical Glacier Mass Balance: Major Components Reproduced in TI Model 430 

From a climatological perspective, the distinguishing feature of the outer-tropical glacier mass balance regime is the absence of 

strong thermal seasonality coupled with pronounced seasonal differences in precipitation (Kaser and Osmaston, 2002). This leads 

to continuous ablation throughout the year, with accumulation confined almost exclusively to the wet season. The magnitude of 

ablation, however, is controlled by processes governing the net radiation balance and the partitioning of energy available for melt 

(Hastenrath, 1997).  Multiple factors influence this partitioning, but they generally result in an archetypical outer-tropical Andean 435 

glacier seasonality featuring enhanced ablation during the wet season (Kaser and Georges, 1999). Glacio-hydrological 

observations at Yanamarey and Uruashraju in the CB support this theory, showing that net accumulation occurred only during 

JFMAM, and JFMA, respectively (Mark and Seltzer, 2003). Further confirmation is offered by process-based surface energy 

balance (SEB) models applied on glaciers in the CB (Fyffe et al., 2021) and Bolivia’s Zongo Glacier (Sicart et al., 2005; Wagnon 

et al., 1999) which show that energy for melt typically increases during the wet season. An exception to this rule has been 440 

observed at the CB’s Shallap Glacier, where atypical precipitation dynamics, potentially linked to strong La Niña conditions 

during the periods of study have resulted in continuous snowpack and decreased energy for melt during the wet season (Fyffe et 

al., 2021; Gurgiser et al., 2013). This example underscores the centrality of precipitation dynamics in governing tropical glacier 

mass balance variability. Furthermore, whereas an enhanced latent heat flux reduces dry season melting in the drier Bolivian 

glaciers (e.g., Wagnon and others, 1999), in the CB, this process appears to be secondary to those controlling the shortwave 445 

energy balance, particularly through various albedo feedbacks (Fyffe et al., 2021). Regardless of the dominating process, wet 

season mass balance in the outer-tropics tends to be more variable than during the dry season (e.g., Maussion et al., 2015), 

resulting in close coupling between the annual SMB and wet season hydroclimatology (Vuille et al., 2008a).   

These theoretical and observed features of tropical glacier seasonality are reproduced in the present study despite key processes 

being excluded by the nature of the TI approach (Fig. 3, S13). Namely, our model does not include the all-wave radiation balance 450 

nor latent heat flux, and therefore neglects the critical roles of albedo, cloudiness, and potentially, sublimation. Nonetheless, Fig. 

S13 shows that ablation minimizes during the dry months (particularly MJJ) and that while the wet season mass balance is highly 

variable, net accumulation occurs exclusively during this time. The increase in ablation during August is due to consistently 

warmer August temperatures in the PISCO climatology. 

In summary, our results using a TI approach reproduce the expected outer-tropical Andean mass balance seasonality despite 455 

lacking fully resolved physical processes. In our case, the slight cooling evident during the dry season suffices to reduce the 

magnitude and extent of melt across the ablation zone, producing a SMB seasonality that is enhanced in the high climate 

sensitivity model realizations. Where glaciers exhibit reduced gradients in albedo and therefore atypical ablation seasonality 

(e.g., Shallap), or where the latent heat flux plays a more significant role (e.g., Quelccaya or Zongo) our model would be unlikely 

to reproduce the observed mass balance regime due to the heightened significance of energy fluxes which we neglect. An ETI 460 

approach considering the radiation balance in addition to temperature (Pellicciotti et al., 2005), could improve model reliability 

in these settings. The single study evaluating this method on a tropical glacier (Zongo) shows that as expected, a locally 
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calibrated ETI model outperforms a basic TI approach over a one-year study period (Fuchs et al., 2016). While the authors do not 

rigorously calibrate their basic TI model, the TI approach also reproduces the observed seasonality in glacial discharge. In a 

previous iteration of the same case study, Fuchs et al. (2013) apply DDF values of 6.5 and 30 mm w.e. d-1 ˚C-1 to reproduce 465 

observed glacial discharge for the dry and wet seasons, respectively. Averaged over an entire hydrological year, these values are 

somewhat consistent with the DDF calculated in section 4.1.2 using stake observations and support the higher sensitivity models 

used in our study. Alternatively, Fyffe et al. (2021) find that on glaciers in the Cordillera Blanca, 5˚C warming induces a melt 

increases from 0.75-1.25 mm w.e. h-1 (estimated from Fyffe et al., 2021 Fig. 8). This translates to 3.6-6.0 mm w.e. d-1 ˚C-1, 

matching the sensitivity of our intermediate models quite well. 470 

To further validate our mass balance model, we compare model ensemble mean SMB rates to 42 geodetic SMB observations 

spanning epochs from 2000 through 2019 (Hugonnet et al., 2021). We find that on average across the years of a given epoch, our 

ensemble consistently overestimates mass loss as compared to the Hugonnet et al. (2021) data. In other words, our model results 

suggest that Queshque Glacier is retreating faster than the best estimate from global geodetic mass balance observations. 

However, during all but three of the 42 observations, our results fall within the window of SMB uncertainty provided by 475 

Hugonnet et al. (2021). All three of these epochs consider change as of January of 2020, namely 2000-2020, 2015-2020, and 

2016-2020. This suggests that a systematic bias exists either in the 2020 data used in taking the geodetic mass balance or in our 

simulation occurring around that time. Other epochs up to 10 years in duration (the second longest duration behind the single 20-

year measurement) show agreement between Hugonnet et al.’s (2021) and our own data. In summary, this comprehensive 

comparison indicates general agreement between the two datasets, bolstering confidence in our mass balance simulation. 480 

Despite our model’s ability to replicate total mass change over multi-annual intervals and to simulate realistic ablation rates, the 

OGGM simulations are limited in their ability to represent observed ablation gradients, which is a critically distinguishing 

feature of tropical glaciers (Kaser, 2001). Indeed, our mass balance gradient sensitivity experiment used to analyze the results 

from section 4.1 highlights a fundamental limitation of our model, which is that we cannot simultaneously fit realistic annual 

ablation rates (in-situ stake measurements), the total observed mass change over long time periods (geodetic mass balance), and 485 

the observed mass balance gradient. However, various model assumptions may be able to explain this discrepancy. For example, 

the assumption of perfect continuity (that all mass in the accumulation zone contributes to the ablation zone) which is inherent in 

OGGM (and any flowline-based model) may result in an overestimation of the true contributing accumulation area. This would 

in turn require more intensive ablation to compensate for the inflated accumulation, resulting in a model that reproduces the mass 

balance gradient but not the magnitude of ablation (see e.g., Fig. S11). Similarly, the assumption of homogenous precipitation 490 

across the accumulation zone could also inflate the total mass flux entering the ablation zone by neglecting variability across 

terrain differing in slope and orientation to the prevailing winds (Mott et al., 2014). This would also force the model to 

compensate with higher levels of ablation at lower elevations. 

Rather than increasing modeled ablation rates beyond the bounds of observations, another way to correct for exaggerated mass 

flux would be to reduce the size of the accumulation area by raising the equilibrium line altitude (ELA). This correction forces 495 

lower ablation gradients, as relatively high ablation rates persist at higher altitudes. This correction is in effect represented by our 

models that fit the magnitude of observed ablation without matching observed ablation gradients (i.e., models 2-5 in Table 3). 

In summary, we have compared our mass balance models against total mass change from 1962-2008, the magnitude of ablation 

during 2015-2019, and the ablation gradient during the same period. Our model ensemble fits the first two metrics while missing 

the third. We find that within the constraints of the OGGM model framework, it is impossible to fit both the first and third and 500 
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we therefore conclude that we have chosen adequate validation metrics, while also highlighting important methodological 

limitations. This conclusion is further supported by our surface velocity and terminus position validations. Both the in-situ 

ablation validation and the surface velocity validation suggest that our model numbers 2-4 produce the most reliable output. The 

frontal position mapping shows closest agreement with models 3 and 4, bolstering confidence in our intermediate models. 

Based on our assessment of the seasonal and multi-annual mass balance simulations and validation against multiple mass balance 505 

and ice dynamics datasets, we propose in agreement with previous work (Sicart et al., 2008) that although the accuracy of TI 

models is limited when considering shorter timescales, on inter-annual to decadal timescales TI models are suitable for predicting 

glacier evolution in certain outer-tropical glacier settings. Furthermore, the model ensemble mean is most similar to our 

intermediate ensemble members, which consistently perform best against the various validation datasets. We therefore use the 

ensemble mean to interpret the multi-decadal relationship between Queshque Glacier’s mass balance and hydroclimatological 510 

trends. 

5.2 Hydroclimate Trends: Recent Precipitation Levels Dull Impact of Warming 

Beyond the overall 1962-2020 warming trend of 0.15˚C per decade, we detect significant MAT warming trends in nearly every 

30-year period beginning in 1967. Based on a rolling 30-year period, warming rates peak around 1974 at close to 0.30˚C per 

decade and, while remaining positive, decline until the final period of 1991-2020. Rates appear to be more statistically 515 

significant during the dry season as compared to the wet season (Fig. S12a). In comparison, we detect a visual, though not 

statistically significant, trend towards wetter conditions throughout the study period, particularly during the wet season (Fig. 

S12b). Lacking significance in the precipitation trends, we draw no conclusions regarding their impact on glacier mass balance. 

However, our glacier evolution experiments also indicate that precipitation levels in the latter study period (2008-2020) served as 

a positive mass balance forcing, dampening the ice volume loss that would have taken place should the monthly averages from 520 

1962-1991 have persisted into the 21st century. The opposite experiment (holding temperatures at the mean monthly values from 

1962-1991 while maintaining recent precipitation amounts) shows that modern precipitation would allow Queshque to remain in 

relative equilibrium with the mid-to-late 20th century temperature (Fig. 4a).   

Despite constraining our geographic scope to the immediate vicinity of Queshque Glacier and limiting our climatological 

analysis to a single data source, our results mirror those of previous studies while contributing a closer analysis of direct impacts 525 

to a tropical glacier. Mark and Seltzer (2005) combined meteorological station data from the CB region to construct a 

temperature and precipitation timeseries against which to compare observed ice loss on Queshque and the neighboring glaciers. 

Their analysis, which concerns the period from 1951 to 1999, finds that warming persisted throughout the study period, though 

warming rates declined over time. They find no significant trend in precipitation. More recently Schauwecker and others (2014) 

collated an expanded set of meteorological observations and identified the same slowing (though persistently positive) warming 530 

trend. They also identify a shift to higher precipitation totals beginning in 1993. This latter study concludes that recent ice loss is 

not consistent with the simultaneous reduction in the warming rate and increase in precipitation. They propose instead that 

glacier retreat is a disequilibrium response. Alternatively, the former study (Mark and Seltzer, 2005), concludes that the 

magnitude and geometry of observed ice loss is consistent with a warming explanation. Our results support this argument, 

showing that recent precipitation levels reduced ice loss rates, but that the retreat trajectory was dominated by the trend in 535 

temperature (Fig. 4a).  

5.3 Mass Balance Variability: Wet-Season ENSO Signal Linked to Annual SMB Anomaly 
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Numerous studies have previously investigated the role of ENSO in regulating interannual variability in tropical Andean glacier 

mass balance, finding that El Niño years tend to produce negative mass balance anomalies while La Niña has the opposite effect 

(Kaser et al., 2003; Maussion et al., 2015; Vuille et al., 2008b). In agreement with these studies, we find that ENSO has a greater 540 

impact on temperature than precipitation, as the latter is controlled primarily by easterly advection from the Amazon basin, 

which is less directly tied to Pacific sea-surface temperatures (SST). Kaser et al. (2003) find a general correlation between SOI 

and the hydrological balance of CB glaciers. Their timeseries is used by Vuille et al. (2008b), who find a significant negative 

correlation between Niño-3.4 SST and mass balance, though the relationship degrades during the latter 20th century. Maussion et 

al. (2015) confirm this relationship, finding even stronger anticorrelations, albeit on a single glacier in the CB (Shallap). They 545 

propose that the El Niño/warm signal is the dominating factor influencing the anticorrelation with annual SMB, but primarily 

due to impacts on the snow-to-rain ratio, and therefore on the glacier surface albedo and shortwave balance. They find ENSO 

influence over total precipitation to be less systematic. 

Our analysis of the detrended mass balance and climatological timeseries in relation to conventional ENSO indices offers 

additional insight. As reported above, we find that the relationship between the ONI, Niño-3.4, and SOI indices and the annual 550 

SMB anomaly reduces in the latter half of the study period (Fig. 2c). Although verifying this observation warrants further 

investigation, we find that a strong SMB-ENSO relationship persists over all three periods (first 30 years, last 30 years, entire 

timeseries) when considering ENSO intensity during the wet season alone. Despite our model showing slightly higher SMB 

correlations with dry versus wet season precipitation during all but the most recent period (Fig. 2b), this finding supports the 

conclusion that wet season dynamics are the most important predictors of annual outer-tropical glacier mass balance (Fyffe et al., 555 

2021; Vuille et al., 2008a). The superior predictive capacity of wet season ENSO indices has also been observed using remote 

sensing methods at Peru’s Quelccaya Ice Cap, where snow covered area at the end of the dry season appears linked to ENSO 

conditions during the preceding wet season (Lamantia et al., 2024). Furthermore, the stronger relationship between ENSO and 

temperature (as opposed to precipitation) implies that given ample moisture, wet season temperature, by modifying the snow-to-

rain ratio and determining the magnitude of ablation at lower altitudes, plays a key role in modulating inter-annual mass balance 560 

variability. This is supported by the stronger correlations between modeled annual SMB and temperature during the wet season 

as compared to the dry season (Fig. 2a). It is notable that despite neglecting the critical albedo feedback effect, the relationships 

described above are produced using a TI approach. 

5.4 Climatic Decoupling: Proglacial Lakes Accelerate Retreat and Decrease Variability Between Retreating Glaciers 

It has been widely recognized that frontal ablation in lake terminating glaciers alters the patterns and rates of mountain glacier 565 

retreat (Brun et al., 2019; Carrivick and Tweed, 2013; Chernos et al., 2016; Sutherland et al., 2020), and recent work has 

observed widespread acceleration of ice loss as glaciers transition from land to lake terminating states (King et al., 2018, 2019; 

Sato et al., 2022). Our numerical modeling results support these assessments, showing that the advent of frontal ablation led to 

enhanced mass loss during the period from 2008 through 2020. After 2014, the mass loss from the least temperature sensitive 

model (model 1) when run with calving surpasses that of the ensemble mean of non-calving model realizations. Less trivially, 570 

while volume loss rates of both the calving and non-calving realizations appear to follow trends dictated by the climatic 

conditions, the ensemble spread varies less when calving is included and deviation between calving ensemble members is 

reduced. This reduction is primarily caused by enhanced ice loss from the calving glaciers with the lowest climatic sensitivities, 

suggesting that the initiation of the calving process locks the glacier into a climatically independent mass loss trajectory. 
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Since all models were subject to the same calving model parameterization, the convergence of modeled retreat rates observed 575 

when calving is included (Fig. 6) sheds light on the impact of the initiation of this process and is not a result of calibration. 

Therefore, although the present study considers only a single glacier with an uncertain climate-mass balance relationship, these 

results may help to explain variability, or lack thereof, in mass loss observations on a regional basis. Observational studies have 

shown that among other variables, differences in glacier hypsometry (Guha and Tiwari, 2023; Tangborn et al., 1990) and aspect 

(Abdullah et al., 2020) can alter the dominant accumulation and ablation processes and significantly impact the sensitivities of 580 

individual glaciers to a homogenous regional climate (Abdullah et al., 2020; Guha and Tiwari, 2023). As lakes proliferate across 

the deglaciating regions of the world (Shugar et al., 2020), our results indicate that the lower sensitivity preserving some glaciers 

may be counteracted by the equalizing and accelerating effect of frontal ablation. 

While offering these general insights, the calving scheme representation used in the present study is simplified and therefore 

limited in accuracy and precision. Sensitive to lake depth, the model accuracy is dependent on the basal topography derived 585 

during the ice thickness inversion. It is likely that the magnitude of the lakebed depression is overestimated due to the 

equilibrium assumption enforced during the inversion procedure. As a result, we overestimate lake depth, and potentially the 

calving flux. This source of uncertainty may also help explain the overestimation of frontal retreat rates during certain years. It is 

notable that 2019-2020 marks the transition to shallower modeled lake depths, coinciding with a deceleration in modeled retreat 

rates to align well with observations from 2020 (Fig. 6).  590 

Calculated along the glacier flowline, modeled lake depth reaches a maximum of 67-77 m, averaging at 46-53 m, depending on 

the model realization. These values are similar to maximum and mean measured depths of 73 m and 34 m from the nearby 

(9.39˚S, 77.38˚W) Lake Palcacocha (Muñoz et al., 2020). To further evaluate our modeled lake profile, we estimate expected 

mean lake depth using established, though highly uncertain, lake geometry-to-depth scaling techniques. From the width-to-depth 

relationship presented by Muñoz et al. (2020), we can estimate a mean lake depth of 12.3 m. Alternatively, surface area-to-depth 595 

scaling ratios for all regional lakes and for mixed dam-type lakes alone, suggest likely mean depths of 36 and 27 m, respectively 

(Wood et al., 2021). Considering that the average depth along the lake’s long axis is likely to exceed the area averaged depth over 

the entire lake, our estimated depth is not outside the realm of possibility. With this said, it is likely an overestimate. Although 

this limits the accuracy of our calving model due to the linear relationship between lake depth and modeled calving flux, Fig. 6 

shows that it does not result in highly overexaggerated rates of glacier retreat over the course of the entire study period.    600 

6 Conclusions 

We have applied a long-term geodetic mass balance observation, an ice thickness survey, a high-resolution DEM, and new 

climatological and glaciological data to calibrate and validate the ice flow and mass balance models from OGGM v. 1.6.1 in the 

context of a glacier located in the outer-tropical Andes. Our ensemble approach reflects the uncertain relationship between 

gridded climate data and actual conditions at the site of the glacier, which determine the model sensitivity of glacier ablation to 605 

changes in temperature. After calibrating the ensemble members to fit observed mass loss between 1962 and 2008, we examine 

the simulated SMB timeseries extended through 2020. We further implement an ice flow and lake calving model to more 

carefully study glaciological dynamics between 2008 and 2020, making use of the extensive GPR survey. Our results show that 

the simple TI mass balance model reproduces observed magnitudes of ablation and the theoretical mass balance seasonality of an 

outer-tropical glacier despite neglecting key processes controlling tropical glacier ablation. Dynamic ice flow simulations 610 

achieve observed glacier surface velocity gradients and terminus positions, showing that between 2008 and 2020, warming and 

frontal ablation led to the mass loss of about 31% and that this figure would have been enhanced if not for a relative increase in 
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precipitation during this time. Furthermore, we find that inter-annual SMB variability since 1962 has been closely tied to the 

ENSO phase, most significantly during the wet season. Indeed, the overall annual SMB correlation with ENSO indices reduces 

over the course of the study period but remains strong during DJF. Finally, we find that the transition from land to lake 615 

termination not only accelerates glacier loss but reduces the variability between model realizations that otherwise showcase 

different responses to climate warming. Together, these findings shed light on the processes influencing spatiotemporal 

variability in outer-tropical glacier mass loss and provide insight into the potential uses of empirical glacier models where 

complete meteorological data are lacking. Future research can apply similar methods to evaluate past and future tropical 

glaciological change over longer timescales. 620 
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