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Author Response to RC1 

Review of Shutkin et al. ‘Modeling the impacts of climate trends and lake formation on the retreat of 
a tropical Andean glacier (1962-2020)’.  

Summary  

Shutkin et al. have examined the past behaviour of Queshque Glacier, a glacier found in the 
Cordillera Blanca of Peru. They use observations of the recession of the glacier between 1962 and 
2008 and several other datasets relating to glacier volume and dynamics, as well as local climate, 
to calibrate the Open Global Glacier Model (OGGM), which they then use to simulate contemporary 
glacier behaviour. They analyse the variability of OGGM simulations in relation to input data to 
establish model sensitivity to input parameters. Despite their use of a simplified temperature-index 
model, which the authors acknowledge has well established limitations, their findings show how 
they are able to replicate characteristic behaviour of Queshque Glacier in its climatologically 
complex setting. The authors also illustrate the impact of the transition of the glacier from land- to 
lake-terminating during the study period, suggesting that this process now largely dictates the 
glaciers mass loss trajectory over climate.  

Overall, the paper is well structured and written and the authors have constructed their study in a 
comprehensive manner. The main findings are of relevance across the field of tropical glaciers and 
it is good to see that additional work is now being done to incorporate ice loss processes 
experienced by lake-terminating glaciers, which are prevalent across the Cordillera Blanca and, 
increasingly, worldwide.  

Major comments:  

We believe the study currently has one main limitation which we suggest requires revisiting – that is 
the approach employed to generate one of the two DEMs used to estimate glacier mass balance, 
and the subsequent treatment of elevation change data. The 1962 DEM produced by the authors 
has been generated using a manual photogrammetric plotter, which is methodologically dated and 
has produced a result which is very contrasting in data quality to their 2008 lidar derived DEM. 
Given the availability of software specifically designed to process optical stereo imagery to produce 
high-quality DEMs (example recommended later in the review) we would suggest reprocessing of 
the 1962 imagery should be attempted, if the authors have access to the images, to bring that 
dataset in line with the 2008 lidar DEM. This reprocessing would ensure that any biases associated 
with DEM difference data derived from methodologically contrasting DEMs (e.g. 
https://xdem.readthedocs.io/en/stable/) are minimised. Similarly, the subsequent treatment of 
elevation change data derived from this current DEM pair is lacking rigor, namely consideration of 
outlier identification and removal and subsequent gap filling, which are both required prior to 
geodetic mass balance estimation (Piermattei et al., 2024). Finally, the authors make no attempt to 
calculate the uncertainty associated with their glacier mass balance data, on which the rest of their 
analyses is based. This needs revisiting.  

Considering the above, we recommend that major revisions are needed before the paper can be 
considered for publication. 
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Author Response 

We thank the review team for their constructive feedback. Please find our detailed responses 
below, which are also reflected in a revised manuscript and supplement. The reviewers’ major 
comments concerned the 1962 DEM quality, DEM outlier identification, and treatment of 
uncertainty in the difference of DEMs. We respond to these issues in logical order below before 
addressing the minor comments.  

1. 1962 DEM Quality 

We appreciate the concern that methodological differences in DEM construction may impact their 
intercomparison and potentially introduce biases into the DEM difference map. Although we no 
longer have access to all metadata required for using the most state-of-the-art photogrammetric 
software, we note that the same DEM was used previously for a similar analysis (Mark & Seltzer, 
2005). Nonetheless, we have conducted multiple comparisons indicating that our DEM is of 
acceptable quality. 

First, we have accessed a 10 m resolution DEM constructed from the same 1962 stereo imagery 
using ERDAS Leica Photogrammetry Suite version 11. This DEM was used for a similar analysis of 
Queshque Glacier and others in the region (Huh et al., 2017). A comparison between Huh et al.’s 
(2017) DEM and the one used in the present study shows considerable quality differences favoring 
our choice of DEM.  We attribute quality concerns in the latter DEM to extremely low contrast in 
much of the accumulation zone that hampered the effectiveness of the DEM generation software. 
This resulted in obviously unnatural terrain artifacts that are absent from our chosen DEM product. 
On this basis, and on the basis that our data product has already been accepted for publication in 
reputable journals, we believe that while more state-of-the-art photogrammetry software could 
improve our DEM, this is not guaranteed. 

Second, we compare differences between our 2008 and 1962 DEMs over stable terrain to quantify 
the resulting uncertainty in elevation change over the glacier (see below). 

2. Geodetic Mass Balance Uncertainty 

If we safely assume that the 2008 LiDAR is of much higher quality than the 1962 DEM, then 
differences in the elevation of stable terrain between the two data products can be attributed to 
artifacts or inaccuracies in the earlier product. 

As described in the supplemental material, we aligned the 1962 DEM to that of 2008 using a 3-
dimensional coregistration process. We have subsequently compared our methodology to the 
common Nuth & Kääb algorithm (Nuth & Kääb, 2011). Comparison of residual error over stable 
ground indicates that our results are more robust than those accomplished using the methods from 
Nuth & Kääb. We have updated Fig. S3 to highlight this result and reproduce it here as Fig. 1. 
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Fig. 1: Difference of DEMs residual error over stable ground at different stages and using different 
methods of coregistration. 

Following the reviewers’ recommendation, we use the xDEM python package (xDEM contributors, 
2024) to evaluate the uncertainty of our geodetic mass balance. Having minimized systematic error 
through DEM coregistration, we follow  Hugonnet et al. (2022) to evaluate random error over stable 
terrain then infer uncertainty in elevation change over the glacier. Random error is quantified by 
considering both the heterscedasticity and spatial correlation of error. Heteroscedasticity is 
evaluated across gradients of DEM slope and curvature, calculated using methods from Horn 
(1981) and Zevenbergen & Thorne (1987), respectively. The spatial correlation of error is estimated 
by an empirical variogram using Dowd’s estimator (Dowd, 1984). The uncertainty in elevation 
change within the 2008 glacier boundary is then calculated as the average pairwise product of pixel 
uncertainties times the spatial correlation of error between each two pixels (Hugonnet et al., 2022 
eqs. 17-19). 

Following these methods, we arrive at a mean elevation change of -22.61±0.81 m across the glacier 
(Fig. 2). Maintaining the density assumption of 900 kg m-3 as used throughout the manuscript, this 
translates to a geodetic mass balance of -442±16 mm w.e. a-1. The change in elevation across the 
entire DEM including stable and unstable terrain is shown in Fig. 2. We consider the level of 
uncertainty arrived at using these methods to be acceptable for the purpose of our study. Since 
most error over stable ground (and therefore elevation change uncertainty) is attributable to 
artifacts and errors in the 1962 DEM, we also consider the acceptable uncertainty range as 
testament to the adequacy of our 1962 dataset.  
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Fig 2: Difference of DEMs (1962-2008) shows significant surface height change across the glacier 
ablation zone. The 2008 glacier boundary is outlined in bold and unstable terrain (including the 1962 
glacier boundary) is delineated by a dashed line. Note that additional terrain above 5000 m in 2008 
was also considered to be unstable. 

3. DEM Outlier Identification 

We have assessed the presence of outliers (95th percentile) in the difference of DEMs between 1962 
and 2008. These results are compared to the DEM difference used in the original submission. 

The outlier detection procedure is as follows: 

1. The data were binned according to their positioning in 50 altitude bins (~16 m) according to 
the 2008 DEM. 

2. Pixel values for surface height change were compared to the mean value of each altitude 
bin. Pixel values with z-score absolute values greater than 1.96 (two-tailed 95th percentile) 
were considered to be outliers resulting from DEM or coregistration errors and were 
replaced by the mean value from the appropriate altitude bin. 

3. The resulting map of change in surface height was used to recalculate the specific (area 
averaged) mass balance across the entire glacier surface. These results were compared to 
the original value used. 

After removing outliers, the new SMB was calculated to be -435 mm w.e. per year, a 1.5% positive 
change from the originally published figure. Maps depicting the original DEM difference, altitude-
binned averages, and detected outliers are included below (Fig. 3). 

We note that the difference in specific mass balance is within the uncertainty window estimated in 
the previous step and that it is difficult to distinguish between outliers caused by map artifacts 
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versus extreme natural phenomena. Furthermore, previous glaciological studies using outlier 
detection and gap filling have operated with very different data constraints. For example, Piermattei 
et al. (2024) use ASTER and TanDEM-X data, both of which are known to contain artifacts and data 
voids in mountainous regions. Geodetic mass balance estimation using these global datasets 
therefore may require outlier correction. In our case using local datasets without issues such as 
cloud cover, this requirement is less apparent. Given this ambiguity and the negligible impact of 
outlier correction on the resulting geodetic mass balance estimation when compared to the overall 
uncertainty, we believe that our original figure is of sufficient quality. We thank the reviewers for their 
methodological recommendations which have allowed us to more rigorously defend this claim.     

  

Fig 3: Outlier detection began from the map of elevation difference (a), which was then binned into 
50 elevation bands (b). Pixel values exceeding 2σ deviation from the elevation band mean were 
considered to be outliers (c). 

More minor suggested amendments:  

L57: perhaps ‘dictate’ rather than ‘direct’ retreat patterns?  

Accepted 

L95: Refer to Fig 1 here.  

Accepted 

L95: It would be easy and useful to visualise this increased recession after the transition of the 
terminus type from land- to lake-terminating. Repeat mapping of terminus position from optical 
imagery at timesteps a few years apart should yield a nice set of ice front position estimates and 
the distance between them should show the increase in recession rate related to terminus type 
transition? Landsat 7 and 8 images would capture this well. 

We have conducted the suggested analysis using Landsat 8 and Sentinel 2 images and will include 
an additional supplemental figure demonstrating accelerated retreat during the period of lake 
calving (Fig. 4). It must be noted, however, that the absence of annual imagery earlier in the 
timeseries precludes an assessment of normal variability in the actual retreat rate. Furthermore, 
our decision to use the elevation band flowline approach in OGGM limits the model’s accuracy 
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when it comes to glacier length. The linear retreat rate is therefore an inferior validation metric, but 
does still yield the useful insight that retreat greatly accelerated as frontal ablation developed. 

 

Fig 4: (left) Positions of the glacier terminus mapped fromaerial, Landsat 8, and Sentinel 2 images 
from 1962-2023. (right) The cumulative retreat of Queshque Glacier (black) with mapped years 
plotted as points. The retreat rate, or slope of the black line, is plotted in blue.  

3.1 We have a few suggestions here:  

-We’d really encourage the authors to provide an illustration of the elevation change data they have 
derived from their respective DEMs across the full study area. This is needed to provide the reader 
with an indication of the overall quality of the DEMs and the presence or absence of any biases 
within the derived elevation change data. It’d also provide a powerful illustration of the changes the 
glacier has experienced.  

We provide a map showing the residual differences on stable and unstable terrain between the 
1962 and 2008 DEMs with the 1962 and 2008 glacier boundaries outlined in black: 

Stable ground was considered to exist off glacier and at altitudes below 5000 m. This second 
exclusion accounted for resolution differences that produced some large errors over steep 
ridgelines. As seen in Fig. 1, residuals over stable ground are normally distributed with a mean of 
approximately 0 m and a standard deviation of about 12 m. Systematic (e.g., aspect-related) bias is 
minimized, though may be evident locally near the southeast corner of the model domain. Note that 
this localized issue was persistent across coregistration methods, including when using the Nuth 
and Kääb (2011) algorithm in the xdem Python package. The large positive residual situated off 
glacier is due to an artifact in the 1962 DEM wherein a peak is represented as a plateau. This peak is 
located above 5000 m, however, so did not bias the DEM coregistration process. 

-I’d ask the authors to consider the impact of outliers in the elevation change data, which they don’t 
currently mention. As the two DEMs have been generated using very different approaches, there 
will be outliers which do not represent real elevation change. These should be removed considering 
the statistical characteristics of elevation change data within a similar altitudinal band (e.g. 
Gardelle et al., 2013). Over glacier surfaces, values more typical of the elevation change 
experienced by the glacier within the same altitudinal band should then be used to fill the resulting 
gaps (e.g. using https://xdem.readthedocs.io/en/stable/), prior to mass balance calculation.  
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See response in “Major Comments” section above. 

-If the authors have access to the 1962 images in their original form, I’d encourage them to explore 
the possibility of generating a DEM using photogrammetric software now readily available online 
(e.g. CATALYST https://catalyst.earth/, user-friendly tutorials are available online and a fully 
functional 7-day trial can be acquired online). The techniques used to generate the two DEMs used 
to calculate elevation change couldn’t currently be more contrasting and various local and broad 
scale biases could be present as a result, which the reader cant currently see without the data 
being shown.  

See response in “Major Comments” section above. 

-The approach to DEM coregistration seems logical and robust and the figures in the supplement 
suggest good agreement between the DEMs, but a map of elevation change over the glacier and 
surrounding areas really is needed to confirm this.  

See response in “Major Comments” section above. 

-The uncertainty associated with the mass balance estimate on which the rest of the modelling is 
based does not seem to have been considered at all. There are multiple sources of error in the 
technique the authors have employed (Hugonnet et al., 2022) which can bias the mass balance 
towards higher/lower overall ice loss. This certainly needs to be estimated to reassure the reader 
that the mass balance signal is realistic and beyond the level of uncertainty.  

See response in “Major Comments” section above. 

L134: How many of these point measurements were used to evaluate error? Where were they 
located? How does the difference between derived and point based measurements vary spatially?  

Only 17 georeferenced point measurements were provided by the 2009 GPR survey report. As 
elaborated upon in the main text, the points show general consistency with the subsequent 2014 
survey (Fig. 5a). The 2009 GPR points span from the bottom of the glacier in the southwest towards 
the center of the glacier in the northeast of Fig. 5b. The points are located approximately along the 
centerline of the glacier and are each in proximity to multiple measurements from the subsequent 
GPR survey. There is no apparent relationship between the mean distance from the 2009 data 
points to their respective nearest neighbors and the resulting difference between measured and 
derived thickness. There does, however, appear to be a slight spatial bias, with derived thicknesses 
being more likely to underestimate the 2009 measurements at lower elevations. The significant 
outlier where the derived thickness is approximately 28 m thinner than observed occurs at a 
discontinuity in the 2009 survey, suggesting that the technician may have needed to navigate an 
obstacle which may have produced abnormalities in the ice thickness profile or potentially caused 
an error in measurement or radargram interpretation. 
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Fig. 5: (a) Box and whiskers plot showing the distribution of error between the derived and observed 
thickness values, including the position of the single negative outlier. (b) A map of the 2009 GPR 
survey showing the error calculated at each point. 

Line 156: It might be useful to provide a summary figure of the ‘average’ of the climate data used as 
input to the temperature index model, as much of the discussion is focused on seasonality (or lack 
thereof) later in the paper. It would help the reader relate the simulated accumulation and ablation 
(Fig. 3) to the climate the glacier experiences. 

 We agree that this would be useful for the reader. We provide Fig. 6 below, which will be included in 
a revised manuscript. 
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Fig. 6: Climatology near Queshque Glacier during the period 1962 through 2020. Mean temperature 
(2 m) and precipitation are depicted with 1σ bounds as shaded regions. Climatology data combine 
CRU (Harris et al., 2014; New et al., 2002) and PISCO (Aybar et al., 2020; Huerta et al., 2018)  
products. Note that the values shown here are subsequently adjusted by the precipitation factor 
and temperature bias within the mass balance model.  

Line 163: ‘lapse rate of -6.5℃’, while this is the global average, was there any testing on using a 
different value? The tropical Andes can have lapse rates can be lower then -6.5℃, maybe as low  

as -3.5℃ (Navarro-Serrano et al., 2020). This could change the temperature index substantially I 
suspect.  

Lapse rates in the tropical Andes are a critical, yet highly uncertain parameter in tropical 
glaciological studies. Our group’s sensor network in the Cordillera Blanca, as well as atmospheric 
modeling using the WRF, show that regional lapse rates are seasonally variable, increasing in 
magnitude during the dry season. Measured lapse rates vary from ~-9.1˚C km-1 to ~-6.0˚C km-1 
between seasons, while modeled lapse rates varied from ~-7.5˚C km-1 to ~-5.8˚C km-1 (Hellström et 
al., 2017). One limitation of our model is that it cannot incorporate seasonal lapse rate variability 
during the mass balance model calibration, despite this playing a potentially crucial role in the 
tropical Andes. A compromise between the measured and modeled seasonal extremes was 
therefore selected and we opted for the conventional -6.5˚C km-1 for the sake of consistency and 
comparability with other studies. 

We will clarify this point in the text and address it further in a new limitations section. 

Table 1: For the water level, the source could not be Sentinel 2 (optical imagery). The source would 
be the DEM you used, which needs specifying.  

We identified the position of the lake boundary using Sentinel 2 imagery then adopted a water level 
from the 2008 DEM using this position. This can be clarified in the text and in Table 1. 

L236: This description of how the climate data were analysed belongs more in section 3.3 I feel. If it 
is moved up, it should also be bolstered by citation to appropriate literature to confirm that this is a 
standard approach to processing these datasets. 

We accept moving this description into section 3.3. The detrending method used is a common 
practice for removing the multidecadal trend from a climatological dataset and converting the 
timeseries into anomalies from this trend (Wu et al., 2007). This is a necessary step for comparing 
the climatology to detrended indices like the SOI or ONI. We further standardize the data using the 
common standard anomaly approach by dividing absolute anomalies by the timeseries standard 
deviation (e.g., Dabernig et al., 2017). This facilitates comparison between datasets that oscillate 
on varying orders of magnitude. 

Table 2: The authors state ‘low sensitivity’ and ‘high sensitivity’ here, but it is only briefly mentioned 
in the text. The authors could be more specific on why you have assigned certain model runs as 
low/high sensitivity. This sensitivity could also be added in the table caption. The mention of the 
sensitivity from the model runs is only sparsely mentioned in the discussion.  
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Furthermore, if the authors are not varying the Precipitation Factor, is it necessary to place it in 
Table 2? Would it have been better placed in table 1 as a ‘constant’? 

Here “sensitivity” refers to the magnitude of the temperature sensitivity parameter, which dictates 
the ablation response to a unit change in temperature. We will clarify this point throughout the text 
and discuss this parameter’s relation to the temperature bias more thoroughly in the discussion. 

We agree that the precipitation factor should be moved to Table 1.  

Table 3: The authors have used different names for their ‘sensitivity’ models. First, they were ‘low – 
high sensitivity,’ now they are ‘least – most climate sensitive’. If these contrastingly named model 
runs are actually the same, the naming needs to be consistent, or if they are different, a section 
explaining how the experiments were conducted would be useful.  

The “low” and “high” sensitivities indicated in Fig. 3 (main text) represent models number 2 and 5 
from Table 3, whereas models 1 and 6 are indeed the least and most temperature sensitive. We 
recognize the confusion this may have caused and will be sure to clarify our nomenclature in the 
revised manuscript.  

Section 5.1 The authors may be able to bolster this section by comparing their modelled glacier 
mass balance evolution against available measurements of glacier mass balance over the period 
2000-2019 (Hugonnet et al., 2021). According to the dataset of Hugonnet et al. (2021), the mass 
balance of RGI 16.02060 (Queshque Glacier) was -0.59 m w.e.a-1 from 2000-05, -0.73 m w.e.a-1 
from 2005-10, -0.83 m w.e.a-1 from 2010-15 and -0.88 m w.e.a-1 from 2015-2019. These estimates 
provide a point of comparison for the authors modelled results and could also be discussed 
alongside the climate variables the authors have analysed.  

We have compared our ensemble mean specific mass balance (SMB) model outputs for each of the 
42 epochs provided in the Hugonnet et al. (2021) study. We find that averaged across the years of a 
given epoch, our ensemble consistently overestimates mass loss as compared to the Hugonnet et 
al. study. In other words, our model results suggest that Queshque Glacier is retreating faster than 
the best estimate from the global geodetic mass balance study. 

With this said, our results are within the uncertainty bounds provided by Hugonnet et al. during all 
but 3 of the 42 epochs. All three of these epochs consider change as of 2020 including 2000-2020, 
2015-2020, and 2016-2020. This suggests that a systematic bias exists either in the 2020 data used 
in taking the geodetic mass balance or in our simulation occurring around that time. Other epochs 
up to 10 years in duration (the second longest duration behind the single 20-year measurement) 
show agreement between Hugonnet et al.’s and our own data. In summary, this comprehensive 
comparison indicates general agreement between the two datasets, bolstering confidence in our 
mass balance simulation.   

Figure 5: It might be good to add a second panel to this figure to illustrate where the centreline 
(assuming these are centreline velocities) of the glacier runs in these modelled velocity profiles.  

The elevation band flowline approach used in this study represents glaciological variables as mean 
altitude-binned values. The modeled and observed velocities from Fig. 5 (main text) each represent 
such mean values. 
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We will clarify this point in the figure caption. 

Section beginning L334: A good section acknowledging the limitations of the applied approaches.  

We appreciate this feedback and intend to expand our limitations section considering the other 
points made by the reviewers. 

L405: It may be worth considering the findings of Malles et al. (2023) in the discussion of the impact 
of lake development on the studied glacier. Malles et al. (2023) also establish changes in the 
sensitivity of glaciers to climate following the introduction of glacier-lake interactions to the same 
model (OGGM), so their findings may well support the inferences made by the authors here. 

Malles et al. (2023) presents an interesting study on the effect that considering frontal ablation 
during OGGM’s mass balance calibration has on projected glacier meltwater contributions to sea 
level rise. The authors find that considering this additional process reduces the overall projected 
contributions of tidewater glaciers to 21st century sea level rise. While on first glance this appears 
contrary to our conclusions and those of various studies of lake terminating glaciers (e.g., King et 
al., 2018), this is not the case. As stated in Malles et al. (2023), the modeled reduction in mass loss 
above sea level when calving is included “is due to the lowering of the sensitivity to atmospheric 
temperatures…” which is the logical outcome of calibrating a temperature-index model using mass 
balance data that are already to some extent decoupled from climate. If one assumes that all 
observed mass loss relates to changes in the climatic mass balance, then any mass loss due to 
complex calving processes will be falsely attributed to a change in temperature within the OGGM 
framework. Consequently, projections under warming conditions will overestimate mass loss, as 
Malles et al. (2023) observe.   

In the case of our study, we calibrate OGGM using observations spanning a long period throughout 
most of which the glacier was not calving. We can therefore be more confident that our calibration 
data relate directly to the climatology. We therefore feel it would be inappropriate to draw 
comparisons with the Malles et al. study. 
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