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Abstract. During 2024, an intensive ∆14CO2 flask sampling campaign was conducted at 12 sampling stations across Europe

as part of the CO2MVS Research on Supplementary Observations (CORSO) project. These ∆14CO2 samples, combined

with CO2 atmospheric measurements, are intended to enhance the estimation of fossil CO2 emissions over Europe through

inverse modeling. In this study, we perform a series of Observing System Simulation Experiments (OSSEs) to evaluate the

added value of such an intensive campaign as well as the different flask sample selection strategies on estimating fossil fuel5

emissions. We explore three main selection strategies and compare them against the currently more widely used method of

two-week integrated samples: (1) collecting flask samples every three days according to a uniform schedule, without applying

specific selection criteria; (2) selecting flask samples with high fossil CO2 content to better isolate anthropogenic signals; and

(3) combining fossil CO2 selection with consideration of nuclear 14CO2 contamination to reduce potential biases from nuclear

emissions. The results suggest that higher sampling density improves the estimation of fossil CO2 emissions, particularly10

during periods of high fossil fuel activity, such as in winter, while integrated sampling remains more effective during summer

months when emissions are lower. Increasing the number of flask samples significantly reduces uncertainty and enhances

the robustness of inverse modeling results. In addition, selecting samples with a high fossil CO2 content shows potential for

improving the accuracy of emission estimates. The largest reduction in uncertainty is achieved when sample selection actively

avoids periods of potential high nuclear 14CO2 contamination. This approach helps minimize potential biases, particularly15

in regions with significant nuclear activity such as France and the UK. These findings highlight the importance of not only

increasing sampling frequency but also carefully selecting samples based on their fossil CO2 and nuclear 14CO2 composition

to improve the reliability of fossil fuel emission estimates across Europe.

1 Introduction

Inverse modeling has become a key tool for quantifying the anthropogenic contribution to atmospheric CO2 levels. This ap-20

proach combines regular CO2 observations with additional tracers that are sensitive to specific sources and processes. Some

of these tracers are measured in situ, such as ∆14CO2, CO, and APO (Basu et al., 2020; Wang et al., 2020; Chawner et al.,

2024), while others, like XCO2, are retrieved remotely (Fischer et al., 2017; Chen et al., 2023). These tracers help distinguish

fossil fuel emissions from natural biogeochemical fluxes, and their integration into inverse models provides stronger constraints
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on source attribution. A leading example is radiocarbon (14C) in atmospheric CO2. Fossil CO2 lacks radiocarbon due to its25

decay over geological timescales (half-life of 5,730 years), leading to a measurable reduction in the radiocarbon content of

atmospheric ∆14CO2 (Levin et al., 2003).

However, in Europe and other industrialized regions, the ability to isolate fossil CO2 using radiocarbon is complicated by

the presence of radiocarbon emissions from nuclear facilities. These emissions can artificially elevate atmospheric ∆14CO2

levels, masking the depletion signal caused by fossil CO2 and potentially leading to biased estimates (Turnbull et al., 2009). For30

example, Graven and Gruber (2011) showed that in Europe, North America, and East Asia, radiocarbon from nuclear sources

can offset around 20% of the depletion caused by fossil emissions, leading to attribution biases that may exceed those caused

by biospheric fluxes in some areas. Vogel et al. (2013), in a local application in Toronto, found that this offset can reach up to

82% of the total annual fossil CO2 signal. A sensitivity study by Maier et al. (2023) further showed that uncorrected nuclear

emissions could result in a 25% low bias in ffCO2 estimates, highlighting the need for robust modeling and informed sample35

selection strategies.

Data on nuclear facility emissions are generally limited to annual emissions, accessible through databases such as the Eu-

ropean Commission RAdioactive Discharges Database (RADD) (https://europa.eu/radd/index.dox, last access: 17 June 2025)

or derived from energy production data from the Power Reactor Information System (PRIS) (https://pris.iaea.org/PRIS/home.

aspx). These datasets often lack the high temporal resolution necessary to identify the possible effect of large emission events in40

radiocarbon samples. Studies such as those by Graven and Gruber (2011) and Zazzeri et al. (2018) provide essential emission

factors and data, but also highlight the high-resolution data availability gap we just mentioned. Strict data protection policies

and security measures further compound the challenge of obtaining high-resolution time series data from nuclear facilities.

Few studies have directly measured and reported emissions from nuclear facilities (Akata et al., 2013; Varga et al., 2020;

Lehmuskoski et al., 2021) at higher temporal resolutions, such as daily or weekly. Vogel et al. (2013) for instance, found sig-45

nificant deviations in interannual timescales of nuclear emissions compared to emission factors reported by Graven and Gruber

(2011), but a better agreement with the long-term average observed for reactors in their study area. Most research examining

the impact of nuclear emissions on ffCO2 estimation is conducted in the vicinity of nuclear facilities, which allows sampling

of winds directly coming from these facilities, reducing the need for high-resolution emission time series (Vogel et al., 2013;

Kuderer et al., 2018). Consequently, the broader implications of nuclear emissions and their temporal variations on regional50

and continental scales remain less explored and understood, as evidenced in the study by Vogel et al. (2013). This localized

focus limits our understanding of the impact of nuclear facility emissions on ffCO2 estimations on a continental scale, such

as for Europe. In addition, in inverse modeling approaches that include both CO2 and ∆14CO2, the emissions from nuclear

facilities are not optimized, leading to potential inaccuracies. Research by Bozhinova et al. (2014); Graven and Gruber (2011);

Turnbull et al. (2011); Zazzeri et al. (2018) demonstrates this gap, suggesting the need for more sophisticated modeling and55

sampling approaches to integrate nuclear emissions accurately into atmospheric inversion techniques.

In Europe, the Integrated Carbon Observation System (ICOS) Atmosphere network continuously measures CO2 together

with other greenhouse gases (GHG) at 38 stations in Europe. Additional atmospheric tracers, including isotopic tracers such

as 13C and radiocarbon (14C), are measured in periodic flask samples at 17 of these ICOS stations (see Fig. 1). Most of the
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stations are located in remote locations, where measurements are taken from tall towers of at least 100 m above ground level,60

on mountain tops, and on coastal sites (in the last two, measurements are usually taken a few meters above ground level).

The objective of the network is to provide measurements intended to represent large areas, capturing signals from sources and

sinks occurring even hundreds of kilometers away. Currently, radiocarbon is measured mainly in two-weekly integrated flask

samples, at the highest sampling height available at each station (red and yellow dots in Fig. 1). Since 2015, an increasing

number of ICOS stations have been collecting 1-hour flask samples regularly. Of the approximately 100 flask samples taken65

per station per year as quality control of continuous measurements and for the analysis of other tracers and isotopes, around

25 are selected for ∆14CO2 analysis to support the estimation of ffCO2. Levin et al. (2020) designed a strategy to select flask

samples that mainly captured large events of fossil fuel CO2 emissions for their posterior analysis of ∆14CO2. They suggested

defining a threshold for the mixing ratio of ffCO2 and for the enhancement of CO (CO is a co-emmitted species from fossil fuel

burning) relative to the background mixing ratio at the time the flask sample is taken. This can be determined by near-real-time70

(NRT) atmospheric transport simulations (for ffCO2 and ffCO) or by using continuous observations of CO at the station.

As part of the CO2MVS Research on Supplementary Observations (CORSO) project (https://www.corso-project.eu/) funded

by the Horizon Europe program of the European Commission, an intensive sampling campaign of ∆14CO2 was carried out in

2024. In this project, flask samples are taken approximately every three days, completely dedicated to the analysis of ∆14CO2

at 10 of the current ICOS sampling stations around Sweden, Germany, the Netherlands, France and the Czech Republic,75

complemented by two additional stations in Poland (Białystok) and England (Heathfield), and three background stations that

take 2-weekly integrated samples in Ireland (Mace Head), Spain (Izaña), and Canada (Alert). Given the high analytical costs,

labor intensity, and limited laboratory capacity associated with ∆14CO2 measurements, implementing a sample selection

strategy is essential to maximize the information gained while minimizing resource use. Identifying the most informative

sampling times and locations helps optimize observational coverage, enabling more cost-effective network design without80

compromising the accuracy of fossil CO2 estimates.

In this paper, we assess how different sample selection strategies, combining intensive flask sampling with regular integrated

sampling, can improve fossil CO2 emission estimates at subregional and subannual scales. We use the multi-tracer-enabled

version of the Lund University Modular Inversion Algorithm (LUMIA) system (Gómez-Ortiz et al., 2025) to perform a series

of perfect transport OSSEs. The study aims to address three key research questions: (1) What is the added value of intensive85

∆14CO2 sampling compared to the current sampling done in ICOS? (2) Is there a benefit in selecting ∆14CO2 flask samples

based on their fossil contribution to improve fossil CO2 emissions estimates? (3) Does further selection of flask samples based

on nuclear contamination provide additional benefits when estimating fossil CO2 emissions?

To address these questions, we calculate a series of synthetic observations by performing a forward simulation of the trans-

port model with a set of assumed true fluxes. We then apply different flask sample selection strategies based on fossil CO290

content, and nuclear 14CO2 contamination. These synthetic observations are subsequently inverted using LUMIA to estimate

fossil CO2 emissions, allowing us to quantify differences in bias and uncertainty associated with each selection approach. The

framework and strategies presented here were developed prior to and during the early stages of the 2024 campaign to support

its design and implementation. They enable a comprehensive evaluation of how increasing flask sampling frequency and ac-
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Figure 1. Sampling stations selected for this study and their identification according to the measured tracers and their participation in

the CORSO project (dark blue diamonds). Green dots represent the stations where only CO2 is measured, yellow dots where additionally

∆14CO2 is measured in 1-hour flasks and red dots where ∆14CO2 is measured in approximately 2-weekly integrated samples.

counting for both fossil and nuclear signals can improve the estimation of fossil fuel emissions at subregional and subannual95

scales, ultimately providing insights to optimize future greenhouse gas monitoring efforts.
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Table 1. Sampling stations included in this study and ∆14CO2 sampling type according to the current status and the CORSO project.

Site Name Country Latitude Longitude
Altitude

(m a.s.l.)

Sampling

height

(m a.g.l.)

CORSO

Current

∆14CO2

sampling

CORSO

∆14CO2

sampling

BIK Białystok PL 53.2294 23.0128 183.0 300.0 X Flask

BIR Birkenes NO 58.3886 8.2519 219.0 75.0

CBW Cabauw NL 51.9703 4.9264 0.0 207.0 X Integrated Flask

CMN Monte Cimone IT 44.1936 10.6999 2165.0 8.0

GAT Gartow DE 53.0657 11.4429 70.0 341.0 X Integrated Flask

HEL Helgoland DE 54.1804 7.8833 43.0 110.0

HFD Heathfield GB 50.9770 0.2310 157.3 100.0 X Flask

HPB Hohenpeissenberg DE 47.8011 11.0246 934.0 131.0 X Integrated Flask

HTM Hyltemossa SE 56.0976 13.4189 115.0 150.0 X Integrated Flask

IPR Ispra IT 45.8147 8.6360 210.0 100.0

JFJ Jungfraujoch CH 46.5475 7.9851 3571.8 13.9 Integrated

JUE Jülich DE 50.9102 6.4096 98.0 120.0

KIT Karlsruhe DE 49.0915 8.4249 110.0 200.0 X Integrated Flask

KRE Křešín u Pacova CZ 49.5720 15.0800 534.0 250.0 X Integrated Flask

LIN Lindenberg DE 52.1663 14.1226 73.0 98.0 X Integrated Flask

LMP Lampedusa IT 35.5181 12.6322 45.0 8.0

LUT Lutjewad NL 53.4036 6.3528 1.0 60.0

MHD Mace Head IE 53.3261 -9.9036 5.0 24.0 X Integrated

NOR Norunda SE 60.0864 17.4794 46.0 100.0 Integrated

OPE
Observatoire pérenne

de l’environnement
FR 48.5619 5.5036 390.0 120.0 X Integrated Flask

OXK Ochsenkopf DE 50.0300 11.8083 1022.0 163.0 Integrated

PAL Pallas FI 67.9733 24.1157 565.0 12.0 Integrated

PRS Plateau Rosa IT 45.9300 7.7000 3480.0 10.0

PUI Puijo FI 62.9096 27.6549 232.0 84.0

PUY Puy de Dôme FR 45.7719 2.9658 1465.0 10.0

SAC Saclay FR 48.7227 2.1420 160.0 100.0 Integrated

SMR Hyytiälä FI 61.8474 24.2947 181.0 125.0

STE Steinkimmen DE 53.0431 8.4588 29.0 252.0 X Integrated Flask

SVB Svartberget SE 64.2560 19.7750 269.0 150.0 Integrated

TOH Torfhaus DE 51.8088 10.5350 801.0 147.0

TRN Trainou FR 47.9647 2.1125 131.0 180.0 X Integrated Flask

UTO Utö - Baltic sea FI 59.7839 21.3672 8.0 57.0

WAO Weybourne GB 52.9500 1.1210 31.0 10.0

WES Westerland DE 54.9231 8.3080 12.0 14.0

ZSF Zugspitze DE 47.4165 10.9796 2666.0 3.0
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2 The LUMIA framework

We use the multi-tracer-enabled version of the Lund University Modular Inversion Algorithm (LUMIA) system (Gómez-Ortiz

et al., 2025) to perform a series of perfect transport OSSEs covering Europe in a regional domain ranging from 15°W, 33°N to

35°E, 73°N, as shown in Fig. 1, similar to previous regional European inverse modeling studies(Monteil et al., 2020; Thompson100

et al., 2020). In this case, perfect transport means that we use the same transport model to produce the synthetic observations

and to perform the atmospheric inversions, as well as the same background for the synthetic observations and the modeled

mixing ratios.

LUMIA is an inversion framework originally designed for regional CO2 inversions in Europe. The framework was later

extended to perform simultaneous inversions of CO2 and ∆14CO2 to estimate fossil CO2 emissions over Europe (Gómez-105

Ortiz et al., 2025), which we use in this study with minor modifications detailed in this section. Since the initial release of

LUMIA, it has incorporated the two-step atmospheric inversion scheme proposed by Rödenbeck et al. (2009), as thoroughly

explained by Monteil and Scholze (2021). In this approach, for each observation (either CO2 or ∆14CO2), the modeled mixing

ratio ym is described as the total of the contributions of the "foreground" yf (mixing ratios due to fluxes directly related with

ym by the model, limited spatially by the domain and temporally by the length of the simulation) and the "background" yb110

(i.e., any additional contribution not captured by the foreground fluxes, including external sources or preexisting atmospheric

mixing ratios):

ym = yb +yf (1)

which can be expanded for each tracer (CO2 and ∆14CO2) as:

ym
CO2

= yb
CO2

+yf
ff +yf

bio +yf
oce (2a)115

ym
C∆14C = yb

C∆14C +yb
cosmo︸ ︷︷ ︸

background

+yf
∆ff +yf

∆bio +yf
∆oce +yf

biodis +yf
ocedis +yf

nuc︸ ︷︷ ︸
foreground

(2b)

where ym
CO2

is the modeled CO2 mixing ratio and yb
CO2

is the background CO2 mixing ratio. On the right-hand side of Eq.

2a, yf
ff is the mixing ratio within the domain due to fossil CO2 (Fff), yf

bio the mixing ratio due to the net exchange of CO2

between the atmosphere and terrestrial ecosystems (Net Ecosystem Exchange, NEE, hereafter biosphere flux, Fbio) , and yf
oce120

the mixing ratio due to the net exchange of CO2 between the atmosphere and oceans (Foce).

All terms in Eq. 2b are in units of CO2 ×∆14CO2 (e.g. ppm h) or C∆14C for simplification, since the values in h are

not additive (see Basu et al. (2016) and Gómez-Ortiz et al. (2025) for additional details). In this equation, ym
C∆14C and yb

C∆14C

are the modeled and background C∆14C mixing ratios, respectively. yb
cosmo is the C∆14C mixing ratio due to the cosmogenic

production of radiocarbon in the stratosphere (Fcosmo). yb
cosmo is accounted in the background (yb

C∆14C), since LUMIA was125
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designed to assimilate only surface fluxes. Furthermore, on a regional scale, sampling sites are considered to be similarly

influenced by 14C-enriched stratospheric air and its influence on tropospheric radiocarbon can be neglected (Maier et al., 2023;

Lingenfelter, 1963). A significant influence from cosmogenic radiocarbon production can be expected in samples collected

near the lower stratosphere (above 6 km) (Turnbull et al., 2009) which is not the case for any stations in this study (see Fig. 1).

The first foreground term in Eq. 2b, yf
∆ff, represents the reduction in atmospheric ∆14CO2 due to the addition of fossil130

CO2, which is devoid of radiocarbon. This dilution effect is modeled by transporting a tracer, yf
∆ff, assigned a ∆14CO2 value

of -1000 h, representing fossil CO2 with no radiocarbon content relative to the atmospheric standard. The next terms, yf
∆bio

and yf
∆oce represent the net exchange from the atmosphere with the biosphere and the ocean, respectively. The contribution of

these exchanges is modeled by transporting the biosphere and ocean fluxes multiplied by the isotope signature of the current

atmosphere. yf
biodis and yf

ocedis are the contributions due to isotopic disequilibrium.135

The carbon exchanged between the biosphere, ocean, and atmosphere has an isotopic signature that can differ from that of

the current atmosphere. In the terrestrial biosphere, carbon released through heterotrophic respiration may be enriched in 14C,

reflecting the elevated atmospheric radiocarbon levels that followed nuclear weapons testing in the mid-20th century (Levin and

Kromer, 2004; Graven et al., 2012). This enrichment introduces a positive isotopic disequilibrium between biospheric fluxes

and the present-day atmosphere. In contrast, the ocean can release 14C-depleted carbon, especially from older subsurface140

waters that have been isolated from atmospheric exchange for decades, allowing radioactive decay to reduce their radiocarbon

content below atmospheric levels (Sweeney et al., 2007; Graven et al., 2012). These opposing disequilibrium fluxes contribute

to regional and seasonal variability in atmospheric ∆14CO2.

The last term, yf
nuc, represents the contribution due to the radiocarbon emissions generated by nuclear activities (Fnuc),

mainly from nuclear power plants and spent fuel reprocessing facilities. The contribution of past nuclear weapons testing is145

now considered negligible due to its significant decline over recent decades (Kutschera, 2022), and is therefore not included.

Following the original the original implementation of LUMIA (Monteil and Scholze, 2021), here we use the global TM5

model (Huijnen et al., 2010) to calculate the background mixing ratios (yb) and the Lagrangian FLEXPART model (Pisso et al.,

2019) to perform the regional transport (yf) and the inversions. In the following sections, we explain further the implementation

of the models.150

2.1 Background composition from TM5

The background refers to the CO2 mixing ratio and ∆14CO2 isotopic signature of the atmosphere at the spatial and temporal

boundaries of the domain. This can be a combination of emissions transported by large-scale atmospheric circulation, regional

transport from outside the domain, and air masses reentering the domain (Rödenbeck et al., 2009). In this study, we use the

implementation of the background mixing ratio calculation in TM5-4DVar developed by Monteil and Scholze (2021) based on155

the methodology proposed by Rödenbeck et al. (2009), integrated with the implementation of TM5-4DVar to include CO2 or

∆14CO2 developed by Basu et al. (2016) (https://sourceforge.net/p/tm5/cy3_4dvar/ci/default/tree/proj/tracer/radio_co2/, last

visited in August 2024). Here, we model the background mixing ratio using global optimized fluxes and an initial condition

from Basu et al. (2020) for 2010. These fluxes are in a horizontal resolution of 3°×2° (25 hybrid sigma-pressure vertical levels
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for Fcosmo), and variable time resolutions for the individual fluxes: 1 hour for Fff, 3 hours for Fbio and Foce, 1 month for Fbiodis160

and Focedis, and 1 year for Fnuc and Fcosmo. The simulation is driven by meteorological fields from the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis project (Hersbach et al., 2020).

Here, we describe a extension of the original setup by Monteil and Scholze (2021) to include cosmogenic production in the

background term yb
C∆14C (see Sect. 2, Eq. 2b):

The background component yb
t , with t indicating the tracers CO2 and C∆14C, is calculated as follows:165

1. We perform a global forward run with TM5 to calculate the mixing ratio field yTM5
t , which include contributions from

both inside and outside the regional domain.

2. We then run a modified version of TM5 in which all fluxes and mixing ratios are set to zero outside the regional domain at

every time step. This produces a field yf, TM5
t , which reflects only the contribution from fluxes inside the regional domain.

In this step, the cosmogenic production flux Fcosmo is set to zero globally in order to keep it as part of the background in170

the next step.

3. The background mixing ratios are then calculated as: yb
t = yTM5

t −yf, TM5
t .

2.2 Regional transport (FLEXPART)

Following the methodology described in Monteil and Scholze (2021) and Gómez-Ortiz et al. (2025), our regional transport

model (i.e. the operator to calculate yf in Equations 1 and 2) is composed of a series of pre-computed footprints with FLEX-175

PART (Pisso et al., 2019) driven by ERA5 reanalysis data for 2018 at a spatio-temporal resolution of 0.25° × 0.25° and 1 h,

using the Python code developed to run and post-process the footprints to be used in LUMIA (https://github.com/lumia-dev/

runflex, last accessed in July 2025). We compute two types of footprints: (i) instant (or flask) footprints to simulate continuous

CO2 and CO observations, and (ii) integrated footprints to simulate ∆14CO2 integrated observations (see Sects.3.5 and 3.3).

We compute instant footprints from the observation time and 14 days back in time releasing 10000 particles per simulation180

(Monteil and Scholze, 2021), and we use the same footprint to model CO2, CO, and ∆14CO2 at the corresponding observation

time and sampling station. These footprints are computed for a passive air tracer, i.e. without any atmospheric chemistry reac-

tions. Therefore, for CO we only evaluate the regional contributions (Levin et al., 2020) without accounting for the background

and reactions with other atmospheric components. For the integrated footprints, we set a fixed integration time of 2 weeks (14

days), distribute 10000 FLEXPART particles per hour over this integration period, and then simulate 14 days backward from185

the integration start time (Gómez-Ortiz et al., 2025).

2.3 The inverse modeling approach

LUMIA follows an implementation of the variational approach (4D-Var). This approach seeks to iteratively minimize the

mismatch between the model output and observations δy by optimizing the control vector x. The optimization process is

guided by a cost function, J (x), defined as:190
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J (x) =
1

2

(
x−xb)T B−1

(
x−xb)+ 1

2
(Hx− δy)

T R−1 (Hx− δy) (3)

In this equation, xb represents the prior estimate of the control vector, B is the prior uncertainty covariance matrix, R is the

observational uncertainty covariance matrix, and H is the Jacobian of the observation operator H , which includes the transport

model (i.e., pre-computed footprints) and other components needed to express y as a function of x, such as flux aggregation

and disaggregation, and the incorporation of boundary conditions.195

The control vector x contains the set of parameters adjustable by the inversion, which are offsets to the fossil and biosphere

CO2 fluxes we aim to estimate. We solve for clusters aggregated in time and space. These are defined based on the sensitivity

of the observation network to emissions from different regions: areas with high observational coverage, such as those upwind

of sampling stations, are optimized at full spatial resolution (0.5°×0.5°), while regions with lower sensitivity are grouped into

coarser clusters (e.g., 5°× 3.5°) (Gómez-Ortiz et al., 2025).200

The prior error covariance matrix (B) is constructed in three steps. First, the variances are determined to represent the

assumed spatio-temporal uncertainties of the fluxes. Next, covariances are calculated based on assumed spatial and temporal

correlations, incorporating the distance between grid clusters and the time difference between flux intervals. Finally, the entire

matrix is scaled using a uniform factor to match category-specific annual uncertainty values. The formulas used for fossil CO2

emissions differ from those used for other fluxes to account for better-known emission locations and to avoid artificially low205

uncertainties due to flux compensations (Gómez-Ortiz et al., 2025).

The observation uncertainty matrix (R) includes both measurement uncertainties and model representation uncertainties,

which account for the model’s inability to perfectly simulate observations even with accurate fluxes. Ideally, the diagonal of

R holds the total uncertainty for each observation, while the off-diagonals represent error correlations between observations.

However, since these correlations are hard to quantify, common practice is to set these error correlations (off-diagonal elements)210

to zero. The observation uncertainty can then be provided as a simplified observation error vector (Monteil and Scholze, 2021).

The iterative procedure works by adjusting x to minimize the cost function J (x), which represents the mismatch between

the model and the observations weighted by their respective uncertainties. The optimal solution is achieved when the gradient,

∇xJ approaches zero, indicating that a local minimum of the cost function has been reached. This approach ensures that the

final estimate of x provides the best possible fit to the synthetic observational data while taking into account the uncertainties215

in both the prior information and the observations (Rayner et al., 2019).

3 Experimental design

In this paper, we focus on the implementation of perfect transport OSSEs. We calculate a series of synthetic observations, using

a set of assumed "true" fluxes (F t), by performing a forward run of our transport model. Afterwards, using a set of "prior"

fluxes, we can evaluate how well the inversion framework performs in recovering the assumed "true" fluxes. In this section, we220

describe the flux products used as true and prior fluxes (Sect. 3.1), the calculation of the synthetic observations (Sect. 3.3), the
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model setup (i.e., the information needed to construct the matrices B and R and the control vector x) (Sect. 3.4), the selection

criteria of the synthetic ∆14CO2 flask samples (Sect. 3.5), and the design of the OSSEs (Sect. 3.6).

3.1 True, prior and prescribed fluxes

The assumed true fluxes, denoted as F t, are used to generate synthetic observations through a forward run of our transport225

model. For the global transport simulation, we use the posterior fluxes from Basu et al. (2020) (see Sect. 2.1). For the regional

transport, all fluxes have a resolution of 0.5°× 0.5° and 1 hour in the domain shown in Fig. 1.

We use as true fossil CO2 flux (F t
ff) a product (Koch and Gerbig, 2023) for 2018 based on the Emission Database for

Global Atmospheric Research (EDGAR) version 4.3.2 emission product (Janssens-Maenhout et al., 2019) following temporal

variations based on MACC-TNO Denier van der Gon et al. (2011) and with temporal extrapolations and disaggregation using230

the COFFEE approach (Steinbach et al., 2011). We use a fossil CO flux product based on the same methodology described for

F t
ff. This product is later used to estimate the CO enhancement from fossil fuel combustion, used as a criterion for selecting the

∆14CO2 flask samples.

As true biosphere fluxes (F t
bio), we use a simulation for 2018 from the LPJ-GUESS vegetation model (Wu, 2023; Smith

et al., 2014). For true ocean fluxes (F t
oce), we use the Jena CarboScope oc_v2020 product, which is based on the SOCAT235

dataset of pCO2 observations (van der Woude et al., 2022; Rödenbeck et al., 2022, 2013). As true terrestrial and oceanic

isotopic disequilibrium fluxes (F t
biodis and F t

ocedis), we use the optimized fluxes from Basu et al. (2020), regridded to match the

spatial and temporal resolution of the regional transport model. Both disequilibrium fluxes are prescribed in the experiments,

and hence they are not optimized. This decision is due to the high uncertainty derived from optimizing Fbiodis, and the low

influence of Foce and Focedis in the study domain, as shown in our earlier work (Gómez-Ortiz et al., 2025). The emission240

products from nuclear facilities are described in detail in Sect. 3.2.

As prior fluxes, we use the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda et al., 2018) for 2018

(Oda and Maksyutov, 2020) to represent prior fossil CO2 emissions (Fff). For prior biosphere emissions (Fbio), we use fluxes

simulated by the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 2008; Thompson et al., 2020)

for the year 2018 (Gerbig and Koch, 2021).245

3.2 Radiocarbon emissions from nuclear facilities (Fnuc)

Nuclear 14CO2 fluxes (Fnuc) are generally prescribed in inverse modeling studies due to the high uncertainty derived from

the lack of information on temporal variability. For this reason, we produced two sets of nuclear fluxes: one with a temporal

variability to be used as the true flux (F t
nuc), and the second one with the emissions evenly distributed throughout the year as

is usual for this flux category (Basu et al., 2016, 2020; Gómez-Ortiz et al., 2025). Both flux products are based on the data250

described in Maier et al. (2023) and Storm et al. (2024). Therefore, they share the same annual budget and spatial distribution,

which is defined using the location of nuclear facilities and aggregated over a 0.5°× 0.5° grid.

For the temporal distribution of F t
nuc, we use the weekly temporal profiles reported by Varga et al. (2020) for the Paks

Nuclear Power Plant (NPP) in Hungary and the monthly profiles reported by Akata et al. (2013) for the Rokkasho Spent Fuel
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Reprocessing Plant (SFR) in Japan. Both studies reported at least three years of temporal profiles. Therefore, we assign the255

temporal profile by randomly selecting a time span corresponding to a year starting from a random date and then assigning

it to the corresponding type of nuclear facility (NPP or SFR). We did this because we did not find any evident seasonality in

the temporal profiles of these two studies, and, in addition, such temporal profiles can vary between different types of nuclear

reactors. With this temporal distribution, we want to add extra variability to the nuclear contribution to atmospheric ∆14CO2

and study its impact when using the prescribed flat-year nuclear emissions to estimate fossil CO2 emissions. However, we are260

aware of the differences among the types of nuclear facilities and how this can affect the temporal profile. For the prescribed

flux, we incorporate a flat-year nuclear emission product. This allows the inversion to follow a traditional setup while still

accounting for imperfect representation of nuclear emissions.

3.3 Synthetic observations

We calculate hourly mixing ratios for each sampling station. For the flask (∆14CO2) samples and the instant (CO2) observa-265

tions, the background is the model output at each observation time. For the integrated ∆14CO2 samples, the background is

calculated as the average of the mixing ratios from the start date of sampling to the end of the integration period (14 days in

this study).

Using the instant and integrated footprints , we perform a forward run of the regional model with the true fluxes (see Sect.3.1)

to generate time series of CO2, CO, and ∆14CO2. The CO flux product is based on the same methodology as the fossil CO2 flux270

and is used to simulate CO mixing ratios for sample selection, following the approach of Levin et al. (2020), where elevated

CO deviations from background are used as a proxy for enhanced fossil CO2 signals.

As a final step, we add random noise to the synthetic CO2 and ∆14CO2 observations by drawing from a normal distribution

with mean zero and a standard deviation equal to the assumed observational uncertainty. This perturbation is added to each

observation to mitigate the assumption of a perfect transport model.275

We select the CO2 synthetic observations for the times of day when the model is expected to perform well, as typically done

in real atmospheric inversions. This corresponds to 11:00–15:00 local time (LT) for sampling sites below 1000ma.s.l., and

22:00–02:00 LT for mountaintop stations, when the boundary layer is likely below the sampling intake and free tropospheric

air is sampled (Monteil and Scholze, 2021; Gómez-Ortiz et al., 2025).

3.4 Inversion setup280

In all experiments, we optimize weekly fossil and biospheric CO2 fluxes (F ff and Fbio). The control vector x is composed of

clusters of 2500 grid points and weekly offsets for each flux category. Uncertainties are first defined at the native resolution of

the prior fluxes (e.g. 0.5° × 0.5°, hourly) and then aggregated to match the resolution of the control vector. This ensures that

regions and time periods with larger fluxes are assigned proportionally larger uncertainties, while still allowing all clusters to

be adjusted by the inversion.285

For fossil fuel emissions, we distribute uncertainty across grid cells using the ratio log(Daily total)/Daily total. This gives

relatively more weight to low-emission regions, which often carry higher relative uncertainty, and prevents unrealistically low
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uncertainty values in high-emission areas. For biospheric fluxes, uncertainty is distributed in proportion to the square root of

the sum of the absolute hourly fluxes within each aggregation window. This avoids underestimating uncertainty in regions or

periods where net biospheric fluxes are small due to compensation between photosynthesis and respiration.290

The overall prior uncertainty across the domain is set to 0.21 PgCyr−1 for fossil emissions (30% of the prior annual budget)

and 0.37PgCyr−1 for biosphere fluxes (25% of the absolute prior annual budget). These values are consistent with observed

differences between fossil and biosphere model products (e.g. EDGAR vs. ODIAC, LPJ-GUESS vs. VPRM).

The spatial and temporal error structure in the prior covariance matrix B is defined using an exponential temporal correlation

of one month for both fluxes, and a Gaussian spatial correlation length of 200km for fossil fluxes and 500km for biospheric295

fluxes. These correlation lengths reflect the structure of uncertainty in emission inventories and ecosystem processes, and are

consistent with previous inversion studies in Europe (Wang et al., 2018; Monteil and Scholze, 2021; Thompson et al., 2020).

Observation uncertainties in R are defined as follows: for CO2, we assign a prior error equal to the standard deviation of

model-simulated concentrations within a ±3.5 day window around each observation. For ∆14CO2, we assume a constant error

of 0.9ppm C∆14C, equivalent to 2.15± 0.05h.300

3.5 Synthetic ∆14CO2 flask sample selection

We define three criteria to guide the selection of ∆14CO2 flask samples in the OSSEs: (1) midday sampling at 13:00 LT

every third day, (2) selection of high fossil CO2 events, and (3) avoidance of periods with potentially high nuclear emissions.

These correspond to the three strategies described earlier but are detailed here with their specific operational implementation.

Sampling at midday ensures strong atmospheric mixing, reducing model transport errors and providing stable, low-variability305

conditions for accurate quality control. Events of high fossil CO2 are identified using the simulated mixing ratios of fossil CO2

and fossil CO, the latter serving as a reliable tracer due to its co-emission during combustion and lack of biological sources.

While these are simulated values in the OSSE framework, in real-world applications, total CO2 and total CO measurements

are used in near-real time. Fossil CO2 is then inferred from observed CO enhancements relative to a background, together with

known emission ratios, as described by Levin et al. (2020). Avoiding potentially high nuclear emissions is crucial to prevent310

masking the fossil fuel signal with nuclear 14CO2 emissions (Maier et al., 2023; Graven and Gruber, 2011).

For the ∆14CO2 flask sample selection, we follow the same thresholds for fossil CO2 (≥ 4 ppm) and fossil CO (≥ 40 ppb)

(hereafter ffCO2 and ffCO, respectively) as proposed by Levin et al. (2020) to capture events of high fossil CO2 emissions.

Additionally, we introduce a new threshold for nuclear C∆14C of ≤ 1 ppm C∆14C to avoid capturing events of potentially

high nuclear ∆14CO2 contamination. This value is based on forward runs using both nuclear emission products (with and315

without a temporal profile). Because LUMIA calculates the individual contribution of each flux category in Equation 2 to the

modeled tracer fields, these estimates are used directly to apply the sample selection strategies.

At sites not directly influenced by nuclear emissions, such as Białystok (BIK; see Fig.1 and Table1), this threshold represents

87% of the synthetic observations at 13:00 local time for the year 2018. In contrast, at sites with high nuclear impact, such as

Karlsruhe (KIT) in Germany, it represents 41% of the synthetic observations (see Fig.2). This estimate is based on simulations320
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for 2018, when nearby nuclear facilities like Philippsburg 2 (shut down at the end of 2019) were still active. However, conditions

during the CORSO campaign may differ significantly due to the shutdown of all German nuclear power plants in April 2023.

During the CORSO sampling campaign, approximately 120 flask samples (10 per month) are selected at each station for

∆14CO2 analysis. Maintaining a consistent number of samples per station and distributing them as evenly as possible through-

out the year is desirable to reduce seasonal bias. However, this distribution is not always achievable when applying strict325

sampling criteria, particularly in regions or periods with frequent nuclear contamination or low fossil signals. Therefore, we

prioritize synthetic samples that meet the selection thresholds in each OSSE and complete the 10-per-month target with addi-

tional samples that closely match the criteria.

3.6 Observing System Simulation Experiments (OSSEs)

In the following sections, we describe the experiments. We summarize the setup of the experiments and their criteria in Table 2.330

As part of the evaluation of the experiments, we calculate the posterior uncertainty of each OSSE with a Monte Carlo ensemble

of 25 members. Note that small differences in the monthly prior uncertainties across figures are due to the limited size (25

members) of each Monte Carlo ensemble, despite the same annual prescribed uncertainty being applied across all regions and

experiments.

3.6.1 Base case scenario (BASE)335

In the first inversion, BASE, we replicate the current setup of the ICOS network using synthetic ∆14CO2 integrated samples

and synthetic CO2 observations. In this experiment, we use all stations in Fig. 1 (except MHD, HFD and BIK) and integrated

samples according to the column ’Current ∆14CO2 sampling’ in Table 1 (yellow and red dots in Fig. 1). CO2 observations

are used at all stations during periods of the day when the atmospheric transport model is expected to perform best: midday at

lowland and coastal sites, and midnight at mountaintop sites.340

3.6.2 Including ∆14CO2 flask samples (CORSO)

The selection of flask samples represents many logistic and operational challenges. The simulations and data analysis to deter-

mine if a sample meets the selection criteria are often conducted weeks after the sample has been taken. As a result, more than

10 samples need to be collected each month, which requires sufficient flasks, storage, and transport capacity. Therefore, we

will begin by evaluating the use of synthetic ∆14CO2 flask samples in the simplest form: taking a sample every 3 days at 13:00345

local time, regardless of its composition. This experiment also works as a base case for the use of ∆14CO2 flask samples. The

selection in this and the following experiments is carried out in the sampling sites marked with yellow dots in Fig. 1. This is

the basic approach to sampling selection in the CORSO project when it is not possible to perform near-real-time simulations

to estimate the fossil or nuclear contribution of the ∆14CO2 flask samples.
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Figure 2. Synthetic ∆14CO2 flask samples at a) Białystok (BIK) and b) Karlsruhe (KIT), two of the 12 sampling sites selected for the

intensive sampling campaign during the CORSO project. The time series for the remaining sampling sites can be found in Appendix A1.

The tables below each figure show the number of synthetic observations per month that meet the ffCO2 threshold (red cross), the ffCO2 and

ffCO (yellow tri) thresholds, and the ffCO2 and nuc14C (green cross) thresholds.
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3.6.3 Applying fossil fuel-related thresholds (ffCO2 and ffCO)350

We apply the fossil fuel-related thresholds (ffCO2 and ffCO) using a forward simulation with prior fluxes to approximate near-

real-time conditions. Based on the resulting mixing ratios, we select the synthetic observations that meet the defined criteria.

These thresholds are not always satisfied, particularly in summer when fossil emissions are lower and most stations fail to meet

the minimum values. This seasonal pattern is consistent with the decline in fossil fuel activity during warmer months, as also

noted by Levin et al. (2020). Figure2 illustrates the variability in threshold fulfillment across sites.355

In months in which one of the thresholds or a combination of them is not met, we still need to select the 10 synthetic

observations that best fit the experimental conditions. The first experiment including the thresholds is CORSO_ffCO2, where

we select synthetic observations at 13:00 LT with a fossil CO2 component greater than or equal to 4 ppm (see Fig. 2). Generally,

we select the 10 synthetic observations per month with the highest fossil CO2 component. The second experiment is CORSO_

ffCO2_ffCO (criteria A & B in Fig. 2). In this experiment, when neither threshold is met, we select the best combination with360

the highest values of ffCO2 and ffCO.

3.6.4 Evaluating the impact of nuclear emissions (nuc14C)

In the final set of experiments, we aim to estimate the contribution of nuclear emissions to the posterior uncertainty. In a real-

world application, sample selection would rely on the sensitivity of the observations to nuclear emissions (i.e., whether the

upstream winds pass over a nuclear facility and coincide with a period of radiocarbon release). Although there is substantial365

uncertainty in the estimated magnitude of nuclear contamination, we maintain reasonable confidence in the modeled spatial

and temporal patterns.

To replicate a real world scenario, we select a set of observations with low nuclear influence (CORSOffCO2nuc14C)whileensuringahigh
ffCO2composition.Weuseaforwardrunofthepriornuclearfluxes,assumedtobeevenlydistributedthroughouttheyear, toestimatethenuclearC∆14C

component. Since the combination of the ffCO2 and nuc14C thresholds (criteria A and C in Fig.2) is not always satisfied, we

apply the following selection procedure in the CORSOffCO2nuc14Cexperiment:

1. We first select the observations that meet both the ffCO2 and nuc14C thresholds.

2. For each site, year, and month, we then select the top 10 observations with the lowest nuclear influence from this subset.

3. If fewer than 10 such observations are available, we fill the remaining slots with observations that meet the ffCO2370

threshold and have moderate nuclear influence (1-2 ppm C∆14C).

4. If this is still insufficient, we complete the sample by selecting observations that meet only the nuclear threshold, priori-

tizing those with the highest fossil CO2 influence.

We compare this experiment against CORSO_ffCO2, in which we do not consider the nuclear contamination. For each

set of observations (CORSO_ffCO2 and CORSO_ffCO2_nuc14C), we perform two Monte Carlo ensembles. In the first, we375

conduct a standard ensemble in which both the control vector and the observations are perturbed according to the prescribed

uncertainties. In the second ensemble, we additionally include uncertainty from nuclear emissions by modifying the observation
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Table 2. Summary of the OSSEs performed in this study.

Simulation ∆14CO2 sample type Criteria

BASE Integrated Current network

CORSO Integrated and Flask Flask samples at 13LT every third day

CORSO_\allowbreak ffCO2 Integrated and Flask ffCO2 ≥ 4ppm

CORSO_\allowbreak ffCO2 +

nuclear perturbation
Integrated and Flask ffCO2 ≥ 4ppm

CORSO_\allowbreak ffCO2_\allowbreak ffCO Integrated and Flask ffCO2 ≥ 4ppm & ffCO ≥ 40ppb

CORSO_\allowbreak ffCO2_\allowbreak nuc14C Integrated and Flask ffCO2 ≥ 4ppm & nuc14C ≤ 1ppm

CORSO_\allowbreak ffCO2_\allowbreak nuc14C +

nuclear perturbation
Integrated and Flask ffCO2 ≥ 4ppm & nuc14C ≤ 1ppm

error as follows: we perturb the true nuclear emissions using an uncertainty equal to the annual nuclear budget (0.62 Pg C∆14C,

100%), and recalculate the synthetic observations. We assign 100% uncertainty to the nuclear emissions due to the lack of

information on their temporal distribution, following Maier et al. (2023). After this, we perform the Monte Carlo ensemble in380

the same way as the first. The difference between the two ensembles for each observation set represents the contribution of

nuclear emissions to the posterior uncertainty.

4 Results

4.1 Characterization of the sampling sites in terms of ∆14CO2

We start by analyzing and comparing the real ∆14CO2 integrated samples (ICOS RI et al., 2024) with the synthetic observations385

at the sites selected for the intensive ∆14CO2 flask sample campaign (Fig. 3 and Appendix A2). Real observations show

pronounced seasonal but also episodic fluctuations in ∆14CO2, such as low values during February and March in CBW (-

16.64 h), OPE (-15.14 h), and KRE (-5.75 h) (black line; see Fig. 3), which also coincide with the reduction in the modeled

synthetic observations (between -7.6 h in CBW and -5.1 h in KRE, teal line) and can be associated with the typically high

fossil emissions during winter. In contrast, elevated values are observed in January and February at KRE (2.56 h) and OPE390

(6.25 h). These high values may be primarily driven by nuclear emission enrichment, as indicated by the simulated nuclear

component (red line; see Fig. 3), which shows contributions of up to 7 h at KRE and OPE during this period. During the

growing season, when heterotrophic respiration is more active, elevated values could also be influenced by terrestrial isotopic

disequilibrium, as reflected in the simulated component ranging from 1 to 4 h.

Although the synthetic observations are calculated with non-optimized fluxes, we find certain reproducibility of the seasonal395

patterns at sites such as CBW where we have the best agreement between the real and synthetic observations with the highest

correlation coefficient (R) and lowest mean bias deviation (MBE) (see Fig. 3), and KRE and SAC (Fig. A2) in which the
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Figure 3. Comparison of the available real ∆14CO2 integrated samples (black) (ICOS RI et al., 2024) with the modeled synthetic observa-

tions (teal) at a) CBW, b) KRE and c) OPE, three of the sampling sites selected for the intensive CORSO flask campaign. The nuclear (red)

and terrestrial disequilibrium (yellow) components of the synthetic observations are also shown for comparison. Gaps in panel a reflect pe-

riods of missing integrated observations. At CBW, the integration period was approximately one month during 2018, whereas it was around

14 days at the other stations. Synthetic observations were modeled to match fixed 14-day integration periods across sites.
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synthetic observations mostly underestimate the real observations (negative MBD). Also, at some sampling stations such as

JFJ and PAL, the synthetic observations do not capture the variability shown by the real observations, which is reflected in high

root mean square error values (RMSE, see Fig. A2).400

4.2 OSSEs

We evaluate the retrieval of fossil CO2 emissions by comparing the assumed true values (from EDGAR) with the prior estimates

(from ODIAC) and the posterior estimates from each experiment. The analysis focuses on bias and uncertainty reduction,

calculated as follows

Bias reduction =

(
1− |Posterior−Truth|

|Prior−Truth|

)
× 100 (4a)405

Uncertainty reduction =

(
1− Posterior uncertainty

Prior uncertainty

)
× 100 (4b)

4.2.1 Impact of adding ∆14CO2 flask samples

Here, we compare the BASE and CORSO experiments. A summary of the maximum and minimum bias and uncertainty

values, their respective months, and the corresponding posterior reductions is provided in Table 3. In the study domain (Fig.410

4a), the true emissions display a clear seasonal pattern, with higher values in winter and lower values in summer, reaching

a maximum of approximately 4.8 TgCd−1 in January and a minimum of about 3.1 TgCd−1 in July. The prior (ODIAC)

underestimates the true emissions throughout the year, particularly in winter months, with a January bias of nearly 30 %.

In contrast, the posterior estimates from the BASE and CORSO experiments show improved agreement with the truth. The

CORSO experiment generally achieves larger reductions in bias, especially during spring and autumn. However, in June and415

July, CORSO slightly overestimates emissions, whereas the BASE experiment provides a closer match to the true values. Prior

uncertainty ranges from approximately 50 % in winter to over 70 % in summer. Both posterior experiments substantially reduce

this uncertainty, with CORSO showing slightly stronger reductions, between 71 % and 87 % across the year.

Western/Central Europe (WCE) and Germany, where around 30 % and 16 % of the total emissions occur, respectively,

have similar results in relative terms. Both regions have a larger prior bias during winter, with the largest biases occurring in420

January (35 % for WCE and 42 % for Germany). In contrast, they exhibit a lower bias in summer, with a minimum in July

(5 % for WCE and 4 % for Germany). The posterior emissions of both experiments overestimate the monthly budgets during

summer, from June to August in WCE and from May to August in Germany. However, the CORSO experiment shows values

closer to the truth in this season. Outside of the summer season, the BASE experiment demonstrates a larger bias reduction

in WCE, whereas the CORSO experiment shows a larger bias reduction in Germany. The prior uncertainties in both regions425

exceed 100 % but are consistently reduced by more than 90 % by the CORSO experiment in both WCE and Germany, and

by more than 80 % by the BASE experiment. Nevertheless, from May to September the absolute posterior uncertainty of both

experiments in both regions is larger than their respective absolute prior bias.
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Figure 4. Monthly fossil CO2 truth (black), prior (red), and posterior fluxes from the BASE (teal) and CORSO (yellow) experiments for a)

the study domain and 5 sub-regions : b) Western/Central Europe, c) Germany, d) France, e) Benelux, and f) British Isles. Vertical error bars

indicate the associated ±1σ uncertainties from a Monte Carlo ensemble of 25 members. The prior uncertainty is defined independently of

the inversion, while posterior uncertainties reflect the constraints imposed by the observations in each experiment.
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France, the Benelux region and the British Isles have similar monthly budgets, typically between 0.2 and 0.4 TgCd−1, and

prior biases similar to the other regions (ranging from 0 % to 31 %). However, the performance of the posterior estimates430

is more mixed across these regions. In France, both BASE and CORSO improve the prior estimate in early months (e.g.

January–April), but during summer and autumn, especially July and November, both experiments overestimate emissions, with

CORSO showing a stronger deviation from the truth. A similar pattern is observed in Benelux, where uncertainty reductions

are substantial (80 %-90 %), , but posterior fluxes do not consistently reduce bias and sometimes worsen the agreement (e.g.

in July and September). The British Isles exhibit the largest discrepancies: in several months (notably July, October, and435

November), CORSO notably overestimates emissions, and even BASE deviates from the truth. This highlights that, despite

strong uncertainty reductions, the posterior estimates do not always align better with the true values, particularly in regions

with smaller source magnitudes or more limited observational constraints.

Overall, both BASE and CORSO experiments lead to substantial improvements over the prior by reducing bias and uncer-

tainty in most regions. However, the differences between the two are not consistent across space and time. CORSO generally440

achieves greater reductions in uncertainty and improves performance in some areas, such as the core domain and Germany. In

contrast, it tends to overestimate emissions in regions like France, Benelux, and the British Isles during summer and autumn.

These results reflect the sensitivity of the inversion to the choice of observation sampling strategy. In the following section, we

evaluate whether further selecting flask samples based on their fossil CO2 content can improve the results.

4.2.2 Impact of selecting ∆14CO2 flask samples using the ffCO2 and ffCO thresholds445

We compare the CORSOffCO2andCORSOffCO2ffCOexperimentsagainsttheoriginalCORSOsetuptoevaluatetheimpactofselecting
∆14CO2flasksamplesusingfossilCO2andCOthresholds.ThisanalysisfocusesonWestern/CentralEurope(WCE)andGermany(Fig.5),whichshowedthebestperformanceinSect.4.2.1.Table4summarizestheminimumandmaximumbiasanduncertaintyvalues, theirrespectiveposteriorreductions,andthecorrespondingmonths.

In WCE, the CORSO experiment shows a bias reduction of between 81% and 98% during winter months, with uncertainty

reductions between 82% to 91%. The CORSO_ffCO2 experiment performs similarly in winter, with bias reductions ranging

from 71% to 99% and uncertainty reductions of 89%-92%. CORSO_ffCO2_ffCO also shows comparable performance during

winter, with bias reductions of 79%-97% and uncertainty reductions of 81%-94%.

During the summer, differences between the experiments are more pronounced. In July, CORSO_ffCO2_ffCO shows the450

largest bias reduction (78%), while CORSO and CORSO_ffCO2 show much weaker improvements (–42% and 15%, respec-

tively). However, in June and August, CORSO and CORSO_ffCO2 perform better, with bias reductions between 70% and

88%, compared to 26%-56% for CORSO_ffCO2_ffCO. All three experiments show similarly strong uncertainty reductions

throughout the year, with values consistently above 79%.

In Germany, uncertainty reductions exceed 83% across all months for all experiments.. The largest differences in bias455

reduction occur during summer. CORSO_ffCO2 sperforms best between May and August, with reductions ranging from 48%

in July to 97% in June. In contrast, CORSO shows a reduction as low as 4% in August, and CORSO_ffCO2_ffCO reaches

only 7% in July. Overall, CORSO_ffCO2_ffCO tends to show the weakest summer bias reduction, with a maximum of 56% in

June.
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Table 3. Summary of prior relative bias and uncertainty, and posterior bias and uncertainty reductions for the BASE and CORSO experiments.

All values are in percent. <0 values indicate cases where the posterior bias is greater than the prior bias. Bias and uncertainty reductions are

calculated as described in Eq. 4.

Region

Prior (%)
Posterior (%)

BASE CORSO

Rel. Bias Rel. Uncertainty Bias red. Unc. red. Bias red. Unc. red.

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Study Domain
1

Jul

29

Jan

25

Jan

36

Aug

<0

Jul

85

Jun

55

Jun

81

Dec

<0

Jul

98

May

71

Sep

87

Mar

Western/Central Europe
5

Jul

35

Jan

76

Jan

122

Aug

<0

Jul

100

Jan

84

Nov

89

Aug

<0

Jul

98

Feb

80

Jun

91

Feb

Germany
4

Jul

42

Jan

98

Jan

166

Aug

<0

Jul

99

Jan

84

Jun

89

Aug

<0

Jul

99

Jun

81

Jun

91

Jul

France
0

Jul

31

Mar

30

Jan

46

May

<0

Jul

98

Oct

23

Jul

60

Jun

<0

Jul

100

Sep

30

Jan

63

Sep

Benelux
4

Jul

17

Sep

159

Mar

263

Aug

<0

Sep

59

Apr

77

Jun

90

Aug

<0

Jul

74

Apr

79

Jun

86

Apr

British Isles
1

Jul

16

May

69

Feb

121

Jul

<0

Jul

78

Jan

46

Nov

73

Sep

<0

Jun

92

Sep

60

Jun

80

Mar

Table 4. Summary of the prior bias and uncertainty and the posterior bias and uncertainty reductions for the CORSO_ffCO2 and CORSO_

ffCO2_ffCO experiments. All values are in percentage.

Region

Prior (%)
Posterior (%)

CORSO_ffCO2 CORSO_ffCO2_ffCO

Rel. Bias Rel. Uncertainty Bias red. Unc. red. Bias red. Unc. red.

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Western/Central Europe
5

Jul

35

Jan

76

Jan

122

Aug

15

Jul

99

Dec

88

Jun

93

Nov

26

Aug

98

Apr

81

Dec

94

Jun

Germany
4

Jul

42

Jan

98

Jan

166

Aug

48

Jul

99

Dec

83

May

94

Dec

7

Jul

100

Oct

85

Aug

92

Nov

In summary, while all three experiments lead to substantial improvements over the prior, selecting samples based solely on460

fossil CO2, CORSO_ffCO2 provides the most consistent reductions in both bias and uncertainty, particularly during summer

months, without requiring the additional ${{CO}$ threshold.
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Figure 5. Monthly fossil CO2 truth (black), prior (red), and posterior fluxes from the CORSO (yellow), CORSO_ffCO2 (teal), and CORSO_

ffCO2_ffCO (purple) experiments for a) Western/Central Europe and b) Germany. Vertical error bars indicate the associated ±1σ uncertain-

ties from a Monte Carlo ensemble of 25 members.

4.2.3 Impact of nuclear power facilities

Panels a and b of Fig.6 show the monthly fossil CO2 flux estimates for Western/Central Europe and Germany, respectively. The

posterior estimates from CORSOffCO2andCORSOffCO2nuc14Carebroadlyconsistentthroughouttheyearandshowgoodagreementwiththetruth(EDGAR).However,therearesmalldifferencesinwintermonths,particularlyinJanuaryandFebruary,whereCORSOffCO2nuc14CslightlyunderestimatesemissionscomparedtoCORSOffCO2.Thisreflectstheeffectofexcludingsamplespotentiallyinfluencedbynuclear

14Cemissions.Despitethesedifferences,bothexperimentsreducethepriorbiasandfollowtheseasonalcyclewellinbothregions.

Panels c and d of Fig.6 show the corresponding posterior uncertainties. These are based on the Monte Carlo ensembles

described in Sect.3.6.4, and represent the contribution of nuclear 14C emissions to the posterior uncertainty. Without accounting465

for nuclear emissions, both experiments show similar uncertainty levels across the year. In Western/Central Europe, posterior

uncertainties range from 0.1 to 0.3TgCd−1 (12%-29%), and in Germany from 0.1 to 0.2TgCd−1 (14%-38%).

However, when the impact of nuclear 14C emissions is included, the influence of the sampling selection strategy is more

clearly reflected in the results. In Western/Central Europe, CORSO_ffCO2_nuc14C maintains posterior uncertainties within

16–37%, similar to those without nuclear impact. In contrast, the CORSO_ffCO2 experiment shows a wider range of uncer-470

tainty (19–73%), with the additional uncertainty attributable to nuclear emissions ranging from 8% to 55%. A similar pattern

is observed in Germany: CORSO_ffCO2_nuc14C shows uncertainty values between 24% and 35%, while CORSO_ffCO2

reaches up to 77%.

The spatial distribution of the annually aggregated posterior uncertainties attributed to nuclear emissions for the CORSO_

ffCO2_nuc14C relative to CORSO_ffCO2 experiments is shown in Fig. 7. The largest uncertainties (Fig. 7b), are found in475

the UK, northern France, and the Benelux region, where the uncertainty often exceeds the posterior emissions (>100%). This

uncertainty can also extend to countries without nuclear facilities, such as Poland, where we observe uncertainties as high as

35% per grid cell. Nevertheless, in the CORSO_ffCO2_nuc14C (Fig. 7a) we find areas in the UK and the Benelux region
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Figure 6. Monthly fossil CO2 truth (black), prior (red), and posterior fluxes from the CORSO_ffCO2 (teal), and CORSO_ffCO2_nuc14C

(yellow) experiments for a) Western/Central Europe and b) Germany. Panels c) and d) show the posterior uncertainty in fossil CO2 flux

estimates for the CORSO_ffCO2 (teal) and CORSO_ffCO2_nuc14C (yellow) experiments for Western/Central Europe and Germany, re-

spectively. Hatched segments represent the portion of posterior uncertainty attributed to nuclear 14C emissions.

with uncertainties attributed to nuclear emissions as high as 49%, which may indicate regions in which the sampling strategy,

despite aiming to minimize nuclear contamination, still includes sites with substantial nuclear influence.480

5 Discussion

In this study, we simulate the intensive ∆14CO2 flask sampling campaign during the CORSO project under different scenarios

to address the challenge of using atmospheric ∆14CO2 measurements for the estimation of fossil CO2 emissions in Europe, a

continent with a high density of active nuclear facilities. Radiocarbon emissions from these facilities can significantly distort

atmospheric ∆14CO2 signals, particularly during periods with low biospheric activity, masking fossil signals and introducing485

attribution biases (Bozhinova et al., 2014; Maier et al., 2023). To mitigate this, we evaluate the benefit of taking more frequent,

short-duration samples (1 hour instead of 14 days) throughout the year, increasing the likelihood of capturing periods with

strong fossil CO2 signals and low nuclear interference.
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Figure 7. Spatial distribution of the annual posterior fossil CO2 emission uncertainty due to nuclear emissions for the a) CORSO_ffCO2_

nuc14C and b) CORSO_ffCO2 experiments. Yellow crosses show the location of nuclear facilities.

While the OSSE simulations are based on 2018 conditions, future real-world flask samples may still be influenced by

radiocarbon emissions from decommissioned facilities. For example, Philippsburg 2, a pressurized water reactor (PWR) located490

near Karlsruhe, was shut down in December 2019, yet reported 14CO2 discharges rose from 33 Bq in 2018 to 7.8 GBq in

2021, according to the EU RADD database (https://europa.eu/radd/index.dox, last access: 17 June 2025). This increase is

associated with a shift in chemical speciation during decommissioning: while PWRs mainly emit 14CH4 during operation,

emissions become dominated by 14CO2 during dismantling and waste treatment activities (Kuderer et al., 2018). Thus, despite

the official shutdown of all German NPPs in April 2023, residual emissions may continue to influence ∆14CO2 observations495

at stations like KIT during the 2024 campaign. At the same time, while Germany has phased out nuclear energy, several other

European countries are expanding their nuclear capacity. France, the UK, Finland, and others have recently built or approved

new reactors. This growing heterogeneity in nuclear policy means that radiocarbon emissions will likely remain a persistent

challenge for fossil fuel source attribution using ∆14CO2, and must be accounted for in future sampling strategies and inversion

frameworks.500

We first study the impact of ∆14CO2 flask samples on the estimation of fossil CO2 emissions by comparing the BASE

experiment (using only integrated samples) with the CORSO experiment (including additional flask samples). Our findings
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reveal that, in general, the CORSO experiment provides a better estimation of emissions, particularly in winter months, and

significantly reduces both bias and uncertainty compared to the BASE experiment. In the study domain, the CORSO experiment

has a larger bias reduction and uncertainty reduction throughout most months, except for June and July, where the BASE505

experiment performs better. June and July are the months with the lowest fossil emissions of the year, as already found by Levin

et al. (2020) in real observations and in this study with synthetic observations. Levin et al. (2020) found that fossil CO2 events

are particularly rare during the summer months, with very few significant events occurring between May and August. In these

months, fossil CO2 mixing ratios rarely exceeded 4-5 ppm at various stations. Since integrated samples cover longer periods

and hence larger areas than flask samples, they are more likely to capture the cumulative effects of low but steady emissions510

over time, providing a better estimate during months with fewer significant fossil CO2 events. This extended sampling period

compensates for the lower frequency of elevated emissions, ensuring that even minor contributions are accounted for, which

may explain the improved performance of the BASE experiment during the summer months.

As already stated by Levin et al. (2020), it is necessary to perform a sample selection of ∆14CO2 flask samples to ensure a

good constraint on fossil CO2 emissions, based on the thresholds defined for CO2 and CO. This approach helps to guarantee515

the detection limit of the ∆14CO2 analysis, isolate fossil CO2 signals from other sources of CO2 and make a more efficient

use of flask samples. However, this method also carries the risk of predominantly monitoring the same dominant point sources,

which may not represent a comprehensive mixture for the region. To mitigate this risk, it is essential to balance the selection

criteria to capture a more representative mix of regional sources. Furthermore, the uncertainty of the ∆14CO2 analysis requires

a minimum signal strength to ensure the accuracy of the measurements. This requires the inclusion of samples that meet520

the fossil CO2 content thresholds and provide a sufficient radiocarbon signal to reduce the analytical uncertainty. Ensuring a

minimum signal strength is crucial for the reliability of the ∆14CO2 data, as low signal samples can lead to higher relative

errors and less confidence in fossil CO2 estimates.

The analysis of the experiments shows that there is not a single experiment that consistently outperforms the others across all

seasons and regions. Although each approach (CORSO, CORSO_ffCO2, and CORSO_ffCO2_ffCO) offers its own strengths525

in bias and uncertainty reduction, particularly during the winter months, none stands out as consistently better across all

scenarios. Implementing the selection strategy for the CORSO_ffCO2 experiments in a real-world operational setting would

require performing near-real-time simulations to estimate the ffCO2 component. The CO threshold was introduced because

this can be obtained from continuous CO measurements, and can be calculated as the CO enhancement with respect to the

background instead of ffCO (Levin et al., 2020). From the perspective of OSSEs, the results suggest that the selection of530

samples may not be as critical as ensuring good coverage of sampling events throughout the year. The findings suggest that

maintaining a well-distributed and frequent sampling schedule provides a more representative and effective basis for accurately

estimating fossil CO2 emissions than relying heavily on strict sample selection criteria. However, when accounting for nuclear
14CO2 contamination, careful sample selection becomes essential to minimize biases and uncertainties.

In Europe, with more than 170 operational reactors and two reprocessing plants, nuclear contamination significantly impacts535

∆14CO2 samples. Maier et al. (2023) highlight that the median nuclear contamination at ICOS sites accounts for about 30%

in day-and-night integrated samples and 15% in midday integrated samples, leading to substantial underestimation of fossil
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CO2 estimates if not corrected. Similarly, Graven and Gruber (2011) discuss the continental-scale enrichment of atmospheric

∆14CO2 due to emissions from the nuclear power industry, which creates significant gradients that extend more than 700 km

from nuclear sites in Europe. Their study demonstrates that the spatial scale of these gradients is sufficient to influence re-540

gional ∆14CO2 levels, requiring high-resolution data from each nuclear reactor to accurately estimate ∆14CO2 enrichment

and mitigate biases in fossil CO2 estimates (Graven and Gruber, 2011).

To assess the impact of nuclear contamination on fossil CO2 estimates, we compared two sample selection experiments: one

favoring low nuclear influence (CORSO_ffCO2_nuc14C) and one selecting samples with potentially high nuclear influence

(CORSO_ffCO2). While both experiments yielded emission time series that generally tracked the true emissions well, the545

experiment minimizing nuclear influence consistently resulted in lower posterior uncertainties, particularly across regions with

high prior uncertainty, such as Benelux, eastern France, and western Germany. This highlights the added value of targeting

samples that minimize contamination from radiocarbon sources unrelated to fossil emissions. Moreover, our results show that

this nuclear-related uncertainty can propagate beyond the immediate vicinity of power plants, affecting regions without nuclear

facilities, such as Poland. This finding supports earlier work by Graven and Gruber (2011), who documented the regional-550

scale influence of European nuclear facilities on atmospheric radiocarbon measurements. These findings highlight the need to

adapt sampling strategies to the spatial distribution of nuclear activity. Although integrated samples are useful for capturing

long-term trends, their reliability may be compromised in regions affected by nuclear emissions. In such cases, combining

integrated and flask sampling, or selectively using integrated samples, can provide a more robust approach for estimating fossil

CO2 estimation.555

In our perfect transport OSSEs implementation, we do not account for uncertainties due to transport model representation

errors. Munassar et al. (2023) found that the use of different transport models, which help us to understand the model represen-

tation error, can result in differences of 0.51 PgCyr−1 (61%) in the posterior NEE flux estimates over Europe. Their study uses

continuous CO2 observations selected at times when there is a better model representation. We note that these discrepancies,

and more generally the model representation of integrated samples, may differ depending on the integration period. While560

short-term observations can be more sensitive to transport or mixing errors, longer integration periods (e.g. two weeks) may

average out some of this variability, potentially reducing but also redistributing the associated model–data mismatches. This

integration captures a mix of local and regional influences and is especially affected by diurnal circulation patterns. For exam-

ple, high-altitude stations may sample polluted valley air transported upslope during the day and cleaner free tropospheric air

descending at night due to mountain–valley winds. Moreover, model accuracy tends to be higher during well-mixed conditions565

(e.g., such as in the afternoon planetary boundary layer or in the free troposphere) compared to periods with stable stratifica-

tion, such as during the nocturnal boundary layer or transition phases, which are more difficult to represent. Maier et al. (2022)

study the performance of two modeling approaches using a Lagrangian model (STILT) in representing afternoon and nighttime

2-week integrated 14C-based ffCO2 observations from Heidelberg: the surface source influence (SSI) approach, similar to our

implementation with FLEXPART in which all emissions are assumed to occur at ground level, and the the volume source570

influence (VSI) approach in which there is a representation of the emission height and the plume rise of point source emis-

sions, such as the emissions from power plants. Combining the SSI and VSI approaches, or developing hybrid frameworks that
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account for temporal and vertical variability in source influence, may be critical to improving the representation of integrated

samples in inverse modeling applications using real data.

In some regions, the assigned prior uncertainty exceeds 100% of the prior or true emissions (Fig. 4). This results from using575

relatively short spatial correlation lengths to allow the inversion to resolve emissions at finer scales, which in turn requires

higher standard deviations to maintain consistent covariance structures. In practice, errors in fossil emission inventories likely

exhibit broader spatial correlations, suggesting that a regionally or nationally defined uncertainty structure could be more

appropriate. While our current approach may overestimate grid-scale uncertainties, it remains a reasonable approximation for

testing the impact of observation strategies. Importantly, all experiments show consistent uncertainty reductions, even though580

posterior uncertainties were larger than the prior bias in some regions during summer months. While this limits the resolution

at which emissions can currently be reported with confidence, the consistent uncertainty reductions across all experiments

highlight the potential for further improvement. Refining the prior uncertainty structure and applying the sampling strategies

proposed in this study can support more accurate fossil CO2 estimates at finer spatial and temporal scales.

In some regions, the assigned prior uncertainty exceeds 100% of the prior or true emissions (Fig.4). This results from the585

way the uncertainties are set up in LUMIA: the grid-cell scale uncertainties (σx) are scaled to match a target annual, category-

specific total uncertainty over the whole domain. Therefore, the longer the spatial and temporal correlation lengths, the lower

the standard deviations must be to achieve the same total variance. For fossil fuel emissions, the total uncertainty for Europe

was based on the annual difference between the prior and the synthetic truth, derived from two independent, state-of-the-art

emission inventories. The spatial correlation length was set to 200 km, under the assumption that the observation network590

is dense enough to resolve emission patterns at that scale. Both settings are reasonable when considered separately, but their

combination leads to unrealistically large prior uncertainties at the grid-cell and even regional scale. This could be addressed

by using much longer error correlation lengths, better reflecting the true ones. However, doing so would limit the use of the

observation network’s full potential in regions where it can resolve finer-scale patterns. Developing and testing an approach

to set prior uncertainties that better balances realism in error correlations with the resolution capacity of the observation595

network should be a priority for future LUMIA developments. Even if the current approach is not fully optimal and limits the

interpretability of some uncertainty estimates, it still provides a valid framework for evaluating the impact of the different 14C-

based sampling strategies. It should not affect the relative performance of the inversions, especially in terms of error reduction.

LUMIA inversions are, in general, more sensitive to the correlation structure than to the absolute uncertainty levels, particularly

in regions with good observational coverage (Monteil and Scholze, 2021).600

6 Conclusions

In this study, we find that adding regular ∆14CO2 flask sampling to the integrated sampling (CORSO) generally provides better

emission estimates than using only integrated samples (BASE), particularly during the winter months. However, the BASE

experiment performed better than CORSO during low-emission months such as June and July. We also find that the selection

of synthetic ∆14CO2 flask samples according to their fossil contribution did not show significant improvements compared605

27



to the simpler CORSO approach. However, when samples were selected according to their level of nuclear contamination,

the experiments showed that selecting samples with low nuclear contamination led to a substantial reduction in uncertainty,

particularly in regions like Western/Central Europe and Germany. In contrast, selecting samples with potentially high nuclear

contamination resulted in higher uncertainties, especially during the summer months.

Therefore, we recommend prioritizing the selection of ∆14CO2 flask samples based on their potential nuclear contamination,610

given the limited knowledge about the temporal emission profiles of most nuclear facilities in our model domain. It is also

necessary to perform a site-specific revision of the CO, ffCO2, and nuc14C thresholds to adjust these values to the intensity

of the fluxes measured at each station. This is also important for the ∆14CO2 integrated samples. Although they can help

to better estimate fossil CO2 in periods of low emissions such as summer, long integration times can also result in large

radiocarbon nuclear emissions being captured, increasing the posterior uncertainty of the estimates. In real inversions, these615

integrated samples can also have large representation errors. A promising approach to account for these representation error in

an inversion is the implementation of the volume source influence (VSI) approach as proposed by Maier et al. (2022).

Despite the advancements shown by these experiments, high posterior uncertainties during the summer months remain

a challenge. This limits the reliability of monthly emission estimates, underscoring the need for further refinement in both

selection strategies and inverse modeling techniques. Until these challenges are adequately addressed, the utility of monthly620

emissions estimates will remain limited, pointing to the importance of performing an appropriate uncertainty characterization

of fossil emissions.
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Appendix A: Additional site-level time series for ∆14CO2 synthetic and observed samples
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A2 Comparison between real and modeled observations
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Figure A1. Synthetic ∆14CO2 flask samples at the 10 remaining sampling sites selected for the intensive sampling campaign during the

CORSO project. The tables below each figure show the number of synthetic observations per month that meet the ffCO2 threshold (red

cross), the ffCO2 and ffCO (yellow tri) thresholds, and the ffCO2 and nuc14C (green cross) thresholds
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Figure A2. Comparison of the available real ∆14CO2 integrated samples (black) (ICOS RI et al., 2024) with the modeled background

observations (red) and synthetic observations (teal) at ten ICOS sites.
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