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Abstract. During 2024, an intensive A'*CO, flask sampling campaign is-being-was conducted at 12 sampling stations across
Europe as part of the CO2MVS Research on Supplementary Observations (CORSO) project. These A4CO, samples, com-
bined with CO5 atmospheric measurements, are intended to enhance the estimation of fossil COs emissions over Europe
through inverse modeling. In this study, we perform a series of Observing System Simulation Experiments (OSSEs) to evalu-
ate the added value of such an intensive campaign as well as the different W}WMMW
on estimating fossil fuel emissions.

We explore three main WW&MWM@%W
method of two-week integrated samples: (1) ¢ ollecting flask
samples every three days according to a uniform schedule, without applying specific selection criteria;comparing-eurrent
sampling-methods—with—the-inchiston—of flask—samples; (2) a—strategythat-selects—selecting flask samples with high fossil
CO,, contributioncontent to better isolate anthropogenic signals; and (3) acombined approach that also considers nuclear "'C
combining fossil CO, selection with consideration of nuclear *CO, contamination to reduce potential biases from nuclear
factlities—n-the-firststrategythe-emissions. The results suggest that higher sampling density ean-tmprove-improves the esti-
mation of fossil CO4 emissions, particularly during periods of tew-high fossil fuel activity, such as in summer—Thisinereasein
sample-quantity-contributes-to-areduction-in-uncertainty - enhaneing winter, while integrated sampling remains more effective
during summer months when emissions are lower. Increasing the number of flask samples significantly reduces uncertainty.
and enhances the robustness of inverse modeling results. Furthermore;-applying-the-strategy-of-In addition, selecting samples
with a high fossil CO, eontamination-content shows potential for improving the accuracy of emission estimates. However,-the
meskﬂgmﬁeaﬂ%w& t reduction in uncertalnty is ebsefvedﬂﬂael%%h&samphﬂg%&afegyﬂ}se—aeeetmf&feﬁﬂﬂe}eaf—e
~ | | achieved when sample selection actively
WWIMCWMWWMmimmHe potential biases, particularly in

regions with high-nuelear-aetivity—-significant nuclear activity such as France and the UK. Fhe-findings—underseore-These
findings highlight the importance of not only increasing sampte-sampling frequency but also carefully selecting samples based
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on their fossil and-nuelear€O--CO, and nuclear '*CO, composition to improve the reliability of fossil fuel emission estimates

across Europe.

1 Introduction

as-Inverse modeling has
W&%Wto atmospheric CO, levels%e%mqﬁeﬂﬁfweﬂﬁﬂedehﬂg
i - This approach combines regular CO, with-speeifie
WW%@WWHM
sured in situte-g, such as A'*CO,, CO, and APO }(Basu-etal;2020; Wanget-al-2020: Chawner-et-al52024)or remotely

{e-g—(Basu et al., 2020; Wang et al., 2020; Chawner et al., 2024), while others, like XCOo)-Fischer-et-al;2017;-Chenetal;2023)

inverse-modeling-enhances—the-distinetion—between—, are retrieved remotely (Fischer et al., 2017; Chen et al., 2023). These
tracers help distinguish fossil fuel emissions and-from natural biogeochemical fluxes, and their integration into inverse models

Wﬁ%m A leadlng example of such-a-tracer-is radiocarbon (1*C) feund-in atmo-
i i, Fossil CO, from-the-biogenic-component-of-the
recently-emitied-COz-beecausefossi-COz-is-veid-of-lacks radiocarbon due to its decay over geological timescales (half-life of
5,730 years;-producing-a-reduction-of-), leading to a measurable reduction in the radiocarbon content of earben-atmospheric
AMCO, Hkevin-etak-2003)-(Levin et al,, 2003).

However, in Europe and other industrialized reglonsef—fhe—wef}d—btegemﬁ&nd» -, the ability to isolate fossil CO, signals
using radiocarbon is

spheric COq;

complicated by the presence of radiocarbon emissions from nuclear
WMMM&A”COQ measurements-(hevin-et-al-2020)-Graven-and-Gruber 204+
"levels, masking the depletion signal caused by fossil

in Europe, North America, and East Asia, radiocarbon from these-nuclear sources can offset around 20% of the fossi-€O»

eaused-by-exchanges-with-theterrestrial-btesphere-over-depletion caused by fossil emissions, leading to attribution biases that
may exceed those caused by biospheric fluxes in some areas. Vogel et al. (2013), in a local application in Toronto, Canada;

found that this offset can be-as-high-as-reach up to 82% of the total annual fossil CO, emissionssignal. A sensitivity study

by Maier et al. (2023) further showed that uncorrected nuclear emissions could result in a 25% low bias in ffCO, estimates
highlighting the need for robust modeling and informed sample selection strategies.

Data on nuclear facility emissions are generally limited to annual emissions, accessible through databases such as the Eu-
ropean Commission RAdioactive Discharges Database (RADD) (https://europa.eu/radd/index.dox, last access: 17 June 2025)
or derived from energy production data from the Power Reactor Information System (PRIS) (https://pris.iaea.org/PRIS/home.
aspx). These data-sets-datasets often lack the high temporal resolution necessary to identify the possible effect of large emission
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events in radiocarbon samples. Studies such as those by Graven and Gruber (2011) and Zazzeri et al. (2018) provide essential
emission factors and data, but also highlight the high-resolution data availability gap we just mentioned. Strict data protection
policies and security measures further compound the challenge of obtaining high-resolution time series data from nuclear facil-
ities. Few studies have directly measured and reported emissions from nuclear facilities (Akata et al., 2013; Varga et al., 2020;
Lehmuskoski et al., 2021) at higher temporal resolutions, such as daily or weekly. Vogel et al. (2013) for instance, found sig-
nificant deviations in interannual timescales of nuclear emissions compared to emission factors reported by Graven and Gruber
(2011), but a better agreement with the long-term average observed for reactors in their study area. Most research examining
the impact of nuclear emissions on ffCO estimation is conducted in the vicinity of nuclear facilities, which allows sampling
of winds directly coming from these facilities, reducing the need for high-resolution emission time series (Vogel et al., 2013;
Kuderer et al., 2018). Consequently, the broader implications of nuclear emissions and their temporal variations on regional
and continental scales remain less explored and understood, as evidenced in the study by Vogel et al. (2013). This localized
focus limits our understanding of the impact of nuclear facility emissions on ffCO- estimations on a continental scale, such as
for Europe. In addition, in inverse modeling approaches that include both CO5 and A'*COs, the emissions from nuclear facili-
ties are not optimized, leading to potential inaccuracies. Theresearch-Research by Bozhinova et al. (2014); Graven and Gruber
(2011); Turnbull et al. (2011); Zazzeri et al. (2018) demonstrates this gap, suggesting the need for more sophisticated modeling

and sampling approaches to integrate nuclear emissions accurately into atmospheric inversion techniques. In-a-sensitivity-stady

In Europe, the Integrated Carbon Observation System (ICOS) Atmosphere network continuously measures CO4 together
with other greenhouse gases (GHG) at 38 stations in Europe. Additional tracers;—as—wel-as—isotopes—atmospheric tracers,
including isotopic tracers such as '*C and radiocarbon (**C), are measured in periodic flask samples at 17 of these ICOS
stations (see Figure-Fig. 1). Most of the stations are located in remote locations, where measurements are taken from tall
towers of at least +00m-100 m above ground level, on mountain tops, and on coastal sites (in the last two, measurements
are usually taken a few meters above ground level). The objective of the network stations-is-that-the-measurements—is_to
provide measurements intended to represent large areas, capturing signals ef-from sources and sinks occurring even hundreds
of kilometers from-the-stationaway. Currently, +*€-radiocarbon is measured mainly in two-weekly integrated flask samples,

at the highest sampling height available at each station (red and yellow dots in Figure-Fig. 1). Since 20+6;some-stationssuch
. . . 14

at13:00deecal-time2015, an increasing number of ICOS stations have been collecting 1-hour flask samples regularly. Of the
approximately 100 flask samples that-are-taken-at-thesestations-during-the-taken per station per year as quality control for-of

continuous measurements and for the analysis of other tracers and isotopes, around 25 are selected to-anatyze-for A1*CO, to
be-used-for-analysis to support the estimation of ffCO,. Levin et al. (2020) designed a strategy to choose-select flask samples
that mainly captured large events of fossil fuel CO eentamination—emissions for their posterior analysis of A¥CO,. They
suggested defining a threshold for the mixing ratio of the-fessi-fuel-component-COz(ffCO4 )-and for the enhancement of CO

(CO is a co-emmitted species from fossil fuel burning) relative to the background mixing ratio at the time the flask sample is
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taken. This can be determined by near-real-time (NRT) atmospheric transport simulations (for ffCO, and ffCO) or by using
continuous observations of CO at the station.

As part of the CO2MVS Research on Supplementary Observations (CORSO) project (https://www.corso-project.eu/) funded
by the Horizon Europe program of the European Commission, an intensive sampling campaign of A'*CO; is-was carried out in
2024. In this project, flask samples are taken approximately every three days, completely dedicated to the analysis of A'*CO,
at 10 of the current ICOS sampling stations around Sweden, Germany, the Netherlands, France and the Czech Republic,
complemented by two additional stations in Poland (Biatystok) and England (Heathfield), and three background stations that
take 2-weekly integrated samples in Ireland (Mace Head), Spain (Izafia), and Canada (Alert). Given the high analytical costs,

labor intensity, and limited laboratory capacity associated with A'CO, measurements, implementing a sample selection
strategy is essential to maximize the information gained while minimizing resource use. Identifying the most informative
sampling times and locations helps optimize observational coverage, enabling more cost-effective network design without
compromising the accuracy of fossil CO; estimates.

In this paper, we investigate-the-impaet-of combining-intensive-assess how different sample selection strategies, combining
intensive flask sampling with regular integrated samplingfor-estimating-, can improve fossil CO, emissions-on-a-emission
estimates at subregional and subannual sealescales. We use the multi-tracerenabled-multi-tracer-enabled version of the Lund

University Modular Inversion Algorithm (LUMIA) system (Gémez-Ortiz-et-al52023) by performing(Gomez-Ortiz et al., 2025
to perform a series of perfect transport Observing-System-Stmulation-Experiments(OSSEs)OSSEs. The study aims to address

three key research questions: (1) What is the added value of intensive A'*CO, sampling compared to the current sampling
done in ICOS? (2) Is there a benefit in selecting A'CO, flask samples based on their fossil contribution to improve fossil CO
emissions estimates? (3) Does further selection of flask samples based on nuclear contamination provide additional benefits
when estimating fossil CO, emissions?

To address these questions, we calculate a series of synthetic observations by performing a forward simulation of the trans-

port model with a set of assumed true fluxes. We then sele

uniform-apply different flask sample selection strategies based on fossil CO5 -basedcontent, and nuclear eontamination-based
selection-eriteria—Subsequently;these-observations-are-*CO, contamination. These synthetic observations are subsequentl

inverted using LUMIA to estimate fossil CO, emissions, allowing us to quantify the-differences in bias and uncertainty

of the-differentsampling strategies—This-approach-enables-associated with each selection approach. The framework and
strategies presented here were developed prior to and during the early stages of the 2024 campaign to support its design
and implementation. They enable a comprehensive evaluation of how intensive-sampling-and-targeted-sample-selection—ecan
enhanee-increasing flask sampling frequency and accounting for both fossil and nuclear signals can improve the estimation of
fossil €Or-emissions-at-both-fuel emissions at subregional and subannual scales, ultimately providing insights inte-optimizing
future-sampling strategiesfor-mere-aceurate-to optimize future greenhouse gas monitoring —efforts.
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Figure 1. Sampling stations selected for this study and their identification according to the measured tracers and their participation in
the CORSO project (dark blue diamonds). Green dots represent the stations where only CO2 is measured, yellow dots where additionally

A'™(CO, is measured in 1-hour flasks and red dots where A'*CO is measured in approximately 2-weekly integrated samples.



Table 1. Sampling sites-inetude-stations included in this study and A™CO, sampling type according to the current status and the CORSO

project.
Altide PPN Lot CORNQ,
BIK  Bialysiok_ L 532004 23018 1830 3000 X Flask
BIR  Birkenes NO  s83886 82519 2190 750
CMN_ Monte Cimone I 44093 10699 21650 80
PR Ispra IT 458147 86360 2100 100.0
I Jungfravjoch CH 465475 79851 3L 139 Integrated.
KIT  Karlsruhe. DE 490915 84249 100 2000 X  Imegraed  Flask
LMP  Lampedusa T 3SSISL 1262 40 80
LUT  Lutjewad NL o S34036 63528 L0 600
de I'environnement
SR Hyytili FL6L874 242007 1810 1250
WAO  Weyboume. GB 529500 11210 30 100
WES_ Westerland DE 549231 83080 12.0 14,0

ZSF  Zugspive. DE 474165 10979 26660 30




125 2 The LUMIA framework

We use the multi-tracer-enabled version of the Lund University Modular Inverse-Inversion Algorithm (LUMIA) (Menteil-and-Seholze; 2021
~ l 4 ~ . . . . ~

serving-System-Stnttation-ExperimentstOSSEs)-for-the-year 2048-system

(Goémez-Ortiz et al., 2025) to perform a series of perfect transport OSSEs covering Europe in a regional domain ranging from
15°°W, 33°°N to 35°°E, 73°°N, as shown in Figure-Fig. 1, similar to previous regional European inverse modeling stud-

130 ies(Monteil et al., 2020; Thompson et al., 2020). In this case, perfect transport means that we use the same transport model to
produce the synthetic observations and to perform the atmospheric inversions, as well as the same background for the synthetic
observations and the modeled mixing ratios.

LUMIA is an inversion framework originally designed for regional CO; inversions in Europe. The framework was later ex-
tended to perform simultaneous inversions of CO5 and A*CO, to estimate fossil CO emissions over Europe (Gémez-Ortizet-al52023)
135 (Gomez-Ortiz et al., 2025), which we use in this study with minor modifications detailed in this section. Since the initial release
of LUMIA, it has incorporated the two-step atmospheric inversion scheme proposed by Rodenbeck et al. (2009), as thoroughly
explained by Monteil and Scholze (2021). In this approach, for each observation (either CO5 or A'*CO,), the modeled mixing
ratio y™ is described as the total of the contributions of the "foreground" y' (mixing ratios due to fluxes directly related with
y™ by the model, limited spatially by the domain and temporally by the length of the simulation) and the "background" y®
140 (i.e., any additional contribution not captured by the foreground fluxes, including external sources or preexisting atmospheric

mixing ratios):

y =y +y (1)

which can be expanded for each tracer (CO3 and A*CO,) as:

b f f f
YCo, = YCo, Yt + Yoio T Yoce (2a)
145
b b f f f f f f
yg‘AMC = Ycarac T Yeosmo T YAtt T Yabio T YAoce T Ybiodis T Yocedis T Ynuc (2b)
background foreground

where ycp, is the modeled CO2 mixing ratio and ygoz is the background CO4 mixing ratio. On the right-hand side of Eq.
2a, y is the mixing ratio within the domain due to fossil COs (Fy), y;, the mixing ratio due to the net exchange of CO,
between the atmosphere and terrestrial ecosystems (Net Ecosystem Exchange, NEE, hereafter biosphere flux, Fy;,) , and y’ .

150 the mixing ratio due to the net exchange of CO, between the atmosphere and oceans (Fice).
All terms in Eq. 2b are in units of CO3 x A1CO; (e.g. ppm%oppm %o) or CA*C for simplification, since the values in %Yo

are not additive (see Basu et al. (2016) and Gémez-Ortizet-al+2023)-Gomez-Ortiz et al. (2025) for additional details). In this
equation, Y, 14 and Y2 .14 are the modeled and background CA*C mixing ratios, respectively. 425y o i the CAMC



mixing ratio due to the cosmogenic production of 22€6--radiocarbon in the stratosphere (Frosmo): ¥ msYusmo 1S accounted
155 in the background (yg Atac)> since LUMIA was designed to assimilate only surface fluxes. Furthermore, on a regional scale,
sampling sites are considered to be similarly influenced by '4C-enriched stratospheric air and its influence on tropospheric
14¢€ radiocarbon can be neglected (Maier et al., 2023; Lingenfelter, 1963). A large-influenee-of 1Ccosmogenie-significant

influence from cosmogenic radiocarbon production can be expected in stations—samplingelose-to-the-low-samples collected
near the lower stratosphere (above 6-km6 km) (Turnbull et al., 2009) which is not the case for any of-the-stations-considered

160 stations in this study (see Fig. 1).

The first foreground term in Eq. 2b, y'\4, represents the CAMCmixingratio(orditation-of-it)reduction in atmospheric
ACO, due to the absence-of 14C-in-addition of fossil COo-—FessiH€O5-, which is devoid of 1€ thathas-decayed-afterbeing

h A e an_tha mocnhara A4y 1 no tha a R Yala

buried—formillions-ofve Me o
‘ T
into-moere12€0,radiocarbon. This dilution effect is modeled by transporting a tracer, y'y pwith-a-value-of- ALLC-of —1000%
165 (which corresponds toa'C 2 Cratio of 01

assigned a A" CO, value of -1000 %o, representing fossil CO, with no radiocarbon content relative to the atmospheric
standard, The next terms, y'y,,, and y'y .. represent the net exchange from the atmosphere with the biosphere and the ocean,
respectively. The contribution of these exchanges is modeled by transporting the biosphere and ocean fluxes multiplied by the
isotope signature of the current atmosphere. yf. ... and y ... are the contributions due to isotopic disequilibrium. Fhe-otd

170

The carbon exchanged between the biosphere, ocean, and atmosphere has an isotopic signature that can differ from that

of the current atmosphere. When

175  releases-maintyIn the terrestrial biosphere, carbon released through heterotrophic respiration may be enriched in '*Cdepleted
arbonthathas-been-atthe-bottomno oceanlong-enoughto-deeayto-signaty OW an urrentatmosphere-, reflecting
the elevated atmospheric radiocarbon levels that followed nuclear weapons testing in the mid-20th century (Levin and Kromer, 2004; Grave
- This enrichment introduces a positive isotopic disequilibrium between biospheric fluxes and the present-day atmosphere.
In contrast, the ocean can release "C-depleted carbon, especially from older subsurface waters that have been isolated
180  from atmospheric exchange for decades, allowing radioactive decay to reduce their radiocarbon content below atmospheric
levels (Sweeney et al., 2007; Graven et al., 2012). These opposing disequilibrium fluxes contribute to regional and seasonal
The last term, yfmc, represents the contribution due to the radiocarbon emissions generated by nuclear activities (Fiyc),
mainly from nuclear facilities-such-as-nuelear-power plants and spent fuel reprocessing plants;-sinee-the-contribution-ofnuclear
185 bomb-testsfacilities. The contribution of past nuclear weapons testing is now considered depleted-tbevin-etak;2020)negligible
due to its significant decline over recent decades (Kutschera, 2022), and is therefore not included.

As-in-the-original-Following the original the original implementation of LUMIA (Monteil and Scholze, 2021), here we use
the global TM5 model (Huijnen et al., 2010) to calculate the background mixing ratios (y°) and the Lagrangian FLEXPART
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model (Pisso et al., 2019) to perform the regional transport (y') and the inversions. In the following sections, we explain further

the implementation of the models.

2.1 Background mixingraties-(composition from TMS5)

Background-mixing ratios-are-the-portion-of-The background refers to the CO, %WA14COQ in-the-atmosphere
that-eriginatesfrom-sources-outside-the-stady-isotopic signature of the atmosphere at the spatial and temporal boundaries of

the domain. This can be a combination of emissions transported by large-scale atmospheric circulation, regional transport from
outside the domain, and air masses reentering the domain (Rddenbeck et al., 2009). In this study, we use the implementation
of the background mixing ratio calculation in TM5-4DVar developed by Monteil and Scholze (2021) based on the method-
ology proposed by Rodenbeck et al. (2009), integrated with the implementation of TM5-4DVar to include CO5 or A**CO,
developed by Basu et al. (2016) (https://sourceforge.net/p/tm5/cy3_4dvar/ci/default/tree/proj/tracer/radio_co2/, last visited in
August 2024). Here, we model the background mixing ratio using global optimized fluxes and an initial condition from Basu
et al. (2020) for 2010. These fluxes are in a horizontal resolution of 3° x 2° (25 hybrid sigma-pressure vertical levels for Fismo),
and variable time resolutions for the individual fluxes: 1 hour for F, 3 hours for F;, and F,.., 1 month for Fi;oqs and Ficedis,
and 1 year for Fy,. and Fiosmo. The simulation is driven by meteorological fields from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERAS reanalysis project (Hersbach et al., 2020).

Here, we describe a small-modification-to-the-originalimplementation-extension of the original setup by Monteil and Scholze
(2021) to aceountfor-the-include cosmogenic production in the background term yP , 14 (see SeeSect. 2, Eq. 2b):

The background eomponents-4q—and-42 rr=arecomponent yP, with t indicating the tracers CO, and CA'C, is calculated

as follows:

1. A-We perform a global forward run with TM5 to calculate the mixing ratio 51\0425 Darcfield ™5 which

include contributions from both inside and outside the regional domain.

2. A-modified-We then run a modified version of TM5 ferward-run-where-in which all fluxes and mixing ratios are set to
zero in-al-time-steps-outside the regional domain %g%%&ea%etﬂa{eﬂ%

3. Fe%c—a%etﬂa%mgy%mﬂdd%ﬁeﬁfe—s{ep%at every time step. This produces a field 1 ™, which reflects only the

contribution from fluxes inside the regional domain. In this step, the cosmogenic production flux Fiosmo is set globally
tozero-to zero globally in order to keep it in-as part of the background in the next step.

4. The background mixing ratios are then calculated as: y? = y™> — ytf TMsrwirfh—t—iﬁd-ic—aﬁﬁg—ﬂ&e%Eaeefs—GQTaﬂd—GAﬁe.

2.2 Regional transport (FLEXPART)

Following the methodology described in Monteil and Scholze (2021) and Gémez-Ortizet-al+2023)GOomez-Ortiz et al. (2025
, our regional transport model (i.e. the operator to calculate y' in Equations 1 and 2) is composed of a series of pre-computed

footprints with FLEXPART (Pisso et al., 2019) driven by ERAS5 reanalysis data for 2018 at a spatio-temporal resolution of
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0.25%° x 0.25%° and lheur h, using the Python code developed to run and post-process the footprints to be used in LUMIA
(https://github.com/lumia-dev/runflex, last accessed in August2024July 2025). We compute two types of footprints: instant-er
flask(i) instant (or flask) footprints to simulate continuous CO» and CO observationstthe tatterused-onty-for sampling seleetion

as described in Sec. 3.5). and flask A''CO5 samples. and | -, and (ii) integrated footprints to simulate A™CO, integrated
observations (see See—2?2Sects. 3.5 and 3.3).

We compute instant footprints from the observation time and 14 days back in time releasing 10000 particles per simulation
(Monteil and Scholze, 2021), and we use the same footprint to model CO, CO, and ACO, at the corresponding observation
time and sampling station. These footprints are computed for a passive air tracer, i.e. without any atmospheric chemistry reac-
tions. Therefore, for CO we only evaluate the regional contributions (Levin et al., 2020) without accounting for the background
and reactions with other atmospheric components. For the integrated footprints, we set a fixed integration time of 2 weeks (14

days), distribute 10000 FLEXPART particles per hour over this integration period, and then simulate 14 days backward from
the integration start time {Gémez-Ortizet-al52023)(Gomez-Ortiz et al., 2025).

2.3 The inverse modeling problemapproach

LUMIA follows an implementation of the variational approach (4D-Var). This approach seeks to iteratively minimize the
mismatch between the model output and observations ¢3-d,, by optimizing the control vector «. The optimization process is

guided by a cost function, J (x), defined as:

T
J(m):%(m—mb)TBfl (m—mb)—ké (H:c—d_y&) R <Hm—5_y:{/) 3)

In this equation, a® represents the prior estimate of the control vector, B is the prior uncertainty covariance matrix, R is the
observational uncertainty covariance matrix, and H is the Jacobian of the observation operator /{, which includes the transport
model itself(i.e., pre-computed footprintsdeseribed-in-See-—2-2) and other step&ggnvlgggggtvsvneeded to express y as a function
of xfe-g+, such as flux aggregation and disaggregationef
and the incorporation of boundary conditions.

The control vector & contains the set of parameters adJustable by the inversion, which are offsets to the differentsources-and
14 : .

fossil and biosphere CO- fluxes ywe aim to estimate.
We solve for clusters that-are-aggregated in time and space. These clusters-are-formed-are defined based on the sensitivity
of the observation network to emissions from different regions—High-resetution-optimization—is-apphied-to-areasdireethy—

areas with high observational coverage, such as those upwind of sampling stations, are optimized at full spatial resolution

0.5° x 0.5°%), while regions with lower sensitivity are eptimized-at-a—coarserresolutiongrouped into coarser clusters (e.g.,
5° x 3.5°%) (Gémez-Ortiz et al., 2025).

The prior error covariance matrix (B) is constructed in three steps. First, the variances are determined to represent the
assumed spatio-temporal uncertainties of the fluxes. Next, covariances are calculated based on assumed spatial and temporal

correlations, incorporating the distance between grid clusters and the time difference between flux intervals. Finally, the entire

10
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matrix is scaled using a uniform factor to match category-specific annual uncertainty values. The formulas used for fossil CO2
emissions differ from those used for other fluxes to account for better-known emission locations and to avoid artificially low
uncertainties due to flux compensations {Gémez-Ortizet-al;2023)(Gomez-Ortiz et al., 2025).

The observation uncertainty matrix (R) includes both measurement uncertainties and model representation uncertainties,
which account for the model’s inability to perfectly simulate observations even with accurate fluxes. Ideally, the diagonal of
R holds the total uncertainty for each observation, while the off-diagonals represent error correlations between observations.
However, since these correlations are hard to quantify, common practice is to set these error correlations (off-diagonal elements)
to zero. The observation uncertainty can then be provided as a simplified observation error vector (Monteil and Scholze, 2021).

The iterative procedure works by adjusting « to minimize the cost function .J (x), which represents the mismatch between
the model and the observations weighted by their respective uncertainties. The optimal solution is achieved when the gradient,
V,.J approaches zero, indicating that a local minimum of the cost function ;—V;-/-is-elose-to—zerohas been reached. This

approach ensures that the final estimate of @ provides the best possible fit to the synthetic observational data while taking into

account the uncertainties in both the prior information and the observations {Gé i s Rayner et al., 2019).

3 Experimental design

In this paper, we focus on the implementation of perfect transport Observing—System—SimulationExperiments—(hereafter
OSSEs)—1n-OSSEs—we-OSSEs. We calculate a series of synthetic observations, using a set of assumed "true" fluxes (F"),

by performing a forward run of our transport model. Afterwards, using a set of "prior" fluxes, we can evaluate how well the

inversion framework performs in recovering the assumed "true" fluxes. In this ease;perfeet-transpert-means-that-we-use-the

amae anonaort-maode O—1 a tha Aathe AFyis ne—9n ne mM-—the m nhe ne = ST he me

is-section, we describe the flux products used
as true and prior fluxes (SeeSect. 3.1), the calculation of the synthetic observations (SeeSect. 3.3), the model setup (i.e., the
information needed to construct the matrices B and R and the control vector x) (SeeSect. 3.4), the selection criteria of the

synthetic A CO, flask samples (SeeSect. 3.5), and the design of the OSSEs (SeeSect. 3.6).
3.1 True, prior and prescribed fluxes

The assumed true fluxes, denoted as F", are used to generate synthetic observations through a forward run of our transport
model. For the global transport simulation, we use the posterior fluxes from Basu et al. (2020) s-as-explained-in-See—2-4(see
Sect. 2.1). For the regional transport, all fluxes have a resolution of 0.5° x 0.5° and 1 hour in the domain shown in Figure-Fig.
1.

We use as true fossil COs flux (Fj) a product (Koch and Gerbig, 2023) for 2018 based on the Emission Database for
Global Atmospheric Research (EDGAR) version 4.3.2 emission product (Janssens-Maenhout et al., 2019) following temporal

variations based on MACC-TNO Denier van der Gon et al. (2011) and with temporal extrapolations and disaggregation using

the COFFEE approach (Steinbach et al., 2011). F%meﬁkeﬁm%eﬁmeﬁﬁ%gﬂaﬂeﬁmpk%w&% use a fossil CO flux
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product based on the same methodology described for F§;. This product is later used to estimate the CO enhancement from
285 fossil fuel combustion, used as a criterion for selecting the A COs flask samples.
As true biosphere fluxes (Fy;,), we use a simulation for 2018 of-from the LPJ-GUESS vegetation model (Wu, 2023; Smith

etal., 2014)%6:%%&%199—86619&6& For true ocean fluxes (F,..), we use the Jena CarboScope oc_v2020 product, which is
based on the SOCAT data-se 5

flaxes+(Fand-as—trae-dataset of pCO2 observations (van der Woude et al., 2022; Rodenbeck et al., 2022, 2013). As true
and F!

ocedis/>

290 terrestrial and oceanic isotopic disequilibrium fluxes (Fy, ), we use the optimized fluxes from Basu et al. (2020),

iodis
regridded to match the spatial and temporal resolution of the regional transport model. Both disequilibrium fluxes are pre-
scribed in the experiments, and hence they are not optimized. This decision is due to the high uncertainty derived from
optimizing Fiogis, and the low impaet-influence of Fi. and Fi.qis in the study domain, as wefeund-in-a-previous—stady
{66mez-Ortizetal;2623)shown in our earlier work (Gémez-Ortiz et al., 2025). The emission products from nuclear facilities

295 are described in detail in the-nextseetion(See—3-2)Sect. 3.2.
As prior fluxes, we use the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda et al., 2018) for 2018

(Oda and Maksyutov, 2020) to represent prior fossil CO, emissions (F¥). For prior biosphere emissions (Fy,), we use fluxes
simulated by the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 2008; Thompson et al., 2020)
for the year 2018 (Gerbig and Koch, 2021).

300 3.2 Radiocarbon emissions from nuclear facilities (F,uc)

Nuclear 14€-11CO, fluxes (Fyy) are generally prescribed in inverse modeling studies due to the high uncertainty derived from

the lack of information on temporal variability.

~For this reason, we produced two sets of nuclear fluxes: one with a temporal variability to be used as the true flux (

F} ), and the
305 second one with the emissions evenly distributed throughout the year as is usual for this flux category Basu-et-al;20+6;2020:-Gémez-Ortiz
Basu et al., 2016, 2020; Gomez-Ortiz et al., 2025). Both flux products are based on the data (Sterm-et-al;2024)used-and-de-

scribed in Maier et al. (2023) ;-therefore;both-productshave-and Storm et al. (2024). Therefore, they share the same annual
budget and spatial distribution, the-atter-which is defined using the location of the-nuclear facilities and aggregated over the-a

0.5° x 0.5° grid.

310 For the temporal distribution of F} ., we use the weekly temporal profiles reported by Varga et al. (2020) for the Paks

Nuclear Power Plant (NPP) in Hungary and the monthly profiles reported by Akata et al. (2013) for the Rokkasho Spent Fuel
Reprocessing Plant (SFR) in Japan. Both studies reported at least three years of temporal profiles. Therefore, we assign the
temporal profile by randomly selecting a time span corresponding to a year starting from a random date and then assigning
it to the corresponding type of nuclear facility (NPP or SFR). We did this because we did not find any evident seasonality in
315 the temporal profiles of these two studies, and, in addition, such temporal profiles can vary between different types of nuclear
reactors. With this temporal distribution, we want to add extra variability to the nuclear contribution to atmospheric A*CO,

and study its impact when using the prescribed flat-year nuclear emissions to estimate fossil COy emissions. However, we
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are aware of the differences among the types of nuclear facilities and how this can affect the temporal profile. As-mentioned
previoustyfer-For the prescribed flux, we incorporate a flat-year nuclear emission product. This appfeael%allows the inversion
to follow a traditional approach,yets i es-arepresentation-of non-perfectnuclear emissionsinto-the-modelsetup while

still accounting for imperfect representation of nuclear emissions.

3.3 Synthetic observations

deseribed-in-See—3-1—We calculate hourly mixing ratios for each sampling station. For the flask (A'#*CO,) samples and the

instant (CO2) observations, the background is the model output at each observation time. For the integrated A'*CO, samples,

the background is calculated as the average of the mixing ratios eemputed-from the start date of the-sampling to the end date
of the integration period (14 days ferin this study).

With-Using the instant and integrated footprints deseribed-in-See-2:2, we perform a forward run of eurregional-medelusing
the regional model with the true fluxes introduced-in-Seetion-3-Ho-generate-mixing ratio-(see Sect. 3.1) to generate time series
of COy, CO, and A CO,. We-use-aThe CO flux product is based on the same methodology as the fossil COy produet{see
See-3-Hrto-simulate-the-flux and is used to simulate CO mixing ratio-and-perform the- Al1CO,sample-selectionfoowing the
methodology-deseribedinLevinetal(2020)-ratios for sample selection, following the approach of Levin et al. (2020), where
elevated CO deviations from background are used as a proxy for enhanced fossil COy signals.

As a final step, we add a-randem perturbationrandom noise to the synthetic ebservationsCO, and ACO, y-without
exceeding the-assumed-observation-uneertaintyto-observations by drawing from a normal distribution with mean zero and a

standard deviation equal to the assumed observational uncertainty. This perturbation is added to each observation to mitigate
the assumption of a perfect transport model.

‘We select the CO, synthetic observations

v-day when the model is expected to perform
well, as typically done in real atmosphenc inversions. This t%—betweefﬂ@gvevs\pg%VtQJI 00and—15:00 local time (LT) ;-when

tons-for sampling sites below 1000 m-a-s-t-and-between
ma.s.l., and 22:00and-2-02:00 LT for mountaintop sampling-stations, when the boundary layer is mest-likely below the sam-

pling intake and the-freetropoesphereissampledfree tropospheric air is sampled (Monteil and Scholze, 2021; Gémez-Ortiz et al., 2025

3.4 MoedelInyersion setup

In all experiments, we

optimize enly-thefossil-and-biosphere-CO-—fuxes{(Fiweekly fossil and biospheric CO2 fluxes (F'ff and Fiorespeetively).

The control vector x is composed of clusters of 2500 grid points and weekly offsets for each flux category.

mwm& the prior error-covarianee-matrix-Br-we-assume
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kmforFiip—We-assume-a-prioruneertainty-of fluxes (e.g. 0.5° X 0.5°, hourly) and then aggregated to match the resolution of
the control vector, This ensures that regions and time periods with larger fluxes are assigned proportionally larger uncertainties
while still allowing all clusters to be adjusted by the inversion.

For fossil fuel emissions, we distribute uncertainty across grid cells using the ratio log(Daily total) /Daily total. This

relatively more weight to low-emission regions, which often carry higher relative uncertainty, and prevents unrealistically low.
uncertainty values in high-emission areas. For biospheric fluxes, uncertainty is distributed in proportion to the square root of
the sum of the absolute hourly fluxes within each aggregation window. This avoids underestimating uncertainty in regions or
periods where net biospheric fluxes are small due to compensation between photosynthesis and respiration.

The overall prior uncertainty across the domain is set to 0.21Pg€yr—(30%- PgCyr ™" for fossil emissions (30% of the prior
annual budget) fer—-Fir-and 0. 37PgGyf—€2%74rPgC yrt @Almtm:wﬁy}gﬂg;@of the absolute prior annual budget)fer

regarding-the-vs, VPRM).

The spatial and temporal

prior covariance matrix B is defined using an exponential temporal correlation of one month for both fluxes, and a Gaussian
spatial correlation length of 200km for fossil fluxes and 500km for biospheric fluxes. These correlation lengths reflect the
structure of uncertainty in emission inventories and ecosystem processes, and are consistent with previous inversion studies in
Europe (Wang et al., 2018; Monteil and Scholze, 2021; Thompson et al., 2020). frr-the ease of Fir; the uneertainty is distributed

%Se%ﬂ%eﬁef&g@vggﬁ% as follows: for COQ%W , We assign a prior
error equal to the standard deviation of ebservations-withina—=+3-5-model-simulated concentrations within a +3.5 day window

around it-while-for-each observation. For ACO,
6-9-pprr, we assume a constant error of 0.9ppm CAMC, equivalent to 2.15 = 0.05%0v-AE€02) .

3.5 Synthetic A#CO, flask sample selection

TFhere-are-threekeyeriteriafor-seleetinge-We define three criteria to guide the selection of ACO, flask samples +in the
OSSEs: (1) samples-taken-at-midday(midday sampling at 13:00 LT )-appreximately-every third day, (2) samples-that-capture
events—selection of high fossil CO, contamination—and-events, and (3) samples—that-aveid-events—ef-avoidance of periods
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with potentially high nuclear emissions. These correspond to the three strategies described earlier but are detailed here with
their specific operational implementation. Sampling at midday ensures strong atmospheric mixing, reducing model transport

errors and providing stable, low-variability conditions for accurate quality control. €apturing-events-Events of high fossil CO,

emissions-invelvesseleetingsamples-based-on-thresholds-for-the-are identified using the simulated mixing ratios of fossil CO5
and fossil CO-FessiHcO-is-, the latter serving as a reliable tracer effossi-due to its co-emission during combustion and lack of

biological sources. While these are simulated values in the OSSE framework, in real-world applications, total CO5 because-itis

measurements are used in near-real time. Fossil COs is then inferred from observed CO enhancements relative to a background
together with known emission ratios, as described by Levin et al. (2020). Avoiding potentially high nuclear emissions is crucial

to prevent masking the fossil fuel signal with nuclear *CO, emissions (Maier et al., 2023; Graven and Gruber, 2011).

For the A™CO, flask sample selection, we follow the same thresholds for fossil CO, (> 4ppm ppm) and fossil CO (> 40
ppb_ppb) (hereafter ffCO, and ffCO, respectively) as proposed by Levin et al. (2020) to capture events of high fossil CO;
contaminationemissions. Additionally, we introduce a new threshold for nuclear CAC of < 1ppm- ppm CAMC to avoid
capturing events of potentially high nuclear A CO, contamination. This value is based on forward runs using both nuclear
emission products (with and without a temporal profile). Because LUMIA calculates the individual contribution of each flux
category in Equation 2 to the modeled tracer fields, these estimates are used directly to apply the sample selection strategies.

At sites not directly influenced by nuclear emissions, such as Biatystok (BIK;—; see Fig. 1 and Table 1), this threshold
represents 87%-87% of the synthetic observations at 13:00 local time for the year 2018. In contrast, at sites with high nuclear

impact, such as Karlsruhe (KIT) in Germany, it represents 41%-41% of the synthetic observations (see Fig. 2). This valueis-an

on simulations for 2018, when nearby nuclear facilities like Philippsburg 2 (shut down at the end of 2019) were still active.
However, conditions during the CORSO campaign may differ significantly due to the shutdown of all German nuclear power
lants in April 2023.

Approximately-During the CORSO sampling campaign, approximately 120 A—G@Tﬁask samples (10 per month) witt-be
taken-are selected at each station sele

capture-seasonal-variationsfor A'*CO, analysis. Mamtalmng a consistent number of samples per station and d1str1but1ng them
evenly-as evenly as possible throughout the year is essentia

distribution is not always achievable when applying strict sampling criteria, particularly in regions or periods with frequent
nuclear contamination or low fossil signals. Therefore, we prioritize synthetic samples that meet the eriteria-in-each-of-the
OSSEs-deseribe-in-thefoHowingseetion-selection thresholds in each OSSE and complete the +0-samples—per-month-with
synthetie samples that-are-close to-10-per-month target with additional samples that closely match the criteria.
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Figure 2. Synthetic ACO, flask samples at a) Biatystok (BIK) and b) Karlsruhe (KIT), two of the 12 sampling sites selected for the
intensive sampling campaign during the CORSO project. The time series for the remaining sampling sites can be found in Appendix Al.
The tables below each figure show the number of synthetic observations per month that meet the ffCO2 threshold (red cross), the ffCO2 and
ffCO (yellow tri) thresholds, and the ffCO and nuc'*C (green cross) thresholds.
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3.6 Observing System Simulation Experiments (OSSEs

In the following sections, we describe the experiments. We summarize the setup of the experiments and their criteria in Table 2.
As part of the evaluation of the experiments, we calculate the posterior uncertainty of each OSSE with a Monte Carlo ensemble

of 25 members. Note that small differences in the monthly prior uncertainties across figures are due to the limited size (25
members) of each Monte Carlo ensemble, despite the same annual prescribed uncertainty being applied across all regions and

experiments.

3.6.1 Base case scenario (BASE)

In the first inversion, BASE, we replicate the current setup of the ICOS network using synthetic A CO, integrated samples
and synthetic CO» observations. In this experiment, we use all stations in Fig. 1 (except MHD, HFD and BIK) and integrated
samples according to the column *Current A'*CO, sampling’ in Table 1 (yellow and red dots in Fig. 1). At-at-stations—we
use-CO2 observations within-the-times-are used at all stations during periods of the day deseribed-in-Seetion-3-3-accordingto
the-altitude of the sampling station: midday for lowlands-when the atmospheric transport model is expected to perform best:
midday at lowland and coastal sites, mitntght-for-and midnight at mountaintop sites.

3.6.2 Including A'#CO; flask samples (CORSO)

The selection of flask samples represents many logistic and operational challenges. The simulations and data analysis to deter-
mine if a sample meets the selection criteria are often conducted weeks after the sample has been taken. As a result, more than
10 samples need to be collected each month, which requires sufficient flasks, storage, and transport capacity. Therefore, we
will begin by evaluating the use of synthetic A'*CO, flask samples in the simplest form: taking a sample every 3 days at 13:00
local time, regardless of its composition. This experiment also works as a base case for the use of A'4CO, flask samples. The
selection in this and the following experiments is carried out in the sampling sites marked with yellow dots in Fig. 1. This is
the basic approach to sampling selection in the CORSO project when it is not possible to perform near-real-time simulations

to estimate the fossil or nuclear contribution of the A*CO, flask samples.

3.6.3 Applying fossil fuel-related thresholds (ffCO, and ffCO)

fluxes-mimieking-a-We apply the fossil fuel-related thresholds (ffCO- and ffCO) using a forward simulation with prior fluxes to
approximate near-real-time simutati . .

o-conditions.
Based on the resulting mixing ratios, we select the synthetic observations that meet the defined criteria. These thresholds are
not always metfor-all10-observationst-a-month-and-in-the-ease-of fosstHCOand-CO-during-the summermeonths-satisfied,

articularly in summer when fossil emissions are lower s-the-thresholds-are-almestnevermetatmeoststations—-and most stations

fail to meet the minimum values. This seasonal pattern is consistent with the seas
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diseussed-decline in fossil fuel activity during warmer months, as also noted by Levin et al. (2020). Figure 2 further-illustrates
the variability in meeting-thresholds-at-different-threshold fulfillment across sites.

In months where-in which one of the thresholds or a combination of them is not met, we still need to select the 10 synthetic
observations that best fit the experimental conditions. The first experiment including the thresholds is CORSO_f{fCO2, where
we select synthetic observations at 13:00 LT with a fossil CO, component greater than or equal to 4 ppm (see Figure-Fig. 2).
Generally, we select the 10 synthetic observations per month with the highest fossil CO, component. The second experiment
is CORSO_{fCO2_ffCO (criteria A & B in Figure-Fig. 2). In this experiment, when beth-thresholds-are-not-neither threshold
is met, we select the best combination with the highest values of ffCO; and ffCO.

3.6.4 Evaluating the impact of nuclear emissions (nuc'“C)

estimate the contribution of nuclear emissions to the posterior uncertainty. In a real-world application, sample selection would

rely on the sensitivity of the observations to nuclear emissions (i.e., whether the upstream winds pass over a nuclear facility and

contamination, we maintain reasonable confidence in the modeled spatial and temporal patterns.
W@%@%ﬁm% nucl4Cy

) while ensuring a high ffCOs compositionin

In-CORSO—and nuc'*C thresholds (criteria A and C in Fig. 2) is not always satisfied, we a the following selection
rocedure in the CORSO_ffCO2—_nuc14C feriteriaA-&-C-inFigure 2)-we foHow-the procedureexperiment:

1. We first select the observations that meet both the ffCO5 and nuc'C thresholds.

2. For each site, year, and month, we then select the top 10 observations with the minimumnuclearinfluencelowest nuclear

influence from this subset.

3. If there-aretess-fewer than 10 ebservationssuch observations are available, we fill the remaining slots with observations
meeting-that meet the ffCO, threshelds—and-threshold and have moderate nuclear influence (between—t—and—2-ppm
1-2 ppm CAMC).
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Table 2. Summary of the OSSEs performed in this study.

Simulation A'CO, sample type  Criteria
BASE Integrated Current network
CORSO Integrated and Flask ~ Flask samples at 13LT every third day
CORSO_\allowbreak ffCO2 Integrated and Flask ffCO2 > 4ppm
COoRsE_ SRR IICO2 £ Integrated and Flask ~ f1C0; > 4ppm_
nuclear perturbation,
CORSO \allowbreak ffCO2_\allowbreak {ffCO Integrated and Flask ffCO2 > 4ppm & ffCO > 40ppb
CORSO_\allowbreak ffCO2_\allowbreak nuc14C Integrated and Flask ~ ffCO > 4ppm & nuc'*C < 1ppm
CORSO \allowbreak fiCO2_nuet4Cmasallowbreak nucl4C + B}

Integrated and Flask ffCO2 > 4ppm &

nuclear perturbation

muc’’C < 1py

irre-this is still insufficient, we complete

the sample by selecting observations that meet only the nuclear threshold, ensuring-the-highest-pessible-prioritizing those
with the highest fossil CO- influence.

In-the- CORSO-We compare this experiment against CORSO_ffCO2, in which we do not consider the nuclear contamination.
For each set of observations (CORSO_ffCO2 and CORSO_ffCO2_nucl4C—max-experiment;-), we aim-to-capture-the-effect-of

erform two Monte Carlo
ensembles. In the first, we conduct a standard ensemble in which both the control vector and the observations are perturbed
according to the prescribed uncertainties. In the second ensemble, we additionally include uncertainty from nuclear emissions

by modifying the observation error as follows: we perturb the true nuclear emissions based-on-using an uncertainty equal to
the annual nuclear budget (0.62Pg- Pg CA'C, 466%),-100%), and recalculate the synthetic observations;-and-perform-the

ions. We assign 100% uncertainty to the nuclear emissions due to the lack of
information on their temporal distribution, following Maier et al. (2023). After this, we perform the Monte Carlo ensemble in
the same way as the first. The difference between the two ensembles for each observation set represents the contribution of
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4 Results
4.1 Characterization of the sampling sites in terms of A'*CO,

We start by analyzing and comparing the real A'*CO, integrated samples (ICOS RI et al., 2024) with the synthetic obser-
vations at the sites selected for the intensive A'*CO, flask sample campaign (Fig. 3 and Appendix A2). Real observations
show pronounced seasonal but also episodic fluctuations in A'#CO,, such as low values during February and March in CBW
(—+6:64%0-16.64 %0), OPE (—+5-44%0-15.14 %), and KRE (—5-75%0-5.75 %) (black line; see Fig. 3), which also coincide
with the reduction in medeted-observations—with FEEXPART (between—7-6-the modeled synthetic observations (between
-7.6 %0 in CBW and —5-+%0—5.1 %o in KRE, teal line) and can be associated with the typically high fossil emissions during
winter. On-the-other-hand;-there-are-also-some-high-values—during-In contrast, elevated values are observed in January and
February inKRE+(2:56%qat KRE (2.56 %0) and OPE (6:25%06.25 %o). These elevated-values-are-primarily—related—te-high
values may be primarily driven by nuclear emission enrichment—Hewever,—during—, as indicated by the simulated nuclear
component (red line; see Fig. 3), which shows contributions of up to 7 %o at KRE and OPE during this period. During the

growing season, when heterotrophlc resplratlon is more aCthCWMMWMWISO

be influenced by it

atmesphereterrestrial isotopic disequilibrium, as reflected in the simulated component ranging from 1 to 4 %e.
Although the synthetic observations are calculated with non-optimized fluxes, we find certain reproducibility of the seasonal

patterns at sites such as CBW where we have the best agreement between the real and synthetic observations with the highest
correlation coefficient (R) and lowest mean bias deviation (MBE) (see Fig. 3), and KRE and SAC (Fig. A2) in which the
synthetic observations mostly underestimate the real observations (negative MBD). Also, at some sampling stations such as
JFJ and PAL, the synthetic observations do not capture the variability shown by the real observations, are-it-which is reflected
in high root mean square error values (RMSE, see Fig. A2).

4.2 OSSEs

We evaluate the retrieval of fossil CO2 emissions by comparing the assumed true values derived-fromEDGARagainst-(from

EDGAR) with the prior estimates frem-OBIAC-(from ODIAC) and the posterior estimates of-the-experiments—deseribed-in
Seetion-3-6-1n-thisseetion,wefoeus-the-analysis-en-thefrom each experiment. The analysis focuses on bias and uncertainty

reduction, calculated as follows +

(4a)

Posterior — Truth
Bias reduction = (1 _ |Posterior — Tru |) 100

|Prior — Truth|
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Figure 3. Comparison of the available real A'*CO, integrated samples (black) (ICOS RI et al., 2024) with the modeled backeround
observations—{red)—and-synthetic observations (teal) at a) CBW, b) KRE and c) OPE, three of the sampling sites selected for the inten-

sive sampling-CORSO flask campaign, The nuclear (red) and terrestrial disequilibrium (yellow) components of the synthetic observations
are also shown for comparison. Gaps in panel a reflect periods of missing integrated observations. At CBW, the integration period was
approximately one month during 2018, whereas it was around 14 days at the €ORSO-projeetother stations. Synthetic observations were

modeled to match fixed 14-day integration periods across sites.
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Figure 4. Monthly fossil CO2 truth (blackdashed-lines), prior (reddetted-tines), and posterior fluxes from the BASE (tealselid-}ines) and
CORSO (yellowsolid-ines) experiments for a) the study domain and 5 sub-regions : b) Western/Central Europe, ¢) Germany, d) France,
e) Benelux, and f) British Isles. Fhe-shaded-areas—represent-Vertical error bars indicate the uneertainty(teo)-eatentated-in-associated &-1g

uncertainties from a Monte Carlo ensemble of 25 members. The prior uncertainty is defined independently of the inversion, while posterior

uncertainties reflect the constraints imposed by the observations in each experiment.

Posteri rtaint
Uncertainty reduction = < 1-— OSIETIoT uhcertain y> 100 (4b)

Prior uncertainty

4.2.1 Impact of adding A1*CO, flask samples

Here, we compare the BASE and CORSO experiments. A summary of the maximum and minimum bias and uncertainty values
their respective months, and the corresponding posterior reductions is provided in Table 3. In the study domain (Figure-Fig,

4a), the true emissions shew-a-seasonal-variation-with-peaks-display a clear seasonal pattern, with higher values in winter and
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troughs-lower values in summer, reaching a peak-of4.79-Fg€-day—"-maximum of approximately 4.8 TgCd~"! in January
and redueingto-a minimum of 343-Fe€-day—-about 3.1 TgCd~! in July. The prior estimatessignificantly-underestimate
(ODIAC) underestimates the true emissions throughout the year, particularly in winter months, with-a-bias-astarge-as29%
in January and greater than 12'4 on an annual basis. with a minimum of 74 and 1% in June and July, respectively. In

i | on-i iment-wi fon-of-January bias of nearly 30 %. In
contrast, the posterior estimates from the BASE and CORSO experiments show improved agreement with the truth. The
CORSO experiment generally achieves larger reductions in bias, especially during spring and autumn. However, in June and

[0) (0}

July, where-theem onsare-overestmated;—with—valges-between —t-Oectober-and- 98701 May—TFhe BASE-experimen

similar-in-both-experiments- CORSO slightly overestimates emissions, wi s i % %
and-whereas the BASE experiment provides a closer match to the true values. Prior uncertainty ranges from 71+%-te-75%for
BASEapproximately 50 % in winter to over 70 % in summer. Both posterior experiments substantially reduce this uncertaint

with CORSO showing slightly stronger reductions, between 71 % and 87 % across the year.
WECE-Western/Central Europe (WCE) and Germany, where around 30%-and-16%-30 % and 16 % of the total emissions

occur, respectively, have similar results in relative terms. Both regions have a larger prior bias during winter, with the largest

>

biases occurring in January (35%-35 % for WCE and 42%-42 % for Germany). In contrast, they exhibit a lower bias in
summer, with a minimum in July (6%-5 % for WCE and 4%-4 % for Germany). The posterior emissions of both experiments
overestimate the monthly budgets during summer, from June to August in WCE and from May to August in Germany. However,
the CORSO experiment shows values closer to the truth in this season. Outside of the summer season, the BASE experiment
demonstrates a larger bias reduction in WCE, whereas the CORSO experiment shows a larger bias reduction in Germany. The
prior uncertainties in both regions exceed +86%-100 % but are consistently reduced by more than 98%-90 % by the CORSO
experiment in both WCE and Germany, and by more than 80%-80 % by the BASE experiment. Nevertheless, from May to
September the absolute posterior uncertainty of both experiments in both regions is larger than their respective absolute prior
bias.

France, the Benelux region and the British Isles have similar monthly budgetsin-magnitadewith-vatues-, typically between
0.2 and 0.4FgC-days—and-similarpriorbiases-between5%(mainty for Benetux) TgC d !, and prior biases similar to the
other regions (ranging from 0 % to 31 %). However, the performance of the posterior estimates is more mixed across these
regions. In France, both BASE and CORSO improve the prior estimate in early months (e.g. January—April), but during summer
and autumn, especially July and November. both experiments overestimate emissions, with CORSO showing a stronger
deviation from the truth. A similar pattern is observed in Benelux, where uncertainty reductions are substantial (80 %-90 %),
» but posterior fluxes do not consistently reduce bias and sometimes worsen the agreement (e.g. in July and September). The

British Isles exhibit the largest discrepancies: in several months (notably July, October, and November), CORSO notabl

overestimates emissions, and even BASE deviates from the truth. This highlights that, despite strong uncertainty reductions
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Table 3. Summary of prior relative bias and uncertainty, and posterior bias and uncertainty reductions for the BASE and CORSO experiments.
All values are in percent. <0 values indicate cases where the posterior bias is greater than the prior bias. Bias and uncertainty reductions are
calculated as described in Eq. 4.

Posterior (%)

‘ Prior (%) ‘
Region | | BASE | CORSO
‘ Rel. Bias Rel. Uncertainty ‘ Bias red. Unc. red. ‘ Bias red. Unc. red.
Min,  Max. | Min.  Max., | Min, Max. | Min, Max. | Min, Max. | Min. Max.
. 1 29 25 36 <0 85 55 81 <0 98 71 87
Study Domain - - - e - e o -
Jul Jan Jan Aug Jul Jun Jun  Dec Jul May Sep  Mar
5 35 76 122 <0 100 84 89 <0 98 80 91
Western/Central Europe ~ ~ ~ ~ ~ ~ ~ ~
Jul Jan Jan Aug Jul Jan Nov  Aug Jul Feb Jun. Feb
. 4 4 | 98 166 | <0 9 | 84 8 | <0 9 | 8 91
Jermany
Ju  Jan | Jan  Aug | Jul  Jan | Jun  Aug | Jul  Jun | Jun  Jul
0 31 30 46 <0 98 23 60 <0 100 30 63
France - - - h h h e o
Jul Mar Jan May Jul Oct Jul Jun Jul Sep Jan Sep.
4 17 159 263 <0 59 77 90 <0 74 79 86
Benelux_ - e = - = o
Jul

Sep | Mar  Aug | Sep Apr | Jun Aug | Jul  Apr | Jun  Apr

AT

. 1 16 69 121 <0 78 46 73 <0 92 60 80
British Isles - R - = ==
Ju  May | Feb  Jul | Jul  Jan | Nov Sep | Jun Sep | Jun  Mar

the posterior estimates do not always align better with the true values, particularly in regions with smaller source magnitudes
or more limited observational constraints.
Overall, both BASE and CORSO experiments lead to substantial improvements over the prior by reducing bias and uncertainty_
575  in most regions. However, the differences between the two are not consistent across space and time. CORSO generally achieves
greater reductions in uncertainty and improves performance in some areas, such as the core domain and Germany. In contrast,

it tends to overestimate emissions in regions like France, Benelux, and #%—Fhe-posterior-estimates-of both-experiments-are
similarin France and the Benelux.with some months(May to-June)having good-agreement(bias reduction-greater than -50%-).

580

and autumn. These results reflect the sensitivity of the inversion to the choice of observation sampling strategy. In the followin
section, we evaluate whether further selecting flask samples based on their fossil CO5 content can improve the results.
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585 4.2.2 Impact of selecting A14CO;, flask samples using the ffCO5 and ffCO thresholds

Here;-we-We compare the CORSO—_ffCO2 and CORSO—_ffCO2—_ffCO experiments against the base-case; CORSO--original
CORSO setup to evaluate the impact of selecting A'*CO, flask samples using the ffCO-and+C€O-fossil CO, and CO thresh-
olds. This time-we-foeus-only-analysis focuses on Western/Central Europe (WCE) and Germany (see-Fig. 5), which shew-the

590 and uncertainty values, their respective posterior reductions, and the corresponding months.

In Western/Central-EuropeW-CEYWCE, the CORSO experiment gereraliy-shows a bias reduction of between 81% and
98% in-winter-with-an-uneertainty-reduction-of-during winter months, with uncertainty reductions between 82% to 91%. The
CORSO_ffCO2 experiment mm&mmm@mn%
to 99% in-winter-and-an-unecertainty reduetion-and uncertainty reductions of 89%te—92%;-similar-te-the-CORSO-, CORSO __

595 ffCO2_HEO-experiment-with-a bias reduction{fCO also shows comparable performance during winter, with bias reductions
of 79%te—~97% and an-uneertainty-reduetion-uncertainty reductions of 81%te—94%for-the-same-period-—,

During the summer, EORSO_differences between the experiments are more pronounced. In July, CORSO_ffCO2_#€0-has
the-best-biasreductioninJuly(78%vs—42%and-15%from{fCO_shows the largest bias reduction (78%), while CORSO
and CORSO_ffCO2 show much weaker improvements (-42% and 15%, respectively);-while-. However, in June and August,

600 CORSO and CORSO_ffCO2 have-a-betterrecovery-inJune-and-August(perform better, with bias reductions between 70% and
88%vs—26%to-, compared to 26%-56% from-CORSO—for CORSO_ffCO2_{fCO)-The-uncertaintyreduction-issimilarfor
al-three-experiments-through-the-yearwith-vatues greater thanffCQ. All three experiments show similarly strong uncertainty.
mmwm7 9%.

an-In Germany, uncertainty reductions

605 exceed 83% M@WWWTM largest differences in bias reduction occur between
May-and-Augustduring summer. CORSO_ffCO2 show

sperforms best between May and August, with reductions ranging from 48% in July and-to 97% in June-while-the-other-tweo

WW&SQQ&@&WWW% low as %%Augﬂ%f@%@@%@ﬂié%m%ﬂl&f@f

CORSO-4% in August, and CORSOQ_ffCO2_

610 MMWWW with a maxi-
mum reduetion-of-56%-of 56% in June.
In summary, while all three experiments lead to substantial improvements over the prior, selecting samples based solely on
fossil COy, CORSO_ffCO2 provides the most consistent reductions in both bias and uncertainty, particularly during summer
months, without requiring the additional CO threshold.

615 4.2.3 Impact of nuclear power facilities

Panels a and b of Fig.4.2.3 show the uneertainty-of-monthly fossil CO5 flux estimates for Western/Central Europe and
Germany, respectively. The posterior estimates from CORSO_ffCO2 and CORSO_ffCQO2, Luconsistenti .
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Fossil CO, emissions (Monthly)

a) Western/Central Europe b) Germany
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Figure 5. Monthly fossil CO; truth (blackdashed—lines), prior (reddetted—ines), and posterior fluxes from the CORSO (teal—selid
tinesyellow)and-, CORSO_ffCO2 (yelow-solid-tinesteal), and CORSO_ffCO2_ffCO (purpleselid-tines) experiments for a) Western/Cen-
tral Europe and b) Germany. Medﬂmaﬂepfe%eﬂ&y/ﬂnczdmmrwm the ﬁﬂeeﬁatﬁfy—&a%—ea%e&}a{edﬁg/s\ggg@w

uncertainties from a Monte Carlo ensemble of 25 members. W

Table 4. Summary of the prior bias and uncertainty and the posterior bias and uncertainty reductions for the CORSO_ffCO2 and CORSO
ffCO2_ffCO experiments. All values are in percentage.

‘ Posterior (%)
Prior (%)

Region | | CORSO_ffCO2 | CcoRrso_fico2_fico
‘ Rel. Bias Rel. Uncertainty ‘ Bias red. Unc. red. ‘ Bias red. Unc. red.

Min,  Max. | Min.  Max., | Min, Max. | Min, Max. | Min, Max. | Min., Max.

5 35 76 122 15 99 88 93 26 98 81 94

Western/Central Europe ~ ~ o ~ ~ ~ ~ ~
Ju Jan | Jan  Aug | Jul Dec | Jun Nov | Aug Apr | Dec  Jun

. 4 42 | 98 166 | 48 99 | 83 94 | T 100 | 8 92

crman

e Wl Jan | Jm  Aue | Ju Dec | My Dec | Jul  Oct | Aug  Nov
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Fossil CO, emissions (Monthly)
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ffCO2 megwmmmm
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Figure 6. Monthly fossil CO2 emissions—for-the-average-of-the-truth (black), prior (red), and posterior vaties-fluxes from the CORSO_
ffCO2 —nuet4E-(teal), and CORSO_{FCO2_ntet4Emaxnucl4C (yellow) experiments in-comparison-with-the-trath-(black-dashed)-and-prior
{red-dotted)-valuesfor a) Western/Central Europe and b) Germany. The-shaded-areas-Panels ¢) and d) show the posterior uneertainties{1o)

uncertainty in fossil CO4 flux estimates for the twe-experiments:
In—Figure4-2.3——we-showthe-emission—time—series—for-the - CORSOCORSO_{fCO2 —nuet4E—(teal) and CORSO_ffCO2_nuet4Crmax

e*peﬁmeﬁ{%nucMC( ellow) experiments for Western/Central Europe and Germany, respectively. Hatched segments represent the portion of
Reertattiesre re-from-the frte ensemble-perform e e-the-m ar-uncertainty attributed to nuclear
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this study, we simulate the intensive A'*CO, flask sampling campaign during the CORSO projectmu&ggi different scenarios
68@ddress the challenge of using atmospheric A'CO, measurements for the estimation of fossil CO5 emissions in Europe, a
continent with a high@@n@en&aﬁenm of active nuclear facilities.
W of taking mor%w@%mmm (1 hour
instead of 14 days) throughout the year,allowing us to-capture regi i ith hi i issi

adiocarbon emi

@anuclear@mgmmm
GSWWN

WMStudy the impact of A“CO, flask samples on the estimation of fossil CO, emissions by comparing the BASE
experiment (using only integrated samples) with the CORSO experiment (including additional flask samples). Our findings
6edzal that, in general, the CORSO experiment provides a better estimation of emissions, particularly in winter months, and
significantly reduces both bias and uncertainty compared to the BASE experiment. In the study domain, the CORSO exper-
iment has a larger bias reduction and uncertainty reduction throughout most months, except for June and July, where the
BASE experiment performs better. June and July are the months with the lowest fossil emissions of the year, as already
found by Levin et__in real observations and in this study with synthetic observations. Levin et__ found that fossil COy
é4énts are particularly rare during the summer months, with very few significant events occurring between May and Au-
gust. In these months, fossil CO2 mixing ratios rarely exceeded 4-SPpn:kNppm at various stations. Since integrated samples
cover longer periods and hence larger areas than flask samples, they are more likely to capture the cumulative effects of
low but steady emissions over time, providing a better estimate during months with fewer significant fossil CO2 events. This

extended sampling period compensates for the lower frequency of elevated emissions, ensuring that even minor contribu-

€6Ms are accounted for, which may explain the improved performance of the BASE experiment during the summer months.
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__As already stated by Levin et_, it is necessary to perform a sample selection of A*CO, flask samples to ensure a good
constraint on fossil CO, emissions, based on the thresholds defined for CO, and CO. This approach helps to guarantee the
detection limit of the AMCO, analysis, isolate fossil CO4 signals from other sources of CO2 and make a more efficient use
6649lask samples. However, this method also carries the risk of predominantly monitoring the same dominant point sources,
which may not represent a comprehensive mixture for the region. To mitigate this risk, it is essential to balance the selection
criteria to capture a more representative mix of regional sources. Furthermore, the uncertainty of the A'¥COy analysis requires
a minimum signal strength to ensure the accuracy of the measurements. This requires the inclusion of samples that meet the
@sil@en@nﬁna&onw thresholds and provide a sufficient radiocarbon signal to reduce the analytical uncertainty.
B#Buring a minimum signal strength is crucial for the reliability of the A'4CO; data, as low signal samples can lead to higher

relative errors and less confidence in fossil CO, estimates.

The analysis of the experiments shows that there is not a single experiment that consistently outperforms the others across

all seasons and regions. Although each approach (CORSO, CORSO_the selection strategy for the CORSO_ffCO2 experiments
in a real-world operational setting would require performing near-real-time simulations to estimate the ffCOs component. The
CO threshold was introduced because this can be obtained from continuous CO measurements, and can be calculated as the CO
enhancement with respect to the background instead of ffCO (Levin et al., 2020). From the perspective of Observing-System
Stmulation-Experiments (OSSEs)OSSEs, the results suggest that the selection of samples may not be as critical as ensuring a
good coverage of sampling events throughout the year. The ﬁndlngs indicate-that-suggest that maintaining a well-distributed
schedule provides a more
representative and effective basis for accurately estimating fossil CO, emission-estimates;rather-emissions than relying heavﬂy
on stringent-strict sample selection criteria. However, this- i :

to-theirnuelear-contaminationwhen accounting for nuclear “CO, contamination, careful sample selection becomes essential
to minimize biases and uncertainties.

and frequent sampling

In Europe, with more than 170 operational reactors and two reprocessing plants, nuclear contamination significantly impacts
ACO, samples. Maier et al. (2023) highlight that the median nuclear contamination at ICOS sites accounts for about 30%
in day-and-night integrated samples and 15% in midday integrated samples, leading to substantial underestimation of fossil
CO., estimates if not corrected. Similarly, Graven and Gruber (2011) discuss the continental-scale enrichment of atmospheric
A'™CO, due to emissions from the nuclear power industry, which creates significant gradients that extend more than 760km
700 km from nuclear sites in Europe. Their study demonstrates that the spatial scale of these gradients is sufficient to influence
regional A'4CO, levels, requiring high-resolution data from each nuclear reactor to accurately estimate A'*CO, enrichment

and mitigate biases in fossil CO; estimates (Graven and Gruber, 2011).

Hefe—WHﬁvesﬁgaf&To assess the impact of nuclear emissi

<contamination on fossil CO, estimates, we
compared two sample selection experiments: one favoring low nuclear influence (CORSO_{fCO2_nuc14C) ;-and-the-other-and
one selecting samples with high-nuelear-contamination-potentially high nuclear influence (CORSO_ffCO2-—nuet4Cmax)—The

29



690

695

700

705

710

715

720

findings-shew-that-while- both-experimentsproduee-similar-). While both experiments yielded emission time series that elesely
alien-with-generally tracked the true emissions —th&maeerf&nﬁymﬂ%@%@—fﬁ@%wﬁ%emﬂeﬁﬂsemmﬁeﬂﬂy%@wef

ﬁgmﬁeaﬂﬂﬂed%es—maeefmmfy—aems%mes%mepe—e%peaa%b%well the experiment minimizing nuclear influence
consistently resulted in lower posterior uncertainties, particularly across regions with high prior uncertainty, such as Benelux,

Germany. This highlights the added value of targeting samples that minimize contamination from radiocarbon sources unrelated
to_fossil emissions. Moreover, our results show that this nuclear-related uncertainty can propagate beyond the immediate
vicinity of power plants, affecting regions without nuclear facilities, such as Poland. This finding supports earlier work
by Grayen and Gruber (2011), who documented the regional-scale influence of European nuclear facilities on atmospheric
radiocarbon measurements. These findings highlight the need to adapt sampling strategies to the spatial distribution of nuclear
activity. Although integrated samples are useful for capturing long-term emission-trends; in-regions like Switzerland-where

trends, their reliabilit
@gyvbvq/ggrvn\pvrgvvwwwrrmlmreglons affected by nuclear #ae&ﬁe&mayfeq{ﬂfe&mefﬁefﬁwéﬂmﬁeaehﬂmeembme&gw

such cases, combining integrated and flask samplinge
estimates-, or selectively using integrated samples, can provide a more robust approach for estimating fossil CO estimation.
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In our perfect transport OSSEs implementation, we do not account for uncertainties due to transport model representa-
tion errors. Munassar et al. (2023) found that the use of different transport models, which help us to understand the model
representation error, can result in differences of 0.51 PgCyr—! (61%) in the posterior earbon-budget-tup-to-60%NEE flux
estimates over Europe. Their study uses continuous CO; observations selected at times when there is a better model rep-
resentation. We assume-note that these discrepanciesand-in—general-, and more generally the model representation of inte-
grated sampleseould-be-even—worse;—since-the-samples-are-continuously—integrated—for2-weeks, may differ depending on

the integration period. While short-term observations can be more sensitive to transport or mixing errors, longer integration

eriods (e.g. two weeks) may average out some of this variability, potentially reducing but also redistributing the associated

model—data mismatches. This integration captures a mix of local and regional influences and is especially affected by diurnal
circulation patterns. For example, high-altitude stations may sample polluted valley air transported upslope during the day and
cleaner free tropospheric air descending at night due to mountain-valley winds. Moreover, model accuracy tends to be higher
during well-mixed conditions (e.g., such as in the afternoon planetary boundary layer or in the free troposphere) compared to

eriods with stable stratification, such as during the nocturnal boundary layer or transition phases, which are more difficult
to represent. Maier et al. (2022) study the performance of two modeling approaches using a Lagrangian model (STILT) in

representing afternoon and nighttime 2-week integrated '*C-based ffCO, observations from Heidelberg—Fheirstandard-; the
surface source influence (SSI) approach, similar to our appreach-implementation with FLEXPART in which all emissions are

assumed to occur at ground level, was-almesttwice-better-atrepresenting-integrated-afternoon-samples-thannight-time-samples

approach in which there is a representation of the emission height and the plume rise of point source emissions, such as the

emissions from power plants.

ombining the SSI and VSI approaches, or developing hybrid frameworks that account for temporal and
vertical variability in source influence, may be critical to improving the representation of integrated samples in an-inversion
study-inverse modeling applications using real data.

tns-In some regions, the assigned prior uncertainty
exceeds 100% of the prior or true emissions (Fig. 4). This results from using relatively short spatial correlation lengths to
allow the inversion to resolve emissions at finer scales, which in turn requires higher standard deviations to maintain consistent
covariance structures. In practice, errors in fossil emission inventories likely exhibit broader spatial correlations, suggesting
that a regionally or nationally defined uncertainty structure could be more appropriate. While our current approach may
overestimate grid-scale uncertainties, it remains a reasonable approximation for testing the impact of observation strategies.
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Importantly, all experiments show consistent uncertainty reductions, even though posterior uncertainties were larger than the
prior bias -

thin some regions during summer months. While
this limits the resolution at which emissions can currently be reported with confidence, the consistent uncertainty reductions
across all experiments highlight the potential for further improvement. Refining the prior uncertainty structure and applying the
&MWWC% asse%%mems%evefﬂﬁen&higmmeeﬁmﬂe%

temporal scales.
In some regions, the assigned prior uncertainty exceeds 100% of the prior or true emissions (Fig.4). This results from
the way the uncertainties are set up in LUMIA.: the grid-cell scale uncertainties (o,) are scaled to match a target annual

category-specific total uncertainty over the whole domain. Therefore, the longer the spatial and temporal correlation lengths
the lower the standard deviations must be to achieve the same total variance. For fossil fuel emissions, the eharacterization

between the prior and the synthetic truth, derived from two independent, state-of-the-art emission inventories. The spatial
correlation length was set to 200 km, under the assumption that the observation network is dense enough to resolve emission
patterns at that scale. Both settings are reasonable when considered separately, but their combination leads to unrealistically
large prior uncertainties at the grid-cell and even regional scale. This could be addressed by using much longer error correlation
lengths, better reflecting the true ones. However, doing so would limit the use of the observation network’s full potential in
regions where it can resolve finer-scale patterns. Developing and testing an approach to set prior uncertainties that better
balances realism in error correlations with the resolution capacity of the observation network should be a priority for future
LMMWMM%MW
mm&gmmmm
strategies. It should not affect the relative performance of the inversions, especially in terms of error reduction. LUMIA
inversions are, in general, more sensitive to the correlation structure than to the absolute uncertainty levels, particularly in
regions with good observational coverage (Monteil and Scholze, 2021).

6 Conclusions

In this study, we find that adding regular A'*CO, flask sampling to the integrated sampling (CORSO) generally provides better
emission estimates than using only integrated samples (BASE), particularly during the winter months. However, the BASE
experiment performed better than CORSO during low-emission months such as June and July. We also find that the selection

of synthetic A'*CO; flask samples according to their fossil contribution did not show significant improvements compared
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to the simpler CORSO approach. However, when samples were selected according to their level of nuclear contamination,
the experiments showed that selecting samples with low nuclear contamination led to a substantial reduction in uncertainty,
particularly in regions like Western/Central Europe and Germany. In contrast, selecting samples with potentially high nuclear
contamination resulted in higher uncertainties, especially during the summer months.

Therefore, we recommend foeusing-particularty-onprioritizing the selection of AMCO,flasksamples-aceordingto-their
ACO, flask samples based on their potential nuclear contamination, given the limited knowledge about the temporal emission
profiles of most nuclear inati i

facilities in our model domain. It is also necessary to perform a site-specific revision of the CO, ffCO,, and nuc'“C thresholds

to adjust these values to the intensity of the fluxes measured at each station. This is also important for the A'4CO, integrated
samples. Although they can help to better estimate fossil COs in periods of low emissions such as summer, long integration
times can also help-to-capturetarge - Cnuelearemissions—which-inereasestesult in large radiocarbon nuclear emissions being
captured, increasing the posterior uncertainty of the estimates. In real inversions, these integrated samples can also have large
representation errors. A promising approach to account for these representation error in an inversion is the implementation of
the volume source influence (VSI) approach as proposed by Maier et al. (2022).

Despite the advancements shown by these experiments, high posterior uncertainties during the summer months remain
a challenge. This limits the reliability of monthly emission estimates, underscoring the need for further refinement in both
samphing-selection strategies and inverse modeling techniques. Until these challenges are adequately addressed, the utility
of monthly emissions estimates will remain limited, pointing to the importance of performing an appropriate uncertainty

characterization of fossil emissions.

Code availability. The LUMIA source code used in this paper has been published on Zenodo and can be accessed at https://doi.org/10.5281/
zenodo.8426217

Data availability. The data and the scripts used to generate the figures are available at https://github.com/cdgomezo/assets-corso-campaign.
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Figure Al. Synthetic A*CO, flask samples at the 10 remaining sampling sites selected for the intensive sampling campaign during the
CORSO project. The tables below each figure show the number of synthetic observations per month that meet the ffCO» threshold (red
cross), the ffCO2 and ffCO (yellow tri) thresholds, and the ffCO2 and nuc'4C (green cross) thresholds

34



a) b) NOR

.
0 IR 0
I} I}
g 4
3 20 3 20
RMSE = 7.3 & RMSE = 7.7 %
| MBD = 7.0 % a0 MBD - 43 %
—40 R = 0.6 40 R = 0.2
201801 2018-03 201805  2018-07 201809 201811 201901 201801 2018-03  2018-05  2018-07 201809 201811 201901
2 TRN d HTM
40 40
£ £
I} I} I
$ g
4 —20 a —20
RMSE = 8.4 & RMSE = 8.4 %
| MBD - 4.0 % a0 MBD = 7.4 %
-40 R - 61 40 R = 0.4
201801 2018-03 201805 201807 201809 201811 201901 201801 201803 201805 201807 201809 201811 201901
e PAL f) HPB
40 40
£ 2
N N
o o
¢ g
< a
RMSE = 7.9 %
| MBD = 5.7%
. —40 R = 0.3
201801 2018:03  2018-05  2018-07  2018-09 201811  2019-01 201801 201803 201805 201807  2018-09 201811  2019-01
9) SVB h) LIN
40 40
20 201
g 8
$ $
O = e Y - = e T B T T et
o © '—'__l_.—‘—i_t
< -20 D220 err—
RMSE = 7.5 & RMSE = 11.0 % |-
MBD = 7.0 MBD - 10.6 &
—40 R = 0.6 —40 R = 0.2
201801 2018-03  2018-05  2018-07  2018-09  2018-11  2019-01 201801 201803 201805 201807  2018-09 201811  2019-01
i) KT ) SAC
0 0
201 0] —
£ £
I} I}
g 4
] Q -20
RMSE = 10.4 &
| MBD = 7.9 & a0
—40 R = -0.0 40 |- R=—= 0.6
201801 2018-03 201805  2018-07 201809 201811 201901 201801 201803 201805 201807 201809 201811 201901
—— Real observations ~ —— Synth. obs. intg (FLEXPART) —— Real observations ~ —+— Synth. obs. intg (FLEXPART)

Figure A2. Comparison of the available real A**CO, integrated samples (black) (ICOS RI et al., 2024) with the modeled background

observations (red) and synthetic observations (teal) at ten ICOS sites.
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