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Abstract. Landslide events, ranging from slips to catastrophic failures, pose significant challenges for prediction. This study
employs a physically inspired framework to assess landslide vilnerabitity-hazard at a regional scale (Big Sur Coast, Califor-
nia). Our approach integrates techniques from the study of complex systems with multivariate statistical analysis to identify
areas vulnerable-to-landslide-eventsprone to landslide hazards. We successfully apply a technique originally developed on
the 2017 Mud Creek landslide and refine our statistical metrics to characterize landslide vulnerability-hazard within a larger
geographical area. Our method is compared against factors such as landslide location, slope, displacement, precipitation, and
InSAR coherence using multivariate statistical analysis. Our network analyses, which prevides-anatural-way-te-incorporate
incorporates spatiotemporal dynamics, perform better as a monitoring technique than traditional methods. This approach has

potential for real-time monitoring and evaluating landslide vuinerability-hazard across multiple sites.

1 Introduction

With climate change leading to extreme weather conditions, such as heavy precipitation, there is an increased global danger of
landslide hazards (Kirschbaum et al., 2020). One of the biggest challenges in real-time landslide hazard assessment is identify-
ing and quantifying landslide-event-vulnerability-the likelihood of landslide events within a geographical area (Palmer;2647);
(Hungr et al., 2014; Palmer, 2017) due to the inherent variability of hillslopes presenting non-uniform spatiotemporal dynam-
ics (Lacroix et al., 2020; Glastonbury and Fell, 2008).

On the coast of California, landslides are abundant due to mechanically weak rocks, active uplift, and high seasonal pre-
cipitation, all of which contribute to general instability throughout the area. Hundreds of landslides have been identified as
precipitation-induced by exploring the relationship between rainfall and landslide velocity (Handwerger et al., 2022; Schein-
gross et al., 2013; Bennett et al., 2016; Handwerger et al., 2019; Young, 2015; Booth et al., 2020; Wills et al., 2005; Jones
et al., 2019; California Department of Conservation, 2023). As water infiltrates the ground, the water table rises, leading to an
increase in pore-water pressure. This rise in pore-water pressure reduces the effective normal stress (difference between normal

stress and pore-water pressure), which in turn decreases the frictional strength of the hillslope. This instability can lead to rapid



25

30

35

40

45

50

55

mass movement of material (rock, earth, debris) down the hillslope, defined as a landslide event. Identifying areas that are at
immediate risk can help focus resources on the analysis, prevention, and risk reduction of these landslides.
In the winter of 2022-2023 (W22-3), the Big Sur Coast witnessed four landslide events ;-three-ef-which-are-that occurred

deeper than I m below the surface soil; and three of the four events were recorded by the California Geological Survey

and the U.S. Geological Survey :

WMMMM
events — Dani Creek Slide (Mar 2023), Mill Creek (Jan 2023), and Gilbert’s Slide (Mar 2023) (Drabinski and Bertola, 2023b)
—have not yet been studied to determine the specific landslide processes involved. The fourth landslide event occured in Jan
2023, Paul’s Slide, a deep slow-moving landslide, reactivated, resulting in a shallow acceleration, with some of the landslide

In this study, we employ-apply network science techniques ;— commonly used for studying complex systems ;-to-identity

dynamie-patterns-in-both— to identify patterns that evolve over space and time. These techniques have been applied across a
, 2008; Nguyen et al., 2019; Newman, 2010)
the behavior of granular systems. we previously developed a method to mathematically describe this type of hillslope through
, 2023). In our a;
connected by lines (edges), where each edge encodes measurable information about the relationship between nodes. In the
context of landslides and this study, such information is derived from remote sensing observations.

The objective of this paper is to integrate these-technigques-the techniques developed in (Desai et al., 2023) with statistical
analyses to classify geographical regions into-two-categories:-as stable and-or vutnerablehazard-prone —A-region-is-considered
vulnerable-ifitisikely-to-experienee-based on the likelihood of a landslide event.

Such-network-scienee-techniques-have-already-been-developed-We first tested these network techniques on Mud Creek, a
slow-moving landslide on the Big Sur Coast that experienced a landslide event on 20 May 2017. Besat-etat(2623)-tsesIn

our earlier study, Desai et al. (2023), we used multilayer networks (Papadopoulos et al., 2016; Porter and Gleeson, 2016) and
community detection techniques-methods (Mucha et al., 2010; Porter et al., 2009) to retrospectively identify Mud Creek’s

broad range of physical, biological, and social contexts (Barrat et al. including the

3

2

spatiotemporal relationships (Desai et al. roach, the hillslope is described as a set of geospatial points (nodes

location pre-failure and detect the transition from creeping to catastrophic failure.
In this paper, we apply-thesame-metheds—to-extend these methods across a broader section of the Big Sur Coast, shown in

Fig. 1[a], using velocity from Interferometric Synthetic Aperture Radar (InSAR) time series and slope from a Digital Eleva-

tion Model (DEM). We eompare-the-resultsfrom-implementing-network-seience-techniques-evaluate the effectiveness of the
network-based approach by comparing it to multivariate analysis using physical infermation—rvariables: topography, ground

surface deformation, precipitation, and satellite coherence—to-evaluate-the-performance-ofnetwork-seienece-techniques.
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Figure 1. Regional scale maps of study area. (a) Digital elevation model of the study area. 44—active—slow-movinglandslides—{grey
potygons)—The 4 recorded landslide events by USGS and CA are shown as white dots. The black outlined boxes are the 17 sub-regions

we used in this analysis. (b) Topographic slope angle (degrees). (¢) Cumulative displacement from Sentinel-1 InSAR from Nov 2015 to Nev
Dec 2022. (d) InSAR temporal coherence map. (¢) Accumulated precipitation from PRISM from 1 Nov 2015 to 30 Nov 2022.

2 Data

We used ground surface deformation, topographic characteristics, and precipitation, which are commonly used in landslide
vulnerability-hazard maps and forecasting. We also include InSAR temporal coherence as a variable to measure satellite

reliability. The following sections discuss these variables.
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The Big Sur Coast s divided into 17 sub-regions of similar size, roughly 5 km?, and shown in Fig. 1[a]. This allows for an

the application of the technique on more varied terrain containing both stable and unstable hillslopes (see discussion in §5.1),

as well as testing-thisfor testing the method as a prototype of how the-technique-might-worlkthis technique might be used in a
monitoring context.

2.2 Topography

We used the Copernicus Digital Elevation Model (DEM) (Copernicus, 2021), which provides elevation data at (40 x 4011(112
resolution on a temporal interval of 6 or 12 days (corresponding to Sentinel-1 passes) and is shown in Fig. 1[a], to calculate the

slope of each gridded cell within the study area, as depicted in Fig. 1[b]. We write the elevation field as h(r), where r = (z,y)

represents the position in UTM coordinates.



2.3 Ground Surface Deformation

We processed the Sentinel-1 InSAR data using the Alaska Satellite Facility’s (ASF) On-Demand InSAR processing HyP3
platform (Hogenson et al., 2020). ASF’s On-Demand InSAR tool constructs interferograms using the GAMMA software. The

95 InSAR data are inverted to time series using the Miami InSAR Time-series software in Python (MintPy) software (Yunjun
et al., 2019). We processed data on descending track 42 using two looks in azimuth and ten looks in range. Spanning from
20 Nov 2015 to +9-Nev-01 Dec 2022, the dataset comprises 279 time slices at a resolution of (40 x 40) m? per grid cell,
covering the study area of the Big Sur Coast. From the Sentinel-1 data, we utilized the displacement time series and a temporal
coherence map in our analysis.

100 Each InSAR snapshetimage provides line-of-sight displacement, indicating motion either towards or away from the satellite.
Cumulative displacement, calculated as the difference between the last time slice on +9-Nev-01 Dec 2022 and the first time
slice on 20 Nov 2015, shows landslide activity over the seven years (as shown in Fig. 1[c]). Additionally, we computed the
mean and maximum cumulative displacement values of each sub-region for use in multivariate analysis.

To analyze the motion of landslides for use in the network science techniques, we calculated the velocity for each InSAR

105 snapshotimage t as v(z,y,t) = %, where Au represents the relative displacement between pairs of adjacent snapshots
and At denotes the time interval between any two consecutive snapshots. Due to the noise introduced by taking derivatives of
the InSAR displacement data, we apply a 3 x 3 cell Gaussian kernel to smooth the data.

The temporal coherence map (Fig. 1[d]) measures the reliability of the InNSAR displacement time series inversion. Pixels
with coherence values below 65% were masked from the displacement maps. Low coherence values can occur due to a number

110 of factors, including obscured or significant deformation (Fletcher et al., 2007; Yunjun et al., 2019). The applied mask excludes
approximately 1.7% of the total area, with an average exclusion of 4.8% within each sub-region.

2.4 Precipitation

The Parameter Elevation Regressions on Independent Slopes Model (PRISM) database provides precipitation data modeled on
a4 x 4 km? grid cell resolution using station data and climate models (Oregon State Univeristy, 2015). We selected PRISM
115 due to its performance in mountainous and coastal areas of the western United States and because there are no station data
within the study area (Daly et al., 2008). The precipitation datasets span from 1 Nov 2015 to 30 Nov 2022 with daily maps, and
we computed cumulative precipitation by summing over the entire period (as shown in Fig. 1[e]), with the mean precipitation

calculated for each sub-region.

2.5 Reported or Identified Landslide Events

120 The U.S. Geological Survey (Jones et al., 2019) and the California Geological Survey (California Department of Conservation, 2023)
have reported and identified landslide events, compiling these into the Reported California Landslides Database gathered from
various local, state, and federal agencies. Although this database is not exhaustive, the entries encompass shallow landslides,
slow-moving landslide activity, rockfalls, and debris flows. The four landslide events of W22-3, represented as white points
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in Fig. 1[a], are located from north to south at Dani Creek Slide, Paul’s Slide, Mill Creek, and Gilbert’s Slide. Each of
these landslide events involved seasonally-related mass downslope movements of hillslope material, with varying amounts of
material removed during the clean-up process. Dani Creek Slide, Mill Creek, and Gilbert’s Slide each resulted in the removal
of roughly 23,000 cubic meters of material during repairs. In contrast, Paul’s Slide, a notably slow-moving landslide that
reactivated in Jan 2023, underwent over a year of repairs, during which approximately 385,000 cubic meters of material was
removed (Drabinski and Bertola, 2023a, b, ¢).

3 Network-Seienee-Methods
3.1 Network Science

To classify sub-regions as vutnerablehazard-prone, we used multilayer networks (Kivela et al., 2014; Porter and Gleeson, 2016;
Papadopoulos et al., 2016; Bassett et al., 2011) to couple the temporally-resolved kinematics (velocity) with the spatially-
resolved susceptibility (slope) and community detection (Porter et al., 2009; Mucha et al., 2010; Fazelpour et al., 2023) to
cluster regions that are moving at relatively higher speeds and/or are on steeper slopes. A visual representation of this method
is shown in Figure 3 of Desai et al. (2023). Our methods were developed in Desai et al. (2023), and are briefly summarized
here (code is available at Desai (2022)).

In the multilayer network, each layer corresponds to an InSAR snapshot-image that overlies the network topology; the
network topology consists of a static collection of nodes and edges for each sub-region. Each node represents a patch of area,
determined using Poisson sampling, and edges connect the nodes via Delaunay triangulation. Velocity and slope maps from
InSAR and DEM, respectively, are incorporated into the network as edge weights that change for each layer in the multilayer
network.

In prior work, we calculated the average velocity and slope of any two connected nodes and set that as the edge weight.
We successfully identified clusters (patches of area) exhibiting similar hillslope movements that are distinct from surrounding
areas via a community detection algorithm that uses modularity optimization —Fhis-method-(Desai et al., 2023). GenLouvain
(Mucha et al., 2010; Jeub et al., 2011-19), a modularity optimization algorithm, divides nodes into communities by identifying
where the edge weights are stronger within the community than one would expect at random. We-implemented-this-method
ich-This algorithm outputs a matrix consisting of

the community ID for each node and time pair—Fhe-; the community ID is a unique numeric identifier to for each of the
different communities across the entire spatiotemporal map (multilayer network). Within this spatiotemporal community map,
we identified areas of persistent communities; these communities are an indicator of areas that are strongly connected and have

higher-than-average edge weights — velocity and slope — than the rest of the sub-region.
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3.2 Community Persistence

To quantify steady communities, we previously developed a measure known as community persistence (Desai et al., 2023).

This measures the persistence of the assignment of nodes to communities over time defined as
1 ci—1Mcy
I, = — E —_— 1
t N - nc)t ) ( )

where N is the total number of nodes in the network, n. ; is the number of nodes in community c at time ¢, and ¢;_1 N ¢y is the
number of nodes present in community c at both ¢,¢ — 1.

An increase in community persistence within a sub-region indicates that a pateh-group of nodes is consistently being
identified-as-more-similar-more strongly connected to each other (measured via edge weight) than to the rest of the network-
When-there-is-nosingle patch-of-area-consistently moving at afaster than-average rate;#-e- , corresponding to localized motion.
Conversely, low persistence occurs when no distinct, consistently clustered motion is observed, such as during dry seasons;

As done in our prior work (Desai et al., 2023), we compare relative changes in 11 across the 17 sub-regions ;—we-consider
using the Z-score at time ¢

-1
- oo() ¢

where IT is the mean persistence over the entire time period, establishing a baseline of the system, and o(II) is its standard
deviation. When Z; < 0, community persistence is below average, typically indicating dry conditions with little landslide
activity. In the prior analysis of Mud Creek, we observed a-that surrounding communities exhibited a drop in persistence, while
those within the Mud Creek zone increased in persistence. This led to a statistically significant increase in Z;, as-high-aspeaking
at Z = 2.5, followed by a minor decline right-befere-prior to failure. The value at failure remained statistically significant. To
quantify-this-trend-amengst-extend this analysis to the 17 sub-regions, we identify the inereasing-segment—the-final-period
ofrise-final rising segment before the decline —and-find-and extract the peak Z value, which is the maximum Z-score in the
identified segment. We use peak Z to quantify differences between sub-regions to better classify the slow-movinglandshdes

Zy

2

regions as stable (peak Z < 2.5) or vulnerable-hazard-prone (peak Z > 2.5).

3.3 Multivariate Correlation

We characterized active landslides using data on precipitation, deformation, topography, and InSAR coherence. These indicators
were used as benchmarks to evaluate the performance of the community detection results. Specifically, we constructed a
correlation matrix to assess the relationship between the peak Z-score and the geophysical indicators. For each of the 17
sub-regions, we computed the following seven variables: number of recorded events; mean slope; mean precipitation; mean
displacement; maximum displacement; mean InSAR coherence; mean community persistence IT; and peak Z-score. These
metrics were used to quantify and compare the classification of hazard-prone regions with observed landslide events.
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4 Results

We used a multilayer network combining slope and velocity data spanning from Nov 2015 to Nev-Dec 2022 (just before the
observed landslide events in Jan 2023 and Mar 2023) to determine the success of evaluating landslide vulnerability-hazard
via network science techniques. We visualize the evolution of Z; for each sub-region in Fig. 2. The size of the data points
is proportional to Z;, with larger circles indicating more persistent communities (higher Z-scores). Only points with Z; > 0
are plotted, as negative Z-scores do not signify landslide vulnerabilityhazard. The colors in Fig. 2[a-b] correspond to the 17
sub-regions shown in Fig. 1[a].

Over the period shown, we observe cyclical changes in Z; corresponding to the wet and dry seasons. Following wet seasons,
Z, is stronger and after dry seasons, Z; is weaker. Particularly, we observe high Z; values in fall of 2022; this is because
the study area experienced higher than average precipitation that year. The final 100 days of the period (Fig. 2[b]) display
differences in Z-scores across the sub-regions, aiding in the identification of potentially stable and vulnerable-hazard-prone
areas. A clear distinction is made between sub-regions with steadily—an increasing Z-scores (outlined in black) and those

exhibiting relatively stable Z-scores during those last 100 days.

As previously discussed, a continuous increase in Z-score, like that observed in Mud Creek, indicates vulnerability—te
landslide-eventshigh likelihood of a landslide event. To quantify the trends in Fig—2{b{Fig. 2[a-b], we identify the peak Z

of the final continuously increasing segment inFig—2fe}—Here—darker-and plot the values in Fig. 2[c], where sub-regions
m%%gm%—s%&m sub-regions Vﬂfh%felafﬁfeb#sfab}e—Z-seefe—hadﬁeak%Q—o—thm

eventsoon-after Dee2022-Z > 2.5 are red. The landslide events are plotted as white dots with images taken by California
Transit Authority (Drabinski and Bertola, 2023a, b, c) included in Fig. 2[c]. All dots representing landslide events appear in
red regions. Sub-regions with a relatively stable Z-score had peak Z < 2.5. The sub-regions that had an increasing Z-score in
Fig. 2[b] and peak Z < 2.5 did not experience a landslide event. All sub-regions with peak Z > 2.5 and a steady increase in

4.1 Multivariate Analysis

We used a multivariate analysis to compare the traits of the active landslides using infermation—abeut-precipitation, defor-
mation, topography, and radar coherence ;-with the results of community detection. Fig. 3 visualizes-presents the correlation

matrix between seven variables for the 17 sub-regions: number of recorded events; mean slope; mean precipitation; mean dis-
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Figure 2. Z-score for community persistence. (a) The Z-score for community persistence Z1, for a multilayer network containing infor-
mation from Nov 2015 to Dec 2022. Each color represents a sub-region. The size of the points corresponds to Z;, where the thicker the point,
the higher the Z-score. On-the-bottom;-the-time-(b) Time from Aug 2022 to Dec 2022 is shown (inset from [a]), as-wek-as-the-where regions

with a continuous increasing segment are outlined in black. (c) Spatial plot of peak Z-scoreis-pletted-on-theright, with regions colored from
blue to red. The landslide events that occurred in W22-3 are shown-as-asterisks-initialed in [b] and shown as white dots in [c] , with the

corresponding images taken by €attrans-CalTrans (Drabinski and Bertola, 2023a, b, c).
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mean coherence, mean community persistence, peak Z-score of community persistence, and number of events. Each-variable-is-Variables

are scaled from minimum to maximum

magnitudevalues.

, with darker eelor-means-a-colors indicating higher

placement; maximum displacement; mean InSAR coherence; mean community persistence II; and peak Z-scoreforeach-of
the17-sub-regions. The spatial distribution for each of the variables is shown in Fig. 3, where the variables are scaled from
minimum to maximum and darker color indicates a higher magnitude.
Peak Z-score is positively correlated with recorded events (0.84). Community persistence exhibits pesitive-moderate cor-
220 relations with mean dlsplacement( 0.53), and InSAR coherence (0.54). Peak—Z-seefeﬁfhe’vvs—streﬁgfefrelr&ﬁens—vmmeeefded
> Mean displacement.
shows negative correlations with slope (—0.57) and InSAR coherence (—0.62), while maximum displacement is stronghy
correlated-correlated positively with precipitation (0.60), InSAR-eoherence(—06-56);-and-events{b-63recorded events (0.63),
peak Z-score (0.56), and negatively with InSAR coherence (—0.56). Moreover, precipitation has a strong positive correlation

225 by-0-63-with-precipitationwith recorded events (0.63) and peak Z-score (0.67).
The-correlations-observed-for-

5 Discussion

Through the integration of network science techniques, remote sensing data, and multivariate analysis, this study identifies
several key insights into the detection and characterization of landslide-prone regions. The results highlight the promise of

10



230 the peak Zand-H-hightight distinet relationships-with—score as a method for early detection and classification of hazardous
sub-regions. Because the analysis was conducted within a single geographic region and based on a limited number of documented
landslide events, the outcomes presented here should be viewed as a demonstration of potential rather than a definitive or
universally generalizable result. Further validation across different terrains, climates, and geologic settings will be essential to
establish the broader applicability of this approach as a monitoring tool.

235 5.1 Spatial Scale

Our analysis was conducted at a subregional scale of 5 km?, larger than typical landslide areas of a few 0.1 km?, in order to

incorporate a mix of stable and unstable terrain within each subregion. Such variation is critical for the modularity optimization
algorithm to identify clustered anomalous behavior. The presence of stable hillslopes provides a baseline against which
unstable slopes transitioning to catastrophic failure can be detected as outliers, given that nearby hillslopes experience similar
240 weather conditions. Reducing the size of the subregion would limit the amount of stable terrain, undermining the algorithm’s
ability to detect relative deviations. Conversely, increasing the spatial extent would significantly raise computational demands
without improving performance or sensitivity. This trade-off between spatial scale and computational efficiency is especially.
important when identifying early signals of slope reorganization that precede catastrophic failure. A potential direction for
future work is to assess whether applying this method at smaller spatial scales could improve the model’s performance. While
245 such an approach might enhance its utility for real-time landslide monitoring, it would also reduce terrain heterogeneity,
potentially diminishing the algorithm’s capacity to distinguish anomalous behavior. If this method were to be operationalized as
amonitoring tool, a detailed investigation of how terrain uniformity and subregion size affect performance would be essential.

5.2 Comparison of Network-Based Metrics and Geophysical Indicators

250 induced slew-moevingtandslides—Thestrong-correlation-between-landslide activity. Notably, the peak Z-score shows a strong
positive correlation with recorded landslide events, maximum displacement, and precipitation. This suggests that peak Z
stggest-that-commumnitydetection—eaptures—is an effective proxy for capturing patterns indicative of an increased potential
of tandstide-events-for landslide events, particularly in response to seasonal hydrologic forcing.

Conversely, the negative correlation between maxi ¢ an-disple altes—

255 and max displacement and InSAR coherence supports previous findings that landslides moving rapidly are-eluding-often
evade detection by InSAR (Yunjun et al., 2019). Despite-Although slope exhibits a weak relationship with II, stepe-exhibits
it shows a strong correlation with mean displacement;—mptying-. This indicates that the multilayer network is not biased

towards steep slopes but rather amplifies steeper hillslopes with-higher-deformation—Furthermore—the-strong-relationship
_ . _ .. [T . "] . . .. . . ..

ha an d N amaen d—pre 0 O d o h o ne anece A N—Pre N OR ho aq no
W aiSpra ST aia /P pitatio a1rcates a O t y PSR aCtor P pitatioi—w ot S e g

st-both mean

260 additional-hydrologicalmedelingundergoing deformation. Collectively, these findings demonstrate that network-based metrics
— community persistence and peak Z — not only align with traditional indicators of landslide hazard but additionally captures
evolving structural patterns in hillslope dynamics which improve classification of hillslopes as hazardous.

11
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Several-Furthermore, several distinct features emerge when comparing the spatial variability along the eight coastline graphs
in Fig. 3. Both mean and maximum displacement strenghy-prominently highlight the sub-region containing Paul’s Slide and
Dani Creek Slide;but. However, notable differences exist throughout the rest of the study area. These-differences-oceurbeeause
eatentating the-mean-suppresses signas-of instability While measuring mean displacement tends to smooth over localized or
sudden deformation and instead empha51zes areas with multlple slow-moving landshdes~€eﬂvefse1y—ﬂsmg»fheb maximum
displacement highlights i

events—The-peakacute deformation signaling higher instability. Peak Z -%eefe—aﬂd—maaﬁmumdﬁp}aeemeﬂ{«uﬁdeﬁeefeswvm

emphasizes Paul’s Slide as a significant-area-of-concern-for-potential-andshide-events;a-faet-high-risk region — validated by a
major slip off Highway 1 at Paul’s Slide in Jan 2023, occurring just a month after this-analysis-the analysis period.

While-Despite both maximum displacement and peak Z-score highlight-highlighting Paul’s Slide, differences between the
two variables remain—Fer-instanee;the-is evident in other sub-regions. Some sub-regions with the highest peak Z-score are

not-the-same-as-these-with-the-mest-displacement—Additionalty;—do not exhibit the greatest displacement, and sub-regions
with similar maximum-displacement-show-a-displacement magnitudes show a wide range of peak Z-score-values;suggesting
Zzscores. These discrepancies suggest that community detection results-is capturing additional mesoscale dynamics, such
MWWMme not solely influenced by landslide deformation or slope
susceptibility; i
While the volume removed in Paul’s Slide is much larger than for the other landslide events, the initial surface area of motion
is comparable to the three other landslides. The signal detected by the network method arises from a combination of dynamic
surface factors, not the eventual scale of failure. Since our analysis is based solely on surface movement, the volume ultimately
displaced during a landslide is not an input for our calculations—underscoring that our method captures precursory surface
behavior rather than relying on post-event consequences.
%mmmmmmmmm would other-
wise remain ton—hidden when relying solely on conventional geophysical

variables.

5.3 Hydrologic Integration

To evaluate whether hydrological forcing could improve community detection outcomes, we incorporated precipitation data
from PRISM (Oregon State Univeristy, 2015) in combination with velocity and slope (see Appendix A). However, no notable
changes were observed in the community detection results. This lack of sensitivity may stem from the low resolution of PRISM
grids, as well as limited data availability near the coasts, potentially rendering the changes too coarse for the community

To further test this hypothesis, we repeated the experiment using high-resolution precipitation input from a WRF-Hydro

model (Li et al., 2023). Even with this improved spatial resolution, there was little improvement in the analysis. The stron

%)

correlation (0.67) between peak Z and precipitation data (see Fig. 3) suggests that community detection metrics alread

12
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captures underlying hydrological mechanisms, or at least the surface hydrology, and therefore makes the inclusion of precipitation
redundant. Advancements in in-situ soil moisture measurements could further improve the applicability of hydrological models
articularly for deep-seated landslide studies.

6 Conclusions

The extension of network science techniques from the Mud Creek case study to the broader Big Sur region yielded promis-
ing results. By subdividing the region into smaller sub-regions for varied terrain, we tested the effectiveness of this method
as a monitoring technique. The outcomes of community detection served as robust indicators of the landslide events in
W22-3W22-23, as seen in Fig. 2. Notably, the steady increase in Z; leading up to failureemerged-as—a—crucial-indicater,
alongside the magnitude of Z;, emerged as a crucial indicator. For instance, Paul’s Slide exemplifies how outliers in Z; can
serve as early indicators of vulnerabilityto-increased likelihood of landslide events. Had this analysis been conducted in the

relevant time frame, Paul’s Slide, alongside Mill’s Creek, Dani Creek Slide, and Gilbert’s Slide, could have been identified as

areas of concern, potentially allowing for preemptive monitoring and mitigation measures.

Comparing-Our comparison of landslide susceptibility factors — landslide inventory, slope, cumulative displacement, precip-

itation, and InSAR coherence — with the outcomes of community detection, peak Z-score, underscores the importance of inte-
grating multiple data sources. Each factor taken alone does not yield enough information to predict landslidevulnerability, high-
lighting the need for comprehensive analyses. Furthermore, incorporating the entire temporal period captured by InSAR into the
multilayer network improved classification between stable and vulnerable-slow-movinglandslideshazard-prone sub-regions.
However, it is crucial to ensure that remote sensing data accurately capture ground surface deformation for statistical analyses

to be reliable.

rQverall,
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tes——demonstrated strong potential for

enhancing landslide hazard assessment. In particular, network metrics such as the peak Z -score offered a sensitive and scalable
means of identifying emerging instability, even prior to failure. These findings support the utility of community detection
techniques as a complement to conventional geophysical indicators, paving the way for improved, near real-time monitoring
systems that can generate dynamic hazard maps and inform timely risk management strategies.

Code and data availability. The extents of the sub-regions are archived on DataDryad (Desai et al., 2024). Copernicus DEMs are available at
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model. On-Demand InSAR products were downloaded via Alaska
Satellite Facility’s HyP3 platform, availabe at https://hyp3-docs.asf.alaska.edu. Sentinel-1 data are available at https://search.asf.alaska.edu/,
the ASF data search vertex. The full list of interferograms used are archived on DataDryad (Desai et al., 2024). The Miami INsar Time-Series
software in PYthon (MintPy) is available at https://github.com/insarlab/MintPy. Precipitation data is provided by Parameter-elevation Re-
gressions on Independent Slopes Model (PRISM) and is available at https://prism.oregonstate.edu/. Daily precipitation time series is taken for
each of the sub-regions. The code used for creating the multilayer networks is available at https://github.com/vddesai-97/networkLandslide,
and running the community detection algorithm is on https://github.com/GenLouvain/GenLouvain. The multilayer networks (nodes, edges,

weights) for each of the sub-regions are archived on DataDryad (Desai et al., 2024).

Appendix A: Inclusion of hydrological information into the multilayer network

Landslide studies often use precipitation data from (1) site-specific rain gauges with limited spatial coverage and nonuniform
temporal resolution, or (2) spatially continuous interpolated gridded rain data. Effective and efficient monitoring of hydrological
data has not yet caught up with remote sensing technology to produce high spatial and temporal datasets. Satellite-derived
data, such as Soil Moisture Active Passive maps, which use passive microwave techniques and remotely sensed surface soil
moisture on a global scale, underestimates in heavily vegetated areas (Das et al., 2019; Reichle et al., 2017; Fan et al., 2020).
Remote sensing techniques only detect surface-level soil moisture, and process-based land surface models typically extend the
soil moisture estimates to one to two meters below the ground surface but have low spatial resolution (Koster et al., 2009).
Therefore, we consider two hydrological datasets: PRISM (Parameter-elevation Relationships on Independent Slopes Model)
for precipitation and WRF-Hydro (Weather Research and Forecasting Hydrological modeling framework) for soil moisture

and precipitation on the Big Sur Coast.
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PRISM The PRISM Climate Group develops spatial climate datasets using various monitoring networks and modeling
techniques (Daly et al., 2008). These datasets include daily, monthly, and annual precipitation, and minimum and maximum
temperatures for the contiguous United States. PRISM interpolates station measurements using a climate-elevation regression
model that considers factors such as coastal distance, topography, and atmospheric conditions. There are about 13,000 stations
that collect precipitation data and 10,000 for temperature. PRISM datasets have shown improved results for mountainous and
coastal regions of the western United States, including our study sites.

WRF-Hydro WRF-Hydro is an open-source, physics-informed hydrological model (Gochis and Barlage, 2020). The model
disaggregates precipitation at the land surface and simulates landslide-relevant processes such as water table depth, infiltration,
subsurface lateral flow, and soil moisture using information like soil type, topography, and antecedent conditions. Li et al.
(2023) utilized WRF-Hydro to simulate soil moisture within the Big Sur Coast region, incorporating seven in-situ soil moisture
stations and nine USGS stream gages. This region has a complex terrain with heterogeneous vegetation, elevation, and slope.
The data used in this study has a default soil column with a depth of 2 meters, divided into four layers: 0-10 cm, 10-40 cm, 40-
100 cm, and 100-200 cm. Li et al. (2023) demonstrated that WRF-Hydro outperforms many established soil moisture products
through data-informed methods that improve soil parameters.

The two datasets differ in resolution and the type of hydrological forcing they represent. PRISM has a 4 km? resolution with
daily precipitation outputs in mm, while WRF-Hydro has a 1 km? resolution with outputs of soil moisture at different depths.

We considered soil moisture, water table depth, and precipitation as additional information to incorporate into the multi-
layer network as weights in addition to velocity and slope. There was insufficient difference in the community persistence
signal when including hydrological information of any type. This is likely because velocity already incorporates underlying
hydrological mechanics. When there is enough water in the soil, frictional resistance reduces, causing slow-moving hillslopes
to speed up. As the soil dries, the hillslopes slow down. Since this information is already included in the multilayer network,
adding hydrology data is redundant. Another reason the hydrology data might not be useful is that Mud Creek is a deep-seated
landslide, and the data only went to 200 cm below the surface. To test the effects of adding in hydrological information on the
community persistence of the 17 study sites, we applied precipitation data from PRISM (chosen for its success in the Western
U.S.) as one of the weights, along with velocity and slope, for the multilayer network. Fig. A1 shows the mean community
persistence 11, as discussed in the paper. The results for the multilayer network with weights w = vs, where v is velocity and s
is slope, is shown in Fig. Al[a] and Fig. A1[b] shows the results for weights w = vsp, where p is precipitation from PRISM.

We observe that including precipitation as a weight shows minimal differences in the community detection.
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