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Abstract. Landslide events, ranging from slips to catastrophic failures, pose significant challenges for prediction. This study

employs a physically inspired framework to assess landslide vulnerability
:::::
hazard

:
at a regional scale (Big Sur Coast, Califor-

nia). Our approach integrates techniques from the study of complex systems with multivariate statistical analysis to identify

areas vulnerable to landslide events
:::::
prone

::
to

::::::::
landslide

:::::::
hazards. We successfully apply a technique originally developed on

the 2017 Mud Creek landslide and refine our statistical metrics to characterize landslide vulnerability
:::::
hazard

:
within a larger5

geographical area. Our method is compared against factors such as landslide location, slope, displacement, precipitation, and

InSAR coherence using multivariate statistical analysis. Our network analyses, which provides a natural way to incorporate

::::::::::
incorporates spatiotemporal dynamics, perform better as a monitoring technique than traditional methods. This approach has

potential for real-time monitoring and evaluating landslide vulnerability
:::::
hazard

:
across multiple sites.

1 Introduction10

With climate change leading to extreme weather conditions, such as heavy precipitation, there is an increased global danger of

landslide hazards (Kirschbaum et al., 2020). One of the biggest challenges in real-time landslide hazard assessment is identify-

ing and quantifying landslide event vulnerability
:::
the

:::::::::
likelihood

::
of

:::::::
landslide

::::::
events

:
within a geographical area (Palmer, 2017),

::::::::::::::::::::::::::::
(Hungr et al., 2014; Palmer, 2017) due to the inherent variability of hillslopes presenting non-uniform spatiotemporal dynam-

ics (Lacroix et al., 2020; Glastonbury and Fell, 2008).15

On the coast of California, landslides are abundant due to mechanically weak rocks, active uplift, and high seasonal pre-

cipitation, all of which contribute to general instability throughout the area. Hundreds of landslides have been identified as

precipitation-induced by exploring the relationship between rainfall and landslide velocity (Handwerger et al., 2022; Schein-

gross et al., 2013; Bennett et al., 2016; Handwerger et al., 2019; Young, 2015; Booth et al., 2020; Wills et al., 2005; Jones

et al., 2019; California Department of Conservation, 2023). As water infiltrates the ground, the water table rises, leading to an20

increase in pore-water pressure. This rise in pore-water pressure reduces the effective normal stress (difference between normal

stress and pore-water pressure), which in turn decreases the frictional strength of the hillslope. This instability can lead to rapid
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mass movement of material (rock, earth, debris) down the hillslope, defined as a landslide event. Identifying areas that are at

immediate risk can help focus resources on the analysis, prevention, and risk reduction of these landslides.

In the winter of 2022-2023 (W22-3), the Big Sur Coast witnessed four landslide events , three of which are
:::
that

::::::::
occurred25

:::::
deeper

:::::
than

:
1
:
m

::::
below

::::
the

::::::
surface

::::
soil;

::::
and

:::::
three

::
of

::::
the

::::
four

:::::
events

:::::
were

:
recorded by the California Geological Survey

and the U.S. Geological Survey . In Jan 2023, Paul’s Slide reactivated, resulting in a shallow acceleration, with some of the

landslide surface engulfing Highway 1 (Drabinski and Bertola, 2023a). Additionally, there were three other landslide events

that occurred in the spring:
::::::::::::::::::::::::::::::::::::::
California Department of Conservation (2023)

:::
but

::::
were

::::
not

::::::::::
catastrophic.

::::::
These

:::::
three

::::::::
landslide

:::::
events

::
– Dani Creek Slide (Mar 2023), Mill Creek (Jan 2023), and Gilbert’s Slide (Mar 2023) (Drabinski and Bertola, 2023b)30

.
:
–
::::
have

:::
not

:::
yet

:::::
been

::::::
studied

::
to

:::::::::
determine

:::
the

::::::
specific

::::::::
landslide

::::::::
processes

::::::::
involved.

::::
The

:::::
fourth

::::::::
landslide

:::::
event

::::::
occured

:::
in

:::
Jan

:::::
2023.

:::::
Paul’s

:::::
Slide,

::
a

::::
deep

:::::::::::
slow-moving

::::::::
landslide,

::::::::::
reactivated,

::::::::
resulting

::
in

:
a
:::::::
shallow

:::::::::::
acceleration,

::::
with

:::::
some

::
of

:::
the

::::::::
landslide

::::::
surface

::::::::
engulfing

::::::::
Highway

:
1
::::::::::::::::::::::::::
(Drabinski and Bertola, 2023a).

:

In this study, we employ
::::
apply

:
network science techniques ,

:
–
:

commonly used for studying complex systems , to identify

dynamic patterns in both
:
–

::
to

:::::::
identify

:::::::
patterns

:::
that

::::::
evolve

::::
over

:
space and time.

::::
These

::::::::::
techniques

::::
have

::::
been

:::::::
applied

:::::
across

::
a35

:::::
broad

::::
range

::
of

::::::::
physical,

:::::::::
biological,

:::
and

:::::
social

:::::::
contexts

::::::::::::::::::::::::::::::::::::::::::::::
(Barrat et al., 2008; Nguyen et al., 2019; Newman, 2010)

:
,
::::::::
including

:::
the

::::
study

::
of

:::::::
granular

::::
and

:::::::::
disordered

:::::::
materials

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bassett et al. 2011; Kivela et al. 2014; Mucha et al. 2010; Papadopoulos et al. 2016;

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Porter and Gleeson 2016; Nabizadeh et al. 2022; Berthier et al. 2019; Nguyen et al. 2019)

:
.

:::
The

:::::::
material

:::::::
beneath

:
a
::::::::
hillslope

:::::::
consists

::
of

:::::::::
individual

:::::
grains.

::::::::
Building

:::
on

:::
the

::::::
success

::
of

:::::::
network

:::::::
science

::
in

::::::::::::
characterizing

::
the

::::::::
behavior

::
of

:::::::
granular

::::::::
systems,

::
we

:::::::::
previously

:::::::::
developed

:
a
:::::::
method

::
to

:::::::::::::
mathematically

:::::::
describe

:::
this

::::
type

:::
of

:::::::
hillslope

:::::::
through40

::::::::::::
spatiotemporal

:::::::::::
relationships

:::::::::::::::
(Desai et al., 2023)

:
.
::
In

:::
our

::::::::
approach,

:::
the

:::::::
hillslope

::
is
::::::::
described

::
as

::
a

::
set

::
of

:::::::::
geospatial

:::::
points

:::::::
(nodes)

::::::::
connected

:::
by

::::
lines

:::::::
(edges),

::::::
where

::::
each

:::::
edge

:::::::
encodes

::::::::::
measurable

::::::::::
information

:::::
about

:::
the

::::::::::
relationship

:::::::
between

::::::
nodes.

:::
In

:::
the

::::::
context

::
of

:::::::::
landslides

:::
and

:::
this

::::::
study,

::::
such

::::::::::
information

:
is
:::::::
derived

::::
from

::::::
remote

:::::::
sensing

:::::::::::
observations.

The objective of this paper is to integrate these techniques
:::
the

:::::::::
techniques

::::::::
developed

:::
in

::::::::::::::::
(Desai et al., 2023) with statistical

analyses to classify geographical regions into two categories:
::
as stable and

::
or vulnerable

::::::::::
hazard-prone . A region is considered45

vulnerable if it is likely to experience
:::::
based

::
on

:::
the

:::::::::
likelihood

::
of

:
a landslide event.

Such network science techniques have already been developed
::
We

::::
first

:::::
tested

:::::
these

:::::::
network

:::::::::
techniques

:
on Mud Creek, a

slow-moving landslide on the Big Sur Coast that experienced a landslide event on 20 May 2017. Desai et al. (2023) uses
::
In

:::
our

:::::
earlier

::::::
study,

:::::::::::::::
Desai et al. (2023),

:::
we

::::
used

:
multilayer networks (Papadopoulos et al., 2016; Porter and Gleeson, 2016) and

community detection techniques
:::::::
methods

:
(Mucha et al., 2010; Porter et al., 2009) to retrospectively identify Mud Creek’s50

location pre-failure and detect the transition from creeping to catastrophic failure.

In this paper, we apply the same methods to
:::::
extend

:::::
these

:::::::
methods

::::::
across

:
a
:::::::
broader

::::::
section

::
of
:

the Big Sur Coast, shown in

Fig. 1[a], using velocity from Interferometric Synthetic Aperture Radar (InSAR) time series and slope from a Digital Eleva-

tion Model (DEM). We compare the results from implementing network science techniques
::::::
evaluate

::::
the

::::::::::
effectiveness

:::
of

:::
the

::::::::::::
network-based

::::::::
approach

::
by

:::::::::
comparing

::
it
:
to multivariate analysis using physical information –

:::::::
variables:

:
topography, ground55

surface deformation, precipitation, and satellite coherence– to evaluate the performance of network science techniques.
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Figure 1. Regional scale maps of study area. (a) Digital elevation model of the study area. 44 active slow-moving landslides (grey

polygons). The 4 recorded landslide events by USGS and CA are
:::::
shown

::
as white dots. The black

::::::
outlined

:
boxes are the 17 sub-regions

we used in this analysis. (b) Topographic slope angle (degrees). (c) Cumulative displacement from Sentinel-1 InSAR from Nov 2015 to Nov

:::
Dec 2022. (d) InSAR temporal coherence map. (e) Accumulated precipitation from PRISM from 1 Nov 2015 to 30 Nov 2022.

2 Data

We used ground surface deformation, topographic characteristics, and precipitation, which are commonly used in landslide

vulnerability
:::::
hazard

:
maps and forecasting. We also include InSAR temporal coherence as a variable to measure satellite

reliability. The following sections discuss these variables.60
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2.1 Study Area& LandslidesWe used a five-year time-averaged InSAR velocity map from Copernicus Sentinel-1

data, combined with digital elevation models (DEMs), Google Earth imagery, and published landslide

inventories, to identify 44 active landslides along the coast of California using methods similar to those described

in Handwerger et al. (2022). Of these 44 landslides, 14 were previously reported by Handwerger et al. (2022).

These active slow-moving landslides have localized deformation with higher than average velocity compared to65

the study area. From this set, we identified 44 active landslides on the Big Sur Coast using a five-year InSAR

velocity, shown in Fig. 1[a]. Only one of these experienced a deep-seated catastrophic failure: Mud Creek, which

failed on 20 May 2017. Another prominent slow-moving landslide in this collection is Paul’s Slide which has

experienced many landslide events (accelerations), resulting in multiple roadblocks and recent landslide activity

on 15 Jan 2023. We explore the temporal dynamics from 20 Nov 2015 to 19 Nov 2022, a few months before the70

four landslide events, to observe how our methods performed in classifying the sub-regions. The study area, the

:::
The

:
Big Sur Coast , is divided into 17 sub-regions of similar size, roughly 5 km2, and shown in Fig. 1[a]. This allows for an

::
the

:
application of the technique on more varied terrain

:::::::::
containing

::::
both

:::::
stable

:::
and

::::::::
unstable

::::::::
hillslopes

::::
(see

::::::::
discussion

:::
in

::::
§5.1),

as well as testing this
::
for

::::::
testing

:::
the method as a prototype of how the technique might work

:::
this

:::::::::
technique

:::::
might

::
be

::::
used

:
in a

monitoring context.75

2.2 Reported or Identified Landslide Events

The U.S. Geological Survey (Jones et al., 2019) and the California Geological Survey (California Department of Conservation, 2023)

have reported and identified landslide events, compiling these into databases gathered from various local, state, and federal

agencies. Although these databases are not exhaustive, they encompass shallow landslides, slow-moving landslide activity,

rockfalls, and debris flows. The four landslide events of W22-3, represented as white points in Fig. 1[a], are located from80

north to south at Dani Creek Slide, Paul’s Slide, Mill Creek, and Gilbert’s Slide. Each of these landslide events involved

seasonally-related mass downslope movements of hillslope material, with varying amounts of material removed during the

clean-up process. Dani Creek Slide, Mill Creek, and Gilbert’s Slide each resulted in the removal of roughly 23,000 cubic meters

of material during repairs. In contrast, Paul’s Slide, a notably slow-moving landslide that reactivated in Jan 2023, underwent

over a year of repairs, during which approximately 385,000 cubic meters of material was removed (Drabinski and Bertola, 2023a, b, c)85

.

2.2 Topography

We used the Copernicus Digital Elevation Model (DEM) (Copernicus, 2021), which provides elevation data at
:
(40× 40

:
) m2

resolution
::
on

::
a
:::::::
temporal

:::::::
interval

::
of

:
6
:::
or

::
12

::::
days

:::::::::::::
(corresponding

::
to

::::::::
Sentinel-1

:::::::
passes) and is shown in Fig. 1[a], to calculate the

slope of each gridded cell within the study area, as depicted in Fig. 1[b]. We write the elevation field as h(r), where r = (x,y)90

represents the position in UTM coordinates.
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2.3 Ground Surface Deformation

We processed the Sentinel-1 InSAR data using the Alaska Satellite Facility’s (ASF) On-Demand InSAR processing HyP3

platform (Hogenson et al., 2020). ASF’s On-Demand InSAR tool constructs interferograms using the GAMMA software. The

InSAR data are inverted to time series using the Miami InSAR Time-series software in Python (MintPy) software (Yunjun95

et al., 2019). We processed data on descending track 42 using two looks in azimuth and ten looks in range. Spanning from

20 Nov 2015 to 19 Nov
::
01

::::
Dec 2022, the dataset comprises 279 time slices at a resolution of (40× 40)

:
m2 per grid cell,

covering the study area of the Big Sur Coast. From the Sentinel-1 data, we utilized the displacement time series and a temporal

coherence map in our analysis.

Each InSAR snapshot
:::::
image provides line-of-sight displacement, indicating motion either towards or away from the satellite.100

Cumulative displacement, calculated as the difference between the last time slice on 19 Nov
::
01

::::
Dec 2022 and the first time

slice on 20 Nov 2015, shows landslide activity over the seven years (as shown in Fig. 1[c]). Additionally, we computed the

mean and maximum cumulative displacement values of each sub-region for use in multivariate analysis.

To analyze the motion of landslides for use in the network science techniques, we calculated the velocity for each InSAR

snapshot
::::
image

:
t as v(x,y, t) = ∆u(x,y)

∆t , where ∆u represents the relative displacement between pairs of adjacent snapshots105

and ∆t denotes the time interval between any two consecutive snapshots. Due to the noise introduced by taking derivatives of

the InSAR displacement data, we apply a 3 × 3 cell Gaussian kernel to smooth the data.

The temporal coherence map (Fig. 1[d]) measures the reliability of the InSAR displacement time series inversion. Pixels

with coherence values below 65% were masked from the displacement maps. Low coherence values can occur due to a number

of factors, including obscured or significant deformation (Fletcher et al., 2007; Yunjun et al., 2019).
:::
The

:::::::
applied

::::
mask

::::::::
excludes110

::::::::::::
approximately

::::
1.7%

::
of

:::
the

::::
total

:::::
area,

::::
with

::
an

:::::::
average

::::::::
exclusion

::
of

:::::
4.8%

:::::
within

:::::
each

:::::::::
sub-region.

:

2.4 Precipitation

The Parameter Elevation Regressions on Independent Slopes Model (PRISM) database provides precipitation data modeled on

a 4× 4 km2 grid cell resolution using station data and climate models (Oregon State Univeristy, 2015). We selected PRISM

due to its performance in mountainous and coastal areas of the western United States and because there are no station data115

within the study area (Daly et al., 2008). The precipitation datasets span from 1 Nov 2015 to 30 Nov 2022 with daily maps, and

we computed cumulative precipitation by summing over the entire period (as shown in Fig. 1[e]), with the mean precipitation

calculated for each sub-region.

2.5
:::::::

Reported
:::
or

:::::::::
Identified

:::::::::
Landslide

::::::
Events

:::
The

::::
U.S.

:::::::::
Geological

::::::
Survey

::::::::::::::::
(Jones et al., 2019)

:::
and

::::
the

::::::::
California

::::::::::
Geological

::::::
Survey

::::::::::::::::::::::::::::::::::::::
(California Department of Conservation, 2023)120

::::
have

:::::::
reported

:::
and

::::::::
identified

::::::::
landslide

::::::
events,

:::::::::
compiling

::::
these

::::
into

:::
the

:::::::
Reported

:::::::::
California

:::::::::
Landslides

::::::::
Database

:::::::
gathered

:::::
from

::::::
various

:::::
local,

:::::
state,

:::
and

::::::
federal

::::::::
agencies.

::::::::
Although

::::
this

:::::::
database

::
is

:::
not

::::::::::
exhaustive,

:::
the

::::::
entries

:::::::::
encompass

:::::::
shallow

:::::::::
landslides,

::::::::::
slow-moving

::::::::
landslide

:::::::
activity,

::::::::
rockfalls,

::::
and

:::::
debris

::::::
flows.

::::
The

::::
four

:::::::
landslide

::::::
events

::
of

:::::::
W22-3,

::::::::::
represented

::
as

:::::
white

::::::
points
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::
in

::::
Fig.

::::
1[a],

:::
are

:::::::
located

:::::
from

:::::
north

::
to

:::::
south

::
at
:::::

Dani
::::::
Creek

:::::
Slide,

::::::
Paul’s

:::::
Slide,

::::
Mill

:::::::
Creek,

:::
and

::::::::
Gilbert’s

:::::
Slide.

:::::
Each

:::
of

::::
these

::::::::
landslide

:::::
events

::::::::
involved

:::::::::::::::
seasonally-related

::::
mass

::::::::::
downslope

:::::::::
movements

::
of

::::::::
hillslope

:::::::
material,

:::::
with

::::::
varying

::::::::
amounts

::
of125

:::::::
material

:::::::
removed

::::::
during

:::
the

:::::::
clean-up

:::::::
process.

:::::
Dani

:::::
Creek

:::::
Slide,

::::
Mill

::::::
Creek,

:::
and

::::::::
Gilbert’s

:::::
Slide

::::
each

:::::::
resulted

::
in

:::
the

:::::::
removal

::
of

:::::::
roughly

::::::
23,000

:::::
cubic

::::::
meters

::
of

::::::::
material

::::::
during

::::::
repairs.

:::
In

:::::::
contrast,

::::::
Paul’s

:::::
Slide,

::
a
:::::::
notably

:::::::::::
slow-moving

::::::::
landslide

::::
that

:::::::::
reactivated

::
in

:::
Jan

:::::
2023,

:::::::::
underwent

::::
over

::
a

::::
year

::
of

::::::
repairs,

::::::
during

::::::
which

::::::::::::
approximately

:::::::
385,000

:::::
cubic

::::::
meters

::
of

:::::::
material

::::
was

:::::::
removed

:::::::::::::::::::::::::::::
(Drabinski and Bertola, 2023a, b, c)

:
.

3 Network Science Methods130

3.1
:::::::

Network
:::::::
Science

To classify sub-regions as vulnerable
:::::::::::
hazard-prone, we used multilayer networks (Kivela et al., 2014; Porter and Gleeson, 2016;

Papadopoulos et al., 2016; Bassett et al., 2011) to couple the temporally-resolved kinematics (velocity) with the spatially-

resolved susceptibility (slope) and community detection (Porter et al., 2009; Mucha et al., 2010; Fazelpour et al., 2023) to

cluster regions that are moving at relatively higher speeds and/or are on steeper slopes.
:
A
::::::
visual

::::::::::::
representation

::
of

:::
this

:::::::
method135

:
is
::::::
shown

::
in

::::::
Figure

::
3

::
of

:::::::::::::::
Desai et al. (2023)

:
.
:
Our methods were developed in Desai et al. (2023), and are briefly summarized

here (code is available at Desai (2022)).

In the multilayer network, each layer corresponds to an InSAR snapshot
:::::
image

:
that overlies the network topology; the

network topology consists of a static collection of nodes and edges for each sub-region. Each node represents a patch of area,

determined using Poisson sampling, and edges connect the nodes via Delaunay triangulation. Velocity and slope maps from140

InSAR and DEM, respectively, are incorporated into the network as edge weights that change for each layer in the multilayer

network.

In prior work, we calculated the average velocity and slope of any two connected nodes and set that as the edge weight.

We
::::::::::
successfully identified clusters (patches of area) exhibiting similar hillslope movements that are distinct from surrounding

areas via a community detection algorithm that uses modularity optimization . This method
::::::::::::::::
(Desai et al., 2023).

:::::::::::
GenLouvain145

:::::::::::::::::::::::::::::::::
(Mucha et al., 2010; Jeub et al., 2011-19)

:
,
:
a
:::::::::
modularity

:::::::::::
optimization

::::::::
algorithm,

:
divides nodes into communities by identifying

where the edge weights are stronger within the community than one would expect at random. We implemented this method

using NetWiki GenLouvain (Mucha et al., 2010; Jeub et al., 2011-19), which
::::
This

::::::::
algorithm

:
outputs a matrix consisting of

the community ID for each node and time pair. The
:
;
:::
the community ID is a unique numeric identifier to for each of the

different communities across the entire spatiotemporal map (multilayer network). Within this spatiotemporal community map,150

we identified areas of persistent communities; these communities are an indicator of areas that are strongly connected and have

higher-than-average
::::
edge

:
weights – velocity and slope – than the rest of the sub-region.
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3.2 Community Persistence

To quantify steady communities, we previously developed a measure known as community persistence (Desai et al., 2023).

This measures the persistence of the assignment of nodes to communities over time defined as155

Πt =
1

N

∑
c

ct−1 ∩ ct
nc,t

, (1)

where N is the total number of nodes in the network, nc,t is the number of nodes in community c at time t, and ct−1∩ ct is the

number of nodes present in community c at both t, t− 1.

An increase in community persistence within a sub-region indicates that a patch
:::::
group

:
of nodes is consistently being

identified as more similar
::::
more

:::::::
strongly

:::::::::
connected

:
to each other

::::::::
(measured

:::
via

::::
edge

:::::::
weight)

:
than to the rest of the network.160

When there is no single patch of area consistently moving at a faster than average rate, i.e. ,
::::::::::::
corresponding

::
to
::::::::
localized

:::::::
motion.

:::::::::
Conversely,

::::
low

:::::::::
persistence

::::::
occurs

:::::
when

:::
no

:::::::
distinct,

::::::::::
consistently

::::::::
clustered

::::::
motion

::
is
:::::::::
observed,

::::
such

::
as

:
during dry seasons,

then community persistence is closer to zero. To
:
.

::
As

:::::
done

::
in

:::
our

:::::
prior

::::
work

::::::::::::::::
(Desai et al., 2023)

:
,
:::
we compare relative changes in Π across the 17 sub-regions , we consider

::::
using

:
the Z-score

:
at

::::
time

:
t
:

165

Zt =
Πt − Π̄

σ(Π)
. (2)

:::::
where

::
Π̄

::
is

:::
the

:::::
mean

::::::::::
persistence

::::
over

:::
the

:::::
entire

::::
time

::::::
period,

:::::::::::
establishing

:
a
:::::::
baseline

:::
of

:::
the

::::::
system,

::::
and

:::::
σ(Π)

::
is

::
its

::::::::
standard

::::::::
deviation.

:::::
When

:::::::
Zt < 0,

::::::::::
community

::::::::::
persistence

::
is

:::::
below

::::::::
average,

::::::::
typically

::::::::
indicating

::::
dry

:::::::::
conditions

::::
with

:::::
little

::::::::
landslide

::::::
activity.

:
In the prior analysis of Mud Creek, we observed a

:::
that

::::::::::
surrounding

:::::::::::
communities

::::::::
exhibited

:
a
::::
drop

::
in

::::::::::
persistence,

:::::
while

::::
those

::::::
within

:::
the

::::
Mud

:::::
Creek

::::
zone

::::::::
increased

::
in

::::::::::
persistence.

::::
This

:::
led

::
to

:
a statistically significant increase in Zt, as high as

:::::::
peaking170

:
at
:
Z = 2.5, followed by a minor decline right before

::::
prior

::
to failure. The value at failure remained statistically significant. To

quantify this trend amongst
:::::
extend

::::
this

:::::::
analysis

::
to

:
the 17 sub-regions, we identify the increasing segment – the final period

of rise
:::
final

:::::
rising

::::::::
segment before the decline – and find

:::
and

::::::
extract the peak Z value, which is the maximum Z-score in the

identified segment. We use peak Z to quantify differences between sub-regions to better classify the slow-moving landslides

::::::
regions as stable (peak Z < 2.5) or vulnerable

:::::::::::
hazard-prone (peak Z ≥ 2.5).175

3.3
::::::::::

Multivariate
:::::::::::
Correlation

:::
We

:::::::::::
characterized

:::::
active

::::::::
landslides

:::::
using

::::
data

::
on

:::::::::::
precipitation,

:::::::::::
deformation,

:::::::::
topography,

::::
and

::::::
InSAR

:::::::::
coherence.

:::::
These

::::::::
indicators

::::
were

::::
used

:::
as

::::::::::
benchmarks

:::
to

:::::::
evaluate

:::
the

:::::::::::
performance

:::
of

:::
the

::::::::::
community

::::::::
detection

::::::
results.

:::::::::::
Specifically,

:::
we

::::::::::
constructed

::
a

:::::::::
correlation

::::::
matrix

::
to

::::::
assess

:::
the

::::::::::
relationship

:::::::
between

::::
the

::::
peak

:::::::
Z-score

::::
and

:::
the

::::::::::
geophysical

:::::::::
indicators.

::::
For

::::
each

:::
of

:::
the

:::
17

::::::::::
sub-regions,

:::
we

::::::::
computed

:::
the

:::::::::
following

:::::
seven

::::::::
variables:

:::::::
number

::
of

::::::::
recorded

::::::
events;

:::::
mean

:::::
slope;

:::::
mean

::::::::::::
precipitation;

:::::
mean180

:::::::::::
displacement;

:::::::::
maximum

::::::::::::
displacement;

:::::
mean

::::::
InSAR

:::::::::
coherence;

:::::
mean

::::::::::
community

::::::::::
persistence

:::
Π̄;

:::
and

:::::
peak

:::::::
Z-score.

::::::
These

::::::
metrics

::::
were

::::
used

::
to
::::::::
quantify

:::
and

:::::::
compare

:::
the

:::::::::::
classification

::
of
::::::::::::
hazard-prone

::::::
regions

::::
with

::::::::
observed

:::::::
landslide

::::::
events.

:
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4 Results

We used a multilayer network combining slope and velocity data spanning from Nov 2015 to Nov
:::
Dec

:
2022 (just before the

observed landslide events in Jan 2023 and Mar 2023) to determine the success of evaluating landslide vulnerability
::::::
hazard185

via network science techniques. We visualize the evolution of Zt for each sub-region in Fig. 2. The size of the data points

is proportional to Zt, with larger circles indicating more persistent communities (higher Z-scores). Only points with Zt > 0

are plotted, as negative Z-scores do not signify landslide vulnerability
:::::
hazard. The colors in Fig. 2[a-b] correspond to the 17

sub-regions shown in Fig. 1[a].

Over the period shown, we observe cyclical changes in Zt corresponding to the wet and dry seasons. Following wet seasons,190

Zt is stronger and after dry seasons, Zt is weaker. Particularly, we observe high Zt values in fall of 2022; this is because

the study area experienced higher than average precipitation that year. The final 100 days of the period (Fig. 2[b]) display

differences in Z-scores across the sub-regions, aiding in the identification of potentially stable and vulnerable
:::::::::::
hazard-prone

areas. A clear distinction is made between sub-regions with steadily
::
an

:
increasing Z-scores (outlined in black) and those

exhibiting relatively stable Z-scores during those last 100 days.195

As previously discussed, a continuous increase in Z-score, like that observed in Mud Creek, indicates vulnerability to

landslide events
::::
high

::::::::
likelihood

:::
of

:
a
::::::::
landslide

:::::
event. To quantify the trends in Fig. 2[b]

:::
Fig.

:::::
2[a-b], we identify the peak Z

of the final continuously increasing segment in Fig. 2[c]. Here, darker
:::
and

:::
plot

::::
the

:::::
values

:::
in

::::
Fig.

::::
2[c],

::::::
where sub-regions

represent higher peak Z-scores.
:::::::
Z < 2.5

:::
are

::::
blue

:::
and

:
sub-regions with a relatively stable Z-score had peak Z < 2.5. Within

the sub-regions that showed increasing Z, some sub-regions have peak Z < 3, and some have peak Z ≥ 2.5. Those sub-regions200

with peak Z ≥ 2.5 are asterisked in Fig. 2[b]; these sub-regions displayed a steady increase in Zt and experienced a landslide

event soon after Dec 2022.
::::::
Z ≥ 2.5

:::
are

::::
red.

:
The landslide events are plotted as white dots with images taken by California

Transit Authority (Drabinski and Bertola, 2023a, b, c) included in Fig. 2[c].
:::
All

::::
dots

::::::::::
representing

::::::::
landslide

::::::
events

::::::
appear

::
in

:::
red

::::::
regions.

:::::::::::
Sub-regions

::::
with

:
a
::::::::
relatively

:::::
stable

:::::::
Z-score

:::
had

:::::
peak

:::::::
Z < 2.5.

:
The sub-regions that had an increasing Z-score in

Fig. 2[b] and peak Z < 2.5 did not experience a landslide event.
::
All

::::::::::
sub-regions

::::
with

:::::
peak

:::::::
Z ≥ 2.5

:::
and

::
a
:::::
steady

::::::::
increase

::
in205

::
Zt::::::::::

experienced
::
a

:::::::
landslide

:::::
event

::::
soon

:::::
after

:::
Dec

:::::
2022,

:::::::
initialed

::
in

::::
Fig.

::::
2[b].

:

Analysis after the January landslide events (Nov 2015 to Feb 2023) (shown in Supporting Information S1) shows the peak

Z-score decreasing for the sub-region containing Paul’s Slide. In addition, the Z-score of the sub-region containing Dani Creek

Slide is steadily increasing, leading up to its landslide event on 12 Mar 2023 with a peak Z is 2.87, which falls under the

classification of vulnerable. Gilbert’s Slide experienced its landslide event on 16 Mar 2023, but the peak Z = 1, which falls as210

a stable region and is falsely classified. The rest of the sub-regions are classified as stable.

4.1 Multivariate Analysis

We used
:
a multivariate analysis to compare the traits of the active landslides using information about precipitation, defor-

mation, topography, and radar coherence , with the results of community detection. Fig. 3 visualizes
::::::
presents

:
the correlation

matrix between seven variables
::
for

:::
the

::
17

::::::::::
sub-regions: number of recorded events; mean slope; mean precipitation; mean dis-215
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Figure 2. Z-score for community persistence.
::
(a)

:
The Z-score for community persistence ZΠt for a multilayer network containing infor-

mation from Nov 2015 to Dec 2022. Each color represents a sub-region. The size of the points corresponds to Zt, where the thicker the point,

the higher the Z-score. On the bottom, the time
::
(b)

:::::
Time from Aug 2022 to Dec 2022 is shown

::::
(inset

::::
from [a]

:
), as well as the

::::
where

::::::
regions

:::
with

:
a
:::::::::

continuous
::::::::
increasing

::::::
segment

:::
are

::::::
outlined

::
in

:::::
black.

::
(c)

::::::
Spatial

:::
plot

::
of peak Z-scoreis plotted on the right

:
,
:::
with

::::::
regions

::::::
colored

::::
from

:::
blue

::
to

:::
red. The landslide events that occurred in W22-3 are shown as asterisks

::::::
initialed

:
in [b] and

::::
shown

::
as
:

white dots in [c] , with the

corresponding images taken by Caltrans
:::::::
CalTrans (Drabinski and Bertola, 2023a, b, c).
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Figure 3. Correlation of Landslide Variables. Correlation for mean precipitation, mean displacement, maximum displacement, mean slope,

mean coherence, mean community persistence, peak Z-score of community persistence, and number of events. Each variable is
:::::::
Variables

::
are

:
scaled from minimum to maximumand plotted for the 17 sub-regions where a ,

::::
with

:
darker color means a

:::::
colors

:::::::
indicating

:
higher

magnitude
::::
values.

placement; maximum displacement; mean InSAR coherence; mean community persistence Π̄; and peak Z-scorefor each of

the 17 sub-regions. The spatial distribution for each of the variables is shown in Fig. 3, where the variables are scaled from

minimum to maximum and darker color indicates a higher magnitude.

::::
Peak

:::::::
Z-score

::
is

::::::::
positively

:::::::::
correlated

::::
with

::::::::
recorded

:::::
events

::::::
(0.84).

:
Community persistence exhibits positive

::::::::
moderate

:
cor-

relations with mean displacement (−0.53), and InSAR coherence (0.54). Peak Z-score shows strong correlations with recorded220

events (0.84), maximum displacement (0.56), and precipitation (0.67). Mean displacement demonstrates strong
:::::
Mean

:::::::::::
displacement

:::::
shows

:::::::
negative

:
correlations with slope (−0.57) and InSAR coherence (−0.62), while maximum displacement is strongly

correlated
::::::::
correlated

::::::::
positively

:
with precipitation (0.60), InSAR coherence (−0.56), and events (0.63

:::::::
recorded

::::::
events

::::::
(0.63),

::::
peak

:::::::
Z-score

::::::
(0.56),

:::
and

:::::::::
negatively

::::
with

::::::
InSAR

:::::::::
coherence

::::::
(−0.56). Moreover, precipitation has a strong positive correlation

by 0.63 with precipitation
:::
with

::::::::
recorded

:::::
events

::::::
(0.63)

:::
and

::::
peak

:::::::
Z-score

::::::
(0.67).225

The correlations observed for

5
:::::::::
Discussion

:::::::
Through

:::
the

:::::::::
integration

:::
of

:::::::
network

::::::
science

::::::::::
techniques,

::::::
remote

:::::::
sensing

:::::
data,

:::
and

::::::::::
multivariate

::::::::
analysis,

::::
this

:::::
study

::::::::
identifies

::::::
several

:::
key

:::::::
insights

::::
into

:::
the

::::::::
detection

::::
and

:::::::::::::
characterization

::
of

:::::::::::::
landslide-prone

::::::::
regions.

:::
The

::::::
results

::::::::
highlight

:::
the

:::::::
promise

:::
of

10



::
the

:
peak Zand Π̄ highlight distinct relationships with

:::::
-score

::
as

::
a
::::::
method

:::
for

:::::
early

::::::::
detection

::::
and

:::::::::::
classification

::
of

:::::::::
hazardous230

::::::::::
sub-regions.

:::::::
Because

:::
the

::::::
analysis

::::
was

:::::::::
conducted

:::::
within

:
a
:::::
single

::::::::::
geographic

:::::
region

:::
and

:::::
based

:::
on

:
a
::::::
limited

:::::::
number

::
of

::::::::::
documented

:::::::
landslide

::::::
events,

::::
the

::::::::
outcomes

::::::::
presented

:::::
here

::::::
should

::
be

:::::::
viewed

::
as

::
a
::::::::::::
demonstration

::
of

::::::::
potential

:::::
rather

:::::
than

:
a
::::::::
definitive

:::
or

:::::::::
universally

:::::::::::
generalizable

:::::
result.

:::::::
Further

::::::::
validation

::::::
across

:::::::
different

:::::::
terrains,

::::::::
climates,

:::
and

::::::::
geologic

::::::
settings

::::
will

::
be

::::::::
essential

::
to

:::::::
establish

:::
the

:::::::
broader

::::::::::
applicability

::
of

::::
this

:::::::
approach

:::
as

:
a
:::::::::
monitoring

::::
tool.

:

5.1
::::::
Spatial

::::
Scale235

:::
Our

:::::::
analysis

::::
was

:::::::::
conducted

::
at

:
a
::::::::::
subregional

::::
scale

:::
of

:
5
:
km

:

2,
:::::
larger

::::
than

::::::
typical

::::::::
landslide

:::::
areas

::
of

:
a
::::
few

:::
0.1

:
km

::

2,
::
in

:::::
order

::
to

:::::::::
incorporate

:
a
::::
mix

::
of

:::::
stable

:::
and

::::::::
unstable

:::::
terrain

::::::
within

::::
each

:::::::::
subregion.

::::
Such

::::::::
variation

:
is
::::::
critical

:::
for

:::
the

:::::::::
modularity

:::::::::::
optimization

::::::::
algorithm

::
to

:::::::
identify

::::::::
clustered

::::::::::
anomalous

::::::::
behavior.

::::
The

::::::::
presence

::
of
::::::

stable
:::::::::
hillslopes

:::::::
provides

::
a
:::::::
baseline

:::::::
against

::::::
which

:::::::
unstable

:::::
slopes

:::::::::::
transitioning

::
to

::::::::::
catastrophic

::::::
failure

:::
can

:::
be

:::::::
detected

::
as

:::::::
outliers,

:::::
given

:::
that

::::::
nearby

::::::::
hillslopes

::::::::::
experience

::::::
similar

::::::
weather

::::::::::
conditions.

::::::::
Reducing

:::
the

::::
size

::
of

:::
the

::::::::
subregion

::::::
would

::::
limit

:::
the

:::::::
amount

::
of

:::::
stable

::::::
terrain,

:::::::::::
undermining

:::
the

::::::::::
algorithm’s240

:::::
ability

::
to

:::::
detect

:::::::
relative

:::::::::
deviations.

::::::::::
Conversely,

:::::::::
increasing

:::
the

::::::
spatial

:::::
extent

:::::
would

:::::::::::
significantly

::::
raise

::::::::::::
computational

::::::::
demands

::::::
without

:::::::::
improving

:::::::::::
performance

::
or

:::::::::
sensitivity.

::::
This

::::::::
trade-off

:::::::
between

::::::
spatial

::::
scale

::::
and

::::::::::::
computational

::::::::
efficiency

::
is
:::::::::
especially

::::::::
important

:::::
when

:::::::::
identifying

:::::
early

::::::
signals

:::
of

::::
slope

:::::::::::::
reorganization

:::
that

:::::::
precede

:::::::::::
catastrophic

::::::
failure.

::
A

::::::::
potential

::::::::
direction

:::
for

:::::
future

::::
work

::
is
::
to

::::::
assess

:::::::
whether

:::::::
applying

::::
this

::::::
method

::
at

::::::
smaller

::::::
spatial

:::::
scales

:::::
could

:::::::
improve

:::
the

:::::::
model’s

:::::::::::
performance.

::::::
While

::::
such

::
an

::::::::
approach

::::::
might

:::::::
enhance

:::
its

::::::
utility

:::
for

::::::::
real-time

::::::::
landslide

::::::::::
monitoring,

::
it

::::::
would

::::
also

::::::
reduce

::::::
terrain

::::::::::::
heterogeneity,245

:::::::::
potentially

::::::::::
diminishing

::
the

::::::::::
algorithm’s

:::::::
capacity

::
to

:::::::::
distinguish

:::::::::
anomalous

::::::::
behavior.

::
If

:::
this

::::::
method

:::::
were

::
to

::
be

:::::::::::::
operationalized

::
as

:
a
:::::::::
monitoring

::::
tool,

::
a

::::::
detailed

:::::::::::
investigation

::
of

::::
how

::::::
terrain

:::::::::
uniformity

:::
and

:::::::::
subregion

:::
size

:::::
affect

:::::::::::
performance

:::::
would

::
be

::::::::
essential.

:

5.2
::::::::::
Comparison

::
of

::::::::::::::
Network-Based

:::::::
Metrics

::::
and

:::::::::::
Geophysical

:::::::::
Indicators

:::
The

:::::::::
correlation

:::::::
analysis

::::::::
highlights

:::::::::
important

::::::::::
relationships

:::::::
between

::::::::::
geophysical

::::::::
variables,

::::::::::::
network-based

:::::::
metrics,

:::
and

:
precipitation-

induced slow-moving landslides. The strong correlation between
:::::::
landslide

:::::::
activity.

:::::::
Notably,

:::
the

::::
peak

:::::::
Z-score

::::::
shows

:
a
::::::
strong250

::::::
positive

::::::::::
correlation

::::
with

::::::::
recorded

:
landslide events, maximum displacement, and

:::::::::::
precipitation.

::::
This

::::::::
suggests

::::
that

:
peak Z

suggest that community detection captures
:
is

:::
an

:::::::
effective

::::::
proxy

:::
for

::::::::
capturing

:
patterns indicative of an increased potential

of landslide events.
::
for

::::::::
landslide

::::::
events,

::::::::::
particularly

::
in

:::::::
response

::
to

::::::::
seasonal

:::::::::
hydrologic

:::::::
forcing.

Conversely, the negative correlation between maximum and mean displacement values and coherence suggest
::::
both

:::::
mean

:::
and

::::
max

:::::::::::
displacement

::::
and

:::::::
InSAR

::::::::
coherence

::::::::
supports

::::::::
previous

:::::::
findings

:
that landslides moving rapidly are eluding

::::
often255

:::::
evade detection by InSAR (Yunjun et al., 2019). Despite

:::::::
Although

:::::
slope

:::::::
exhibits a weak relationship with Π̄, slope exhibits

:
it
::::::
shows

:
a strong correlation with mean displacement, implying .

::::
This

::::::::
indicates

:
that the multilayer network is not biased

towards steep slopes but rather amplifies steeper hillslopes with higher deformation. Furthermore, the strong relationship

between displacement, Π̄, and precipitation indicates that community persistence factors in precipitation without requiring

additional hydrological modeling
:::::::::
undergoing

::::::::::
deformation.

:::::::::::
Collectively,

:::::
these

::::::
findings

:::::::::::
demonstrate

:::
that

::::::::::::
network-based

:::::::
metrics260

:
–
::::::::::
community

:::::::::
persistence

::::
and

::::
peak

::
Z

:
–
::::
not

::::
only

::::
align

::::
with

:::::::::
traditional

::::::::
indicators

:::
of

:::::::
landslide

::::::
hazard

:::
but

:::::::::::
additionally

:::::::
captures

:::::::
evolving

::::::::
structural

:::::::
patterns

::
in

:::::::
hillslope

::::::::
dynamics

::::::
which

:::::::
improve

:::::::::::
classification

::
of

::::::::
hillslopes

::
as

:::::::::
hazardous.
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Several
:::::::::::
Furthermore,

::::::
several distinct features emerge when comparing the spatial variability along the eight coastline graphs

in Fig. 3. Both mean and maximum displacement strongly
::::::::::
prominently

:
highlight the sub-region containing Paul’s Slide and

Dani Creek Slide, but
:
.
::::::::
However, notable differences exist throughout the rest of the study area. These differences occur because265

calculating the mean suppresses signals of instability
:::::
While

:::::::::
measuring

:::::
mean

:::::::::::
displacement

:::::
tends

::
to

:::::::
smooth

::::
over

:::::::
localized

:::
or

::::::
sudden

::::::::::
deformation

:
and instead emphasizes areas with multiple slow-moving landslides. Conversely, using the

:
,
:
maximum

displacement highlights sub-regions with large deformation or high instability, correlating to areas more vulnerable to landslide

events. The peak
::::
acute

::::::::::
deformation

::::::::
signaling

:::::
higher

:::::::::
instability.

::::
Peak

:
Z -score and maximum displacement underscore

:::::::
similarly

:::::::::
emphasizes

:
Paul’s Slide as a significant area of concern for potential landslide events, a fact

:::::::
high-risk

:::::
region

::
– validated by a270

major slip off Highway 1 at Paul’s Slide in Jan 2023, occurring just a month after this analysis
::
the

:::::::
analysis

::::::
period.

While
:::::::
Despite both maximum displacement and peak Z-score highlight

:::::::::
highlighting

:
Paul’s Slide, differences between the

two variables remain. For instance, the
::
is

::::::
evident

::
in

:::::
other

::::::::::
sub-regions.

::::::
Some sub-regions with the highest peak Z-score are

not the same as those with the most displacement. Additionally,
::
do

:::
not

::::::
exhibit

:::
the

:::::::
greatest

::::::::::::
displacement,

::::
and sub-regions

with similar maximum displacement show a
:::::::::::
displacement

::::::::::
magnitudes

::::
show

::
a
::::
wide

:
range of peak Z-score values, suggesting275

::::::::
Z-scores.

:::::
These

::::::::::::
discrepancies

:::::::
suggest that community detection results

:
is
:::::::::

capturing
::::::::
additional

:::::::::
mesoscale

:::::::::
dynamics,

:::::
such

::
as

::::::::
localized

:::::
shifts

::
in

:::::
slope

::::::::
behavior

::
or

::::::::
evolving

:::::::
stability,

::::
that

:
are not solely influenced by landslide deformation or slope

susceptibility, but also by meso-scale information that enhances their reliability. Temporal patterns identified through velocity

analysis capture nuances
:
.

:::::
While

:::
the

::::::
volume

::::::::
removed

:
in
::::::
Paul’s

::::
Slide

::
is

:::::
much

:::::
larger

::::
than

:::
for

::
the

:::::
other

::::::::
landslide

::::::
events,

:::
the

:::::
initial

::::::
surface

::::
area

::
of

::::::
motion280

:
is
::::::::::
comparable

::
to

:::
the

:::::
three

::::
other

:::::::::
landslides.

::::
The

:::::
signal

::::::::
detected

::
by

:::
the

:::::::
network

:::::::
method

:::::
arises

::::
from

::
a

::::::::::
combination

::
of

::::::::
dynamic

::::::
surface

::::::
factors,

:::
not

:::
the

:::::::
eventual

:::::
scale

::
of

::::::
failure.

:::::
Since

:::
our

:::::::
analysis

::
is

:::::
based

:::::
solely

::
on

:::::::
surface

:::::::::
movement,

:::
the

::::::
volume

:::::::::
ultimately

::::::::
displaced

:::::
during

::
a
::::::::
landslide

::
is

:::
not

:::
an

::::
input

:::
for

::::
our

::::::::::::::::::::::
calculations—underscoring

::::
that

:::
our

:::::::
method

:::::::
captures

:::::::::
precursory

:::::::
surface

:::::::
behavior

:::::
rather

::::
than

::::::
relying

:::
on

::::::::
post-event

::::::::::::
consequences.

:

::::
This

::::::::
reinforces

:::
the

:::::
value

::
of

::::::::::::
network-based

:::::::
methods

::
in

::::::::
revealing

:::::::
nuanced

::::::::
temporal

:::::::
patterns

:::
and

:::::::::
transitions that would other-285

wise remain undetected if these variablesare considered in isolation.
::::::
hidden

:::::
when

::::::
relying

:::::
solely

:::
on

:::::::::::
conventional

::::::::::
geophysical

::::::::
variables.

5.3
:::::::::
Hydrologic

::::::::::
Integration

::
To

:::::::
evaluate

:::::::
whether

:::::::::::
hydrological

::::::
forcing

::::::
could

:::::::
improve

::::::::::
community

::::::::
detection

::::::::
outcomes,

:::
we

:::::::::::
incorporated

:::::::::::
precipitation

::::
data

::::
from

::::::
PRISM

:::::::::::::::::::::::::::
(Oregon State Univeristy, 2015)

::
in

::::::::::
combination

::::
with

:::::::
velocity

::::
and

::::
slope

::::
(see

:::::::::
Appendix

:::
A).

::::::::
However,

::
no

:::::::
notable290

::::::
changes

:::::
were

:::::::
observed

::
in
:::
the

::::::::::
community

::::::::
detection

::::::
results.

::::
This

:::
lack

:::
of

::::::::
sensitivity

::::
may

::::
stem

:::::
from

::
the

::::
low

::::::::
resolution

::
of

:::::::
PRISM

:::::
grids,

:::
as

::::
well

:::
as

::::::
limited

::::
data

::::::::::
availability

::::
near

:::
the

::::::
coasts,

::::::::::
potentially

::::::::
rendering

:::
the

:::::::
changes

::::
too

::::::
coarse

:::
for

:::
the

::::::::::
community

:::::::
detection

:::::::::
algorithm

::
to

:::::
detect.

:

::
To

::::::
further

::::
test

:::
this

::::::::::
hypothesis,

:::
we

:::::::
repeated

::::
the

:::::::::
experiment

:::::
using

:::::::::::::
high-resolution

:::::::::::
precipitation

:::::
input

::::
from

::
a
:::::::::::
WRF-Hydro

:::::
model

:::::::::::::
(Li et al., 2023)

:
.
::::
Even

:::::
with

:::
this

::::::::
improved

::::::
spatial

:::::::::
resolution,

:::::
there

::::
was

::::
little

:::::::::::
improvement

:::
in

:::
the

:::::::
analysis.

::::
The

::::::
strong295

:::::::::
correlation

:::::
(0.67)

::::::::
between

::::
peak

:::
Z

:::
and

:::::::::::
precipitation

::::
data

::::
(see

::::
Fig.

:::
3)

:::::::
suggests

::::
that

::::::::::
community

::::::::
detection

:::::::
metrics

:::::::
already
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:::::::
captures

:::::::::
underlying

::::::::::
hydrological

:::::::::::
mechanisms,

::
or

::
at

::::
least

:::
the

::::::
surface

:::::::::
hydrology,

:::
and

::::::::
therefore

:::::
makes

:::
the

::::::::
inclusion

::
of

::::::::::
precipitation

::::::::
redundant.

:::::::::::::
Advancements

::
in

:::::
in-situ

:::
soil

::::::::
moisture

::::::::::::
measurements

::::
could

::::::
further

:::::::
improve

:::
the

:::::::::::
applicability

::
of

::::::::::
hydrological

:::::::
models,

:::::::::
particularly

:::
for

::::::::::
deep-seated

::::::::
landslide

::::::
studies.

:

6 Conclusions300

The extension of network science techniques from the Mud Creek case study to the broader Big Sur region yielded promis-

ing results. By subdividing the region into smaller sub-regions for varied terrain, we tested the effectiveness of this method

as a monitoring technique. The outcomes of community detection served as robust indicators of the landslide events in

W22-3
::::::
W22-23, as seen in Fig. 2. Notably, the steady increase in Zt leading up to failureemerged as a crucial indicator,

alongside the magnitude of Zt,::::::::
emerged

::
as

::
a

::::::
crucial

:::::::
indicator. For instance, Paul’s Slide exemplifies how outliers in Zt can305

serve as early indicators of vulnerability to
::::::::
increased

:::::::::
likelihood

::
of

:
landslide events. Had this analysis been conducted in the

relevant time frame, Paul’s Slide, alongside Mill’s Creek, Dani Creek Slide, and Gilbert’s Slide, could have been identified as

areas of concern, potentially allowing for preemptive monitoring and mitigation measures.

When evaluating the model’s performance in classifying sub-regions as stable or vulnerable, we analyzed two time periods:

Nov 2015 to Nov 2022 and Nov 2015 to Feb 2023. In the shorter period analysis, all five sub-regions that experienced a310

landslide event in either Jan or Mar 2023 were correctly classified as vulnerable, and the other twelve sub-regions were

accurately identified as stable. In the longer period analysis, there are two sub-regions that experienced a landslide event in

Mar 2023. Only one of the two sub-regions was classified as vulnerable, while the other sub-region was incorrectly classified

as stable; the remaining fifteen were correctly classified as stable. Consequently, the peak Z-score method achieved a 97%

success rate in classifying sub-regions as either stable or vulnerable, with Gilbert’s Slide being incorrectly classified as stable315

in the Nov 2015 to Feb 2023 analysis. It is important to note that these results are based on a limited dataset, which may

introduce some bias in the evaluation of the model’s performance. As such, the 97% success rate should be interpreted with

caution, as it reflects the model’s performance within this specific region and time rather than a generalized outcome.

Comparing
::::
Our

:::::::::
comparison

::
of
:
landslide susceptibility factors – landslide inventory, slope, cumulative displacement, precip-

itation, and InSAR coherence – with the outcomes of community detection, peak Z-score, underscores the importance of inte-320

grating multiple data sources. Each factor taken alone does not yield enough information to predict landslidevulnerability, high-

lighting the need for comprehensive analyses. Furthermore, incorporating the entire temporal period captured by InSAR into the

multilayer network improved classification between stable and vulnerable slow-moving landslides
::::::::::
hazard-prone

::::::::::
sub-regions.

However, it is crucial to ensure that remote sensing data accurately capture ground surface deformation for statistical analyses

to be reliable.325

In an effort to enhance our results, we combine precipitation data from PRISM (Oregon State Univeristy, 2015) with
:::::::
Overall,

::
the

:::::::::
physically

::::::::
informed

:::::::::
framework

:::::::::
developed

:::::::::::
here—relying

:::
on

::::::::
measured

:::::
creep velocity and slopein S2. However, no changes

were observed in the community detection results. This lack of change may be attributed to the low resolution of PRISM grids

and the lack of data near the coasts potentially rendering the changes too coarse for the community detection algorithm to detect.

13



Subsequently, experiments with high-resolution datasets, such as those obtained from a WRF-Hydro model (Li et al., 2023)330

, also yielded no improvements in the analysis. The strong correlation (−80%) between displacement and precipitation data

suggests that velocity data adequately captures underlying hydrological mechanisms, or at least surface hydrology, and therefore

makes the inclusion of precipitation redundant. Advancements in in-situ soil moisture measurements could further improve

the applicability of hydrological models, particularly for deep-seated landslide studies.
::::::::::::
—demonstrated

::::::
strong

::::::::
potential

:::
for

::::::::
enhancing

::::::::
landslide

::::::
hazard

:::::::::
assessment.

:::
In

::::::::
particular,

:::::::
network

::::::
metrics

::::
such

::
as

:::
the

:::::
peak

:
Z
::::::
-score

::::::
offered

:
a
::::::::
sensitive

:::
and

:::::::
scalable335

:::::
means

:::
of

:::::::::
identifying

::::::::
emerging

:::::::::
instability,

:::::
even

::::
prior

:::
to

::::::
failure.

::::::
These

:::::::
findings

:::::::
support

:::
the

:::::
utility

:::
of

::::::::::
community

::::::::
detection

:::::::::
techniques

::
as

:
a
:::::::::::
complement

::
to

:::::::::::
conventional

::::::::::
geophysical

:::::::::
indicators,

::::::
paving

:::
the

::::
way

:::
for

::::::::
improved,

::::
near

::::::::
real-time

::::::::::
monitoring

::::::
systems

::::
that

:::
can

:::::::
generate

::::::::
dynamic

::::::
hazard

::::
maps

::::
and

::::::
inform

:::::
timely

::::
risk

::::::::::
management

:::::::::
strategies.

:

Through the methods employed in this study, we identified areas that exhibit a heightened probability of experiencing a

landslide event. As such, a physically informed framework relying solely on measured creep velocity and slope yielded highly340

promising outcomes. These findings hold the potential to significantly enhance monitoring efforts.

Code and data availability. The extents of the sub-regions are archived on DataDryad (Desai et al., 2024). Copernicus DEMs are available at

https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model. On-Demand InSAR products were downloaded via Alaska

Satellite Facility’s HyP3 platform, availabe at https://hyp3-docs.asf.alaska.edu. Sentinel-1 data are available at https://search.asf.alaska.edu/,

the ASF data search vertex. The full list of interferograms used are archived on DataDryad (Desai et al., 2024). The Miami INsar Time-Series345

software in PYthon (MintPy) is available at https://github.com/insarlab/MintPy. Precipitation data is provided by Parameter-elevation Re-

gressions on Independent Slopes Model (PRISM) and is available at https://prism.oregonstate.edu/. Daily precipitation time series is taken for

each of the sub-regions. The code used for creating the multilayer networks is available at https://github.com/vddesai-97/networkLandslide,

and running the community detection algorithm is on https://github.com/GenLouvain/GenLouvain. The multilayer networks (nodes, edges,

weights) for each of the sub-regions are archived on DataDryad (Desai et al., 2024).350

Appendix A: Inclusion of hydrological information into the multilayer network

Landslide studies often use precipitation data from (1) site-specific rain gauges with limited spatial coverage and nonuniform

temporal resolution, or (2) spatially continuous interpolated gridded rain data. Effective and efficient monitoring of hydrological

data has not yet caught up with remote sensing technology to produce high spatial and temporal datasets. Satellite-derived

data, such as Soil Moisture Active Passive maps, which use passive microwave techniques and remotely sensed surface soil355

moisture on a global scale, underestimates in heavily vegetated areas (Das et al., 2019; Reichle et al., 2017; Fan et al., 2020).

Remote sensing techniques only detect surface-level soil moisture, and process-based land surface models typically extend the

soil moisture estimates to one to two meters below the ground surface but have low spatial resolution (Koster et al., 2009).

Therefore, we consider two hydrological datasets: PRISM (Parameter-elevation Relationships on Independent Slopes Model)

for precipitation and WRF-Hydro (Weather Research and Forecasting Hydrological modeling framework) for soil moisture360

and precipitation on the Big Sur Coast.
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PRISM The PRISM Climate Group develops spatial climate datasets using various monitoring networks and modeling

techniques (Daly et al., 2008). These datasets include daily, monthly, and annual precipitation, and minimum and maximum

temperatures for the contiguous United States. PRISM interpolates station measurements using a climate-elevation regression

model that considers factors such as coastal distance, topography, and atmospheric conditions. There are about 13,000 stations365

that collect precipitation data and 10,000 for temperature. PRISM datasets have shown improved results for mountainous and

coastal regions of the western United States, including our study sites.

WRF-Hydro WRF-Hydro is an open-source, physics-informed hydrological model (Gochis and Barlage, 2020). The model

disaggregates precipitation at the land surface and simulates landslide-relevant processes such as water table depth, infiltration,

subsurface lateral flow, and soil moisture using information like soil type, topography, and antecedent conditions. Li et al.370

(2023) utilized WRF-Hydro to simulate soil moisture within the Big Sur Coast region, incorporating seven in-situ soil moisture

stations and nine USGS stream gages. This region has a complex terrain with heterogeneous vegetation, elevation, and slope.

The data used in this study has a default soil column with a depth of 2 meters, divided into four layers: 0-10 cm, 10-40 cm, 40-

100 cm, and 100-200 cm. Li et al. (2023) demonstrated that WRF-Hydro outperforms many established soil moisture products

through data-informed methods that improve soil parameters.375

The two datasets differ in resolution and the type of hydrological forcing they represent. PRISM has a 4 km2 resolution with

daily precipitation outputs in mm, while WRF-Hydro has a 1 km2 resolution with outputs of soil moisture at different depths.

We considered soil moisture, water table depth, and precipitation as additional information to incorporate into the multi-

layer network as weights in addition to velocity and slope. There was insufficient difference in the community persistence

signal when including hydrological information of any type. This is likely because velocity already incorporates underlying380

hydrological mechanics. When there is enough water in the soil, frictional resistance reduces, causing slow-moving hillslopes

to speed up. As the soil dries, the hillslopes slow down. Since this information is already included in the multilayer network,

adding hydrology data is redundant. Another reason the hydrology data might not be useful is that Mud Creek is a deep-seated

landslide, and the data only went to 200 cm below the surface. To test the effects of adding in hydrological information on the

community persistence of the 17 study sites, we applied precipitation data from PRISM (chosen for its success in the Western385

U.S.) as one of the weights, along with velocity and slope, for the multilayer network. Fig. A1 shows the mean community

persistence Π, as discussed in the paper. The results for the multilayer network with weights w = vs, where v is velocity and s

is slope, is shown in Fig. A1[a] and Fig. A1[b] shows the results for weights w = vsp, where p is precipitation from PRISM.

We observe that including precipitation as a weight shows minimal differences in the community detection.

Z-score for community persistence.The Z-score for community persistence ZΠt for a multilayer network containing information390

from Nov 2015 to Feb 2023. Each color represents a sub-region. The thickness of the points corresponds to Zt, where the thicker

the point, the higher the Z-score. On the bottom, the time from Aug 2022 to Feb 2023 is shown, as well as the peak Z-score

is plotted on the right. The landslide events that occurred in Mar 2023 are shown as asterisks in band white dots in c, with the

corresponding images taken by Caltrans (Drabinski and Bertola, 2023a, b, c).
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Figure A1. Geographical distribution of Z-scores. Max
::::
Mean Z-Score for [a] weights w = vs compared against [b] weights w = vsp. The

white dots are the landslide events.
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