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Abstract. Scintillometers are used to estimate path-integrated evaporation and sensible heat fluxes. Commercial Microwave

Links (CMLs), such as used in cellular telecommunication networks, are similar line-of-sight instruments that also measure

signal intensity of microwave signals, just like microwave scintillometers. However, CMLs are not designed to capture scintil-

lation fluctuations. Here, we investigate if and under what conditions CMLs can be used to obtain the structure parameter of

the refractive index, Cnn, which would be a first step in computing turbulent heat fluxes with CMLs using scintillation theory.5

We use data from three collocated microwave links installed over a 856 m path at the Ruisdael Observatory near Cabauw,

the Netherlands. Two of these links are 38 GHz CMLs formerly employed in telecom networks in the Netherlands, a Nokia

Flexihopper and an Ericsson MiniLink. We compare Cnn estimates obtained from the received signal intensity of these links,

sampled at 20 Hz, with those obtained from measurements of a 160 GHz microwave scintillometer (RPG-MWSC) sampled

at 1 kHz and of an eddy-covariance system. After comparison of the unprocessed Cnn, we rejected the Ericsson MiniLink,10

because its 0.5 dB power quantization (i.e., the discretization of the signal intensity) was found to be too coarse to be applied as

a scintillometer. Based on power spectra of the Nokia Flexihopper and the microwave scintillometer, we propose two methods

to correct for the white noise present in the signal of the Nokia Flexihopper: 1) we apply a high-pass filter and subtract a low

quantile of the resulting variances of the Nokia Flexihopper and 2) we correct for the noise by comparison with an MWS

and select parts of the power spectra where the Nokia Flexihopper behaves in correspondence with scintillation theory, also15

considering different crosswind conditions, and correct for the underrepresented part of the scintillation spectrum based on

theoretical scintillation spectra. The comparison and noise determination with the microwave scintillometer provides the best

possible Cnn estimates for the Nokia Flexihopper, although this is not feasible in operational settings for CMLs. Both of our

proposed methods show an improvement of Cnn estimates in comparison to uncorrected estimates, albeit with a larger un-

certainty than the reference instruments. Our study illustrates the potential of using CMLs as scintillometers, but also outlines20

some major drawbacks, most of which are related to unfavourable design choices made for CMLs. If these would be overcome,

given their global coverage, there is potential of CMLs for large scale evaporation monitoring.
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1 Introduction

Surface turbulent heat fluxes play an important role in the energy and water cycles, where evaporation is connecting the two

cycles. Observations of these surface fluxes can help improve our understanding of these land-atmosphere interactions and25

advance our modelling capabilities (e.g., Wang and Dickinson, 2012) or serve as reference for model simulations (e.g., Meir

and Woodward, 2010; Seneviratne et al., 2010). Especially for evaporation, areal estimates can provide essential information for

catchment-scale water budgets (e.g., Descloitres et al., 2011; Cohard et al., 2018) and, for example, for irrigation requirements

or drought monitoring (e.g., Burt et al., 2005; West et al., 2019). However, areal estimates of actual evaporation with both a

high temporal and high spatial resolution are difficult to obtain.30

Traditionally, latent and sensible heat fluxes are measured with the eddy-covariance (EC) technique. This technique typically

consists of a 3-D sonic anemometer and a fast-response hygrometer in order to determine the transport of momentum, temper-

ature and moisture by measuring vertical flux terms of the conservation equations after using Reynolds decomposition. Spatial

networks of EC systems are in operation, e.g., FLUXNET has over a 1000 active and historic sites, but lack the spatial cov-

erage and density to be representative for all ecosystems and continents (e.g., Villarreal and Vargas, 2021). As an alternative,35

satellite remote sensing methods provide evaporation estimates with improved spatial coverage, e.g., SEBAL (Bastiaanssen

et al., 1998), SEBS (Su, 2002), MODIS (Mu et al., 2007) and ALEXI (Anderson et al., 1997). Drawbacks of these methods are

that they have relatively low temporal or spatial resolution and that they indirectly relate surface characteristics to evaporation.

Other dedicated evaporation measurements can be performed with scintillometers, which make use of the scattering by

turbulent eddies of electromagnetic radiation propagating through the atmosphere (e.g., Beyrich et al., 2021). They consist of40

a transmitter and a receiver separated along a line of sight of several hundreds of meters to a few kilometers. As a consequence

of the different temperatures and humidities of turbulent eddies, density varies spatially and temporally and thus also the

refractive index. This causes the signal intensity at the receiving end of the propagation path to fluctuate in time (typically at

time scales between 0.1 and 100 s). The signal intensity fluctuations detected by a scintillometer are related to the structure

parameter of the refractive index, Cnn. Previous studies have shown that scintillometry can be used to estimate the turbulent45

heat fluxes (e.g., Kohsiek, 1982; Green et al., 2001). Moreover, Meijninger et al. (2002) showed that this measurement method

is less sensitive to surface heterogeneity than EC stations because of spatial averaging and the more homogeneous footprint.

However, scintillometers have mainly been used in dedicated field campaigns, because of the relatively high investment costs

in installation. To overcome the issues of spatiotemporal coverage and high investment costs, opportunistic sensing, where

existing infrastructure is used for unintended purposes, could provide a wealth of information (e.g., de Vos et al., 2020).50

Here, we explore opportunistic sensing with commercial microwave links (CMLs), which are near-surface terrestrial radio

connections used in cellular telecommunication networks, transmitting electromagnetic radiation with frequencies comparable

to microwave scintillometers. Hence, in principle it should be possible to use CMLs as microwave scintillometers to estimate

turbulent heat fluxes. CMLs are already used to estimate path-averaged rainfall rates by determining the rain-induced attenu-

ation along the link path (e.g., Messer et al., 2006; Leijnse et al., 2007a) and fog detection (David et al., 2013). If we would55

be able to successfully use them as scintillometers, it would mean that we can estimate rainfall and evaporation with a single
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experimental setup, similar to Leijnse et al. (2007b, c). Note that to compute turbulent heat fluxes, and thus evaporation, ad-

ditional information on the relative contributions of temperature and humidity fluctuations is required. An additional benefit

is that the infrastructure of these instruments already exists and is maintained by mobile network operators, also at locations

where traditional measurements are lacking. Note that the number of operational CMLs worldwide is estimated to grow from60

4.6 millions in 2021 to 6 millions in 2027 (ABI research, 2021).

In contrast to scintillometers, CMLs are not designed to monitor turbulent heat fluxes, as network operators are not inter-

ested in precisely monitoring high-frequency fluctuations in their networks. Most often network management systems store

CML signal levels at too low temporal resolution, for example minimum and maximum values per 15 minutes, to capture the

scintillation fluctuations. Additionally, the hardware of CMLs is not designed to measure scintillations. Some CMLs employ a65

coarse power quantization (i.e., the discretization of the signal intensity), as a result of choices in hardware as well as network

management systems (e.g., Leijnse et al., 2008; Chwala et al., 2016; Ostrometzky et al., 2017). Moreover, in rainfall intercom-

parison studies (van Leth et al., 2018; van der Valk et al., 2024a), a formerly employed 38 GHz CML was found to exhibit a

deviating behaviour compared to a 38 GHz research link during dry periods. Therefore, it is unclear whether CMLs could also

be used to estimate Cnn, and thus potentially also the turbulent heat fluxes.70

Here, we aim to explore the potential of using CMLs to estimate the turbulent heat fluxes by estimating Cnn based on fast

(20 Hz) CML measurements and scintillation theory. We study how the CML signal behaves, to what extent it differs from what

is expected from scintillation theory, and how to correct for these differences. Between 11 September and 18 October 2023,

we compared two 38 GHz CMLs with a 160 GHz microwave scintillometer, specifically designed to measure the turbulent

heat fluxes, and an eddy-covariance system at the Ruisdael Observatory near Cabauw (the Netherlands). Both of these CMLs75

have formerly been employed in operational CML networks in the Netherlands. This allows us to study the overall potential of

CMLs to estimate Cnn under relatively controlled conditions.

This paper is organized as follows: In Sect. 2, we provide a theoretical overview, in which we describe the state-of-the-art

method required to obtain the turbulent heat fluxes using scintillation theory. In Sect. 3, we give an overview of our experimental

setup and in Sect. 4, we show what problems occur when using CMLs as scintillometers to directly obtain Cnn estimates. Based80

on these findings, we present our proposed correction methods to obtain improved Cnn estimates with CMLs in Sect. 5, partly

based on the theory provided in Sect. 2. In Sect. 5.3, we show a verification of these proposed methods, followed by a discussion

(Sect. 6) and, a summary and conclusions (Sect. 7).

2 Theory

Here, we provide a brief overview of the theory required to obtain the turbulent heat fluxes with a focus on microwave links.85

For a more elaborate overview, see for example Beyrich et al. (2021).

To relate the intensity fluctuations in the signal of a microwave scintillometer to the turbulent heat fluxes, the variance of

the signal intensity per time interval has to be converted to the path-averaged structure parameter of the refractive index, Cnn

[m-2/3]. Based on Tatarskiı̆ (1961), Clifford (1971) proposed a theoretical model to relate the power spectrum of the signal
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intensity fluctuations to Cnn:90
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in which S(f) is the power spectrum, k [m-1] is the wavenumber of the transmitted radiation (i.e., k = 2πλ−1, in which λ is

the wavelength of the transmitted signal [m]), u⊥ is the wind speed [m s-1] perpendicular to the beam path, f is the scintillation

frequency [Hz], K [m-1] is the turbulent wavenumber, L [m] is the path length, x [-] is the relative location along the beam

path, J1 is the first-order Bessel function, and DR and DT [m] are the apertures of the receiver and transmitter, respectively.95

Typically, 3D-power spectra of the refractive index follow the power law K−11/3 in the inertial subrange, based on the Kol-

mogorov law for three-dimensional turbulence spectra (Kolmogorov, 1941). For a power spectrum of intensity measurements

obtained from a scintillometer with a given setup, the power spectrum depends on Cnn and u⊥. Higher Cnn values increase

the spectral density over the entire range of scintillation frequencies, while higher u⊥ values shift the scintillation spectrum

to higher frequencies, while retaining the variance (e.g., Medeiros Filho et al., 1983; van Dinther, 2015). For point-source100

scintillometers, typically assumed for microwave wavelengths, the power spectrum of the signal intensity typically follows the

power law f−8/3.

Integrating Eq. (1) over f and analytically solving the integrals over K and x, yields a solution for the scintillation variance

(e.g., Hill and Ochs, 1978; Lüdi et al., 2005), which is independent of u⊥ (e.g., Lawrence and Strohbehn, 1970; Tatarskii,

1971; Wang et al., 1978):105

Cnn = cσ2
ln(I)k

−7/6L−11/6, (2)

in which c is a constant depending on the experimental setup (e.g., instrument characteristics and aperture averaging) and σ2
ln(I)

is the variance of the natural logarithm of the measured signal intensity. This relation is valid as long as the diameter of the

Fresnel zone (i.e., F =
√
λL [m]) is larger than the inner-scale length, l0, and smaller than the outer-scale length, L0. These are

the length scales at which the turbulence spectrum transitions from inertial range to dissipation range and from production range110

to inertial range, respectively. For microwave links, this condition is usually valid (e.g., Ward et al., 2015). Note that in Eq. (2),

we chose the analytical expression for a point-source scintillometer (F ≫D), which is what most microwave scintillometers

are or approximate. However, at the microwave frequencies range used in this study, in combination with a short path, the

diameter of the Fresnel zone is such that the aperture-averaging effect, i.e., the latter two terms in Eq. (1), is not negligible.

Ward et al. (2015) show that for high transmitting frequencies, short path lengths and large apertures, these terms can have a115

significant effect at microwave frequencies, which is reflected in the set-up dependent integration constant c. For example, for

the microwave scintillometer used in this study, transmitting at 160.8 GHz with an aperture of 0.3 m, c equals 2.60, while for

the CML, transmitting at 38.2 GHz and an aperture of also 0.3 m, c equals 2.20. Neglecting the aperture averaging terms, i.e.,

assuming a perfect point-source scintillometer, c equals 2.01 independent of frequency, aperture and path length.
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To obtain σ2
ln(I), similar to Hartogensis (2006), it is common to first detrend, to prevent the introduction of fluctuations120

around the trend in the signal instead of turbulence, and normalise the natural logarithm of the signal intensity. Normalisation

and high-pass filtering (HPF), to remove signal intensity fluctuations as a result of absorption fluctuations, can both be done

with a moving average of which the window size corresponds to the desired cut-off of the HPF.

Cnn is related to the structure parameters of temperature CTT [K2 m-2/3], humidity Cqq [kg2 kg-2 m-2/3] and the cross-

structure parameter CTq [K kg kg-1 m-2/3], following (e.g., Beyrich et al., 2021):125

Cnn =
A2

T

T
2 CTT +

A2
q

q2
Cqq +2

ATAq

Tq
CTq, (3)

in which AT and Aq are the structure parameter coefficients for temperature and specific humidity, respectively, T is the aver-

age temperature [K] and q is the average specific humidity [kg kg-1]. AT and Aq depend on temperature, humidity and pressure

as well as the wavelength of the transmitted radiation (e.g., see Ward et al., 2013). In order to determine the contributions of

temperature and humidity fluctuations to the signal intensity fluctuations and relate these to the turbulent heat fluxes, most130

studies make use of two-wavelength scintillometry (though Leijnse et al., 2007b, used a microwave scintillometer in combina-

tion with a radiation budget constraint), in which two instruments operating at different wavelengths are combined. At optical

wavelengths (i.e., λ≈ 1 µm), the majority of the refractive index fluctuations are caused by temperature fluctuations, while

for microwave wavelengths (i.e., λ > 3 mm) both temperature and humidity fluctuations contribute to the refractive index

fluctuations.135

Subsequently, the structure parameters can be converted to turbulent heat fluxes using Monin-Obukhov Similarity Theory

(MOST) (e.g., as proposed by Wyngaard et al., 1971):

H =±ρcpKCTT
z1/3

√
CTT ,

LvE =±ρLvKCqq
z1/3

√
Cqq, (4)

in which H is the sensible heat flux [W m-2], LvE is the latent heat flux [W m-2], ρ is the air density [kg m-3], cp is the specific

heat capacity of air [J kg-1 K-1], Lv is the latent heat of vaporization [J kg-1], KCTT
and KCqq

are exchange coefficients for140

temperature and humidity, respectively, and z is the measurement height [m]. In Appendix A, the derivation for KCTT
and

KCqq
can be found.

3 Instrument and data description

3.1 Experimental setup

Our experiment is conducted using two commercial microwave links (CMLs), a microwave scintillometer (MWS) and an eddy-145

covariance system (EC) at the Ruisdael Observatory at Cabauw, the Netherlands (Fig. 1). The links and scintillometer transmit

along an 856 meter path between 51.9743 N, 4.9235 E and 51.9676 N, 4.9296 E. On both sides, the CMLs and MWS are

mounted on a 10 meter high vibration-free mast (as designed for a project of NWO, 2021). The site is located in a European
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marine west coast climate (Cfb in the Köppen classification). The water table is managed, so that the soil water content in the

rootzone is kept as much as possible at field capacity (e.g., Brauer et al., 2014). The surrounding terrain consists mostly of grass150

fields, regularly separated by open water ditches (see Fig. 1a), and some small villages. Under the prevailing south-westerly

wind conditions the scintillometer footprint does not contain any major obstacles within more than 2 km, except the 213 m flux

tower. Elevation differences in the area are within a few meters for distances up to more than 20 km (Ruisdael Observatory,

2024).

Figure 1. (a) Overview of CMLs, MWS and EC at the Ruisdael Observatory, Cabauw. Reported frequencies are the transmitting frequencies

per antenna. (b) The southern mast with the 3 instruments installed. From top to bottom: the receiver of the MWS, the Nokia Flexihopper

and the Ericsson MiniLink. (©Google maps)

3.2 Microwave Links155

For this study, we use data of two collocated CMLs and an MWS. Both CMLs were formerly part of a commercial mobile

phone network operated by T-Mobile Netherlands (currently, Odido Netherlands). These are a Nokia Flexihopper, mounted at

10 m above the surface, transmitting at 38.1745 GHz with a bandwidth of 0.9 MHz and an Ericsson MiniLink RAU2, mounted

at 9 m above the surface, transmitting at 38.1605 GHz with a bandwidth of 7 MHz. The diameters of the antennas of both links

are 0.3 m. Both links are bidirectional and transmit in the opposite direction at approximately 39.4 GHz. For this study, we160

only use the 38 GHz data (the 39 GHz data can be found in van der Valk et al., 2024b). Both devices only transmit and receive

horizontally polarized radiation.

Similar to van Leth et al. (2018), all signal intensities are sampled with a Campbell Scientific CR1000 datalogger at a 20 Hz

sampling frequency. To sample the signal intensity, we direct the analogue detector signal used for automatic gain control to

the datalogger. To convert the measured voltages to received signal intensities, we use the calibration curve provided by van165
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Leth et al. (2018) for the Nokia Flexihopper:

I =−34.228V +22.433, (5)

in which V is the measured voltage [V] by the datalogger and I is the intensity [dB].

For the Ericsson MiniLink, the following standard equation is used (S. Gombert, employee Alfatech, personal communica-

tion, 04-06-2024):170

I =−40V +120. (6)

The Nokia Flexihopper was installed on 11 September 2023 and the Ericsson MiniLink on 4 October 2023. We perform our

analysis based on 30-minute time intervals, a typical time interval for the determination of turbulent heat fluxes (e.g., Green

et al., 2001; Meijninger et al., 2002), until 18 October 2023. After this date (towards winter), the turbulent heat fluxes reduce, so

that these are less clearly reflected in the Cnn estimates. For the Nokia Flexihopper, the transmitting 38 GHz antenna has been175

accidentally moved on 25 September, slightly reducing the received signal intensity. In order to account for this, we exclude

this day from our analysis and treat our data as two separate subsets, i.e., before and after this day.

As a reference, we use a Radiometer Physics RPG-MWSC-160 microwave scintillometer, transmitting at 160.8 GHz, sam-

pled at 1 kHz using the internal datalogger of the MWS. The aperture of the MWS is 0.3 m. Data from the MWS is available

during the entire period, with only minor data gaps, 1 hour per day at most. The MWS directly provides an analogue-to-digital180

converter level ranging between 0 and 65536 and proportional to signal intensity, which can be used in the subsequent anal-

ysis. The MWS is specifically designed to measure the full spectral range of the signal intensity fluctuations caused by the

scintillation effect and link these fluctuations to the turbulent heat fluxes.

To compare the Cnn estimates obtained with the CMLs with the estimates from the MWS, we assume Cnn for 38 GHz and

160 GHz scintillation measurements to be the same, as suggested by the calculation proposed by Ward et al. (2013). Other185

studies suggest these values might slightly differ, though insignificantly in comparison to other uncertainties in our study. For

example using the analysis of Andreas (1989), for a sensible heat flux of 100 Wm-2 and a latent heat flux of 200 Wm-2 (and

an air density of 1.2 kg m-3, friction velocity of 0.2 ms-1, relative humidity of 50 % and a temperature of 293 K), the Cnn for

38 GHz is 6.384× 10−12 m-2/3 and the Cnn for 160 GHz is 6.392× 10−12 m-2/3, a difference ≪ 1% (based on the parameters

of Kooijmans and Hartogensis, 2016).190

To allow for a comparison of the power spectra of the CMLs with the MWS, we convert the scintillation measurements of

the 160 GHz MWS to equivalent 38 GHz scintillation data. To do so, we need to transform the variance on the y-axis and the

scintillation frequency of the MWS, i.e., the frequency on the x-axis in the power spectrum, fMWS,160GHz (Clifford, 1971), i.e.,

a coordinate transformation which conserves variance. The variance can be transformed through Eq. (2). Following Clifford

(1971), based on Eq. (1), the scintillation frequency is transformed as follows:195

fMWS,38GHz =
fnorm,38GHz

fnorm,160GHz
× fMWS,160GHz, (7)

in which fMWS,38GHz is the transformed frequency axis for the equivalent 38 GHz MWS data [Hz], fnorm [Hz] is commonly

used to normalise the frequency axis (e.g., Clifford, 1971). The value of fnorm depends on transmitting frequency, hence the
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values for 38 GHz (i.e. fnorm,38GHz) and 160 GHz (i.e. fnorm,160GHz) differ. To compute fnorm, the following equation is used

200

fnorm = u⊥(2πλL)
−1/2, (8)

which reduces the fraction in Eq. (7) to
√

38/160 = 0.4873. Hereafter, when referring to the MWS data, we refer to the

equivalent 38 GHz MWS data.

Additionally, we smooth the power spectra similar to Hartogensis (2006). To do so, the power spectrum is smoothed by

averaging the power at each frequency with those at the neighboring frequencies in a specified window. We specify the width205

of the window as 20 % of the specific frequency (to account for the increase in number of values towards higher frequencies in

the power spectra). The weighting of these points within the window is assumed to be bell-shaped, so that the adjacent points

have more influence on the smoothing than the points at the far end of the window.

After studying the Ericsson link time series and variances, we decided to exclude this link from this scintillometry analysis.

The 0.5 dB power quantization of the device prevents us from obtaining representative variances. Graphs of the time series and210

variances of the Ericsson link are available in the Appendix B. For the influence of power quantization on σ2
ln(I) of the Nokia

link, see Appendix C.

For our analysis we do not consider nighttime time intervals (i.e., incoming shortwave radiation below 20 W m-2), intervals

during which it rained or those that follow within an hour after a rain event (to exclude wet-antenna attenuation in our analysis),

and intervals with horizontal wind speeds above 8 m s-1 independent of the wind direction. The latter is applied because the215

Nokia CML vibrates above this wind speed, as we observe in our data an increase in variances above this limit (not shown).

We divide all time intervals that do not meet the previously described conditions randomly over a calibration and a validation

set. We use 80 % of the data for calibration and 20 % for validation. Additionally, for our corrected Cnn estimates (Sect. 5),

we remove all time intervals with Cnn estimates larger than 6.49× 10−12 m-2/3, which we expect to be the maximum value

for our dataset. Using Eqs. (3) and (4), this value is based on the assumption that 80 % of the maximum incoming shortwave220

radiation (i.e., approximately 800 W m-2 for this dataset) is used for the turbulent heat fluxes with a minimum Bowen ratio

(which results in a maximum Cnn) of 0.2 (and an air density of 1.2 kg m-3, friction velocity of 0.2 m s-1, a temperature of

293 K and a specific humidity of 0.015 kg kg-1).

3.3 Eddy Covariance data

EC measurements are used to compute additional independent Cnn estimates. The EC system consists of a sonic anemometer225

(Gill-R50) and an open-path H2O/CO2 sensor (LICOR-7500) and is installed at 3 meter above the ground (Bosveld et al.,

2020). The measurement frequency of the system is 10 Hz.

To estimate Cnn with EC measurements, we compute CTT , Cqq and CTq from the raw temperature and humidity measure-

ments, defined as (e.g., Stull, 1988),

Cyy ≡
(y(x)− y(x+ r))2

r2/3
=

(y(t)− y(t+∆t))2

(u∆t)2/3
, (9)230
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in which y(x) is either T or q at location x and r [m] is a separation distance. To estimate structure parameters from time

series, Taylor’s frozen turbulence hypothesis has to be assumed, so that y(x) is replaced by y(t) and r has been replaced by the

mean horizontal wind speed u multiplied with ∆t. Additionally, we have to correct for the height difference between the EC

measurements (i.e., 3 m) and the links (i.e., 10 m), as the structure parameters are not constant with height. To do so, we use

Eqs. A1 to A4 in Appendix A.235

It should be noted that the 10 Hz temperature and wind speed components for the EC show unexpected behaviour, because

some temperatures and wind speeds occur much more frequently than other temperatures and wind speeds that are approxi-

mately the same (See Fig. S1 for a histogram of the wind speed, temperature and humidity measurements during a full day,

i.e., 11 september 2023, to illustrate this unexpected behaviour). However, the overall behaviour of these components does not

show any abnormalities. Therefore, we expect this only has a minor influence on the CTT , Cqq , u∗ and H calculations, the240

latter two required in Eq. (A5).

For our analysis, we also make use of other meteorological measurements at Cabauw (available from KNMI Data Platform),

such as air temperature, humidity, wind speed, precipitation and radiation. The majority of these measurements are needed for

the conversion of the MWS data to 38 GHz (e.g., u⊥) and to correct the Nokia CML variances (Sect. 5).

3.4 Error Metrics245

In this study, we compare Cnn estimates of the various instruments. For all comparisons, we use the relative mean bias error

(RMBE), the 10-90 interquantile range (IQR) and Pearson’s correlation coefficient (r). For all metrics, we use the logarithmic

values of the Cnn estimates, since Cnn typically exhibits a log-normal distribution throughout the day (e.g., Kohsiek, 1982;

Green et al., 2001). We define the RMBE in comparison to our reference instruments and calculate it as:

RMBE = log(y)− log(x), (10)250

in which log indicates the decimal logarithm, y are the Cnn estimates of the instrument on the y-axis and x are the Cnn

estimates of the instrument on the x-axis, i.e., the reference instrument. Intuitively, the RMBE represents the order of magnitude

the values on the y-axis are larger (or smaller) than the reference values on the x-axis, due to the use of logarithmic values. The

IQR is calculated as follows:

IQR = P90 −P10, (11)255

in which P90 and P10 are the 90th and 10th percentiles of the difference between the logarithmic Cnn estimates of the instrument

on the y-axis and the logarithmic Cnn estimates of the instrument on the x-axis of a scatterplot. The IQR can be interpreted as

how many orders of magnitude the 90th percentile of the residuals is larger than the 10th percentile of the residuals. For r, we

use the logarithmic values of the Cnn estimates, so that this value visually corresponds to the correlation on a log-log plot.
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4 CML Cnn estimates without correction procedure260

An initial comparison of Cnn estimates, without any correction, between the Nokia CML and the MWS shows a systematic

overestimation by the Nokia CML in comparison to the MWS (Fig. 2). Also, the estimates of the Nokia CML are less dynamic

than the MWS, although part of this is caused by the larger values of the Nokia CML, at least one order of magnitude, so

that variations corresponding to those found in the MWS estimates are visually hard to identify in the Nokia CML estimates.

Additionally, outliers are especially present in the Cnn estimates of the Nokia CML. Generally, the reference instruments, i.e.,265

MWS and EC, show good agreement (Fig. 3).
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Figure 2. 30-min Cnn estimates obtained with the unprocessed Nokia CML data versus the MWS. The red dashed line is the 1:1 line.
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Figure 3. 30-min Cnn estimates obtained with the MWS versus the EC, corrected for the height difference (Sect. 3.3). The red line is the 1:1

line.

When zooming in on example power spectra of the Nokia CML and MWS signal intensities (Fig. 4), the MWS behaves

as expected based on theory and shows in the scintillation part of the spectrum (f > 10−1 Hz) a decrease with a constant

slope on log-log scale, similar to the theoretical spectrum and the expected slope for point-source scintillometers (Sect. 2).

The Nokia CML shows, in the scintillation part of the spectrum, a deviating behaviour from the MWS, as no decrease with270

increasing frequencies is found. Additionally, in this specific case, the Nokia CML seems to be more susceptible to absorption

fluctuations compared to the MWS, as reflected by the increased power spectrum values at low frequencies (f < 10−1 Hz), at

which absorption fluctuations typically occur (e.g., Medeiros Filho et al., 1983).

The differences in the scintillation part of the spectrum can be explained by considering a spectrum during which the

transmitting antenna had been turned off (Fig. 5). With no signal transmitted, the Nokia CML receiver registers a white noise275

signal. Figures 4 and 5 combined demonstrate that the total σ2
ln(I) consists of, in addition to scintillations and absorption

fluctuations, a large white noise signal that explains the large Cnn overestimation seen in Fig. 2. In general, this shows that

the white noise is the biggest limitation to obtain reasonable Cnn estimates using the Nokia CML. The noise present in the

received signal intensity aligns with the typical noise floor in radio receivers (e.g., Friis, 1944). The designed noise floor usually

depends on the intended application. Moreover, the values of these noise floors are often not publicly (fully) available. For our280

study, and in a broader sense for determining evaporation using CMLs, noise complicates the retrieval process and requires a

practical solution. In Sect. 5, we present two methods to correct the Cnn estimates using the Nokia CML for the presence of

noise.
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Figure 4. (a) Power spectrum of the signal intensities of the MWS (orange), Nokia CML (blue) and a theoretical spectrum, using Cnn

obtained with the MWS, of a theoretical 38 GHz MWS based on Eq. (1) on 12-09-2023 between 9:00 and 9:30 UTC and (b) the contribution

to the variance of the signal intensity per logarithmic frequency interval. The dashed line in (a) represents the theoretical power law for

point-source scintillometers, which is typically expected for microwave frequencies. Note that the MWS in our experimental setup does

not perfectly behave as point-source scintillometer (Sect. 2). The shaded areas are the raw power spectra, while the lines are the smoothed

versions of the spectra (following Hartogensis, 2006). Moreover, the MWS in this case is the equivalent 38 GHz MWS data (Eq. 7 in Sect.

3.2).
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Figure 5. (a) Power spectrum of the signal intensities of the Nokia CML on 25-11-2023 between 13:00 and 13:30 UTC, during which the

transmitting antenna was turned off and (b) the contribution to the variance of the signal intensity per logarithmic frequency interval. The

shaded areas are the raw power spectra, while the line is the smoothed versions of the spectra (following Hartogensis, 2006).

5 CML Cnn estimates with correction procedure

In this section, we provide two practical correction methods for the observed deviating parts in the power spectra of the Nokia285

CML. The first method is a basic noise correction based on CML signal itself, assuming that the CML noise always has the

same influence on the Cnn estimates. We refer to this method as constant noise correction. Our second method makes use of

the MWS and selects parts of the power spectra where the Nokia CML behaves in correspondence with the MWS, dependent

on crosswind conditions, and correct for the omitted part of the scintillation spectrum based on scintillation theory. We refer to

this method as spectral noise correction.290
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5.1 Method 1: Constant noise correction

Our first method assumes there is a constant noise floor with (scintillation) frequency and over all time intervals present in the

Nokia CML signal, probably as a consequence of the designed noise floor in the receiving antenna. Under this assumption, we

can write the variance of the CML as:

σ2
CML = σ2

absorption +σ2
scintillations +σ2

noise. (12)295

The method consists of estimating the contribution of the noise floor to σ2
ln(I) by subtracting a low quantile of all Nokia CML-

derived values of σ2
ln(I) (or Cnn) from itself, based on the calibration part of the dataset. All values below this percentile are

removed, since these would become negative after correction.

Step 1. Noise estimation (only calibration part of the dataset)

(a) Absorption filter: For each time interval, we apply a high-pass filter at 0.015 Hz, by subtracting the moving average300

with a window size of 1/0.015 = 66.7 s from the signal intensity time series. We have selected this high-pass filter

value, as it retains 95% of the variance due to scintillation for the CML at crosswind speeds of 0.5 m s-1 for our

setup. For higher crosswind speeds, the spectrum shifts towards higher frequencies, so that an even larger fraction

of the variance is retained.

(b) Determine σ2
noise: We assume the 7th percentile of the σ2

ln(I) values of all time intervals belonging to the calibration305

dataset to represent σ2
noise. Calibration of the RMBE in comparison to the MWS shows that this percentile results

in a relatively low RMBE while still maintaining a large portion of the observations (i.e., 93 % of all time intervals).

It should be noted that the influence of the selected quantile on the performance of this method is relatively low.

Other quantiles in this range would result in a similar performance of the CML Cnn estimates.

Step 2. Noise correction application to obtain Cnn310

(a) Subtract σ2
noise: In order to obtain time intervals with corrected σ2

ln(I), we subtract the σ2
noise from σ2

ln(I) for the

high-pass filtered Nokia CML for all time intervals.

(b) Clean noise-corrected σ2
ln(I): Due to the noise determination in step 1b, it is possible that negative σ2

ln(I) values

occur as well, whereas variances should be positive by definition. Therefore, we remove all time intervals with

negative corrected σ2
ln(I) for the Nokia CML, i.e., 7 % of all available time intervals for this method.315

(c) Compute Cnn: For each time interval, we compute Cnn estimates from the corrected and cleaned σ2
ln(I) (Eq. 2).

5.2 Method 2: Spectral noise correction

In this method, we make use of the MWS to determine the noise contribution to the Nokia CML signal. Also, we take into

account the crosswind condition, as the scintillation spectrum shifts to higher frequencies with higher crosswind speeds. We

therefore select, depending on the crosswind, those parts of the spectrum where the Nokia CML and the MWS data behave320
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similarly. For example, in Fig. 4a between approximately 0.1 and 1 Hz, the Nokia CML and the MWS show a similar behaviour,

although with an offset for the Nokia CML. After computing the (partial) variance of the selected parts of the spectrum, we

correct for the fraction of σ2
ln(I) omitted based on the theoretical spectra (Eq. 1). For operational CMLs this method is typically

not possible, but it shows the potential of using CMLs as scintillometers.

Figure 6. Visualisation of the spectral noise method using hypothetical power spectra. Step 1a: Hypothetical power spectrum with application

of a high-pass filter at 0.015 Hz to the Nokia CML (blue) and the MWS (green) (a), step 1b: Snoise calculation between 1 and 10 Hz per

0.2 log(f ) frequency bin for the Nokia CML and MWS for f ×S spectrum (b), Step 1c: correcting SNokia with S̃noise per frequency bin

(c), Step 1d: Computing σ2
ln(I) per frequency bin for both devices (d), Step 1e: selected frequency bins for an individual power spectrum by

comparing the corrected Nokia CML with the MWS (e) and Step 1f: theoretical spectrum in which red hatched area indicates the selected

frequency bins based on step 1e (i.e., the denominator in Eq. 14) and the orange area indicates the full frequency axis (i.e., the numerator in

Eq. 14). f0 and f1 in (e) and (f) depend on crosswind conditions and can be found in Table 1.

Step 1. Noise estimation (only calibration part of the dataset)325

15



(a) Absorption filter: Similar to step 1a in Sect. 5.1, we apply a high-pass filter at 0.015 Hz for each time interval, by

subtracting the moving average with a window size of 1/0.015 = 66.7 s from the signal intensity time series (Fig.

6a).

(b) Subsample power spectrum: For each time interval, we compute the average S per 0.2 log(f ) frequency bin be-

tween 0.015 and 10 Hz for the CML and MWS (the first frequency bin is between -1.82 log(Hz), i.e., 0.015 Hz,330

and -1.6 log(Hz)). We assume that the region between the CML and MWS for f > 1 Hz is dominated by noise

and contain a low contribution from scintillations (Fig. 4), which is valid for relatively low crosswind speeds based

on theory (Fig. D1). Per bin for f > 1 Hz, we subtract the S for the MWS from S for the Nokia CML, resulting

in Snoise per bin for each time interval. We take the median of all frequency bins and time intervals resulting in a

single estimate of Snoise between 1 and 10 Hz for all time intervals (Fig. 6b), hereafter denoted as S̃noise.335

(c) Subtract S̃noise from subsampled bins: For each time interval and bin, we subtract S̃noise from the S of the Nokia

CML to obtain a corrected S. This corrects for the contribution of the noise to the CML (Fig. 6c).

(d) Compute σ2
ln(I) per frequency bin: For the corrected S of the Nokia CML and the S of the MWS, we compute

the σ2
ln(I) per frequency bin for each time interval (Fig. 6d). To do so, we make use of the definition to compute

variances from power spectra, so that,340

σ2
ln(I) =

f1∫
f0

S d(f) =

ln(f1)∫
ln(f0)

f ×S dln(f). (13)

(e) Determine frequency range over which Nokia CML resolves scintillations: We assume the corrected Nokia CML

resolves part of the scintillations. Therefore, we establish a frequency range in which the Nokia CML behaves in

correspondence with the MWS. For the whole dataset, we determine the frequency bins for which the CML and

MWS spectrum are in close agreement as a function of crosswind (Fig. 6e). To this end, we separate the dataset in345

crosswind classes between 0 and 5 m s-1 with class sizes of 1 m s-1. Within each crosswind class, frequency bins

are deemed similar when they meet the following criteria over all timesteps: a) they should contain more than 40

observations (in the calibration part of the data), and b) the RMBE of σ2
ln(I) should be below 1. This is done to

make sure we have a representative sample size of observations per wind class which does not differ, on average,

more than one order of magnitude in comparison to the MWS estimates. The resulting frequency ranges can be350

found in Table 1.

(f) Transfer function for omitted part of the power spectrum: By selecting parts of the power spectra, we have to

correct for the omitted part of the spectrum. Therefore, we determine a transfer function that corrects for the

spectral contribution of scintillations outside the selected frequency bins for which the Nokia CML agrees well

with the MWS (Fig. 6f). We do this per crosswind class using the theoretical spectrum (Eq. 1). To compute what355

fraction the σ2
ln(I) of the selected parts of the spectrum represent, Eq. (1) only requires k (i.e., a function of f ),

u⊥ and D. Cnn does not affect this fraction, as it only affects the variance (i.e., the area below the scintillation
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spectrum) and not the location in the frequency domain. This results in a transfer function TF,

TF =

∫∞
−∞ f ×Stheory dln(f)∫ ln(f1)

ln(f0)
f ×Stheory dln(f)

, (14)

of which f0 and f1 depend on crosswind conditions and can be found in Table 1 and Stheory in this case refers to360

the theoretical power spectrum (Eq. 1). The values for the transfer function are shown in Fig. 7. For u⊥, we use

the exact value and not the crosswind class values, so that within each class the value of the transfer function still

varies, especially for the lowest crosswind speeds. Note that the values for TF between crosswind classes increase

nearly monotonously with increasing crosswind, as would be expected since the power spectrum shifts to higher

scintillation frequencies with higher crosswinds. The minor shifts in TF are a consequence of the different total365

width of the selected frequency bins of the power spectrum and location of these selected bins (Table 1). Stricter

selection criteria would cause TF to show larger shifts between crosswind classes (not shown here).

Table 1. Lower, f0, and upper, f1, bound of spectra with an RMBE below 1 and more than 40 observations per crosswind class. Note that

values for f0 and f1 are written as decimal logarithm in this table, while Eq. 14 makes use of the bounds written as natural logarithms to

compute TF.

u⊥ class [m s-1] log(f0 [Hz]) log(f1 [Hz])

0 - 1 -1.82 0.2

1 - 2 -1.82 0.4

2 - 3 -1.6 0.6

3 - 4 -1.6 0.6

4 - 5 -1.6 0.6

0 1 2 3 4 5
u  [m s 1]

1.00

1.05

1.10

1.15

1.20

1.25

TF
 [-

]

Figure 7. The values of the Transfer Function TF (Eq. 14) as function of crosswind u⊥.

Step 2. Noise correction application to obtain Cnn
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(a) Compute total σ2
ln(I): To determine the σ2

ln(I) as a result of scintillations, we integrate for each time interval the

σ2
ln(I) of the selected parts of the spectrum (step 1b, Table 1), depending on crosswind class, and multiply these370

values with the corresponding transfer function (Eq. 14).

(b) Clean noise-corrected σ2
ln(I): Due to the noise determination in step 1a and 1b, it is possible that negative σ2

ln(I)

values occur as well, whereas variances should be positive by definition. Therefore, we remove all time intervals

with negative corrected σ2
ln(I) for the Nokia CML, i.e., 9 % of all available time intervals for this method.

(c) Compute Cnn: For each time interval, we compute Cnn estimates from the corrected and cleaned σ2
ln(I) (Eq. 2).375

5.3 Performance of the two correction methods
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Figure 8. Time series with 30-min Cnn estimates on (a) a sunny day, 14 September 2023, and (b) a cloudy day, 9 October 2023. This time

series consists of calibration and validation time intervals. The validation time intervals are 9:30, 11:30 and 16:00 on 14 September, and 8:00

and 14:30 on 9 October.
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Time series of a sunny day versus a cloudy day (Figs. 8a and b), show that both methods capture the daily cycle typically found

in Cnn estimates, but with some more outliers compared to the reference instruments. Similar to the reference instruments,

the Cnn estimates of our corrections are generally higher on the sunny day than on the cloudy day. Both methods show more

outliers on the cloudy day than the sunny day, especially the spectral-noise method. For other cloudy days (and occasionally380

the start and end of the day), a similar more noisy behaviour is observed for both methods. We attribute this to the relatively

low Cnn during these days (and moments), which makes it more complex to extract the scintillation signal from the noise

dominated Nokia signal.

Cnn MWS [m 2/3]
10 15

10 14

10 13

10 12

10 11

C n
n N

ok
ia

 [m
2/

3 ]

Method 1: Constant noise

n = 83
RMBE = 0.28

IQR = 0.97
r = 0.20

(a)

Cnn MWS [m 2/3]

Method 2: Spectral noise

n = 82
RMBE = 0.30

IQR = 0.73
r = 0.33

(b)

10 15 10 14 10 13 10 12 10 11

Cnn EC [m 2/3]

10 15

10 14

10 13

10 12

10 11

C n
n N

ok
ia

 [m
2/

3 ]

n = 68
RMBE = 0.27

IQR = 0.96
r = 0.22

(c)

10 15 10 14 10 13 10 12 10 11

Cnn EC [m 2/3]

n = 67
RMBE = 0.29

IQR = 0.86
r = 0.24

(d)

Figure 9. 30-min Cnn estimates obtained with the Nokia CML for all time intervals in the validation part of our data, post-processed with

the constant-noise method (a and c) and spectral-noise method (b and d) versus the MWS (a and b) and the EC (c and d) estimates, corrected

for the height difference (Sect. 3.3). The red line is the 1:1 line. For the calibration results, see Fig. E1.

For our entire dataset, both proposed methods show a huge improvement (Fig. 9) in comparison to the unprocessed Nokia

CML Cnn estimates (Fig. 2). The RMBE related to both the MWS and EC has reduced from 1.2 to at least 0.3, which is385

major improvement in comparison to the RMBE of the comparison between the reference instruments (i.e., 0.01), indicating

that the proposed methods overestimate Cnn at most with a factor 2 (i.e., 100.3), which is also visible in Fig. 8a, where both

methods are seen to overestimate the references during the entire day. Also, both our proposed methods increase the correlation
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coefficient, especially the spectral-noise method. The IQR increase slightly after our correction methods (partly a consequence

of taking the logarithmic values of Cnn). Between the two correction methods, the spectral-noise method has a lower IQR,390

which is a consequence of the nature of our corrections, as the constant-noise method only subtracts a constant value, while

the spectral-noise method removes part of the spectrum in which the influence of the noise on σ2
ln(I) is relatively high (i.e.,

f > 1 Hz). Moreover, the performance of both methods does not seem to show any large dependence on weather conditions,

like temperature, crosswind, humidity and incoming shortwave radiation (Fig. F1)

6 Discussion395

This study aims to explore the potential and limitations of using CMLs as microwave scintillometers. Our study is an idealized

experiment, as we use 20 Hz data from two 38 GHz CMLs formerly employed by a mobile network operator in The Netherlands

and are able to compare these CMLs with a dedicated 160 GHz microwave scintillometer. Even though this does not match

the common sampling strategy of CMLs in telecommunication networks, it enables us to perform a detailed study. We initially

focus on estimating the structure parameter of the refractive index Cnn using CMLs, as this is a key feature in the workflow to400

obtain the turbulent heat fluxes with scintillation theory.

6.1 Cnn estimates using CMLs

As a proof of concept, our results show that, under certain conditions, CMLs could be used to estimate Cnn, though with a

larger uncertainty and bias with respect to both reference instruments, an MWS and an EC, than the comparison between the

reference instruments among each other. Our two proposed methods to correct the Nokia CML scintillation spectra and obtain405

Cnn estimates show a comparable behaviour, though the spectral-noise method performs slightly better than the constant-noise

method, especially regarding the spread. An advantage of the constant-noise method is that it is a relatively simple correction

method which does not require the use of an MWS. Overall, this shows that considering crosswind conditions, which cause

a shift of the the power spectrum along the frequency axis, and selecting the frequency ranges over which scintillations are

best resolved, also improves the Cnn estimation. However, it also requires a more elaborate study of the power spectrum of the410

CML and the MWS, which might not always be possible.

As the spectral-noise method requires the presence of an MWS to determine the contribution of noise to Cnn, the ability to

transfer our methods to other datasets is limited. When an MWS is available to install next to a CML, both our methods can be

used to estimate Cnn using CMLs, under the condition that the noise in the CML is of a similar nature as the noise in the Nokia

CML. This even holds for different experimental conditions, such as other path lengths or installation heights, since these are415

indirectly accounted for in our methods. The only difficulty might arise when the contribution of noise to the signal intensity

fluctuations is relatively large in comparison to the scintillation fluctuations. Moreover for the spectral-noise method, when

assuming the noise is caused by a stationary white noise floor in the receiving antenna (e.g., Friis, 1944), installing an MWS

next to the CML would even not be required for a full experimental period, but it would be sufficient to perform a one-time

determination of the noise floor, possibly even for a single type of CML.420
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However, usually an MWS is not available to install next to a CML, let alone an entire network of CMLs. Therefore, the

constant-noise method is most promising for application in other experimental conditions. However, for other CML types most

often it will be required to have a collocated MWS, in order to determine the nature of the signal, including the noise. Having

full information in advance on the introduction of noise in the receiving antenna of CMLs would allow for a more precise

correction of the noise, possibly not even requiring the use of an MWS. For example, this could shed light on the dependency425

of a noise floor on the signal intensity, temperature or the possible presence of any frequency-domain filter. Yet, usually this

information is not available or shared publicly, complicating the Cnn estimation.

Previous scintillometer studies confirm the obtained correspondence between microwave scintillometer Cnn estimates and

in-situ EC measurements. Herben and Kohsiek (1984), who built on Kohsiek and Herben (1983), reported Cnn estimates

with a 30 GHz scintillometer at 60 meter above the surface showing a similar behaviour as Cnn estimates obtained with430

high-frequency temperature, humidity and wind measurements. Similarly, Hill et al. (1988) showed that Cnn measurements

performed by a 173 GHz scintillometer only slightly underestimated Cnn estimates obtained with EC high-frequency meteoro-

logical measurements. Beyrich et al. (2005) and Ward et al. (2015), reported CTT , Cqq and CTq estimates from an EC system

which were comparable to measurements from a dual-beam scintillometer setup (optical and microwave). Hence, compared to

previous studies our Cnn estimates from CMLs exhibit a relatively large uncertainty.435

Even though other studies outperform our Cnn estimates, these all require high-quality meteorological input data, which

are not often available, whereas Cnn estimates obtained from CML signal intensities would be a more direct method to ob-

tain Cnn, do not require any additional measurements and are available from a potentially larger number of devices with a

nearly continental coverage. Van de Boer et al. (2014) used single-level observations to obtain the energy balance and used

the Penman-Monteith equation to estimate Cnn. A comparison of their simulated Cnn estimates with EC-based Cnn estimates440

over grassland seems to outperform our comparison between CML and EC estimates, though their method shows a large depen-

dence on the quality of the meteorological input data. Similarly, Tunick (2003) estimated Cnn using two-level meteorological

observations of wind speed, temperature and humidity. Also, Andreas (1988) provided Cnn estimates over snow and ice by

using meteorological observations and emphasized the strong dependence of his estimates on the non-linear relation between

the fluxes and Cnn and the dependence on the assumed Bowen ratio.445

6.2 The potential of using CMLs as scintillometers

Several aspects of CML networks could prevent obtaining similar Cnn estimates, as CMLs are not designed to measure the

scintillations. Firstly, power quantization affects the measured variances of signal intensity. From the used devices, a Nokia and

an Ericsson CML, we rejected the Ericsson CML to estimate Cnn using scintillation theory, because of 0.5 dB power quan-

tization (i.e., the discretization of the signal intensity). Power quantization is a commonly applied method in CML networks,450

typically ranging between 0.1 and 1 dB (Chwala and Kunstmann, 2019). We tested the impact of power quantization on our

data and expect that for the smallest quantization steps, Cnn estimates could still be feasible, though quantization would be an

additional source of uncertainty (Fig. C1a and b).
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Secondly, the CMLs have not been designed with the aim to measure scintillations, which is also reflected by the presence

of noise in signal intensity of the Nokia CML. To correct for this inability to capture the scintillations, we determined our455

noise levels with the MWS, which usually is not possible for a CML. In order to determine how antennas modify the received

signal intensity, e.g., as a consequence of different internal hardware design choices, a comparison with an MWS would be

required for each specific type of CML antenna before being able to estimate Cnn or having full information on the noise.

Alternatively, the noise sources for each component of a CML device could be characterized in case high-frequency data is

available. Moreover, the mounting mechanism of the CMLs is not designed to be vibration free, as the Nokia CML started to460

vibrate above 8 m s-1, even though the mast itself remained free of vibrations. In addition, the used masts in CML networks

might also not be vibration-free. Note that for long paths, saturation of the scintillation signal could also influence obtained

Cnn estimates (e.g., see Meijninger et al., 2006, for the saturation limit for microwave frequencies).

Thirdly, typical temporal sampling strategies applied in CML networks are on a coarser temporal resolution than our 20 Hz

sampling. Typically, CML signal intensities are stored in the network management system every 15 minutes with minimum465

and maximum values of the signal intensity (and occasionally also with a mean intensity included). Another sampling strategy,

developed by Chwala et al. (2016), allows to select an instantaneous sampling strategy with time intervals as small as 1 s, of

which variances might approach actual signal variances (Fig. C1c). Our selected 20 Hz sampling strategy mimics the typical

instantaneous sampling strategy on which the coarser sampling strategies are based. However, it could be that adding the

variance to the operationally reported signal intensities is relatively easy, as calculating the variance is only one additional470

computation from calculating the mean value per time interval.

This study focused on obtaining Cnn estimates, while to compute the turbulent heat fluxes additional information, and

thus uncertainty, on the distribution between temperature and humidity fluctuations is required. For scintillometer setups, an

optical link is usually collocated next to the MWS. The optical link is mostly sensitive to temperature fluctuations (and can

also be used to solely determine the sensible heat flux), so that the structure parameter of humidity can be extracted from475

the Cnn estimates by the MWS. For (the vast majority of) CMLs, no in-situ measurements are available, complicating the

required separation between the temperature and humidity structure parameters. To do so, it would be required to use global

meteorological data, such as satellite measurements or model data, but it is questionable how accurate and useful this would

be to eventually retrieve the turbulent heat fluxes. Either way, the required assumptions in this computation step introduce

additional uncertainty, possibly making the overall uncertainty in the turbulent heat fluxes relatively large. In a follow-up480

study, we will focus on obtaining the turbulent heat fluxes from the presented methods to estimate Cnn. As a potential solution

to reduce the relatively large uncertainties, we will look into the influence of upscaling the 30-min estimates to daily estimates.

Additionally, we aim to use a more extensive dataset (around a full year), instead of 37 days in September and October, to

identify potential influences of other weather circumstances on obtaining Cnn estimates.
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7 Summary and conclusions485

In this study, we explored the potential of using CMLs as scintillometers based on a dataset with two formerly employed

CMLs, an MWS (all collocated) and an EC system along the link path. We focused on obtaining Cnn estimates using CMLs

collecting 20 Hz data, as scintillation theory requires Cnn to be able to compute the turbulent heat fluxes.

An initial comparison of the Nokia Flexihopper and the MWS showed an overestimation of Cnn, due to the addition of

white noise over the signal intensity. To correct for this, we propose two methods: 1) we apply a high-pass filter and subtract490

a low quantile of the resulting variances of the Nokia Flexihopper and 2) we correct for the noise by comparison with the

MWS and select parts of the power spectra where the Nokia Flexihopper behaves in correspondence with scintillation theory,

also considering different crosswind conditions, and correct for the underrepresented part of the scintillation spectrum based

on theoretical scintillation spectra. Both proposed methods show a huge improvement in terms of the RMBE with respect to

the MWS and EC estimates compared to uncorrected Cnn estimates, while the second method also improves the IQR and495

correlation coefficient in comparison to the first method by selecting the best performing parts of the power spectra. However,

these values are still larger than the RMBE, IQR and correlation coefficient between the MWS and the EC, and also appear

larger than Cnn estimates from previous studies using meteorological data. On the other hand, Cnn estimates from CMLs

provide a more direct measurement of Cnn with a potentially large global coverage.

We rejected the Ericsson MiniLink to estimate Cnn due to the power quantization present in the signal, which is common500

for part of the CMLs. This illustrates that some of the challenges faced when estimating Cnn are a consequence of design

choices made for CMLs. Next to power quantization and the noise found in the Nokia CML, CMLs are usually not mounted

on vibration-free masts (or the mounts of the CMLs are not vibration-free), so that under specific wind conditions the antennas

could start to vibrate. Additionally, typical temporal sampling strategies in CML network management systems are on a coarser

temporal resolution than our 20 Hz sampling. Yet, having network management systems to report also the variance per time505

interval could be an effective measure, which would not require much more computational memory than the mean signal

already reported by some networks. More in general, one of our proposed methods requires the presence of a collocated

reference scintillometer, which is obviously not possible for each CML, possibly not even for each type of CML.

In general, our study illustrates the potential to use CMLs as scintillometers, but also illustrates some of the major challenges,

especially as a result of the design choices made for CMLs. A clear next challenge is to obtain the turbulent heat fluxes from510

these Cnn estimates, if possible without the need for elaborate additional meteorological measurement data. Additionally, more

comparisons of CMLs with MWSs are required to estimate the potential of other CML types, also in other climatic settings,

and assess the overall potential of CMLs as scintillometers. Lastly, an attempt could be made to directly retrieve information on

the turbulent heat fluxes from the received signal intensities without following the scintillation theory. For example statistical

methods or machine learning could be used for this, even though they will require a large amount of data, they might not be515

able to suppress noise in the received signal intensities, and they would probably differ per CML type.

If the aforementioned challenges were to be successfully tackled, in theory it would be possible to estimate turbulent heat

fluxes on close-to-continental scales, due to the large number of CMLs around the world. However, this would also require
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willingness from network operators and antenna manufacturers to support obtaining such spatial turbulent fluxes estimates. In

the first place, it would be required to obtain signal intensity data from the network operators. Moreover, the currently most520

common sampling strategy in the network management systems is a minimum and maximum value of the received signal

intensity once every 15 minutes. For turbulent flux estimates, it would be beneficial if the signal intensities would be stored at a

higher sampling frequency, in order to be able to adequately estimate the variance per time interval. Lastly, close collaboration

with CML antenna manufacturers would be needed to help understand and quantify the noise sources which are present in the

different CML types.525

Code and data availability. The MWS and CML data can be found at van der Valk et al. (2024b). KNMI data can be dowloaded from

https://dataplatform.knmi.nl/ (KNMI Data Platform). The raw EC data has been acquired directly from KNMI via opendata@knmi.nl. For

the code used to perform the analysis and create the figures, see https://github.com/LDvdValk/Python_scripts_vanderValketal2025.git

Appendix A: Derivation of the exchange coefficients KCTT and KCqq

The exchange coefficient for temperature KCTT
and humidity KCqq

can be derived using Monin-Obukhov Similarity Theory530

(MOST). The structure parameters CTT and Cqq can be related to the turbulent temperature T∗ [K] and humidity scales

q∗ [kg kg-1],

CTT z
2/3

T
2

∗

= fTT

(
z

LOb

)
,

Cqqz
2/3

q2∗
= fqq

(
z

LOb

)
, (A1)

in which LOb is the Obukhov length [m], and fTT and fqq are universal functions.

The turbulent heat fluxes are directly related to T∗ and q∗:535

T∗ =− H

ρcpu∗
,

q∗ =
(1− q)LvE

ρLvu∗
, (A2)

in which cp is the specific heat capacity of air at constant pressure [J kg-1 K-1], u∗ is the friction velocity [m s-1] and Lv is the

latent heat of vaporization [J kg-1]. Subsequently, KCTT
and KCqq can be calculated as,

KCTT
= u∗f

−1/2
TT ,

KCqq
= u∗(1− q)−1/2f−1/2

qq . (A3)
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Kooijmans and Hartogensis (2016) computed the similarity functions fTT and fqq for unstable conditions from various540

experiments,

fTT = aT

(
1− bT

z

LOb

)−2/3

,

fqq = aq

(
1− bq

z

LOb

)−2/3

, (A4)

in which the aT and bT are on average 5.6 (uncertainty range based on the 10th and 90th quantiles: 5.1< aT < 6.3) and 6.5

(uncertainty range: 5.5< bT < 7.6), respectively. For aq and bq the average values are 4.5 (uncertainty range: 4.3< aq < 4.7)

and 7.3 (uncertainty range: 7.0< bq < 7.7). LOb is defined as,545

LOb =−ρcpTu
3
∗

gκH
, (A5)

in which g is the gravitational acceleration [m s-2] and κ is the von-Karmán constant.

Appendix B: Results for the Ericsson MiniLink
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Figure B1. 30-min Cnn estimates obtained with the Ericsson MiniLink data versus the MWS. The red dashed line is the 1:1 line. Note that

the data has not been cropped, but has a maximum Cnn value around 10-11 m-2/3.
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Figure B2. Timeseries of received signal intensity for Nokia Flexihopper and Ericsson MiniLink on 5 October 2023. The inset graph shows

a 30 second snapshot of the Ericsson timeseries.
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Appendix C: Influence of quantization and temporal sampling on signal intensity variance
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Figure C1. 30-min σ2
ln(I) obtained with Nokia CML data with 0.1 dB power quantization (a), Nokia CML data with 0.5 dB power quantiza-

tion (b) and 1 second Nokia CML data (c) versus the original 20 Hz Nokia CML data. The red dashed line is the 1:1 line.
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Appendix D: Theoretical captured fraction below 1 Hz for Nokia550
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Figure D1. Theoretical fraction of the total variance due to scintillations occurring above 1 Hz for the Nokia CML as function of crosswind

speed u⊥. These are derived from the theoretical spectrum in Eq. (1) using the characteristics of the Nokia CML.
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Appendix E: Performance of Cnn estimates part of the calibration dataset
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Figure E1. 30-min Cnn estimates obtained with the Nokia CML for all time intervals in the calibration part of our data, post-processed with

the constant-noise method (a and c) and spectral-noise method (b and d) versus the MWS (a and b) and the EC (c and d) estimates, corrected

for the height difference (Sect. 3.3). The red line is the 1:1 line.
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Appendix F: Performance of correction methods as function of weather conditions
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Figure F1. Ratio of Cnn estimates obtained with the Nokia CML correction methods and the MWS versus 2 m air temperature (a and b), 10

m crosswind conditions (c and d), 2 m relative humidity (e and f) and incoming shortwave radiation (g and h) for the calibration part of the

dataset.
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