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Table S1. Additive 19 images with two types of features added to the training or validation data list 

# Scene names features Training or validation list Repeat times 

1 20180108T184332_dmi_prep.nc highly winded water training 4 

2 20180923T201918_dmi_prep.nc highly winded water training 4 

3 20180929T081203_dmi_prep.nc highly winded water training 4 

4 20181022T180429_dmi_prep.nc highly winded water training 4 

5 20190228T214134_cis_prep.nc highly winded water training 4 

6 20190308T101217_cis_prep.nc level thin ice training 8 

7 20190411T205511_dmi_prep.nc level thin ice training 8 

8 20190519T194808_dmi_prep.nc highly winded water training 4 

9 20190525T203543_dmi_prep.nc highly winded water training, validation 4 

10 20190730T123155_cis_prep.nc level thin ice training, validation 8 

11 20190807T104254_cis_prep.nc highly winded water training 4 

12 20191201T205227_dmi_prep.nc highly winded water training 4 

13 20200514T104800_dmi_prep.nc level thin ice training 8 

14 20200910T194821_dmi_prep.nc highly winded water training 4 

15 20201029T193925_dmi_prep.nc highly winded water training, validation 4 

16 20210205T214147_cis_prep.nc level thin ice training 8 

17 20210220T082107_dmi_prep.nc level thin ice training 8 

18 20210624T074828_dmi_prep.nc level thin ice training 8 

19 20211023T194827_dmi_prep.nc highly winded water training 4 
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Figure S1 presents the analysis for 13 Harallick texture features (Haralick et al., 1973). Firstly, (b) shows that the 

highest J-M distance (Bruzzone et al., 1995) values occur in the 1, 3, and 6 (i.e., HV Cont, HV Var, HV Sum Var) textures, 

which are consistent with the experiment in (c) that three textures all have good separation ability for different ice types. 

Referring the example visualization in (a), the 1, 3, and 6 textures tend to highlight bright ice pixels as distinguishable 15 

whereas compress the low backscatter surfaces as dark areas. High correlation happens within the 1, 3, and 6 textures. Based 

on experience from previous studies (e.g., the Table 1 in (Guo et al., 2023)), we selected the 1-HV Cont texture. Additionally, 

both (a) and (c) indicate that HV Sum Avg provides the clearest ice type segmentation. Sum Avg respects the window-mean 

backscatter image, an essential basis for sea ice classification. Therefore, HV Sum Avg and HV Cont, as well as the similar 

HH Sum Avg and HH Cont textures were finally selected. 20 
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Figure S1. (a) the 13 Harallick textures of one image calculated using the codes from https://github.com/ nansencenter/MOIRA, which is 

consistent with the texture computation in  (Park et al., 2020). The image was acquired on Aug. 19, 2019. (b) shows the scattered J-M 

distances of 13 Harallick textures calculated between the U-Net predicted ice and water pixels in the 182 SAR HV images. Here, the black 

level short-lines are the non-zero average J-M distances. (c) shows the feature importance of the binary sub-classifiers, referenced from 25 
(Park et al., 2020) under the Creative Commons Attribution 4.0 License that is accessible on https://www.the-cryosphere.net/policies/ 

licence_and_copyright.html. 4 textures are selected and marked as the red fonts in (c). 
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Figure S2. Another five examples with different ice conditions. The first row shows the individual Sentinel-1 SAR HV grayscale images, 30 
the second row shows the U-Net predicted SIC maps from which ≥30% SIC is used to segment major ice regions, the third row shows the 

Multi-textRG algorithm detected ice extent. In the figures, the U-Net model achieved to distinguish semantic ice regions from winded 

open water with high accuracy and the Multi-textRG algorithm further achieved to extract ice pixel details under varied ice conditions. 
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Figure S3. Another one example with winds covered broken ice, the integrated ice detection procedure combining the U-Net model with 

the Multi-textRG algorithm.  
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