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Response to the editor 

Thank the editor for giving us this valuable opportunity to finalize our manuscript. We really 

appreciate your kind comments.  

Major revisions of the manuscript we have made are added at the latter part of this manuscript. 

Please see the bookmarks on the left side in the PDF file for quick and clear guidance. 

We further reviewed the comments from two reviewers and the editor, i.e., CC1, CC2 and EC1. We 

would like to conclude them as the following five major points.  

Point 1: To further explain the motivation and necessities to integrate the U-Net with the Multi-textRG 

algorithm.  

Revision 1: We reorganized the structure of Section Introduction. From the importance of precise 

sea ice classification, to SAR and PMW data fusion advantages, to the algorithm status of SAR-based 

ice classification, to the algorithm challenges, to the supervised deep learning relying on limited fine-

grained sample labels, to more available ice charts labels, to combination of region-based U-Net and 

pixel-based Multi-textRG, and to their single effects.  

We have made extensive revisions to the Introduction with a clearer restructured logic. These 

improvements reflect the insights gained from our most important cognition that have settled after all 

this time, as well as the most meaningful perspective guided by the comments from the reviewers and 

editors. We particularly appreciate your contributions for enhancing the quality of this manuscript.  

Point 2: To state the innovation of this article is Multi-textRG algorithm and introduce clearly about 

its advantages.  

Revision 2: We have always stated that the U-Net model is provided by the AI4Arctic. But, we did 

new training by ourselves with new Sentinel-1 SAR image processing. While the data processing 

changed and the prediction goals changes (SIC estimation changed to binary SIE segmentation), the 

model training most likely changes as well. Actually, it does.  

In the last paragraph of Section Introduction, we have emphasized the respective function of U-Net 

and Multi-textRG. We believe we have indicated that the Multi-textRG is the major newly proposed 

one. “Moreover, Multi-textRG can operate independently when rough SIE references (such as NSIDC 

IMS data) are available. However, considering operational applicability and the reliability of third-

party data, this paper remains to elaborate on the training configuration of the Sentinel-1/AMSR2-

based U-Net model and details the critical data preprocessing steps.”  

Point 3: To introduce the diversity of ice conditions contained in the AI4Arctic dataset.  

Revision 3: We included several sentences to explain the ice condition diversity in SAR images in the 

AI4Arctic dataset. They are “The Sentinel-1 SAR images in the AI4Arctic dataset cover the waters 

surrounding Greenland and the Canadian Arctic Archipelago from January 8, 2018, to December 21, 

2021. These regions are characterized by rapid ice drift, continuous and fast-changing freeze or melt 

processes throughout the year, high wind speeds over open water, and frequent offshore wind streaks, 

all of which pose significant challenges for SAR-based sea ice classification algorithms. Certain 
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challenging types, even for professional ice analysts, are difficult to accurately interpret during ice 

chart production (Stokholm et al., 2022). As shown in Fig. 1, the SAR images exhibit uniform temporal 

and spatial distribution patterns. Therefore, the AI4Arctic dataset is highly valuable”, locating at the 

original Section 2.5 (data coverage).  

The description was put long after the Section 2.1 (AI4Arctic project dataset). The skipped 

presentation may introduce extra reading difficulty. Therefore, we have revised to move Figure 1 into 

the beginning of Section 2 (data). Besides, we have added related words in the next-to-last paragraph 

in the Section 1 (Introduction) to clarify the advantage of AI4Arctic dataset. Please check that.  

Point 4: To reduce the text describing the U-Net algorithm and results, and conduct a comparison 

between the U-Net and Multi-textRG results.  

Revision 4: We have appropriately streamlined the description of the U-Net algorithm and results, i.e. 

the Section 3.1 (The U-Net model experimental settings) and the Section 4.1 (Prediction result of U-

Net model).  

There is no doubt about the improvement of ice edge details in Multi-textRG results compared 

to U-Net results. Because the coarse ice labels for U-Net training defined the region-level ice 

detection output. If the Multi-textRG had no improvement compared to U-Net results, we would not 

have written this paper and would not have made all the codes public.  In the original manuscript, we 

used the Figure.S2 in the supplement PDF file to show their difference. We think this is enough. 

Many journal articles, after all, use exampled images to state the algorithm effectiveness. But, we 

understand that the claim “we anticipate that the proposed algorithm framework successfully addresses 

accurate ice-water classification across all seasons” needs full-scale demonstrations. We achieved high 

quality ice-water classification for almost all the SAR images in AI4Arctic dataset, which shows high 

data diversity and data reliability.  Thus we used the word “anticipate” to state the accuracy of the 

expression. We revised the related sentence in the Abstract as “Through detailed analyses and 

discussions of classification results under the highly diverse ice and water conditions included in the 

AI4Arctic dataset, we anticipate that the proposed algorithm framework successfully addresses 

accurate ice-water classification across all seasons and enhances the labelling process for ice pixel 

samples.”. 

Moreover, we have finished the FP and FN metrics calculation for our U-Net outputs and the 

Landsat-8/Sentinel-2 optical QA ice/snow signs. The comparison between U-net predicted SIE and 

optical validate data results in an average OA of 83.7%, false negative (FN) of 2.22%, and false 

positive (FP) of 14.3%. Meanwhile, the validated metrics for the Multi-textRG detailed SIE include 

an average OA of 84.9%, false negative (FN) of 4.24%, and false positive (FP) of 10.8%. Their 

statistical scatter maps are respectively shown as below. 

 

Validation metrics for U-Net outputs. 
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Validation metrics for Multi-textRG results (Fig. 11 in the original manuscript). 

Fig. R1. Validation of the comparison between U-net predicted SIE (with a 20% SIC threshold) 

and optical (Landsat-8/Sentinel-2) data.  

As shown in Fig. R1, the two group of metrics show small differences. This is because the filtered 

optical images mostly include densely packed ice, i.e. near-100% sea-ice covered regions. Despite that, 

some individual validation images including broken ice MIZ display effective detail and precision 

improvement of Multi-textRG results to U-Net outputs. Fig. R2 further show the comparison of several 

examples imaged in MIZ. Considering the small metric differences, as well as earlier words we have 

discussed, we decide to keep removing the comparison between U-net predicted SIE and optical 

ice/snow detections. But we have updated to upload all the visual comparison results of U-net predicted 

SIE and optical ice/snow detections at https://zenodo.org/records/13269639. We also include Fig. R2 

into the supplement PDF file in the revised version.  

 
Fig. R2. Examples with broken ice in MIZ to state the comparison between the U-net outputs and 

the Multi-textRG results.  



4 

 

Point 5: The accuracy of Landsat-8/Sentinel-2 QA ice/snow sign remains to be proven. The Multi-

textRG results are not adequately compared with the results of other classical algorithms.  

Revision 5: We do not have good idea to prove the accuracy of Landsat-8/Sentinel-2 QA ice/snow 

sign at present. But we have made open access to all Landsat-8/Sentinel-2 optical images, and we 

include Fig. R2 in the revised supplement file.  

The Multi-textRG results are not adequately compared, for this question, we would like first to explain 

the reasons for so detailed analyses about the validation of Multi-textRG results to Landsat-8/Sentinel-

2 optical images under thin ice, wetted ice and winded open water conditions. It is because we found 

the three ice/water conditions were the persistent source of identification errors, as we have reviewed 

in the Section 1 (Introduction). The two examples of Fig. 8 to Fig. 10 are precisely intended to 

emphasize that Multi-textRG algorithm finally achieved their accurate classification with high 

robustness and high quality for ice edge description. The two examples represent the most outstanding 

performance of this algorithm.  

What’s more, this outstanding performance was further demonstrated within the added validation to a 

pure-CNN SAR SIE product (Wang and Li 2020). See Page 9 to 11 in this PDF file. 

 

 

The Editor Comments and our one-to-one replies are below: 

After assessing the manuscript, the reviews, and the authors' replies, I have noted that much of the 

concerns about the manuscript may arise from some confusion about the intent of the combined 

technique of the U-Net and Multi-textRG, and the degree of novelty and/or validation for each.  I 

urge the authors to carefully address the reviewer concerns in their manuscript, and I also add some 

comments below that I believe, based on the reviews, are key points to address: 

 Editor Comment 1: One reviewer has noted that the U-Net is essentially the same as previously 

published, without any substantial improvement in results. The authors' contend the use is as a first 

step in classification. As such, the paper is primarily about the Multi-textRG pixel level 

classification scheme. I would encourage the authors to make this more clear and downplay the U-

Net analysis.  To me, this appears as just a technique to first provide regional classifications. In 

fact, I believe it may not be a necessary step-one could use a variety of techniques to do a first 

classification. The real innovation in the paper is the Multi-textRG algorithm, and the paper could 

be more clear on this. 

Response 1: Yes, this paper is primarily about the Multi-textRG algorithm and the U-Net model is 

not a necessary step-one. Other semantic segmentation models can also achieve effective coarsely 

ice region detection. The AI4Arctic SAR dataset includes various ice surface features. During the 

U-Net model training, preprocessing of AI4Arctic SAR dataset and the configuration of 

compensation for ice type imbalance are of great importance. Therefore, in Section 3 “Methods”, 

we have appropriately streamlined the description of training metrics. In Section 4.1 “Prediction 

result of U-Net model”, we condensed the content to ensure conciseness.  
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Moreover, we revised the Section 1 Introduction to make it more clear that the Multi-textRG 

algorithm is our major contribution.  

 Editor Comment 2: Following from this, it is not clear to me, based on my understanding of the 

Multi-textRG algorithm, that the first step regional classification is even necessary at all.  Since 

the pixel level classification can identify ice, open water, or wind-affected open water within the 

regional ice classes, then can it not do the same for areas that were outside of these original classes?  

If I misunderstood this, then the authors should clarify why the first step is needed.  If I am correct, 

I don't think the authors need to remove the U-Net classification, but it should be clarified why it 

may be advantageous to use (or a similar technique).  Why the regional segmentation was needed 

is not clear. 

Response 2: Thank the editor for raising this point. The step-one of U-Net semantic segmentation 

is necessary. The region-growing method consists of two steps: 1) selecting initial ice seeds based 

on GLCM texture intensities, and 2) growing new ice seeds based on their texture intensity 

difference from previous ones. During the first step, it is critical to ensure that all selected ice seeds 

are true ice pixels. To achieve this, we restrict seed selection to within ice regions segmented by 

the U-Net. Without this step, due to the similar or higher intensity values of wind-roughened open 

water compared to smooth thin ice, some water pixels may still be misidentified as ice seeds—

even when the designed combined texture ����� have enhanced ice–water contrast. If false ice 

seeds are selected, water pixels may erroneously grow from them, leading to incorrect ice–water 

classification. We have revised to emphasis on the necessity of U-Net semantic segmentation in the 

last paragraph of Section 1(Introduction).  

 Editor Comment 3: The reviewers make a valid point about how well the Multi-textRG algorithm 

works vs state-of-the art.  I appreciate the performance metrics that are included, but the reader is 

left to judge for themselves whether the results are actually acceptable.  Even though in some 

cases presented, the results appear subjectively good, there is no context presented for how good 

these actually are compared to alternatives. In some cases, the false positive and false negative 

rates might be viewed as unacceptable.  This is the critical factor if the manuscript is to be 

acceptable for publication in The Cryosphere. Based on my assessment of the reviews, I feel the 

authors need to show that the Multi-textRG algorithm works effectively compared to standard 

classification schemes, or other approaches previously proposed. 

Response 3: The effectiveness of Multi-textRG algorithm are actually guaranteed by both U-Net 

prediction accuracy and itself. There is independent evaluation metrics for U-Net results, i.e., 

�������� and ��40������, of which over-97% values mean the U-Net segmentation is highly close 

to the ice charts. Ice charts are accurate, thus the U-Net results are accurate, and thus the Multi-

textRG algorithm have no bigger errors. Because the Multi-textRG algorithm, in fact, just like to 

remove some extra water pixels from the U-Net segmented ice region. 

How to compare with other standard classification schemes? Apart from deep learning 

algorithms, many other algorithms are difficult to replicate. When we first have the idea to combine 
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CNN network semantic segmentation with an ice pixel detection method, we searched much to 

downloaded the codes within our reviewed papers. However, without one methods can be easily 

accessed (like the IRGS methods (Jiang et al. 2022; Leigh et al. 2014)) or repeated. Moreover, sea 

ice classification methods based on SAR images are usually rather complicated. Thus, in such a 

short time, we are very sorry that we do not have enough energy to reproduce the excellent 

algorithms of other papers. 

Considering the editor’s and reviewers’ insistence, we decided to utilize a Sentinel-1 SAR SIE 

product produced by using the integrated U-Net, a pure-CNN SIE product (accessible at 

https://www.scidb.cn/en/detail?dataSetId=771301999089025024&version=V3). We have revised 

Section 4.3 to be the title of “Multi-textRG results validated to pure-CNN SAR SIE”. Concise 

analyses are given here. Data introduction in Section 2, validation in Section 4 and conclusion in 

Section 6 have added related discriptions. 

 Editor Comment 4: The reviewers express some concern about the quality of the training data for 

the Multi-textRG algorithm.  I agree that there is a question about how well ice classes are 

classified in that imagery. It is challenging to show definitively that their classification of these 

images is robust, but some additional evaluation and discussion of this is warranted to give the 

reader a sense of how much to trust the results. 

Response 4: In this manuscript, we focus on the precise ice and water classification, rather than 

the ice types/classes classification. We focus on proposing a novel method, of which the robustness 

is currently manifested by the diversity of sea ice types contained in the training SAR data within 

AI4Arctic dataset. Personally, I have processed tens of thousands of Sentinel-1 SAR images, thus 

we highly approve of the reliability and effectiveness of this dataset. The real robustness of the 

algorithm framework of a CNN model and the Multi-textRG algorithm is far from being proven. 

Application in larger data volume and evaluation in higher quality are still needed.  

With the reviews feedback, it seems that the comparison of the limited optical images after 

cloud masking did not sufficiently reflect the accuracy of our ice-water classification results. 

Therefore, we have included more optical comparison images in the revised supplement PDF file. 

Moreover, we have added a comparison with the publicly available ice-water classification data , 

as it has been responded earlier. 

 

The major revision of the manuscript with the track change: 

1) The Introduction section 

Arctic sea ice acts as a critical component in the global climate system by reflecting solar radiation, 

moderating heat and moisture exchange between the ocean and atmosphere, and influencing global 

ocean circulation patterns. The changes in sea ice extent (SIE) is closely monitored and analysed by 

various researchers or centers around the world. High-precision and high-resolution remote sensing 
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monitoring of polar sea ice has consistently been a core technological focus in the field of modern 

climate science.  

Passive Microwave (PMW) radiometers and Synthetic Aperture Radar (SAR) sensors are the 

essential tools for monitoring SIE. SAR offers high spatial resolution and all-weather observation, yet 

constrained by incomplete daily spatial coverage and reduced capability in discriminating thin 

ice/wetted ice from wind-roughened open water (Sun et al. 2023). In contrast, PMW radiometers 

operate at kilometer-scale resolutions and are susceptible to clouds/fogs, meanwhile providing 

complete daily spatial coverage and superior performance in detecting thin ice/wetted ice (Sun et al. 

2023). The data fusion of two sensors can combine their respective strengths in sea ice observation, 

enabling high-precision operational monitoring of sea ice.  

SAR-based (including SAR/PMW-fused) ice classifications face challenges of various scales and 

confusing ice surface features among different ice types/development periods. Smooth thin ice 

(including newly formed ice, level young ice, and level first-year ice) and wetted ice (such as melt 

ponds and wet snow covered ice), along with calm open water, generally exhibit extremely low 

backscatter values (Cristea et al. 2022; Niehaus et al. 2023; Song et al. 2021; Zakhvatkina et al. 2017).  

Except for the linear features of newly formed ice in ice leadsThree types , smooth thin ice and wetted 

ice typically also have similar regional semantic context and texture features to open water except for 

the linear features of ice leads areas. For instance, bBright young ice and heavily deformed ice (HDefI), 

as well as dark young ice and deformed ice (DefI), show highly overlapping SAR backscatter and 

GLCM texture histogram distributions (Guo et al. 2023). Newly formed ice in disk-shaped melt ponds 

not only has extremely low backscatter but also and creates high-contrast boundaries with surrounding 

ice, particularly in Sentinel-1 SAR HV images, leading to largely potential misclassification as open 

water (Sun et al. 2023). Additionally, winded open water could have significantly higher backscatter 

and texture values than smooth thin ice, even reaching the levels of thick multi-year ice (Boulze et al. 

2020; Li et al. 2021; Song et al. 2021). Various surface characteristics (such as different degrees of 

deformation, melting, geometric roughness, or internal micro-roughness, salinity, and wind speed) and 

radar parameters (such as wavelength, polarization, and incidence angle) are crucial factors influencing 

SAR backscatter echoes (Guo et al. 2023; Lohse et al. 2020; Song et al. 2021). Thus, previous methods 

have tried to combine image clustering segmentation with supervised machine learning (the second 

group of methods) or use the supervised CNN networks (the furth group of methods) to integrate image 

context and pixel information for high-resolution ice classifications.  

The precondition is that, SAR pixel-level sea ice classification based on deep learning requires 

finely annotated training samples. Given the diverse ice surface characteristics, a deep learning 

model also demands to learn from thousands of samples. But currently, no such sea ice dataset ensures 

both precision and balanced feature representation. Numerous advanced vision models have been 

designed for general zero-shot classification tasks, such as SAM (Kirillov et al. 2023), GDINO (Liu et 

al. 2024), and CLIP (Radford et al. 2021), and specifically designed for zero-shot semantic 

segmentation of remote sensing images, such as GeoRSCLIP (Zhang et al. 2024b) and Text2Seg 

(Zhang et al. 2024a). However, they are primarily designed for small-object segmentation. For objects 

like sea ice, which exhibit large-scale continuous spatial coverage yet complex and varying surface 

characteristics, a single SAR image (e.g., 10,000×10,000 pixels) may represent only one typical ice 

condition needing to be recognized based on the entire scenario. This is comparable to a single clipped 

patch (usually smaller than 512×512 pixels) in urban building classification tasks. As a result, 

computational limitations and mismatched objectives make it difficult to apply general-purpose 
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advanced vision models to sea ice classification tasks. Therefore, previous approaches have relied on 

tens of manually annotated SAR images and simple CNN networks for training. The limited diversity 

of ice conditions leads to predictable low model robustness. However, from another perspective, 

leveraging the current accumulation of international sea ice monitoring research, there is an abundance 

of coarse annotations available—such as ice charts from Arctic nations, IMS data from NSIDC, and 

passive microwave-based SIC products. We aim to address ice-water classification across all seasons 

under various marine conditions, which necessitates large-scale and diverse ice chart annotations. 

The AI4Arctic Challenge has also recognized the importance of fusing SAR and PMW data, the 

strong performance of deep learning in extracting image features, and the usability of large-volume 

ice chart annotations. Accordingly, it provides a well-preprocessed dataset including Sentinel-1 SAR, 

GCOM-W1 AMSR2, and ice charts along with a pre-trained U-Net model, with the aim of promoting 

international research on automated ice monitoring algorithms (Stokholm et al. 2024). The SAR 

images in the AI4Arctic Dataset were carefully selected by a multi-disciplinary team of experts 

(Stokholm et al. 2024; Stokholm et al. 2022), featuring typical classification challenges of ice and 

water surface characteristics while maintaining a certain feature balance. The highly diverse SAR data, 

full-channel AMSR2 data and highly reliable ice chart annotations can be well visualized. We believe 

the robustness of this dataset provides support for the development of highly reliable algorithms. 

With these insights, the goal of this study is to explore fine SAR ice-water classification using 

coarse but abundant annotated data provided by the AI4Arctic dataset. Usually, deep learning 

algorithms can partially refine the details of recognition results based on coarse annotations. However, 

even with SAR data input at tens of meters resolution, it remains challenging for these algorithms to 

produce predictions at the native SAR resolution when annotations are only roughly delineated at 

kilometer scales. Probably, only a traditional empirical segmentation method can address the issue. 

This paper proposes to combine the pre-trained U-Net semantic segmentation network with an 

empirical statistical method termed the Multi-textRG pixel-level segmentation algorithm. The U-net 

is essential to reduce certain SIE overestimation in the Marginal Ice Zone (MIZ) based on coarse ice 

charts, and to leverage semantic context information within a large receptive field for accurate 

segmentation of winded open water and wetted/thin ice. The Multi-textRG means a multi-layer 

GLCM texture-based regional growing method. It has the ability to perform unsupervised pixel-level 

sea ice recognition within the semantically segmented ice region, i.e., without considering winded 

open water disturbance. Moreover, Multi-textRG can operate independently when rough SIE 

references (such as NSIDC IMS data) are available. However, considering operational applicability 

and the reliability of third-party data, this paper remains to elaborate on the training configuration of 

the Sentinel-1/AMSR2-based U-Net model and details the critical data preprocessing steps. Finally, 

we used respectively Landsat-8/Sentinel-2 optical QA band snow/ice signs and a purely U-Net 

predicted SAR-based ice/water classification product (Wang and Li 2020) to validate the accuracy of 

Multi-textRG outputs.  

2) Beginning of the Data section 

In this paper, we used 532 Sentinel-1 SAR images provided in the AI4Arctic dataset as the benchmark. 

GCOM-W1 AMSR2 36.5GHz channel data and ice charts provided in the same AI4Arctic dataset, 

Landsat-8 and Sentinel-2 Level-2 optical satellites downloaded from the Google Earth Engine (GEE) 

cloud collections were used and individually resampled to Sentinel-1 SAR scenes. Besides, 

corresponding Sentinel-1 SAR-based U-Net predicted ice/water classification images covering 2019 

to 2021 (Wang and Li 2020) was used are the second validation data. Fig. 1 shows their spatial and 



9 

 

temporal distributions.  

The Sentinel-1 SAR images in the AI4Arctic dataset cover the waters surrounding Greenland and 

the Canadian Arctic Archipelago from January 8, 2018, to December 21, 2021. These regions are 

characterized by rapid ice drift, continuous and fast-changing freeze or melt processes throughout the 

year, high wind speeds over open water, and frequent offshore wind streaks, all of which pose 

significant challenges for SAR-based sea ice classification algorithms. Certain challenging types, even 

for professional ice analysts, are difficult to accurately interpret during ice chart production (Stokholm 

et al. 2022). As shown in Fig. 1, the SAR images exhibit uniform temporal and spatial distribution 

patterns. Therefore, the AI4Arctic dataset is highly valuable. In Fig. 1(a), the northernmost point 

imaged by Landsat-8 and Sentinel-2 optical satellites reaches the northern coast of Greenland. 

However, the number of usable scenes is significantly limited due to widespread cloud contamination. 

As shown in Fig. 1(c) and (d), a total of 85 SAR images matched with valid Landsat-8 data after cloud 

masking; a total of 134 SAR images matched with valid Sentinel-2 data (launched in February 2019) 

after cloud masking; of them, 54 SAR images had matching data from both Landsat-8 and Sentinel-2. 

The optical images from the two satellites are densely distributed during the melt season and early 

freeze-up season. Data information and processing will be further introduced below.  

3) Validation to classical CNN produced SIE product of the Results section 

4.3 Multi-textRG results validated to pure-CNN SAR SIE 

Figure 11 shows the Sentinel-1 SAR HV images, our U-Net predicted SIC maps ( ≥30% SIC is used 

to segment  SIE), the Multi-textRG resulted SIE, and the pure-CNN SAR SIE (Wang and Li 2020). 

Comparison between the U-Net output (using the 30% SIC contour) and the Multi-textRG result 

reveals that the latter exhibits greater clarity in capturing detailed outer ice edges and inner open-water 

boundaries. This visually proves the precision improvement achieved by the Multi-textRG approach. 

While comparison between the Multi-textRG results and to the pure-CNN SAR SIE demonstrate that 

the former show more complete identification of (a) broken ice, (b) brash ice, (c)(d) thin ice, and (e) 

level first-year ice with low backscatter intensities or subtle texture features. Additionally, the Multi-

textRG algorithm provides more accurate detection of wind-roughened open water under low 

incidence angles. It overcomes the accuracy limitation of pure-CNN models on ice-water classification 

with incidence angle effect and enhances the texture intensity of flatten FYI (see Section 3.2.1 and 

3.2.2) by leveraging our newly designed combined texture feature �����. On the other hand, pure-

CNN models often struggle to simultaneously capture high-resolution details for pixel-level 

identification and large-scale semantic contexts for region-level detection (Zhang et al. 2025), 

particularly when trained on imperfect labels in complex ice conditions (Li et al. 2021). This may 

further explain the relatively inferior performance of the pure-CNN approach. 

Figure 124.3 Validation accuracies 

In this study, we combined the U-Net model and the Multi-textRG algorithm to achieve detailed 

ice identification for 530 SAR images provided by the AI4Arctic project dataset. Figure 11 presents 

the scatter accuracy metrics for the comparison and validation of ice detectionMulti-textRG results of 

219 images against the Landsat-8 and/ Sentinel-2 optical dataice/snow signs and 261 images against 

the Sentinel-1 SAR pure-CNN SIE data (Wang and Li 2020). Figure 12(a) to 12(c)The results show 

that the area-weighted average OA is 84.9%, with an average FN of 4.24% and an average FP of 10.8%, 

whereas the same metrics for Fig. 12(d) to 12(f) are 91.1%, 4.77% and 4.12%. Firstly, optical ice/snow 

signs are regarded as the “TRUE” ice detections with the highest spatial resolution. Thus, . tAs 
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analyzed in Section 4.2, the lower OA consistent with the higher FP of optical validationFN value 

indicates  a small underestimation for low backscatter ice surfaces (thin ice or wet ice), highlighting 

the advantage of the Multi-textRG algorithm. In contrast, the higher FP value reflects a larger 

overestimation along the ice edges, stemming from the pixel resolution differences between SAR ice 

extent Multi-textRG SAR SIE (160 m) and Landsat-8/Sentinel-2 icevisible optical data (30 m), with a 

maximum discrepancy not exceeding a few kilometers.  While the close FNs of both optical and SAR 

pure-CNN validation indicate a small underestimation for low backscatter ice surfaces (thin ice or wet 

ice) in Multi-textRG results. However, the overall average metrics just show the basic consistency of 

different SIE observations. The superior ice recognition capability of the Multi-textRG algorithm 

compared to the pure-CNN model in complex ice conditions can only be observed through case-by-

case analysis (i.e., Fig. 11).  

 
Figure 11. Validations of the Multi-textRG results on pure-CNN SAR SIE with different ice 

conditions. The first row shows the individual Sentinel-1 SAR HV grayscale images, the second row 

shows our U-Net predicted SIC maps ( ≥30% SIC is used to segment SIE), the third row shows the 

Multi-textRG detected SIE, and the fourth row shows the pure-CNN SAR SIE.  
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Figure 1112. Validation based on optical data metrics of the  for UMul-Net+Multi-textRG results on Landsat-8/Sentinel-

2 ice/snow signs and pure-CNN SAR SIE produced ice extent: (a), (b) and (c) show the scatter values of the OA, FN and 

FP evaluation metrics validated on the first dataset, where the red and blue circles represent Landsat-8 and Sentinel-2 as 

validation data, respectively. (d), (e) and (f) show the scatter values of the OA, FN and FP evaluation metrics validated on 

the second dataset. 
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