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Abstract.

This study presents a data-driven reconstruction of daily runoff that covers the entirety of Switzerland over an extensive

period from 1962 to 2023. To this end, we harness the capabilities of deep learning-based models to learn complex runoff-

generating processes directly from observations, thereby facilitating efficient large-scale simulation of runoff rates at ungauged

locations.
:::
We

:::
test

::::
two

:::::::::
sequential

::::
deep

::::::::
learning

:::::::::::
architectures,

::
a

::::
long

:::::::::
short-term

:::::::
memory

:::::::
(LSTM)

:::::::
model,

:
a
::::::::
recurrent

::::::
neural5

:::::::
network

::::
able

::
to

:::::
learn

:::::::
complex

::::::::
temporal

:::::::
features

:::::
from

::::::::::
sequences,

:::
and

::
a
:::::::::::::::
convolution-based

:::::::
model,

:::::
which

::::::
learns

::::::::
temporal

:::::::::::
dependencies

:::
via

:::
1D

:::::::::::
convolutions

::
in

:::
the

:::::
time

:::::::
domain.

:::
The

:::::::
models

::::::
receive

:::::::::::
temperature,

:::::::::::
precipitation,

::::
and

:::::
static

:::::::::
catchment

::::::::
properties

::
as

:::::
input.

:
By driving the resulting model with gridded temperature and precipitation data available since the 1960s,

we provide a spatiotemporally continuous reconstruction of runoff. The efficacy of the developed model is thoroughly assessed

through spatiotemporal cross-validation and compared against a distributed hydrological model , a model used operationally10

in Switzerland.

The developed data-driven model demonstrates not only competitive performance but also notable improvements over tra-

ditional hydrological modeling in replicating daily runoff patterns, capturing annual
::::::::::
inter-annual

:
variability, and discerning

long-term trends. The resulting long-term reconstruction of runoff is subsequently used to delineate significant
:::::::::
substantial

shifts in Swiss water resources throughout the past decades. These are characterized by an increased occurrence of dry years,15

contributing to a negative decadal trend
:
in

::::::
runoff, particularly during the summer months. These insights are pivotal for the un-

derstanding and management of water resources, particularly in the context of climate change and environmental conservation.

The reconstruction product is made available online.

Furthermore, the reduced data dependency
:::
low

::::
data

:::::::::::
requirements and computational efficiency of our model pave the way

for simulating diverse scenarios and conducting comprehensive climate attribution studies. This represents a substantial pro-20

gression in the field, allowing for the analysis of thousands of scenarios in a time frame significantly shorter than traditional

methods.
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1 Introduction

Hydrological modeling and runoff prediction are critical for understanding and managing water resources, particularly in

the face of climate change and increasing human impacts on the environment (Seneviratne et al., 2021; Arias et al., 2023).25

In Switzerland, a country characterized by diverse topography and climatic conditions, understanding and predicting runoff

patterns is essential for effective water management, flood control, and environmental conservation (Brunner et al., 2019a).

While traditional
:::::::::
Traditional hydrological models offer pivotal insights into land surface processes, they still exhibit uncertainties

due to simplified process representations and
::::::::::
land-surface

::::::::
processes.

::::
For

::::::::::
Switzerland,

::
a

::::::
diverse

:::::
array

::
of

::::::::::
hydrological

:::::::
models

:::
has

::::
been

:::::::::
employed

:::::::::::::::::
(Horton et al., 2022),

:::::::
ranging

:::::
from

:::::::
complex

:::::
ones,

::::::
which

:::
are

::::::
heavily

:::::::
founded

:::
on

:::::::
physical

:::::::::
principles,

:::
to30

:::::::::
lightweight

::::
ones

:::::
using

:::::::::
conceptual

:::::::
process

::::::::::::
representations

::::
with

:::::::::
calibrated

::::::::::
parameters.

:::::
While

:::
the

::::::
former

::::
offer

:::::::
detailed

:::::::
insights

:::
and

:::::::
control, they rely on parameters which are only marginally constrained by observations. Furthermore, they have a high

demand of computational resources (Kraft et al., 2022).
:
a
:::::

large
:::::::
number

::
of

::::::
inputs

::::
and

:::
are

::::::::::::::
computationally

:::::::::
expensive.

::::
The

:::::
latter,

::
in

::::::::
contrast,

:::
can

:::
be

:::::::::::
parsimonious

:::
in

:::::
terms

:::
of

::::
data

:::
and

:::::::::::::
computational

:::::::::
resources,

:::
yet

::::
they

:::::
need

::
to

:::
be

::::::::
calibrated

::::
per

:::::::::
catchment,

:::::
which

:::::
limits

::::
their

:::::::::::
applicability

::
to

:::::::::
prediction

::
in

::::::::
ungauged

::::::::::
catchments.

::::
The

::::::::::::
generalization

::
to

::::::::
ungauged

::::::::::
catchments35

::
via

:::::::::::::
regionalization

::
is

:::::::
possible,

::::
but

::::::::
introduces

:::::::
another

:::::
layer

::
of

:::::::::
complexity

::::::::::::::::
(Beck et al., 2016).

:
As a complementary approach,

deep learning holds potential as a tool for hydrological modeling, both in terms of performance and efficiency (Nearing et al.,

2021),
::::
and

:
it
::::::
comes

::::
with

::::::
built-in

:::::::::::::
regionalization

::::
when

:::::::
trained

::
on

:::::::
multiple

::::::::::
catchments

:::::
jointly

::::::::::::::::::
(Kratzert et al., 2024).

The capability of data-driven modeling of
:::::::
potential

::
of

:::::::
machine

:::::::
learning

::
to

::::::::
represent land surface processes(Camps-Valls et al., 2021; Reichstein et al., 2018; Kraft et al., 2019)

and particularly runoffmodeling (Kratzert et al., 2018; Gauch et al., 2021a) via deep learning has been demonstrated before.40

For runoff modeling, its potential has mainly been explored for now- and forecasting ,
::::::::
including

:::::::
runoff,

:::
has

:::::
been

::::::
widely

:::::::::::
demonstrated

:::
and

::::::::
discussed

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Camps-Valls et al., 2021; Reichstein et al., 2018; Kraft et al., 2019; Gudmundsson and Seneviratne, 2015; Ghiggi et al., 2021)

:
.
::::
Deep

::::::::
learning,

::
in

::::::::
particular,

::::
has

:::::
shown

:::::::
promise

:::
for

::::::::::
nowcasting

:::
and

:::::::::
forecasting

::::::
runoff at gauged catchments, for example, to

enable warning systems of low or high flow
:::::
aiding

::
in
:::::::
warning

:::::::
systems

:::
for

:::::::
extreme

:::
flow

::::::
events

::::::::::::::::::::::::::::::::::
(Kratzert et al., 2018; Gauch et al., 2021a)

. It is, however, less common to employ data-driven models for large-scale reconstruction and monitoring (Nasreen et al., 2022).45

Reconstruction products are widely used for process understanding, investigation of long-term trends, and study of extreme

events within a wider spatial end temporal context (Gudmundsson and Seneviratne, 2015; Ghiggi et al., 2019, 2021; Muelchi

et al., 2022). In addition, machine learning-based models enable simulation of scenarios and real-time monitoring with signif-

icant speedup (Reichstein et al., 2019; Kraft et al., 2021).

This study introduces a data-driven approach to reconstructing daily runoff in Switzerland with contiguous spatial cover-50

age, spanning an extensive period from 1962 to 2023 with the potential for continuous updates. The extended coverage
:::
We

:::::::
optimize

:
a
:::::
range

:::
of

:::::
neural

:::::::::::::
network-based

::::::
models

::
in

:::::::
different

::::::
setups

:::
and

:::::::
evaluate

:::::
their

::::::::::
performance

::
at
:::
the

::::::::::::::
catchment-level

::
in

:
a
::::::::::::
comprehensive

:::::::::::::
spatiotemporal

:::::::::::::
cross-validation

:::::::
scheme.

::::
The

:::::
results

:::
are

:::::::::::
benchmarked

:::::::
against

:::::::::
simulations

:::::
from

:::
the

::::::::
PREVAH

::::::::::
hydrological

::::::
model,

::::::
which

::
is

::::
used

::::::::::::
operationally

::
in

:::::::::::
Switzerland.

::::
The

:::::::
extended

::::::::
coverage

:::::::::
compared

::
to

:::::::::
PREVAH is enabled

by reduced data requirements , by only using temperature and precipitation as meteorological drivers. In the Swiss con-55

text, these variables are available as regular grids since the 1960s, while additional variables, such as relative humidity and
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Figure 1. From sparse observations with low anthropogenic impact to contiguous spatial coverage. The 98 observational catchments high-

lighted in magenta were selected to only be marginally affected by anthropogenic factors and served as a base for training and evaluating the

data-driven models. These catchments are of similar size as the target catchments for reconstruction (grey).

wind speed, are available starting in the 1980s. We optimize a range of neural network-based models in different setups and

evaluate their performance at the catchment-level in a comprehensive spatiotemporal cross-validation scheme. The results are

benchmarked against simulations from the PREVAH hydrological model, which is used operationally in Switzerland. The
:::
The

best-performing model is subsequently used to reconstruct daily runoff rates with complete spatial and temporal coverage60

since the 1960s. The paper closes with a discussion of the strengths and limitations of the approach and first insights from the

extended reconstruction.

2 Data

2.1 Runoff observations

The observed discharges were taken from the CAMELS-CH dataset (Höge et al., 2023), which was updated with current65

data from the Swiss Federal Office for the Environment (FOEN, 2024) and supplemented by stations operated by the cantons

Aargau, Baselland, Bern, St. Gallen and Zurich. In total, there were 267 stations available. A subset of 98 catchments was

selected to minimize the anthropogenic impact (Fig. 1), i.e., no hydropower plant or reservoir was located upstream of the

gauging station. This selection was based on the attributes of the CAMELS-CH dataset and insights from a previous study

(Brunner et al., 2019c).70
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2.2 Meteorological drivers

We considered daily precipitation and air temperature as meteorological drivers, from interpolated observational data
:::
with

::
a

:::::
spatial

:::::::::
resolution

::
of

::
1 km, namely the daily gridded datasets RhiresD (Schwarb, 2000; MeteoSwiss, 2021a) and TabsD (Frei,

2014; MeteoSwiss, 2021b). Gridded daily temperature and precipitation were spatially averaged for all considered catchments.

2.3 Catchment properties75

For the across-catchment modeling of runoff, a set of static catchment properties was considered. These variables can improve

generalization to catchments not seen during training. The static variables used are identical to those needed for forcing the

spatially distributed PREVAH model (see next section) and include elevation, aspect, land use, soil depth, soil water holding

capacity, hydraulic conductivity and two fruther indices describing soil and hydraulic properties. These gridded variables were

aggregated to appropriate catchment values depending on the level of measurement, e.g., a circular mean for slope
:::::
aspect

:
or a80

distribution of classes within each catchment for land use. As compared to previous applications of PREVAH (Viviroli et al.,

2009b; Speich et al., 2015), the sources of the data providing the static properties has been updated and include:

– The swissALTI3D digital elevation model (swisstopo, 2018; Weidmann et al., 2018),

– the new habitat map of Switzerland (Price et al., 2023) aggregated to match the land use classes integrated in PREVAH,

– the Soilgrids products (Hengl et al., 2017; Poggio et al., 2021) enriched with high-resolution data for Swiss forests85

(Baltensweiler et al., 2022), merged and used to estimate soil properties, and

– the recent information on extent of glaciers in Switzerland (Linsbauer et al., 2021).

2.4 PREVAH runoff simulations as benchmark

The modelling of Swiss catchments has a long history in hydrology research (Horton et al., 2022; Addor and Melsen, 2019).

Among a set of 21 models compared, Horton et al. (2022) found the PREVAH (PREecipitation-Runoff-EVApotranspiration90

Hydrological response unit model) model (Viviroli et al., 2009b) to be the most commonly used model with applications going

from the plot scale process evaluation (Zappa and Gurtz, 2003), to the operational implementation for drought anticipation

(Bogner et al., 2022), and to the Switzerland-wide assessment of climate impacts on hydrology (Brunner et al., 2019a). Fur-

thermore, a PREVAH-based baseline is included in the Swiss version (Höge et al., 2023) of the CAMELS
::::::::::::::::
(Höge et al., 2023)

data set (catchment attributes and meteorology for large-sample studies) as introduced by Addor et al. (2017).95

For this study, we created a benchmark runoff simulation for the selected catchments on the basis of PREVAH. The simu-

lations cover the period from 1981 until the end of 2022. The procedure adopted to obtain the PREVAH-benchmark closely

follows the methodologies presented in previous studies (Speich et al., 2015; Brunner et al., 2019c; Höge et al., 2023). The

gridded version of PREVAH (Viviroli et al., 2009b; Speich et al., 2015) has been applied at 500 m resolution. The time series

of the investigated catchments were then obtained by spatially averaging daily gridded values. For further details on the setup100
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and application of PREVAH, we refer to the provided references above. For the present study it is nevertheless important to

know that the gridded simulations at 500×500 m resolution have not been specifically re-calibrated for the catchments inves-

tigated. Instead, the spatially explicit version of PREVAH accesses a previously calibrated set of model parameters covering

entire Switzerland which have been estimated using a regionalization approach (Viviroli et al., 2009c, a; Köplin et al., 2010).

We also note that runoff rates from PREVAH are to be considered as the natural response of the grids within the catchments105

investigated, without any considerations of water diversions for hydropower, flood damping by (regulated) lakes or any kind of

water use (Brunner et al., 2019d).

3 Methods

3.1 Neural network architectures

We used two classes of temporal neural network models for runoff modeling, the long short-term memory model (LSTM,110

Hochreiter and Schmidhuber, 1997) and the temporal convolutional network (TCN, Bai et al., 2018). While the LSTM main-

tains an internal state that is updated dynamically, the TCN is based on a sparse and efficient 1D-convolution in the time

domain. The latter is parallelizable in time and therefore computationally more efficient. We employ three approaches, de-

scribed hereafter, to fuse the dynamic meteorological variables xt,c at time t and catchment c, with the static variables sc,

independent of the temporal model used. The selection of the best fusion approach was part of the hyperparameter tuning115

(Sect. 3.3) and was performed independently of the model setup described in Sec
:::
Sect. 3.5. Note that the following description

of the model architectures is simplified and that the actual setup uses vectorized and efficient computation.

3.1.1 Prefusion with encoding

In the first approach, which we called prefusion with encoding
:::::::
prefusion

::::
with

::::::::
encoding, xt,c ∈ RM (a vector of M meteoro-

logical features) and sc ∈ RS (a vector of S static features) are, as part of the model training, encoded into et,c ∈ RD, i.e.,120

into a vector of length D (the model dimensionality). The encoding is done using stacked feed-forward neural network layers

fNN1
and fNN2

, respectively. The two encodings are combined by element-wise addition, i.e., static encoding is added to each

meteorological encoding equally, as shown in Eq. (1). The resulting combined encoding et,c is then fed into one or multiple

temporal layers fTNN (Eq. (2)), yielding the temporal encoding ht,c ∈ RD, which is then decoded into a single value q∗t,c ∈ R

(Eq. (3)) by another stack of feed-forward neural networks fNN3
.125

feature encode et,c = fNN1(xt,c)+ fNN2(sc) (1)

temporal encode ht,c = fTNN(et,c,et−1,c, . . . ,et−k,c) (2)

output decode q∗t,c = fNN3(ht,c) (3)

outputtransform qt,c = log(1+ exp(q∗t,c)) (4)
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While the LSTM uses all input time-steps, the TCN uses limited context k, depending on its hyperparameters. The decoded130

output is then transformed to the positive domain, qt,c ∈ R+, using the Softplus activation, as shown in Eq. (4). This output

mapping is consistent across the fusion methods.

In this fusion approach, the potentially complex interactions of the dynamic and static input variables are injected prior to

the temporal layer, presumably unloading some of the non-temporal interaction complexity from it. Note that the selection of

model characteristics, such as number of hidden nodes and layers, was based on hyperparameter tuning (see next section).135

3.1.2 Prefusion with repetition

In the second approach, prefusion with repetition
:::::::
prefusion

::::
with

::::::::
repetition, the static vector sc is simply repeated in time and

concatenated to the temporal input xt,c (Eq. (5)). This combined encoding, based on a feed-forward neural network fNN4 , is

then fed into the temporal module Eq. (6) and mapped to the output with another neural network fNN5
as previously described

and as shown in Eq. (7) and Eq. (8). This approach is conceptually similar to prefusion with encoding, but it leaves the learning140

of the non-linear interactions
:::::
within

:::
the

::::
static

::::::
inputs to the temporal layer.

feature encode et,c = fNN4
([xt,c,sc]) (5)

temporal encode ht,c = fTNN(et,c,et−1,c, . . . ,et−k,c) (6)

output decode q∗t,c = fNN5
(ht,c) (7)

outputtransform qt,c = log(1+ exp(q∗t,c)) (8)145

3.1.3 Postfusion with repetition

Postfusion with repetition
::::::::
Postfusion

::::
with

::::::::
repetition, finally, first encodes the meteorological input xt,c (Eq. (9)) with a feed-

forward neural network fNN6
, runs the encoding through the temporal module (Eq. (10)), and then decodes the combined

temporal encoding and static inputs sc via repetition in time (Eq. (11)) by fNN7
, followed by the mapping to the positive

domain (Eq. (12)). In this approach, the dynamics learned by the temporal layers cannot be modulated by the static variables.150

feature encode et,c = fNN6
(xt,c) (9)

temporal encode ht,s = fTNN(et,c,et−1,c, . . . ,et−k,c) (10)

output decode q∗t,c = fNN7
([ht,c,sc]) (11)

outputtransform qt,c = log(1+ exp(q∗t,c)) (12)

3.2 Model training and hyperparameter tuning155

3.2.1 Data transformation

We transformed both the dynamic and static input features using z-transformation to have zero mean and unit variance. This

process was executed individually for each cycle of cross-validation (see Sect. 3.4) and based on the specific training set
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assigned to that cycle. To maintain the target variable, i.e., runoff, within a positive range, its values were adjusted through

normalization by dividing the values by the global 95th percentile value derived from the training set.160

3.2.2 Model optimization

The model parameters were updated using standard backpropagation (Amari, 1993) with the AdamW optimizer (Loshchilov

and Hutter, 2019), a stochastic gradient descent method with adaptive first-order and second-order moments. As objective

function, we used the mean squared error (MSE), defined as LMSE = 1
TC

∑C
c=1

∑T
t=1(yt,c−ŷt,c)

2, where yt,c is the normalized

observation and ŷt,c the respective predicted runoff at time t of T number of time steps and catchment c among C catchments.165

Optionally, we considered square root-transformed prediction and target to reduce the right-skewness of the distribution and

therefore to facilitate the training.

The training sets were constructed with the goal to ensure equal representation of each catchment, regardless of the number

of observations available from each. To do this, we iteratively selected samples from each catchment in a randomized order.

We refer to one complete iteration through all catchments as an “epoch”. For each catchment, a two year period was randomly170

selected, ensuring at least 30 days of runoff data were present. Additionally, a one-year lead-in period was introduced for model

spin-up, which was not factored into the optimization calculations.

Throughout the model training phase, we used mini-batches of 32 samples. A mini-batch is a subset of the training data

used in each step of the gradient descent process to update the model’s parameters. This approach strikes a balance between

computational efficiency and the stochastic nature of the training, allowing more frequent updates and efficient use of par-175

allel processing. For validation and testing, the complete time series was processed in each evaluation epoch, optimizing for

efficiency since no parameter updates were needed in these phases.

3.3 Hyperparameter tuning

Hyperparameter tuning, an essential step in enhancing a deep learning model’s performance, was systematically conducted.

This involves identifying the best combination of pre-set parameters, like the learning rate or the number of neurons per layer,180

to optimize model performance. We used
:::::
refere

::
to

::::::::
Appendix

:::
A1

:::
for

:
a
::::::::::::
comprehensive

:::
list

::
of

::::::::::::::
hyperparameters

:::::
used.

:::
We

::::
used the

initial cycle of our cross-validation (see Sect. 3.4) process for this tuning. The hyperparameters were tuned using the Optuna

framework (Akiba et al., 2019). After the evaluation of 15 random hyperparameter combinations, 45 further configurations

were suggested iteratively using a Bayesian surrogate model based on the Tree-structured Parzen Estimator (TPE) algorithm

(Bergstra et al., 2011). As some configurations may perform badly in the early training phase, we used hyperband pruning to185

stop such unpromising runs early on without wasting resources (Li et al., 2018). With the optimal hyperparameters determined,

we completed the full cross-validation process, described in the next section.
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3.4 Cross-validation

We carefully designed a k-fold cross-validation setup for a fair model evaluation and to assert the high quality of the final

reconstruction product. The 98 training catchments were randomly divided into k = 8 sets and iterated over such that each190

set was used as validation and testing once, respectively (Fig. 2a). While the training data is used for optimizing the model

and validation data is used to monitor model generalization during training, the test data serves for the final model evaluation.

The remaining 169 catchments, which are more impacted by anthropogenic factors, were optionally used as additional training

catchments – but never to evaluate the model. In addition, the time domain was split into training, validation, and test periods

(Fig. 2b). These periods were kept fixed during cross-validation. The temporal splitting was chosen to be representative of195

the model’s temporal interpolation and extrapolation skills. At the same time, the validation and test periods should contain

minimal missing data, to not give more emphasis to catchments with more observations. Therefore, we selected two five-year

blocks of test data, one from (the beginning of) 1995 to (the end of) 1999, and one from 2016 to 2020. The test ranges were

separated from the training set to ensure minimal data leakage. This relates to the fact that autocorrelation in time series data

can lead to overfitting because it causes models to mistake random patterns in the data as significant. In addition, the buffer200

added after every temporal block avoids overlapping of the test set spin-up period of one year with the training set, which

would again encourage overfitting. Note that the validation set was not separated by a buffer from the training set in order to

not discard any observations and because the final evaluation was done on the test set. Overall, the spatial and temporal data

splitting was a trade-off between computational and autocorrelation requirements, and data limitations.

In each of the k iterations, six catchment sets were used for training, i.e., for optimizing the neural network parameters, while205

one set was used for validation and one was held out for testing. After an epoch, i.e., one full iteration through the training data,

the loss was computed on the validation set. The loss was monitored and training was interrupted if the loss on the validation

set was getting worse over a given number of epochs (the “patience”). The best model in terms of the validation loss was

then restored and used for prediction on the test set. This routine is called “early stopping” and reduces overfitting (Yao et al.,

2007). The final predictions on the test set were then used for model evaluation. As each catchment set was the test set once,210

we obtained independent test predictions for each of the 98 catchments.

3.5 Factorial experiments on
::::::::::
experiment

::::
and model architecture

:::::::::
evaluation

In this section, we describe the model setups tested in a factorial experiment and the model evaluation. We selected the best-

performing model based on the median Nash-Sutcliffe modeling efficiency (NSE, Nash and Sutcliffe, 1970) across catchments,

evaluated on the test set. The NSE as defined in Eq. (13), is calculated on catchment level:215

NSE = 1−
∑T

t=1 (yt − ŷt)
2∑T

t=1 (yt − y)
2

, (13)

where yt is the observed and ŷt the predicted
::::::::
simulated runoff at time t of T total time steps, and y is the mean of the observed

time-series. The NSE can take values from −∞ to 1, where values above 0 mean that the predictions are better than taking the

mean of the observations, and 1 means perfect prediction. Note that the NSE is closely related to the R-squared, but the NSE
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Figure 2. Cross-validation scheme: Panel a
:
) shows the spatial domain, consisting of 98 catchments in Switzerland, which we randomly

divided into k = 8 sets. These sets were used iteratively, allowing each to serve as a validation and test set once. Catchments significantly

affected by human actions were included in the training phase optionally to enrich model learning, but they were consistently excluded from

the validation and test phases to maintain the focus on natural runoff patterns. In Panel b
:
), the time domain is delineated into fixed training,

validation, and test periods. The used sets are the intersections of these spatial and temporal splits. With the initial iteration, hyperparameter

(HP) tuning was performed, and the best HPs identified were then applied in subsequent cross-validation steps. By evaluating the model on

the test sets, we comprehensively assessed the model’s skill in generalizing across both spatial and temporal dimensions.

normalizes the sum of the squared residuals by the catchment variance instead of the global variance. Hence, the NSE does not220

give more emphasis to catchments with larger variance and is, therefore, also sensitive to catchments with low dynamic range.

3.6 Model evaluation

To better understand the error structure, we also evaluate the MSE decomposition into bias, variance, and phase error (Kobayashi and Salam, 2000; Gupta et al., 2009)

: where µ is the mean and σ is the standard deviation of the simulations s and the observations o, and r is the linear correlation

coefficient between them. The squared bias reflects the model fit in terms of average and the variance error in terms of the scale.225

The phase error can be interpreted as a measure of reproducing the timing, i.e., how well the dynamics are matched regardless

of bias and scale.

Different model setups were tested in factorial experiments
:
a

:::::::
factorial

:::::::::
experiment, and each combination of the factors was

evaluated. A first factor determines the temporal component of the overarching model architecture: {LSTM,TCN}. We also

tested whether transforming
:
A

::::
next

:::::
factor

::::::::
determins

:::::::
whether

:
the target variable

:::
and

:::::::::
preditions

::
are

::::::::::
transformed

:
using the square230

root,
::
in

::::
order

:
to reduce the skewness of the runoff distribution, or no transformation

:::::::::
distribution: {Tnone,Tsqrt}. We tested the

usage of the 169 optional catchments (267 in total) in the training set, compared to the 98 only (Fig. 2a): {C98,C267}. The
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last factor concerns the usage of static input variables. Due to the relatively large number of catchment properties (28), we

alternatively used dimensionality-reduced static features. Using principle component analysis (PCA, Wold et al., 1987), all

static features except catchment area were compressed into 5 components, which represent 66% % of the variance. Catchment235

area was always used as a separate static input, as we consider it to be a key input feature. Hence, we either use catchment area

only, a dimensionality-reduced version off the static variables using PCA, or all static variables described in the data section:

{Sarea,SPCA,Sall}.

This yields a total of 24 models, and for each of them, independent hyperparameter tuning and cross-validation was per-

formed. Note that the fusion strategy for static and dynamic features introduced in Sect. 3.1 was part of the hyperparameter240

tuning, and not considered as a factor here.

::
To

:::::
better

::::::::::
understand

:::
the

:::::
error

::::::::
structure,

:::
we

::::
also

::::::::
evaluate

:::
the

:::::
MSE

:::::::::::::
decomposition

:::
into

:::::
bias,

::::::::
variance,

::::
and

:::::
phase

:::::
error

:::::::::::::::::::::::::::::::::::::::
(Kobayashi and Salam, 2000; Gupta et al., 2009)

:
:

eMSE =

ebias︷ ︸︸ ︷
(µŷ −µy)

2+

evariance︷ ︸︸ ︷
(σŷ −σy)

2+

ephase︷ ︸︸ ︷
2σŷσy(1− r) , (14)

:::::
where

::
µ

:
is
:::
the

:::::
mean

::::
and

:
σ
::
is
:::
the

:::::::
standard

::::::::
deviation

:::
of

:::
the

:::::::::
simulations

::̂
y

:::
and

:::
the

:::::::::::
observations

::
y,

:::
and

::
r

::
is

::
the

::::::
linear

:::::::::
correlation245

::::::::
coefficient

::::::::
between

:::::
them.

:::
The

:::::::
squared

::::
bias

::::
ebias:::::::

reflects
:::
the

:::::
model

:::
fit

::
in

:::::
terms

::
of

:::::::
average

:::
and

:::
the

::::::::
variance

::::
error

::::::::
evariance ::

in

::::
terms

:::
of

::
the

:::::
scale.

::::
The

:::::
phase

::::
error

:::::
ephase::::

can
::
be

:::::::::
interpreted

::
as

:
a
::::::::
measure

::
of

::::::::::
reproducing

:::
the

::::::
timing,

:::
i.e.,

::::
how

::::
well

:::
the

::::::::
dynamics

::
are

::::::::
matched

::::::::
regardless

::
of

::::
bias

::::
and

:::::
scale.

3.6 Runoff reconstruction

To achieve a complete contiguous reconstruction from 1962 to 2023 for the small to medium-sized catchments with national250

coverage (Fig. 1), we used the best-performing model from the cross-validation. The best model was selected based on median

test set NSE across catchments. From the ensemble members from the eight-fold cross-validation, we obtained eight recon-

structions with full coverage, of which we use the median (average of the two middle values) as the final data product. The

year 1961 was removed from the reconstruction as it serves
:::::
served

:
as spin-up.

4 Results255

4.1 Catchment level performance and benchmarking

In this section, we evaluate the model performance at catchment level and compare the data-driven models. All analysis is,

unless stated otherwise, based on the test set (Fig. 2), i.e., spatially and temporally distinct data. Due to the iteration over the

catchment groups in the cross-validation, each catchment was in the test set one time. The fixed splitting of the time domain,

however, restricts our evaluation to the test periods, i.e., January 1995 to December 1999, and January 2016 to December 2020.260

Throughout the evaluation, we use the hydrological model PREVAH as a benchmark.
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4.1.1 Comparison of model setups
::::::
Model

:::::::::::
performance

We first evaluate how the different model architectures (LSTM and TCN), setups, and hyperparameters affected model performance.

In Fig. A1, the diagonal shows how the model setups impacts the median NSE across catchments, and the offset triangular

shows the interactions of the factors.265

Understanding
::
To

::::::::::
understand the capabilities of our model necessitates a thorough evaluation of daily runoff simulations

::
to

:::::::
represent

:::::
daily

:::::
runoff

::
at
:::::::::
catchment

:::::
level,

:::
we

:::::::
evaluate

:::
the

::::::
model

::::::::::
performance

::::
first. Figure 4.1.2 presents the empirical cumu-

lative density functions for different metrics across the 98 training catchments. Models based on the TCN architecture are

depicted in blue, those using LSTM networks in red, and the PREVAH model is represented in black. The model with the

best performance is emphasized using a thicker line. Panel a focuses on the Nash-Sutcliffe Efficiency (NSE), while panels b–d270

provide a detailed breakdown of the Mean Squared Error (MSE) into its components – squared bias, variance error, and phase

error – as previously introduced.

Overall, we observed a large variance in performance across model setups in terms of catchment-level NSE, and the TCN-

based models performed worse than the LSTM in general. This is mainly due to the two best-performing LSTM models (also

see model-wise NSE in Appendix A, Tab. A2 & A3). The best-performing LSTM (LSTMbest) achieved a median NSE of 0.76.275

The MSE decomposition shown in Fig. 4.1.2b–d indicates that the LSTMbest (thick red line) is among the best models in terms

of all error components. The phase error contributes
:::::::::
contributed

:
most to the overall error by a wide margin, signifying that

representing the timing of the runoff is more challenging than representing the average and the scale.

The best-performing model was the LSTM (“LSTMbest”) with the setup {Sall,C267,Tsqrt}::::
setup

::::
was

:::::::::::::::::::::
{LSTM,Sall,C267,Tsqrt},

i.e., the setup with all static features, additional training catchments, and with square root transform of the target
:
,
:::::
paired

::::
with

:::
the280

:::::
LSTM

::::::::::
architecture. This model performed only marginally better than the LSTM model setup {Sarea,C267,Tsqrt}::::::::::::::::::::

{LSTM,Sall,C98,Tsqrt},

i.e., the one with only area as static variable.
::
not

:::::
using

:::
the

:::::::::
additional

:::::::::
catchments

:::
for

::::::::
training.

:::::
These

::::::
models

::::
both

:::::::
worked

::::
best

::::
with

:::
the

::::::::
prefusion

::::
with

:::::::
encoding

::::::::
approach

::::
(see

::::
Sect.

:::::
3.1). An overview of all model setups and their performance is provided

in Appendix A, Tab. A2 & A3
:::
A1,

::::
and

:
a
::::
short

:::::::::
discussion

::
of

:::
the

::::::::
factorial

:::::::::
experiment

:::
can

:::
be

:::::
found

::
in

::::::::
Appendix

:::
A2.

The PREVAH model achieved an
:
a

::::::
median

:
NSE of 0.72 (Fig. 4.1.2a), which is marginally lower than LSTMbest (NSE of285

0.76), yet better than some of the other data-driven models. The PREVAH model shows
::::::
showed

:
similar bias and variance error

(Fig. 4.1.2b–d) to those of LSTMbest in terms of the median, yet it seems to be more robust in representing these aspects, as

the LSTMbest lags behind in the larger errors. Regarding the phase error, in contrast, the data-driven models in general and the

LSTMbest in particular clearly outperform
:::::::::::
outperformed

:
PREVAH across catchments.

::::
Next,

:::
we

::::::::::
investigate

:::
the

::::::
spatial

:::::::::
distribution

:::
of

:::
the

::::::
errors.

:::::
First,

:::
we

:::::
notice

::::
that

:::
the

:::::::::::
performance

::
of

:::::::::
LSTMbest::

in
:::::
terms

:::
of290

::::
NSE,

::::::
shown

::
in

:::
the

:::::::
top-left

:::::
panel

:::
Fig.

:::
4,

::::
does

:::
not

::::::
exhibit

::
a

::::
clear

::::::
spatial

:::::::
pattern.

:::
Yet,

:::
the

::::::
model

::::::
seems

::
to

:::::::
struggle

::::
with

:::::
some

::::::::
particular

::::::::::
catchments.

:::::::::::
Interestingly,

::::
these

:::
are

:::
the

::::
very

::::::::::
catchments

:::::
where

::::::::
PREVAH

::::::::::::
outperformed

:::::::::
LSTMbest ::::::

clearly
::::::::
(compare

:::
Fig.

::
4

::::::
top-left

:::::
panel

::::
dark

::::
blue

:::::
values

:::
to

::::::::
lower-left

:::::
panel

::::
dark

:::
red

::::::
values).

:

::
To

:::::::::
understand

::::
how

::::
this

::::::
spatial

::::::
patterns

:::
are

::::::
linked

::
to

:::::::::
catchment

:::::::::
properties,

:::
we

:::::::::
performed

::
an

::::::::::
exploratory

:::::::
analysis.

:::::
First,

:::
we

::::::::
identified

:::
the

:::
tails

:::
of

:::
the

::::::::::
distributions

:::::
(inset

::::::::::
histograms

::
in

::::
Fig.

::
4,

:::
and

::::::::
PREVAH

::::::::::::
performance,

:::
not

::::::
shown)

:::::
using

:::
the

::::
10th

::::
and295
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::::
90th

:::::::::
percentiles.

::::
We

::::
then

::::::::
compared

:::::::::
properties

::
of

::::::::::
catchments

::
in

:::
the

::::
tails

::
to

:::
the

::::::::
“normal”

::::::
group

::::::::
(between

:::
the

::::
10th

::::
and

::::
90th

:::::::::
percentiles)

:::::
using

:::
the

:::::::::
two-sided,

:::::::::::::
non-parametric

:::::::::::::
Mann-Whitney

::
U

:::
test

::::
with

::
a
::::::::::
significance

::::
level

:::
of

:::::::
α= 0.1

::
(?)

:
.
::::
The

:::::::
analysis

:::
was

::::::::
restricted

::
to
::

a
::::::
subset

::
of

:::::::::
catchment

:::::::::
properties:

:::::
mean

::::
and

:::::::
variance

::
of

:::::::
runoff,

::::::::
elevation,

:::::::::
catchment

::::
area,

::::
and

:::::
water

:::::
body

:::::::
fraction.

:::::
Here,

::
we

::::::
report

:::
the

::::
most

::::::
notable

:::::::
findings

:::::
from

:::
this

::::::
ad-hoc

::::::::
analysis.

:::
For

:::::::::
LSTMbest,::::

poor
:::::::::::
performance

::::
(NSE

::::::
below

::::
0.14)

::::
was

:::::::
observed

::
in

::::::::::
catchments

:::
with

::::
low

:::::
runoff

:::::
mean

:::
and

::::::::
variance,

:::::::
whereas300

::::
good

:::::::::::
performance

:::::
(NSE

:::::
above

:::::
0.86)

::::
was

::::::::
achieved

::
in

::::::::::
catchments

::::
with

::::
high

::::::
runoff

::::::::
variance.

::::::::
Similarly,

:::::::::
PREVAH

::::::::
struggled

::::
(NSE

::::::
below

::::
0.08)

::
in

::::::::::
catchments

::::
with

:::
low

:::::
runoff

:::::
mean

:::
and

::::::::
variance,

::
as

::::
well

::
as

::
in

:::::::::::
low-elevation

::::
and

::::::::::::
lake-dominated

::::::::::
conditions,

:::
but

::::::::
performed

::::
well

:::::
(NSE

:::::
above

:::::
0.84)

::
in

:::::::::
catchments

:::::
with

::::
high

:::::
runoff

:::::
mean,

:::::
large

::::::::
catchment

:::::
areas,

::::
and

:::::::
minimal

::::
lake

::::::::
presence.

::
As

::::::::
expected,

:::
the

::::
bias

::
of

:::::::::
LSTMbest::::

was
:::
low

::
in
::::::::::
catchments

::::
with

::::
low

:::::
runoff

:::::
mean

:::
and

::::::::
variance,

::::
with

::::::::
variance

::::
error

:::::::::
increasing

::
in

::::
high

:::::
runoff

:::::::
variance

:::::::::
conditions.

::::::
Phase

::::
error

:::
for

:::::::::
LSTMbest :::

was
::::::
lowest

::
in

:::::::::
catchments

::::
with

::::
low

:::::
runoff

:::::
mean

:::
and

:::::::
variance

::::
and305

::::
large

:::::::::
catchment

::::
area.

:

:::::::::
Significant

:::::::::
differences

::
in

::::
NSE

:::::::::::
performance

:::::::
between

:::
the

:::
two

:::::::
models

::::
were

::::::::
observed

::
in

:::::::::
catchments

::::
with

::::
low

:::::
runoff

::::::::
variance.

::::::::
PREVAH

:::::::::::
outperformed

:::::::::
LSTMbest:::::

(NSE
::::::::::::

improvement
:::::
above

:::::
0.28)

::
in

::::::::::
catchments

::::
with

::::
both

::::
low

:::::
runoff

:::::
mean

::::
and

::::::::
variance.

:::::::::
Conversely,

:::::::::
LSTMbest::::::

clearly
:::::::::::
outperformed

::::::::
PREVAH

:::::
(NSE

:::::::::::
improvement

:::::
above

:::::
0.28)

::
in

:::::::::::
low-elevation,

:::::::::::::
lake-dominated

::::::::::
catchments

:::
that

::::
also

:::
had

::::
low

:::::
runoff

::::::::
variance.310

4.1.2 Annual variability and trends

For a reconstruction product, it is crucial to adequately represent yearly variability and long-term trends. We, therefore, evaluate

this aspect on annual runoff aggregates (Fig. 5). The best-performing model, LSTMbest, represents
:::::::::
represented

:
the interannual

variability (Fig. 5a), quantified as the Pearson correlation coefficient between the annual values for each catchment, well with

a median of r = 0.93, and with 75%
:
% of catchments above r = 0.85. The global bias is

:::
bias

::::::::
averages close to zero and for315

50%
:
% of the catchments, it is

:::
was

:
in the range of -0.5 to 0.5

::::
-250

::
to

:::
250

:
mmy−1 (Fig. 5b). On the interannual variability,

PREVAH shows
::::::
showed a slightly lower correlation (Fig. 5a) across catchments with a median of r = 0.92

:::::::
r = 0.91. In terms

of bias, PREVAH seems to do marginally worse in terms of median bias, but overall the biases have a smaller
:::::::::
performed

:::::::::
marginally

:::::
better

::::
with

:
a
:::::::
median

:::::
closer

::
to

::::
zero

:::
and

::
a

:::::
lower spread (Fig. 5b).

Figure 5c illustrates how the models capture
:::::::
captured spatial patterns of annual trends between January 1995 and December320

2020 (Fig. 5c). The agreement was calculated by first computing the catchment-level linear trends for the observations and

the simulations independently
::
by

:::::::::
PREVAH

:::
and

::::::::::
LSTMbest ::::::::::::

independently
:::::
using

:::
the

:::::
robust

:::::::::
Theil-Sen

::::::::
estimator

::::::::::
(Sen, 1968).

Then, a linear regression was fit between observed and simulated trends. A large correlation indicates a good fit of the spatial

patters. The
:::
we

::
fit

:
a
:::::::::

regression
:::::::
between

::::
the

:::::::
observed

::::
and

::::::::
estimated

:::::
trend

::::::
slopes

::
by

:::
the

::::
two

::::::
models

:::::
using

::::::
robust

:::::::::
regression

::::
with

:::::
Huber

:::::::::
weighting

:::
and

:::
the

:::::::
default

:::::
tuning

::::::::
constant

::
of

:::::::::
c= 1.345

:::::::::::::::::::::::
(Huber and Ronchetti, 2009)

:
.
::::
This

::::::::
approach

:::::::
reduces

:::
the325

:::::
impact

:::
of

:::::::
outliers

::
by

::::::
giving

:::::
lower

::::::
weight

:::
to

::::
large

:::::::::
residuals.

:::
For

::::::::::
quantifying

:::
the

:::::::::
alignment

::
of

::::
the

::::::::
simulated

::::::
trends,

:::
we

:::
us

::::::::
Spearman

:::::::::
correlation

::::
(ρ),

:::::
which

::
is
::::::::
relatively

::::::
robust

::::::
against

::::::::
outliers.

:::::
While

:::
the

:
LSTMbest represents

:::::::::
represented the spatial

patterns of the linear trend relatively well with a Pearson correlation of r = 0.77. The model does, however, underestimate

the negative trends with a slope of 0.84 and a bias of -0.01 . The PREVAHmodel represents the spatial pattern worse with an
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r = 0.60, and it overestimates the trends slightly (slope of 1.07), while the bias is again -0.01 . The representation of the trends330

across catchments are, however, not significantly different between
:::::::::
correlation

::
of

::::::::
ρ= 0.60,

:::::::::
PREVAH

::::::::
achieveed

::
a

:::::::::
correlation

::
of

::::::::
ρ= 0.42.

::::
Both

::::::
models

:::::::::::::
underestimated

:::
the

:::::::
strength

::
of

:::::::
negative

:::
and

:::::::
positive

::::::
trends

::::
with

:::::
slopes

::
of

::::
0.52

::::::::::
(LSTMbest)::::

and
::::
0.64

::::::::::
(PREVAH),

:::
and

::::
they

::::::::
exhibited

:::::
small

:::::::
negative

::::::
biases

::
of

::::
-3.73

::
(LSTMbestand PREVAH on the basis of a significance level of

α= 0.05 (pbias = 0.281, pslope = 0.056)
:
)
:::
and

:::::
-6.44

:::::::::
(PREVAH)

:
mmy−1.

4.2 Qualitative evaluation of selected catchments335

To understand how the models represent different hydrological regimes, we perform a qualitative comparison for a selection

of catchments. We selected single catchments that are either dominated by a) rainfall, b) lakes, c) snow, or d) glaciers for this

purpose (Fig. 6). These example catchments serve as means for qualitative model comparison, and we do not expect these

insights to directly generalize across catchments.

The rainfall-dominated catchment, the Murg at Frauenfeld (ID: 2386), is located in the Northwest of Switzerland on the340

Swiss Plateau, with an area of ∼200 km2 and an average elevation of ∼600 m. Maximum snow water equivalent (SWE) has

been below 80 mm in the past years (Höge et al., 2023) and was not considered to affect runoff for most days of the year. The

lake-dominated catchment, the Aabach at Hitzkirch (ID: 2416), is located in the central Pre-Alps, with an area of ∼70 km2

and an average elevation of ∼600 m. The gauging station is located just a few hundred meters after the outflow of the ∼5 km2

Lake Baldegg, which damps runoff peaks and also affects the low flow regime. The snow-dominated catchment, the Plessur at345

Chur (ID: 2185), is located in the Eastern Swiss Alps, with an area of ∼250 km2 and an average elevation of ∼1900 m (from

∼500 m to ∼3000 m). Maximum SWE varied in the past 25 years between 200 and 500 mm. There are no large glaciers in

this area which could influence runoff. The glacier-dominated catchment, the Simme at Oberried/Lenk (ID: 2219), is located

in the Western Swiss Alps, with an area of 35 km2 and an average elevation of ∼2300 m (from ∼1000 m to ∼3200 m). About

25%
:
% of the area is covered by glaciers. Maximum SWE varied in the past 25 years between 400 and 1100 mm.350

For the rainfall-dominated catchment, PREVAH and LSTMbest show
::::::
showed

:
similar behavior (Fig. 6a) and both models

can
:::::
could

:
reproduce the runoff peaks and overall patterns. For the lake-dominated catchment, the LSTMbest outperformed

the PREVAH model in terms of NSE (Fig. 6b). Visual inspection shows high peaks in PREVAH simulations, which indicate

missing buffering dynamics in lakes. This is not surprising, as PREVAH does not represent lakes explicitly, while the LSTM

can learn the buffering implicitly via the catchment properties, among which the fraction of water bodies may be the most355

relevant one. For the snow-dominated catchment shown in (Fig. 6c), the PREVAH model manages
::::::::
managed to represent the

runoff processes better in 1998, and similar in the year of 2018. Here the LSTMbest overestimates runoff in general, and

particularly peaks in the summer. Snow melt responds strongly to radiation, which was not included as a driver of the LSTM.

Further, snow-related processes are spatially heterogeneous, depending on elevation and exposition. The lumped LSTM model

cannot resolve these processes at sub-catchment level, while the PREVAH model operates on a high-resolution grid. Although360

worse in terms of NSE, the LSTM manages
::::::::
managed to better represent the snow melt in 2018, possibly because snow was

already melted away in the PREVAH simulation. In a glacier-dominated catchment, finally, LSTMbest represents
:::::::::
represented

the runoff patterns slightly better than PREVAH.
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4.3 Runoff reconstruction

The reconstruction of daily runoff from 1962 to 2023, referred to as CH-RUN, was conducted with the best-performing model365

based on prior analysis. The final estimate was calculated as the median across the eight ensemble members from the cross-

validation. Figure 7 shows the annual runoff as quantiles relative to the reference period from 1971 to 2000. The quantiles were

calculated per catchment comparing the annual values to the empirical distribution of the reference period. Turquoise colors

indicate that, for a given catchment, the yearly average runoff is rather large compared to the reference, and brown colors

signify dry years.370

The reconstruction suggests that dry years with similar amplitude compared to the conditions of the 21st century were already

present in the 1960s and 70s (e.g., in 1964 and 1976). However, the frequency of dry years increased significantly – and that

of wet years substantially decreased – according to the model estimates.

Figure 8 shows the annual national runoff anomalies and corresponding trends for CH-RUN. According to the CH-RUN

reconstruction, the recent dry conditions are matched by values in the 1960s and 70s in terms of amplitude, while the frequency375

of dry years increased, and that of wet years decreased. Extremely dry years (exceeding the 0.1 quantile of the reference period)

were absent in the 1980s and 90s, while wet years (exceeding the 0.9 quantile of the reference period) were more frequent

during this period. The last extremely wet year occurred 1999, and the driest year was 2022.

In Fig. 9, the decadal mean values are disaggregated into seasonal patterns. Here, average annual sums across decades are

shown, again relative to the reference period from 1971 to 2000. The decadal means again point at strong trends towards less380

runoff at yearly scale. In the winter months December to February (DJF), we see a slight tendency towards less runoff north

of the Alps, while the 2020s exhibit more runoff in the Pre-Alps. From March to May (MAM), northern Switzerland, the

Pre-Alps, and the canton of Ticino, show a clear trend towards drier conditions. Even more pronounced, June to August (JJA)

reveal a tendency towards less runoff in the central Alps with higher altitudes and the canton of Ticino. From September to

November (SON), the patterns are again less distinct, yet there is a general trend towards drier conditions in most catchments.385

5 Discussion

5.1 Neural network architectures and the role of data

The better performance of the LSTM compared to the TCN (Fig. 4.1.2) is somewhat surprising, as the latter has been reported to

perform well in time series prediction settings (e.g., Zhao et al., 2019; Catling and Wolff, 2020; Yan et al., 2020). The difference

in performance can be traced back to the two best-performing LSTMs (Fig. 4.1.2, Tab. A2 & A3) and hint at better capabilities390

of the LSTM to represent interactions between meteorological and static features, under these data-limited conditions. It seems

that the LSTM is more data-efficient than the TCN, which is also supported by the lower number of tunable parameters used

by the former . It might be therefore
:::
(see

::::
Tab.

:::
A2

:::
&

::::
A3).

::
It

:::::
might

::::::::
therefore

::
be

:
possible that the TCN can compete with the

LSTM architecture if more training data is available. Other deep learning approaches for modeling time series exist, among

which transformer-based architectures (Vaswani et al., 2017) became popular recently (Lim et al., 2021; Zhou et al., 2021;395
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Xu et al., 2023). Due to the powerful and complex encoder-decoder structure, these models unfold their potential especially

in forecasting settings and with large amounts of training data. Given the relatively low amounts of training data available

for the study domain, we do not expect significant improvement by using such architectures. Nevertheless, exploration of this

architecture may hold potential for improved reconstruction in the future.

In runoff modeling, integrating catchment properties with meteorological features is a prevalent approach (e.g., Kratzert400

et al., 2019). We found that the most effective data fusion method involved channeling static variables through the LSTM’s

temporal layers while handling some non-temporal interactions in an upstream encoding layer. Our LSTM successfully learned

the complex interactions between static and meteorological features, extending its applicability to untrained catchments and

time ranges. Enhancing the model’s predictions was achieved by incorporating a broader range of catchments and fully utilizing

catchment properties (Fig. A1), acknowledging that a wider input feature space necessitates more data. This finding aligns with405

our previous diagnosis of spatial information limitations due to the relatively small number of training catchments. Although

the importance of data has been well reported (Kratzert et al., 2018; Gauch et al., 2021b), these results reaffirm the value of

additional data in enhancing model performance. Consequently, we recommend exploring methods to incorporate more training

data, such as transfer learning from other tasks (Sadler et al., 2022) or other regions (Pan and Yang, 2010; Yao et al., 2023;

Xu et al., 2023), for example from large-scale datasets (Kratzert et al., 2023; Do Nascimento et al., 2024), and considering410

alternative data sources like citizen science projects
::::::::
bottom-up

::::
data

:::::::::::
mobilization

:::::
efforts

:
(Do et al., 2018; Gudmundsson et al.,

2018; Nardi et al., 2022; Kebede Mengistie et al., 2024) as promising avenues for future research.

It is encouraging to see that the LSTM did manage to implicitly learn complex runoff dynamics across hydrological regimes

(Fig. 6). The data-driven model has learned buffering effects by lakes and, to a certain extent, runoff-generating processes

related to snow and, possibly, also glaciers. Similar behavior has been reported before. Kratzert et al. (2019) and Lees et al.415

(2022), for example, reported that an LSTM was able to represent long-term snow dynamics. We expect potential for improve-

ment by better representing buffering processes via routing of the runoff (Bindas et al., 2024) and by an improved representation

of snow and glacier processes. This can be achieved via the combination of physically-based and data-driven modeling (Re-

ichstein et al., 2019), e.g., by directly employing physical constraints in an end-to-end hybrid physics-machine learning setup

(Kraft et al., 2022, 2020; Höge et al., 2022), by penalizing physically implausible simulations during training (Daw et al.,420

2021), or by regularizing the model with auxiliary tasks (Sadler et al., 2022), to only name a few.

5.2 Comparison with the PREVAH model

Although some neural networks outperform the PREVAH model (Fig. 4.1.2), the differences in terms of NSE were small.

The marginally better representation of runoff mean and amplitude by PREVAH make sense intuitively, as the data-driven

model has a very limited number of training catchments to learn spatial features from. Equivalently, the better representation425

of temporal patterns by the LSTM could be explained by the fact that the LSTM
:
it has access to long time-series to learn the

dynamics from. The sole fact that deep
::
It

::
is

:::
not

::::::::
surprising

::::
that

:::::::
machine

:
learning can outperform physically-based models is

not surprising
::
in

:::::
runoff

::::::::
prediction, as this has been demonstrated before (e.g., Kratzert et al., 2018; Lees et al., 2021)

:
in
::::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kratzert et al., 2018; Lees et al., 2021; Gudmundsson and Seneviratne, 2015; Ghiggi et al., 2021). However, in this
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study, we used a limited amount of meteorological drivers compared to the needs of the PREVAH model. Furthermore, the430

PREVAH model is an expert model that is using carefully regionalized parameters for the study domain (Viviroli et al., 2009c).

As PREVAH is providing the natural discharge within the catchments domain, it is not able to capture the dampening effect

provided by lakes (ID 2416 in Fig. 6
:
b). The LSTM is able to cope with such effects as part of its global calibration result.

::::
From

::::
the

:::::::
analysis

::
of

:::
the

::::::
spatial

:::::::
patterns

:::
of

:::
the

::::::
model

:::::::::::
performance

::::
(Fig.

:::
4),

:::
we

:::::::
learned

::::
that

:::
the

::::::::
LSTMbest:::::::::::

encountered

::::::::
challenges

::::
with

:::
dry

::::::::::
catchments

:::
that

::::
have

::::
both

::::
low

:::::
runoff

:::::
mean

:::
and

:::::::
variance.

::::
This

::::
was

:::
not

::::::::
surprising

:::
due

::
to
:::
the

::::
high

::::::::::::
signal-to-noise435

::::
ratio

::
in

:::::
runoff

:::::::::::
observations

:::
and

:::
the

:::::::::
sensitivity

::
to

:::::
minor

:::::::::
variability

::
in

:::
the

::::::::::::
meteorological

::::::::
variables

:::
and

:::::::::
catchment

:::::::::
properties

::
in

:::
dry

::::::::::
catchments.

::::::::
Similarly,

::::::::
PREVAH

::::::::
struggled

::::
with

::::
dry

:::::::::
conditions,

:::
but

::::
still

:
it
:::::::::
performed

::::::
clearly

:::::
better

:::::
under

::::
such

::::::::::
conditions.

::
In

:::::::
contrast,

:::::::::
LSTMbest :::::::::

represents
:::::::::::::
lake-dominated

:::::::::
catchments

:::::
with

:::
low

::::::::
elevation

:::::::::::
significantly

::::::
better.

::::
This

::::
was

::::::::
expected,

:::
as

::::::::
PREVAH

::::
does

:::
not

::::::::
represent

:::
lake

:::::::::
processes,

:::
and

:::::::::
therefore,

:
it
::::::
cannot

:::::::
properly

::::::::
represent

::::
their

::::::::::
dampening

:::::
effect.

::::
The

:::::::::
interaction

::::
with

:::::::
elevation

:::::
could

:::
be

::::::::
explained

::
by

:::
the

::::
fact

:::
that

:::
the

::::::
largest

:::::
lakes

::
in

::::::::::
Switzerland

:::
are

::
at

:::::::::::::
medium-to-low

::::::::
elevation.440

The PREVAH model is already used successfully for reconstruction (Otero et al., 2023) and future climate scenarios (Laghari

et al., 2018; Brunner et al., 2019b). With the objective of real-time monitoring, long-term reconstruction, and potentially an

efficient simulation of climate scenarios in mind, we consider the similar performance compared to the benchmark sufficient.

The similar capability to representing interannual patterns by the LSTMbest and the slightly better fidelity of trends (Fig. 5)

is, especially given the lowered data requirements, encouraging. We want, however, to state here upfront that a process-based445

hydrological model has advantages over a data-driven model, such as interpretability and physical consistency.

5.3 Plausibility of the runoff reconstruction product

The reconstruction of runoff back to the early 1960s for Switzerland is a novelty enabled by the reduced data needs of our

deep learning-based approach
:::::::
compared

:::
to

:::
the

::::::::
PREVAH

:::::
model. Here, we evaluate the plausibility of the observed

::::::::
simulated

patterns based on Fig. 7-9 by contrasting them to prior knowledge.450

The overall trend towards drier conditions simulated by our data-driven model aligns with independent studies. This has

been reported widely for Europe (Orth and Destouni, 2018; Hanel et al., 2018) and Switzerland specifically (Hohmann et al.,

2018; Brunner et al., 2019b; Henne et al., 2018). Interestingly, the results reveal that the runoff anomalies of the 2022 drought

(e.g., Toreti et al., 2022; Schumacher et al., 2024) were larger than that of the well-documented 2003 drought (e.g., Ciais et al.,

2005; Rebetez et al., 2006; Seneviratne et al., 2012). The identified drying trend in the summer season is consistent with a455

reported increase in agro-ecological droughts in West-Central Europe in the latest report of the Intergovernmental on Climate

Change (Arias et al., 2023), and may indicate the presence of a drying trend in streamflow in this region, which was assigned

low confidence at the time of the IPCC report (Seneviratne et al., 2021).

In the winter months, an increase in runoff in the Pre-Alps may be linked to an earlier onset of snowmelt (Vorkauf et al.,

2021). In the same region and other medium-altitude regions
::::
areas

:
such as the Jura sub-alpine mountain range, runoff is lower460

:::::::::
decreasing in spring. This could be related to a combination of a trend towards lower snowmelt due to less snowfall during

winter (Matiu et al., 2021) and an earlier onset of snowmelt due to warmer temperatures mentioned previously. The Alps are,

supposedly, similarly affected by those effects, yet the onset of thawing is delayed due to higher altitudes, and hence we see the
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main contribution to negative trends in later summer. In Ticino, a strong trend towards warmer temperatures has been reported,

although precipitation seems to not show significant trends (Reinhard et al., 2005). We hypothesize that the
:::
The negative trend465

in summer is less related to snowmelt but rather connected to
:::::
likely

::::::
caused

:::
by

::::
both

:
a
::::

lack
:::

of
::::::::
snowmelt

::::
and an increase in

evapotranspiration via warmer air temperatures, which can have a significant impact on runoff (Teuling et al., 2013; Goulden

and Bales, 2014).

5.4 Potential applications

Other than catchment-level observations, the spatially and temporally complete reconstruction provides a tool for studying470

runoff beyond the observational horizon and also for ungauged catchments. The focus on catchments with low human impacts

during model training allows the investigation of physical processes in isolation. This is an advantage for climate-focused

studies, as it is challenging and often not possible to disentangle effects from human water use from physical effects associated

with human-induced climate change. We encourage researchers to use the CH-RUN product for trend analysis and to under-

stand the drivers of the simulated patterns. We further see potential in using CH-RUN as an independent benchmark dataset for475

hydrological models: It is challenging to understand the different sources of uncertainty during model development. Having a

methodologically independent benchmark dataset can help disentangle methodological from data limitations.

With our data-driven approach, we achieve a speedup by a factor of 600 compared to PREVAH, assuming PREVAH is

run parallelized across 100 central processing units (CPUs) and the CH-RUN is employed on a high-performance graphics

processing unit (GPU). The reconstruction for the entire domain took approximately 20 seconds for one ensemble member on a480

NVIDIA A100 GPU. This speedup enables computationally cheap real-time monitoring of runoff on national scale. In addition,

the model can be fed with meteorological forecasts, which would enable early warning of floods and droughts. A common use

case for hydrological models is running scenarios, i.e., to simulate responses to a changing climate or to attribute runoff

patterns to anthropogenic forcing. However, running scenarios with physically-based models is computationally expensive,

which limits ensemble size and forecast horizon. The speedup compared to a traditional hydrological model allows running485

thousands of scenarios with ease. The application in early warning and running scenarios must be carefully examined and may

require further calibration steps, but hold potential for understanding and mitigating climate change impacts in the near future.

5.5 Limitations

In the evaluation at the catchment level, it was observed that the CH-RUN model, although effective in general, faces challenges

under certain conditions in accurately representing runoff,
::::
such

::
as

::::::::::
catchments

::::
with

:::
low

::::::
runoff

::::
mean

::::
and

:::::::
variance. The model’s490

performance was evaluated in catchments with minimal human impact, such as dam operations and surface irrigation, to reduce

anthropogenic influences on the results. However, the model did not incorporate detailed land use information beyond basic

surface classifications, thereby not accounting for direct human alterations in the hydrological system.

A limitation in our approach was the reliance solely on air temperature and precipitation data for long-term reconstruction,

excluding other meteorological factors like cloud-related effects, which could only be indirectly
:::::::
sunshine

::::::
hours,

:::::
which

::::
can495

::::
only

::
be

:::::::::
implicitly approximated by the model

:::
via

:::
the

::::::::
available

:::::
input

:::::::
variables. The assumption of static variables, such as
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land use and glacier coverage, being constant over time is a necessary simplification but introduces potential inaccuracies. This

is particularly critical as land use can vary and glacier areas are known to decrease over time, potentially leading to biases,

especially in the early stages of the reconstruction where observational data are sparse.

Moreover, the dataset used for training the model and the dataset for reconstruction are not entirely independent, though500

they are not identical. The temporal overlap of the training set within the reconstruction period was unavoidable due to data

limitations. Efforts were made to mitigate the risk of overfitting by employing a distinct validation set, both spatially and

temporally separated from the training data.

::
In

:::::
runoff

:::::::::
modeling,

:::
the

::::::
quality

::
of

::::::::::::
meteorological

::::::
drivers

:::
has

::
a

::::
large

::::::
impact

::
on

::::::
model

:::::::::::
performance,

:::
and

::::
both

:::::::::::::
meteorological

:::::::
products

::::
used

::::
here

::::
have

::::::
known

::::::::::
limitations.

:::
The

::::::
TabsD

::::::
product

:::
of

::
air

::::::::::
temperature

::::::
shows

:
a
::::
clear

::::::::::
relationship

:::::::
between

:::
the

:::::
error505

:::
and

:::
the

:::::::
number

::
of

:::::::
stations

::::
used

:::
for

:::
the

::::::::::::
interpolation,

:::::
which

::::::
results

::
in

:::::
larger

::::::
errors

::
in

:::
the

::::::
1960s

:::
and

:::
70s

:::::
most

:::::::::
expressed

::
in

:::::
winter

:::::::
months

:::
and

::::::::::
particularly

::
in

:::
the

::::
Alps

::::
and

::
in

::::::
Ticino.

::::
The

:::::
linear

:::::
trend

::::::::::
(1961-2010)

::
of

::::::::::
interpolated

:::
air

::::::::::
temperature

::::::
shows

:::::::
relatively

::::
low

:::::::::
agreement

::::
with

:::
the

::::::::
observed

:::::
trends

::::::::::
(Frei, 2014)

:
.
:::
The

::::::::
RhiresD

::::::::::
precipitation

:::::::
product

::
is

:::::::
affected

::
by

::::
two

:::::::
primary

::::::
sources

::
of

:::::::::::
uncertainty:

::::
The

:::::::::
rain-gauge

::::::::::::
measurements

:::
are

::::::
prone

::
to

::::::::::
undercatch,

:::::::
leading

::
to

:::::::::::::
underestimation

:::
of

:::::::::::
precipitation

:::::::::
particularly

::::
with

::::::
heavy

:::::
winds

::::
and

:::::
snow

::
in

::::::
general

:::::::::::
(Neff, 1977)

:
.
::::
This

:::::
leads,

::
in

:::::::::::
Switzerland,

::
to

:::
an

:::::::::::::
underestimation

:::
of

:::::
about510

:
4
:
%

:
at
::::
low

:::::::::
elevations

:::
and

:::
up

::
to

::
40

:
%

::
in

::::
high

::::::::
altitudes

::
in

:::::
winter

:::::::::::::
(Sevruk, 1985).

:::::
From

:::
the

::::::::::::
interpolation,

::::
there

::
is
::

a
::::::::
tendency

::
to

::::::::::
overestimate

:::::
light

::::
and

:::::::::::
underestimate

::::::
heavy

:::::::::::
precipitation

::::::::::::::::::
(MeteoSwiss, 2021b),

::::::::
although

:::::
these

::::::::::
inaccuracies

::::
are

:::::::
reduced

::
for

:::::
areal

:::::::::
aggregates

::::
such

:::
as

:::
the

:::::::::
catchment

:::::::
averages

::::::::
deployed

:::
in

:::
the

::::::
present

::::::
study.

:::
We

:::
did

:::
not

::::
find

::::
any

::::::::::
information

:::
on

:::
the

:::::::
accuracy

::::
over

:::::
time,

:::
but

::
we

::::::
expect

::::
that

:::
the

::::::
sparser

:::::::::::
measurement

:::::::
network

::
in

:::
the

:::::
1960s

:::
and

::::
70s

::::
leads

::
to
:::::
larger

::::::
errors

:::::
during

::::
this

::::::
period,

::::::
similar

::
to

:::
the

::::::
TabsD

:::::::
product.

:::
We

::::::
expect

:::
that

:::::
these

:::::::::::
uncertainties

:::::
affect

:::
our

::::::
results

:::::::::::
substantially.

:::
We

:::::::::::
acknowledge

::::
that515

::
in

:::
the

::::
early

::::::::::::
reconstruction

::::::
period

::::::
(1960s

::::
and

::::
70s),

::::::
where

::::
less

:::::::::::
measurement

:::::::
stations

::::
were

::::::::
available,

::::
the

::::::::::::
reconstruction

::::
may

::
be

::::
less

::::::::::
trustworthy.

:::
The

::::
low

:::::::::
agreement

::
of

::::::::::
interpolated

:::
air

::::::::::
temperature

::::::
trends

::::
with

:::::::::::
observations

:::::
could

::::::
explain

::::
why

:::::
both

:::
the

::::::::
PREVAH

:::
and

::::::::
CH-RUN

:::::::
struggle

::
to

::::::::
represent

::::::
extreme

::::::
runoff

::::::
trends.

:::::
While

:::
we

:::
did

:::
not

:::::::::
specifically

:::::::::
investigate

:::
the

::::::::::::
representation

::
of

:::::::
extreme

:::::
runoff

::::::
events

::
in

::::
this

:::::
study,

:::
we

::::::
expect

::::
that

:::
the

::::::::::::
overestimation

::
of

::::
low

:::
and

::::::::::::::
underestimation

::
of

::::::
strong

:::::::::::
precipitation

:::::
events

::::::
results

::
in

:
a
::::
bias

::
in

:::::
runoff

:::::::::::
simulations.520

Finally, our deep learning model heavily depends on the availability and diversity of data. Representing infrequent occur-

rences or events, which are less common in the data distribution, poses a significant challenge. Consequently, the model’s

ability to accurately depict rare and extreme hydrological events, such as sudden heavy rains leading to flash floods, is likely

limited. This aspect is underscored by the inherent difficulties in modeling the “long tail” of event distribution (Zhang et al.,

2023).525

6 Conclusions

In this study, we developed a data-driven daily runoff reconstruction product for Switzerland, spanning from 1962 to 2023.

Our model not only matched but also surpassed the performance of an operational hydrological model at the catchment level.

This achievement is particularly noteworthy considering the reduced data requirements, a limitation necessary to achieve such
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an extensive reconstruction period. Our model effectively captured daily runoff patterns ,
:::
and

:
interannual variability, and530

::::::::
represents

:
long-term trends

:::::::
decently, providing a comprehensive and satisfying depiction of runoff dynamics.

The reconstruction product revealed interesting patterns in long-term runoff trends that align with prior knowledge. Having

additional reconstruction for the 1960s and 1970s, it seems that increases in the frequency, rather than in the amplitude of dry

years, as well as a decrease in the frequency of wet years, is contributing towards the negative decadal trend. A clear tendency

towards drier conditions was diagnosed and
:::::
runoff

:::::
trend.

:::
We

:::::::::
diagnosed

::
a

::::
trend

:::::::
towards

:::::
lower

::::::
runoff

::
at
:::
the

::::::::
national

:::::
scale,535

:::::
which

::::
was

::::::
mainly

:
linked to the summer months,

::::::
where

:::
the

::::::
spatial

:::::::
patterns

::
of

::::::
runoff

::::::::
indicated

::::::::::
increasingly

::::
dry

:::::::::
conditions

:::::::::
particularly

::
in

::::::::::
mid-to-high

::::::::
altitudes. We encourage the in-depth investigation of the identified patterns in subsequent studies.

One of the major strengths of our approach lies in its computational efficiency, which opens up possibilities for contiguous

near real-time monitoring and potentially forecasting of runoff. The reduced data demands of our model make it an invalu-

able tool for scenario simulation and attributing trends to anthropogenic climate change, allowing for the rapid evaluation of540

thousands of scenarios that were not feasible with traditional physically-based models.

Looking ahead, we believe that the current approach could be further enhanced by integrating additional data constraints or

incorporating physical knowledge. Specifically, for a more accurate representation of large catchments, we see the inclusion of

routing processes as a vital next step.

Code and data availability. The code is shared on GitHub and available at https://github.com/bask0/mach-flow/. The upscaling product545

(“CH-RUN”), including the input data (precipitation, temperature, and the static variables) and the catchment polygons, is available at [will

be published prior to publication].
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Figure 3. Model setup impact on
::

The
::::::::::::

catchment-level
::::::

model performance and their interactions based on
:::::
across

:
the median catchment

Nash-Sutcliffe modeling efficiency (NSE),
::
98

::::::::
catchments

:
evaluated on the spatially and temporally independent test set

:::
that

:::
was

:::
not

:::
used

:::
for

:::::
model

:::::::::
calibration. The colors represent NSE relative to

::
We

:::::
show

:::::::
different

::::::
versions

::
of
:

the respective
::::::::
data-driven

::::::
models

:::::::::::
corresponding

:
to
:

model mean across setups; red represents worse, and blue represents better performance
::
the

::::::::::::::
convolution-based

::::::::::
architectures

::::::
(TCN),

:::
and

:::
red

::
the

::::::
LSTM

::::::::::
architectures. The background gradients have been calculated using linear least square regression with the

:::::::
PREVAH

model performance
::::
(black

:::::
solid

::::
line)

:::::
serves as dependent variable

:
a
:::::::::

benchmark. The offset lower triangular panels show results for the

::::::::::::
best-performing

:::::
model

:
(LSTM

:::best), the offset upper triangular
:::

used for the TCN model
::::::::::
reconstruction, i.e., variable interactions, while

the three panels on the diagonal show variable main effects, split to distinguish between the two models
:
is
:::::::::
highlighted. The x and y axes

represent
::::
y-axis

::::::::
represents

:
the setups tested in

:::::::
cumulative

:::::::::
probability

::::::
density,

:::
i.e., the factorial experiment. Training catchments refers to the

catchments used for training: a subset
::::::
fraction of 98 catchments less impacted by anthropogenic factors (C98),

:::
that

::::
have

::::
given

::::
value

:
or all

catchments
::::
lower.

::::
Panel

::
a)
:::::
shows

:::
the

:::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency (C267::::

NSE)
:::
with

::::::
median

:::::
values

::
as

::::::
vertical

::::
lines. Target transform

is either Tnone if the target variable was not transformed
:::
The

:::::
panels

::::
b)–d)

::::
show

::::::
squared

::::
bias, or Tsqrt for square root transform

::::::
variance

:::::
error,

:::
and

::::
phase

:::::
error,

:::::::::
respectively. Static variables is Sall if all static variables are used

::::
Note

:::
that

:::
here, SPCA if they are first transformed using

PCA
:::

other
::::
than

::
for

::::
NSE

::
in
:::::
panel

::
a), or Sarea if only catchment area

::::
lower

:::::
values

:::
are

:::::
better.

:::
The

:::::
x-axes

:
is used beyond the meteorological

variables
:::::::
truncated.

For the LSTM architecture, using all training catchments and all static variables had a larger impact on the outcome than the square root

transform of the target variable, which was negligible. The factors “training catchments” and “static variables” interacted strongly,

indicating that having both more training data and more information on catchment properties contributes more to the model performance

than using the factors independently. The interaction with “target transfrom”, in contrast, was minimal for the LSTM architectures. For the

TCN models, the results look different. Using more static variables as input seems to have improved model performance, while using

additional training catchments did so only marginally, and the interactions of the “training catchments” and “static variables” was less clear.

Overall, the TCN models show lower range of performance across setups than the LSTM models.

From the fusion methods introduced in Sect. 3.1, prefusion with encoding was selected most often for the LSTM architecture, while

postfusion was more commonly selected for the TCN (Appendix A, Tab. A2 & A3). Note that the fusion was part of the hyperparameter

tuning, and only the best approach is used to make the final predictions. For both architectures, prefusion with encoding was commonly

selected if all static variables were used as input. Interestingly, as seen in the Tab. A2 & A3, the number of tunable parameters, an outcome

of the hyperparameter tuning process, was larger by a factor of five for the TCN architectures (2.8 million in average) compared to the

LSTMs (0.52 million in average).

4.1.2 Evaluation of daily runoff

The catchment-level model performance across the 98 catchments in terms of the empirical cumulative density of the Nash-Sutcliffe

modeling efficiency (NSE) is evaluated on the test set that was not used for model calibration. We show different versions of the data-driven

models corresponding to model setups, blue represents the convolution-based architectures (TCN), and red the LSTM architectures. The

PREVAH model (black solid line) serves as a benchmark. The best-performing model (LSTMbest), used for the reconstruction, is

highlighted. The y-axis represents the cumulative probability density, i.e., the fraction of catchments that have given value or lower. Panel a

shows the Nash-Sutcliffe modeling efficiency (NSE) with median values as vertical lines. The pannels b–d show squared bias, variance

error, and phase error, respectively. Note that here, other than for NSE in panel a, lower values are better. The x-axes is truncated.
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Figure 4.
:::::
Spatial

::::::::::::
catchment-level

::::::::::
performance

::
of

::
our

::::::::::::
best-performing

:::::
model

:::::::::::
(“LSTMbest”)

::::::::
contrasted

::
to

::
the

::::::::
PREVAH

:::::::::
hydrological

::::::
model.

:::
The

:::
top

:::
row

:::::
shows

::
the

::::::::::
performance

::
of

::::::::
LSTMbest,::::

with
::
the

:::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency

:::::
(NSE)

::
in

::
the

:::::::
most-left

:::::
panel,

:::
and

:::
bias

::::::
(ebias),

::::::
variance

::::::::
(evariance),

:::
and

:::::
phase

::::::
(ephase)

::::
error,

::
in

::
the

::::::::
remaining

::::::
panels.

:::
Note

:::
that

::
in
:::
the

::
top

:::::
panel,

::::::::
yellowish

::::
colors

::::::
indicate

:::::
better

::::::::::
performance,

:::
i.e.,

::
for

:::::
NSE,

:
a
:::::
larger

::::::
number

:
is
:::::
better

:::
and

:::
for

::
the

::::
error

::::::::::
components,

::::
lower

:::::::
numbers

:::
are

:::::::
preferred.

::::
The

:::::
bottom

:::
row

:::::
shows

:::
the

::::::::::
performance

:::::::
difference

::
of

::::::::
LSTMbest:::::

minus
::::::::

PREVAH.
:::::
Here,

::::::
reddish

:::::
colors

::::::
indicate

:::
that

::::::::
PREVAH

:::::::
performs

::::
better

::::
than

:::::::::
LSTMbest, ::::

which
:::

is,
::
for

:::::
NSE,

::::::
negative

:::::
values,

::::
and

::
for

:::
the

::::
error

:::::::::
components,

::::::
positive

::::::
values.

:::
The

::::
inset

::::::::
histograms

::::::::
represent

::
the

:::::::::
distribution

::
of

::::::::
catchment

::::::
metrics,

:::
and

:::
the

::::
white

:::
bar

:::::::
indicates

:::
the

:::::
median

::
of
:::

the
:::::::::
distribution,

:::
per

:::::
panel.

::::
The

::::::::
evaluation

:
is
::::::::
performed

:::
on

::
the

:::
test

:::
set,

:::
but

:::
all

::::::::
catchments

:::
are

::
in

:::
this

:::
set

:::
once

::
in
:::
our

::::::::::::
cross-validation

:::::
setup.

Figure 5. Catchment-level evaluation at the annual scale. a) The Pearson correlation (r) and b) bias in mmy−1 distribution across 98 training

catchments evaluated on the test set. c) The simulated annual runoff trends compared to observations. The points represent the linear trend

(found by
:::::::
robustified

:
least square

:::::
squares

:
fit) of single catchments. Note that for the trend calculation, the time range from 1995 (start of

first test period) to 2020 (end of second test period) was used. The inset equation shows the linear least square fit and the corresponding
:::

rank

correlations. The shaded areas represent the respective 95% confidence bands.
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Figure 6. Daily runoff Q in mmd−1 for four selected catchments and two distinct years selected from the test periods. Observed (dashed

black line), simulated by PREVAH (grey), and out-of-catchment prediction of the data-driven LSTMbest (red) are shown. The catchments

were selected to represent different modeling challenges: a) rainfall, b) lake, c) snow, and d) glacier dominated. The inset NSE values

represent the model performance for the selected year.
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Figure 7. Spatially contiguous reconstruction of runoff from 1962 to 2023.
::::
2023

::::
from

:::
the

:::::::
CH-RUN

::::::::::::
reconstruction. The maps represent

the yearly catchment-level runoff quantiles relative to the reference period (1971 to 2000) empirical distribution. The bottom bars show the

decadal deviation in mmy−1 of the national-level runoff relative to the reference period (1971 to 2000).
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Figure 8. Annual runoff anomalies for Switzerland from 1962 to 2023 as simulated by
::::
from

:
the LSTM (CH-RUN )

::::::::::
reconstruction. The

bars represent the CH-RUN annual deviation in mmy−1 of the national-level runoff relative to the reference period (1971 to 2000). The

aggregation from catchment to national level was done with area-weighted mean. Positive anomalies are depicted in turquoise, negative ones

in brown. The solid red line represents the trend, i.e., the low-pass filtered signal using a Gaussian filter with a standard deviation of σ = 2.

The dashed lines are the 0.1 and 0.9 quantile of the reference period, respectively.

Figure 9. Decadal evolution of spatially contiguous reconstruction of runoff from 1962 to 2022 by season
::::
from

::
the

::::::::
CH-RUN

::::::::::
reconstruction.

The maps represent the decadal average catchment-level runoff in mmy−1 relative to the reference period (1971 to 2000). From top row to

bottom: Year: full year; DJF: December to February; MAM: March to May; JJA: June to August; SON: September to November.
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Table A1. The search space for hyperparameter tuning. The common hyperparameters were used for both architectures, the other onse
::::
ones

are model-specific.

Name Search space

Common parameters

model_dim {64, 128, 256 }

enc_dropout {0.0, 0.2}

fusion_method {‘pre_encoded’, ‘pre_repeated’, ‘post_repeated’}

learning_rate {1e-4, 1e-3, 1e-2}

weight_decay {1e-1, 1e-2, 1e-3}

LSTM parameters

temp_layers {1, 2}

TCN parameters

temp_layers {2, 3, 4}

kernel_size {8, 16}

temporal_dropout {0.0, 0.2}

The model_dim corresponds to the model dimensionality, which is shared among all feed-forward

and temporal neural networks. enc_dropout was used in the encoder layers prior to the temporal

layer, and fusion_method corresponds to the approaches described in Sect. 3.1.

learning_rate and weight_decay are parameters of the optimizer and control the weight

update step size and regularization, respectively. For the long short-term memory (LSTM) and the

temporal convolutional network (TCN), temp_layers defines the number of stacked temporal

layers. For the latter, kernel_size is the width of the 1D convolution kernel applied along the time

dimension, and temporal_dropout deactivates entire channels of input encoding, instead of

randomly dropping activations.

Appendix A: Model training

A1 Hyperparameter tuning

The hyperparameter space searched
:
is

:
shown in Tab. A1. The model_dim denotes the model dimensionality, i.e., the size550

of the internal representations. The enc_dropout refers to dropout (random deactivation of nodes with probability p dur-

ing training) applied in the encoding layers, and fusion_method to the method used for fusion of the temporal and static

variables. For the AdamW optimizer, learning_rate deontes
:::::::
denotes the step size, and weight_decay the L2 reg-

ularization. The temp_layers refers to the number of stacked temporal layers for both the LSTM and the TCN, and

kernel_size is the dimensionality of the 1D kernel used for convolution in the time dimension for the latter. An optional555

temporal_dropoput
:::::::::
dropout is used for the TCN. The performance of the models and the corresponding hyperparam-

eters are provided in Tab. A2 for the LSTMs, and Tab. A3 for the TCNs.
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Rank NSE allbasins sqrttrans static model_dim enc_dropout fusion_method temp_layers learning_rate weight_decay num_params
1 0.76 True True all 128 0.2 pre_encoded 1 0.001 0.1    169 K
2 0.74 False True all 256 0.2 pre_encoded 2 0.001 0.01   1200 K
3 0.72 False False dred 128 0.2 pre_encoded 2 0.001 0.1    298 K
4 0.72 True False all 256 0.2 pre_encoded 1 0.001 0.01    666 K
7 0.71 False False all 128 0.2 pre_encoded 2 0.01 0.1    301 K
8 0.71 True True dred 128 0.2 pre_encoded 2 0.001 0.1    298 K
10 0.70 False True area 128 0.0 post_repeated 2 0.001 0.1    330 K
11 0.70 True True area 256 0.0 post_repeated 1 0.001 0.01    790 K
13 0.69 True False area 256 0.2 pre_repeated 1 0.0001 0.01    659 K
14 0.69 False True dred 256 0.2 pre_encoded 2 0.001 0.001   1200 K
15 0.68 False False area 64 0.0 post_repeated 1 0.001 0.1     50 K
18 0.66 True False dred 128 0.2 pre_encoded 2 0.01 0.1    298 K

Table A2. Hyperparameters found by tuning for the LSTM-based architectures. The rows are sorted by the catchment-level Nash-Sutcliffe

modeling efficiency (NSE) in descending order, and the rank column represents the overall rank among all models. White columns denote the

model setup. Yellow columns represent architecture, the magenta ones optimizer parameters, and cyan is the number of tunable parameters.

:::
The

::::::
column

::::::::::
allbasins

::::
(using

::::::::
additional

:::::::::
catchments

::
for

::::::
training

:::
or

:::
not),

:::::::::::
sqrttrans

::::::::
(transform

:::::
runoff

::::
with

:::::
square

::::
root

::
or

::::
not),

:::
and

::::::
static

:::
(use

::
all

::::
static

:::::::
variable,

:
a
::::::::::::::::::
dimensionality-reduced

::::::
version,

::
or

::::
none)

::::
refer

::
to

:::
the

::::::
factorial

:::::::::
experiments

::::::::
described

::
in

::::
Sect.

:::
3.5.

Rank NSE allbasins sqrttrans static model_dim enc_dropout fusion_method temp_layers kernel_size learning_rate weight_decay num_params
5 0.72 True False dred 128 0.0 post_repeated 3 16 0.0001 0.001   1600 K
6 0.72 False True dred 128 0.0 post_repeated 4 16 0.0001 0.001   2200 K
9 0.71 True True all 256 0.0 post_repeated 4 8 0.0001 0.1   4500 K
12 0.70 True True dred 128 0.0 post_repeated 4 16 0.0001 0.001   2200 K
16 0.68 False True area 64 0.0 post_repeated 4 16 0.001 0.1    542 K
17 0.68 True False area 128 0.2 pre_repeated 3 16 0.0001 0.1   1600 K
19 0.66 False False area 128 0.2 post_repeated 4 8 0.001 0.1   1100 K
20 0.65 True True area 128 0.0 post_repeated 4 16 0.0001 0.001   2200 K
21 0.65 False True all 256 0.2 post_repeated 4 16 0.0001 0.1   8700 K
22 0.64 False False all 256 0.2 post_repeated 4 8 0.001 0.01   4500 K
23 0.63 False False dred 64 0.0 pre_repeated 4 8 0.001 0.01    272 K
24 0.62 True False all 256 0.2 pre_encoded 4 8 0.0001 0.1   4300 K

Table A3. Hyperparameters found by tuning for the TCN-based architectures. The rows are sorted by the catchment-level Nash-Sutcliffe

modeling efficiency (NSE) in descending order, and the rank column represents the overall rank among all models. White columns denote the

model setup. Yellow columns represent architecture, the magenta ones optimizer parameters, and cyan is the number of tunable parameters.

:::
The

::::::
column

::::::::::
allbasins

::::
(using

::::::::
additional

:::::::::
catchments

::
for

::::::
training

:::
or

:::
not),

:::::::::::
sqrttrans

::::::::
(transform

:::::
runoff

::::
with

:::::
square

::::
root

::
or

::::
not),

:::
and

::::::
static

:::
(use

::
all

::::
static

:::::::
variable,

:
a
::::::::::::::::::
dimensionality-reduced

::::::
version,

::
or

::::
none)

::::
refer

::
to

:::
the

::::::
factorial

:::::::::
experiments

::::::::
described

::
in

::::
Sect.

:::
3.5.

::::
From

:::
the

::::::
fusion

:::::::
methods

:::::::::
introduced

::
in

::::
Sect.

:::
3.1,

::::::::
prefusion

::::
with

::::::::
encoding

:::
was

:::::::
selected

:::::
most

::::
often

:::
for

:::
the

:::::
LSTM

:::::::::::
architecture,

::::
while

:::::::::
postfusion

::::
was

::::
more

:::::::::
commonly

:::::::
selected

:::
for

::
the

:::::
TCN

:::
(A,

::::
Tab.

::
A2

::
&

::::
A3).

:::::
Note

:::
that

:::
the

:::::
fusion

::::
was

:::
part

::
of

:::
the

:::::::::::::
hyperparameter

::::::
tuning,

:::
and

::::
only

:::
the

::::
best

::::::::
approach

::
is

::::
used

::
to

:::::
make

:::
the

::::
final

::::::::::
predictions.

:::
For

:::::
both

:::::::::::
architectures,

::::::::
prefusion

::::
with

::::::::
encoding

::::
was560

:::::::::
commonly

:::::::
selected

:
if
:::
all

::::
static

::::::::
variables

:::::
were

::::
used

::
as

:::::
input.

:::::::::::
Interestingly,

::
as

::::
seen

::
in

:::
the

::::
Tab.

:::
A2

::
&

::::
A3,

:::
the

::::::
number

::
of

:::::::
tunable

:::::::::
parameters,

:::
an

:::::::
outcome

:::
of

:::
the

:::::::::::::
hyperparameter

::::::
tuning

:::::::
process,

::::
was

:::::
larger

:::
by

:
a
:::::
factor

:::
of

:::
five

:::
for

:::
the

:::::
TCN

:::::::::::
architectures

::::
(2.8

::::::
million

::
in

:::::::
average)

:::::::::
compared

::
to

:::
the

::::::
LSTMs

:::::
(0.52

::::::
million

::
in

::::::::
average).

A2
:::::::::::
Comparison

:::
of

::::::
model

::::::
setups

::::
Here,

:::
we

:::::::
evaluate

:::
the

:::::::
factorial

::::::::::
experiment

:::::::
outlined

::
in

::::
Sect.

::::
3.5.

::
In

::::
Fig.

:::
A1,

:::
the

::::::::
diagonal

:::::
shows

::::
how

:::
the

:::::
model

::::::
setups

:::::::
impacts565

::
the

:::::::
median

::::
NSE

::::::
across

::::::::::
catchments,

:::
and

:::
the

:::::
offset

::::::::
triangular

::::::
shows

:::
the

:::::::::
interactions

:::
of

:::
the

::::::
factors.

:::
For

:::
the

::::::
LSTM

::::::::::
architecture,

:::::
using

:::
all

:::::::
training

:::::::::
catchments

::::
and

::
all

:::::
static

::::::::
variables

::::
had

:
a
:::::
larger

::::::
impact

:::
on

:::
the

::::::::
outcome

::::
than

::
the

::::::
square

::::
root

::::::::
transform

::
of

:::
the

:::::
target

::::::::
variable,

:::::
which

::::
was

:::::::::
negligible.

:::
The

::::::
factors

::::::::
“training

::::::::::
catchments”

::::
and

:::::
“static

:::::::::
variables”

::::::::
interacted

:::::::
strongly,

:::::::::
indicating

::::
that

::::::
having

::::
both

::::
more

:::::::
training

::::
data

::::
and

::::
more

::::::::::
information

:::
on

:::::::::
catchment

::::::::
properties

::::::::::
contributes
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Figure A1.
:::::
Model

::::
setup

:::::
impact

:::
on

:::::::::
performance

:::
and

::::
their

:::::::::
interactions

:::::
based

::
on

:::
the

::::::
median

::::::::
catchment

:::::::::::
Nash-Sutcliffe

:::::::
modeling

::::::::
efficiency

:::::
(NSE),

:::::::
evaluated

::
on

:::
the

:::::::
spatially

:::
and

::::::::
temporally

:::::::::
independent

:::
test

:::
set.

:::
The

:::::
colors

:::::::
represent

::::
NSE

:::::
relative

::
to
:::
the

::::::::
respective

::::
model

:::::
mean

:::::
across

:::::
setups;

:::
red

:::::::
represents

:::::
worse,

:::
and

::::
blue

::::::::
represents

::::
better

::::::::::
performance.

:::
The

:::::::::
background

:::::::
gradients

::::
have

::::
been

:::::::
calculated

::::
using

:::::
linear

::::
least

:::::
square

:::::::
regression

::::
with

:::
the

:::::
model

:::::::::
performance

::
as

::::::::
dependent

::::::
variable.

::::
The

::::
offset

:::::
lower

:::::::
triangular

:::::
panels

::::
show

:::::
results

:::
for

::
the

::::::
LSTM,

:::
the

::::
offset

:::::
upper

:::::::
triangular

::
for

:::
the

::::
TCN

:::::
model,

:::
i.e.,

:::::::
variable

:::::::::
interactions,

::::
while

:::
the

::::
three

:::::
panels

::
on

:::
the

::::::
diagonal

::::
show

:::::::
variable

::::
main

:::::
effects,

::::
split

:
to
:::::::::
distinguish

::::::
between

:::
the

:::
two

::::::
models.

:::
The

:
x
:::
and

:
y
::::
axes

:::::::
represent

::
the

:::::
setups

:::::
tested

::
in

::
the

:::::::
factorial

::::::::
experiment.

:::::::
Training

::::::::
catchments

::::
refers

::
to

::
the

:::::::::
catchments

:::
used

:::
for

::::::
training:

:
a
:::::
subset

::
of

::
98

:::::::::
catchments

:::
less

:::::::
impacted

::
by

:::::::::::
anthropogenic

:::::
factors

:::::
(C98),

::
or

::
all

:::::::::
catchments

:::::
(C267).

:::::
Target

::::::::
transform

:
is
:::::
either

::::
Tnone::

if
:::
the

::::
target

:::::::
variable

:::
was

:::
not

::::::::::
transformed,

::
or

::::
Tsqrt:::

for
:::::
square

:::
root

::::::::
transform.

:::::
Static

:::::::
variables

:
is

:::
Sall::

if
::
all

:::::
static

:::::::
variables

::
are

:::::
used,

::::
SPCA::

if
:::
they

:::
are

:::
first

:::::::::
transformed

:::::
using

::::
PCA,

::
or

::::
Sarea::

if
:::
only

::::::::
catchment

::::
area

:
is
::::
used

::::::
beyond

:::
the

:::::::::::
meteorological

:::::::
variables.

:

::::
more

::
to

:::
the

::::::
model

::::::::::
performance

::::
than

:::::
using

:::
the

::::::
factors

::::::::::::
independently.

::::
The

:::::::::
interaction

::::
with

::::::
“target

::::::::::
transfrom”,

::
in

:::::::
contrast,

::::
was570

:::::::
minimal

::
for

:::
the

::::::
LSTM

:::::::::::
architectures.

:::
For

:::
the

:::::
TCN

::::::
models,

:::
the

::::::
results

::::
look

::::::::
different.

:::::
Using

::::
more

:::::
static

::::::::
variables

::
as

::::
input

::::::
seems

::
to

::::
have

::::::::
improved

:::::
model

::::::::::::
performance,

:::::
while

:::::
using

::::::::
additional

:::::::
training

:::::::::
catchments

:::
did

:::
so

::::
only

:::::::::
marginally,

::::
and

:::
the

::::::::::
interactions

::
of

:::
the

:::::::
“training

:::::::::::
catchments”

:::
and

::::::
“static

::::::::
variables”

::::
was

::::
less

::::
clear.

:::::::
Overall,

:::
the

:::::
TCN

::::::
models

:::::
show

:::::
lower

:::::
range

::
of

:::::::::::
performance

:::::
across

:::::
setups

::::
than

:::
the

::::::
LSTM

:::::::
models.
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