Effect of straw retention and mineral fertilization on P speciation and Ptransformation microorganisms in water extractable colloids of a Vertisol

Shanshan Bai^{a,b}, Yifei Ge^a, Dongtan Yao^a, Yifan Wang^a, Jinfang Tan^{a,b}, Shuai Zhang^c, Yutao Peng^a, Xiaoqian Jiang^{a,b*}

^a School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou, Guangdong 510275, PR China

^b Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, Zhumadian, Henan 463000, PR China

^c Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental

Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China

* Corresponding author: jiangxq7@mail.sysu.edu.cn (X. Jiang).

Category ^a	P form or compound class	Chemical Shift (ppm)		
Inorganic P				
	Orthophosphate	6.0		
	Pyrophosphate	-4.39±0.03		
Organic P				
Orthophosphate M	Aonoesters			
	myo-IHP	4.28±0.01, 4.44±0.02, 4.81±0.01, 5.71±0.02		
	scyllo-IHP	3.96±0.02		
	α-glyc	5.01±0.02		
	β-glyc	4.66±0.02		
Orthophosphate d	iesters DNA	-0.41±0.04		

Table S1 Chemical shift of peaks detected in ³¹P-NMR spectra of NaOH-Na₂EDTA samples

 $^{a}myo-inositol\ hexakisphosphate\ (myo-IHP),\ scyllo-inositol\ hexakisphosphate\ (scyllo-IHP),\ \alpha-glycerophosphate\ (\alpha-glyc),\ \beta-glycerophosphate\ (\beta-glyc).$

	Classification				KO numbe	r Details for gene function	Corresponding gene
Genes solubili	involved zation	in	inorganic	P-	K00117	quinoprotein glucose dehydrogenase	gcd
					K01507	inorganic pyrophosphatase	рра
					K00937	Polyphosphate kinase	ppk
					K01524	exopolyphosphatase / guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase	ppx
Genes	involved lization	in	organic	P-	K05774	C-P lyase subunit, ribose 1,5-bisphosphokinase	phnN
					K00111	Glycerol-3-phosphate dehydrogenase	glpA
					K00112	Glycerol-3-phosphate dehydrogenase subunit B	glpB
					K00113	Glycerol-3-phosphate dehydrogenase subunit C	glpC
					K00864	Glycerol kinase glpK	glpK
					K01083	3-Phytase	phy
					K01093	4-phytase	appA
					K01126	glycerophosphoryl diester phosphodiesterase	ugpQ
					K01077	alkaline phosphatase	phoA
					K01113	alkaline phosphatase	phoD
					K09474	acid phosphatase (class A)	phoN
					K03788	acid phosphatase (class B)	aphA
Genes	involved se regulatio	l in on	P-starva	tion	K07636	two-component system, OmpR family, phosphate regulon sensor histidine kinase PhoR	e phoR
					K07657	two-component system, OmpR family, phosphate regulon response regulator PhoB	phoB
Genes transpo	involved rt system	in	P-uptake	and	K05813	Glycerol-3-phosphate transporter subunit, periplasmic-binding component	ugpB
					K05814	Glycerol-3-phosphate transporter subunit	ugpA
					K05815	Glycerol-3-phosphate transporter subunit, membrane component	ugpE
					K05816	Glycerol-3-phosphate transporter subunit, ATP-binding component	ugpC
					K02041	phosphonate transport system, ATP-binding component	phnC
					K02042	phosphonate transport system, membrane component	phnE
					K02044	phosphonate transport system, periplasmic-binding component	phnD
					K02036	phosphate transport system, ATP-binding component	pstB
					K02037	phosphate transport system, membrane component	pstC
					K02038	phosphate transport system, membrane component	pstA
					K02040	phosphate transport system, periplasmic-binding component	pstS

Table S2 The KO number, function descriptions, gene name and classification of the investigated genes

referring to KEGG database

Fig. S1 Proportion of water-dispersible soil particle fractions for the W0M0F0, W0M0F1 and W1M1F0 treatments

Figure S2 Phosphorus K-edge XANES spectra of P reference compounds

Fig. S3 The solution 31 P NMR spectrum of a NaOH-Na₂EDTA extract of the W0M0F0 bulk soil spiked with a) myo-inositol hexakisphosphate (Myo-IHP), b) α - glycerophosphate and β - glycerophosphate, and c) adenosine monophosphate.

Fig. S4 Proportion of different soil inorganic phosphorus fractions in bulk soil

Fig. S5 Results of the linear combination fitting (LCF) of the P K- edge XANES spectra for water-extractable colloids (WECs) of the W0M0F0, W0M0F1 and W1M1F0 treatments. The raw data is represented by points and the fitting results are shown by solid lines.

Fig. S6 Solution ³¹P NMR spectra of NaOH–Na₂EDTA extracts of bulk soil (a) and water-extractable colloids (WECs, b)

The signals were assigned as follows: orthophosphate (Ortho-P); orthophosphate monoester (Monoester-P); orthophosphate diesters (Diesters-P); pyrophosphate (Pyro-P); myo-inositol hexakisphosphate (p); syllo-inositol hexakisphosphate (s); mononucleotides (m); α - glycerophosphate (α); β - glycerophosphate (β). Calculation by including diester degradation products (i.e., Glyc+nucl: α/β - glycerophosphate and mononucleotides) with Diesters-P rather than Monoesters-P. The percentage indicated the proportion of each phosphorus compounds fraction to the extracted-P.

Fig. S7 Principal coordinate analysis (PCoA) of microbial community for *gcd* (A) and *phoD* (B)gene in bulk soils and water-extractable colloids (WECs)

Fig. S8 Spearman correlation heatmap of P-cycling genes and soil nutrients in bulk soils (A) and water-extractable colloids (WECs, B)

The relative abundance of *phn* transporter systems was calculated as the average abundances of gene *phnC*, *phnD*, and *phnE*; the *pst* transporter systems was calculated as the average abundances of gene *pstS*, *pstC*, *pstA*, and *pstB*; The *ugp* transporter systems was calculated as the average abundances of gene *ugpB*, *ugpA*, *ugpE*, and *ugpC*. Soil properties include soil pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), available P (AP), orthophosphate (Orth), orthophosphate monoesters (Monoesters), orthophosphate diesters (Diesters). Asterisks indicate a significant association between the abundance of a given functional gene and particular soil properties: **, p < 0.01; *, p < 0.05.