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Abstract: Mg/Ca ratios measured in benthic foraminifera have been explored as a potential palacothermometry proxy for
bottom water temperatures (BWT). Mg/Ca-BWT calibrations from the Indian Ocean are rare and comprise conflicting results.
Inconsistencies between studies suggest that calibrations may need to be region specific. The aim of this study was to develop
species-specific benthic foraminifera (Uvigerina peregrina, Cibicidoides wuellerstorfi and Cibicidoides mundulus) based

Mg/Ca — BWT calibrations in the tropical western Indian Ocean and to optimise the chemical cleaning procedure by Barker et

al. (2003) applied to samples analysed in this study. The majority of samples of C. mundulus and U. peregrina, however,

remained contaminated, rendering those data unusable for Mg/Ca core-top calibrations. Only Mg/Ca ratios in C, wuellerstorfi ;

allowed a tentative Mg/Ca - BWT calibration with the relationship being: Mg/Ca = 0.19 £ 0.02 * BWT + 1.07 £ 0.03,7% =
0.87 and n = 4). While this result differs to some degree from previous studies it principally suggests that existing core-top

calibrations from the wider Indian Ocean can be applied to core-tops in the western Indian Ocean. The agreement of Mg/Ca

ratios at lower temperatures in C. wuellerstorfi, C. jnundulus and U. peregrina with Mg/Ca ratios reported for these species at

low temperatures in other studies supports this conclusion. {The clear difference in contamination, between Cibicidoides spp.

and U. peregrina despite using the same cleaning procedure, supports the findings of a previous study (Yu et al., 2007), which

suggest different rigour might be required for different species. Many other uncertainties surrounding the Mg/Ca proxy exist
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1. Introduction

Jhere are a range of proxies measured in foraminifera used to reconstruct changes in seawater properties through time. Stable

oxygen isotopes (8'%0) have been widely applied to identify changes in water column properties (Kroopnick, 1985; Lynch-

Stieglitz and Fairbanks, 1994). Straightforward interpretation, however, is hampered due to stable oxygen isotopes reflecting

more than one environmental factor, i.e. ambient temperatures and seawater §'%0 with the latter being controlled by global ice

volume and the evaporation-precipitation balance in the water mass source region (Emiliani, 1955; Shackleton, 1974). In order

to improve the use of §'*0 values, independent temperature proxies have been developed (Elderfield and Ganssen, 2000; Lea

etal., 1999; Nuernberg, 1995; Nuernberg et al., 1996). Mg/Ca based temperature estimates in planktic foraminifera for example

are widely used as a proxy for sea surface temperature (SST, Barker, 2005). The use of Mg/Ca ratios in benthic foraminifera

for reconstructions of bottom water temperatures (BWT) is being explored (Rosenthal et al. 1997; Elderfield et al., 2006)

although there is no widely accepted method as yet. Mg/Ca based BWT reconstructions, used in combination with other proxies

such as §'®0, are potentially crucial for our understanding of reorganisations of deep and bottom waters associated with for

example past glacial/interglacial transitions (Duplessy et al, 1988; Curry et al., 1988; Sarnthein et al., 1994). |In order to assess

the robustness of the Mg/Ca based thermometry in deep/intermediate water based on benthic foraminifera, we present (Mg/Ca

— based BWT calibrations derived from the benthic foraminiferal species Uvigerina peregrina (U. peregrina), Cibicidoides

wuellerstorfi (C. wuellerstorfi) and Cibicidoides mundulus (C. mundulus) using core top samples from the western tropical

Indian Ocean and compare those with previously published calibrations from the Indian Ocean (Elderfield et al., 2006; Healey

et al., 2008). We also assess the usefulness of adaptations of cleaning procedures.|

1.1. Mg/Ca ratios - a proxy for temperature

Deleted: The global thermohaline circulation is crucial for
distributing heat, nutrients, oxygen and salinity and it
partially controls the oceanic carbon uptake (Blunier et al.,
1998; Clark et al., 2002). Specifically, the re-/distribution of
heat is an important driver of climate change, with Antarctic
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the sensitivity and of changes of the thermohaline circulation.
On glacial-interglacial time scales for example NADW and
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being more prominent during interglacials and AABW during
glacials (Duplessy et al, 1988, Curry et al., 1988, Sarnthein et
al., 1994 ). These water mass reorganisations had largescale
implications on global climate (Blunier et al., 1998).9

Foraminifera form calcite tests, which is a lattice composed of calcium carbonate. During the formation, divalent ions of trace

elements such as Mg?" are jncorporated into the calcite lattice (Erez, 2003). Resulting Mg/Ca ratios in benthic foraminifera

depend on the Mg/Ca ratio of ambient water and elemental partitioning during calcite precipitation with the latter depending

on ambient water temperature (Elderfield et al., 1996; Gussone et al. 2016). On glacial-interglacial timescales Mg/Ca ratios in

seawater can be considered constant due to long residence times for Ca and Mg (~10° and 107 years, respectively). Hence

Mg/Ca ratios can be used to reconstruct BWT. Existing core-top calibrations show a positive correlation between Mg/Ca ratios

in a number of species of benthic foraminifera and modern, BWTs (Martin and Lea, 2002; Elmore et al., 2015). Temperature

appears to be the dominant environmental factor controlling incorporation of Mg in tests of some species of Cibicidoides spp.

(Rosenthal et al., 1997) but other factors including carbonate ion saturation might also have an effect (Elderfield et al., 2006;

Yu and Elderfield, 2008). There is discussion surrounding the importance of various factors controlling Mg/Ca incorporation

in benthic foraminifera, with e.g. Yu and Elderfield (2008) suggesting carbonate ion saturation being dominant whereas Lear

etal.’s (2002) work implies only a minor influence. There is also evidence suggesting that the Mg/Ca - temperature relationships

and the carbonate ion effect varies between different ocean basins and depositional environments (Bryan and Marchitto, 2008).

1.2. Mg/Ca analysis — a brief summary

The chemical cleaning procedure is a critical step essential for accurate determination of Mg/Ca ratios in foraminifera (Barker
et al., 2003) due to the generally low Mg/Ca concentration ratios, entailing the need to remove Mg containing contaminants
(Barker et al., 2003; Marr et al., 2013). Concurrently, carbonate dissolution of tests may affect Mg/Ca ratios (Lear et al., 2002)
and therefore the aim of a cleaning procedure is to effectively clean tests while minimising sample loss (Barker et al., 2003).

Silicate contamination is the most critical contaminant affecting Mg/Ca ratios, followed by Mn-oxide coatings (Barker et al.,
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2003). The two most widely used cleaning methods are the ‘Mg cleaning method’ also referred to as the ‘oxidative cleaning
method’ by Barker et al. (2003) based on Boyle and Keigwin (1985), and the ‘Cd cleaning method’ also referred to as the
‘reductive oxidative cleaning method’ by Boyle and Keigwin (1985) and Rosenthal et al. (1995, 1997b). Both methods include
successive rinses with ultrapure water followed by methanol cleaning, and an oxidative cleaning step to remove silicates. The
‘Cd cleaning method”’ in addition includes a reductive step to remove Mn-oxide coatings. The procedure was originally intended
for determination of Cd/Ca ratios (Boyle and Keigwin, 1985) because Cd concentrations in calcite are significantly lower than
Mg concentrations and therefore contamination is more critical (Marr et al., 2013). While the more aggressive ‘Cd cleaning
procedure’ is not viewed as needed for accurate Mg/Ca analyses (Barker et al., 2003; Yu et al., 2008), it is still used (Stirpe et
al., 2021) amid continued uncertainty surrounding the requirement of additional rigour for accurate Mg/Ca analyses (e.g. Pena

et al., 2005; Haggnfratz et al., 2017). Whilst the additional reductive step is implemented to ensure removal of diagenetic

coatings, jt results in an estimated ~15 % lowering of Mg/Ca ratios due to partial preferential dissolution of Mg-rich calcite

(Barker et al., 2003; Yu et al., 2007). In comparison, if the reductive step is excluded, diagenetic coatings only causes an

estimated ~1% increase jn Mg/Ca ratios, (Barker et al., 2003; Yu et al. 2007) rendering the reductive step not required in most
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remains the most appropriate method of determining bulk or whole specimen calcite Mg/Ca ratios (Stirpe et al., 2021).

1.3. Species specific Mg/Ca — temperature calibrations

The earliest, studies of Mg/Ca — BWT calibrations, used mixed benthic foraminifera of the same genera, mostly Cibicidoides
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Figure, 1. Map showing location of a) existing sediment core-top benthic Mg/Ca — BWT calibrations in the Indian Ocean (blue)
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and b) the location of cores analysed in this study (black). Map has been produced in Ocean Data View.
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2. METHODOLOGY

2.1. Sample location and hydrography

This study is based on a transect of sediment surface samples retrieved from 370 to 3400 m water depth off Tanzania (see Fig.

1 and Table 1). In order to optimise sample quality, only box core or multicorer samples were used (Table 1). The cores have

been taken during the “Indian — Atlantic Exchange (INATEX)” (Brummer and Jung, 2009) and the “Tropical Temperature

History during Paleogene Global Warming Events (GLOW)” (Kroon et al., 2010) expeditions. In the modern western Indian

Ocean, the water column at our core-top transect is comprised of AABW below 4000 m and Circumpolar Deep Water (CDW)
between 2000 and ~3500 m (Fig. 3. You et al., 2000; McCave et al., 2005), the latter itself comprising Lower CDW (LCDW)
and Upper (UCDW). NADW and AABW are the main contributors to LCDW, whereas UCDW is a mix of Indian and Pacific

common waters (for a summary see Srinivasan (1999)). Above CDW there is a zone influenced by Red Sea Water (RSW)

and/or Antarctic Intermediate Water (AAIW), with both water masses extending south- and northwards, respectively.

controlling intermediate depth water properties at the location of our core top transect (Fig. 2-3; sensu Talley, 1999; Griindlingh.
1985 and McCave et al., 2005). Based on two nearby CTD profiles (measured during the GLOW expedition, Birch et al., 2013),

bottom water temperatures range from 1 to 10°C (Table 1).
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Table 1. Details of core-top samples of benthic foraminifera analysed in this study
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Core Core type  Latitude Longitude Depth BWT Species Size fraction Specimens
W) CE) (m) o) (um) (count) (Deleted: ib )
; CDeleted: ib. )
PE303-3 BC -8.7034 41.48307 3006 1.74° G, wuellerstorfi 250 — 450 15
- (Deleted: p- )
Cibicidoides,spp, 250-450 9 o (Deleted: vi. )
PE303-4c  BC -8.89300 4149298 3179  1.61° U, peregring, 150-450 8 ~( Deleted: spp. )
G, wuellerstorfi 150-450 7 - ( Deleted: ib )
PE303-5 BC -8.90167 41.49507 3371 1.46° Gjbicidoides,spp, 150,450 12 f'(Deleted: i )
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PE303-6a  BC -8.88828 415038 3323 148 U, peregring, 150 - 250 15 5 (Deleted: )
U. peregrina 50— 450 ‘ 8 (Deleted: - )
B (Deleted: vi )
G ul 2502450 3 b (Deleted: spp- )
G, wuellerstorfi, 150 — 450, 19, (Formatted Table )
PE303-14a BC -10.00415  41.69455 2560 2.322 U, peregring, 250 —>450 6 y
Cibicidoides;spp. 250450 10 (\(peteed: )
PE303-17a  BC 896737 3970033 1105 534 U peregring 250-450 18 - (Deleted: ib )
s (Deleted: ib )
PE303-18b BC -8.93778 39.63465 490 8.59° U, peregring, 250 —450 44 \ (Deleted: q (ﬁ
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PE303-22 BC -9.84817 40.57933 1855 2.95° G, wuellerstorfi 150,250 15 f (Deleted: Uvi )
PE304-9 MC 893555 39.61638 370  9.91° U, peregring, 150 — 450 15 iR (Deleted: spp. )
Gibicidoides spps 150-450 o  (Deleted: ib. )
PE304-25 MC 976978 39.91057 482 8.68° U, peregring, 250, >450, 6 ; (Deleted: Uvi )
PE304-30c  MC 978565 4022365 1471  429°  Gpbicidoides sppy 250-450 7 . (Deteted o )
BC = box core, MC = multicore i (Delewd: vi )
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2.2. Sample preparation

Mg/Ca can be affected by intra-shell, intra-species, and inter-species variability referred to as ‘vital effects’ (Bentov and Erez,

2006; de Noijer, 2014; and discussions therein). In order to minimize these effects, we have focussed, where possible, on

analysing multiple whole specimen of three benthic foraminifera species; U. peregrina, C. wuellerstorfi and C. jnundulus.Jn

most cases these were picked from comparatively small size fraction windows (i.e. 250-355 um and 250-355 pm). Only in a

small number of cases a wider size fraction window was used due to low foraminifera abundances (Table 1), Specimens with
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no signs of stains, discoloration, fragmentation or post depositional calcification were selected based on previous studies
suggesting post depositional effects on Mg/Ca ratios (Lear et al., 2002) (see qualitative observations in Appendix C). Because
temperature sensitivity of Mg/Ca in Cibicidoides spp. might be species specific (Lea et al., 1999; Gussone et al., 2016), species
of Cibicidoides spp. were analysed separately except for samples containing less than,5 specimens (Table 1). Sample PE303-
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18b was split into two to check for intra sample variation (the only sample with sufficient sample size). In order to test the

cleaning procedure specimens from the planktic foraminifera species Globigerinoides,ruber were picked from the 250-355 um

- (Deleted: with abundance <

size fraction of samples from core NIOP929 (Saher et al., 2009) because there were insufficient planktic and benthic

foraminifera specimens in our off Tanzania core top transect to carry out these tests. The samples were wet sieved over a >63um

screen and dried at 40°C.

All samples were chemically cleaned using water and methanol rinses to remove silicates, a hydrogen peroxide treatment to

remove organic matter, and an acid rinse to remove residual treatment chemicals (Barker et al., 2003). The rigour needed to -~
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sufficiently clean samples depends on a number of factors including sediment composition and foraminifera morphology, i.e.
some species trapping contaminants more than others. Therefore we have adapted the Mg cleaning methodology by Barker et
al., (2003) to find the appropriate level of cleaning required (optimum removal of contaminants while minimising sample loss)

for the benthic samples analysed in this study.

In experiment 1, 6 sets of specimens of Globigerinoides,ruber were treated with the chemical cleaning procedure of Barker et ;
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once — see Table 2 for specifications).,The chemicals were prepared following Barker et al., (2003). Traditionally, the procedure

involves crushing of foraminifera between two glass plates. Given the small sample volume in our study, we tested individual

crushing of foraminifera specimens using a metal pin and glass mortar to open the test chambers. The samples were transferred

to Eppendorf tubes with 500 ul MilliQ water and washed with MilliQ followed by washing with methanol, in both steps using

an ultrasonic bath. This was followed by a hydrogen peroxide treatment in a hot water bath k30 min at 85°C) and an acid leach

using nitric acid (see protocol in Barker et al., 2003).,

The results of the first experiment, with some variability, show that average Ca concentrations (1normalised to the number of
tests) of samples crushed using two glass plates were lower (5.81 ppm) than in samples crushed using a metal pin and glass

mortar (9.53 ppm), Eee Table Al and A2 jn Appendix A, suggesting less sample loss in the latter. The average Mg/Ca ratios of

samples crushed using two glass plates and using metal pin and glass mortar was similar, i.e. 3.43 mmol mol™! and 3.53 mmol

mol " [(please note that we regard sample la in Table A2 in Appendix A as an outlier due to the very low Ca concentration) \

suggesting that crushing using a metal pin and glass mortar does not introduce more Mg or Ca bearing contaminants than the

technique using two glass plates. Fe and Al concentrations were below the limit of detection in all samples (<0.0070 and
<0.0079 ppm) suggesting no silicate contamination. Because the technique using a metal pin and glass mortar entailed less

sample loss and there was little difference in Mg/Ca ratios we used this technique for our study.

In experiment 2, as a result of the low Ca concentrations in experiment 1 (0.55 to 7.50 ppm, using either crushing technique

Appendix A Table 1A and A2), the chemical cleaning procedure was amended to assess if this was due to calcite dissolution
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Appendix A), four sets were manually crushed using a drop of MilliQ water and a metal pin in a glass mortar. Two of those
samples were transferred to a small glass vial and ultrasonicated for 3 seconds. The other two samples were kept intact and

transferred to Eppendorf tubes. The cleaning procedure followed Barker et al. (2003) except for reducing the time during

methanol (methanol rinse: 20 seconds repeated twice compared to 1-2 min repeated once, sce all specifications in Table 2).

Generally, in experiment 2, Ca concentrations are higher than in experiment 1 (range from 7.32 to 30.92 ppm, see Appendix A+

Table A3),In crushed samples, average Ca concentrations of 15.96 ppm (range from 7.92 to 22.54 ppm) are lower than the

average in non-crushed samples of 23.16 ppm (range from 7.32 to 30.92 ppm), suggesting more sample loss from crushing (see

Appendix A Table A3). Based on average Fe/Ca ratio, crushed sample has lower Fe/Ca ratios than the uncrushed samples (0.38

mmol mol” compared to 0.57, mmol mol™) suggesting Jess silicate contamination in the crushed samples. There is, however,

significant uncertainty because the offset is not consistent and one outlier with a substantially higher Fe/Ca ratio (1.56 mmol

mol ') and Mg/Ca ratio (9.41 mmol mol) is partly responsible for the higher average (see Fig,4a). The strong correlation
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standard with a Mg/Ca ratio of 3.762 mmol mol™! were included in every run. In addition to Mg/Ca, Fe/Ca, Al/Ca and Mn/Ca

were calculated to monitor silicate contamination and Mn-oxide coatings (Barker et al., 2003).

Following Barker et al. (2003) and Elderfield et al. (2010) contamination thresholds of Fe/Ca, Al/Ca and Mn/Ca ratios used
were 0.1, 0.4 and 0.1 mmol mol”!, respectively. Linear regression was plotted between Fe/Ca, Al/Ca, Mn/Ca ratios and Mg/Ca

ratios and the ;° value was used to assess if there was a significant correlation. Procedural blanks were used to correct Mg, Ca,

Fe, Al and Mn concentrations for any introduced contaminants. Mg/Ca ratios were calculated using Ca315 and Mg285

concentrations in ppm and ppb, corrected by blanks and converted to mmol mol™! by:

_ (Mg285 (ppb)—Mg285piank)/Mmg
(Ca315(ppm)—(:u3lsbla"k)/MCa

Mg/Ca

where Mwmg and Mca refers to the atomic masses of Mg (24.305 g mol™!) and Ca (40.08 g mol'). This approach was also used

for Fe/Ca, Al/Ca, Mn/Ca using their respective atomic masses (Mre, Maiand Mwn).
24. Mg/Ca — BWT calibration

A linear regression was applied to assess correlation between the Mg/Ca ratios measured in C. wuellerstorfi, C. jnundulus, U.

peregrina and Cibicidoides spp. and modern bottom water temperature from the nearest hydrographic temperature profile (see

Table 1). The slope of Mg/Ca ratios over BWT was compared with previous studies from the Atlantic, Pacific and Indian

Ocean.
3. RESULTS
3.1. ELlemental ratios of, Cibicidoides spp. in core tops
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this figure, although mostly driven by one possible outl”37)

In samples (Table 1) containing C. yuellerstorfi and C. jmundulus the Ca concentrations range from 4.00 to 68.72 ppm (see |

Table 3). Mg/Ca ratios range from 1.19 to 6.04 £ 0.03 mmol mol™! in Cibicidoides spp. (12 samples, Table 3), and 3.17 to 4.18 |

+0.05 mmol mol™! in G. ruber (6 samples, Appendix A Table A4). The Fe/Ca ratios range from 0.13 to 0.35 mmol mol™! in C.
wuellerstorfi, from 0.98 to 1.10 mmol mol™! in C. ynundulus and 0.08 to 2.45 mmol mol’! in Cibicidoides spp. All six samples

of G. ruber (analysed in the same run, from core NIOP929) have Fe concentrations below the limit of detection (<0.0034 ppm,

Appendix A Table A4). The Al/Ca ratios range from 0.28 to 0.57 mmol mol™' in C. yvuellerstorfi, from 0.24 to 2.66 mmol mol

Vin C.gnundulus, from 0.21 to 0.36 mmol mol’! in Cibicidoides spp. (Table 3) and from 0.25 o 0.37 mmol mol! in G. ruber

(Appendix A Table A4). The Mn/Ca ratios range from 0.01 to 0.20 mmol mol’! in Cibicidoides spp. samples (Table 3) and

from 0.13 to 0.19 mmol mol™ in the planktic samples (Appendix A Table A4). There is no obvious correlation between the

Fe/Ca, Al/Ca and Mn/Ca with Mg/Ca ratios for any of the Cibicidoides species, except for C. ynundulus (Fig, 6a-¢). In this

figure, although mostly driven by one possible outlier, a correlation of Al/Ca with Mg/Ca might be indicated. Regarding
contamination thresholds of 0.1, 0.4 and 0.1 mmol mol"' for, the Fe/Ca, Al/Ca and Mn/Ca ratios, respectively, all Cibicidoides \‘

spp. samples are below the threshold for Al/Ca and Mn/Ca ratios. In relation to the Fe/Ca ratio, one sample was below, one |

sample just above and three samples well above the contamination threshold (Table 3). |
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Figure,6. Correlation between a. Fe/Ca ratios, b. Al/Ca ratios, ¢. Mn/Ca ratios and Mg/Ca ratios in Cibicidoides spp. including

C. wuellerstorfi and C. mundulus and G. ruber (control group).,The orange horizontal lines show the respective contamination

thresholds at 0.1, 0.4 and 0.1 mmol mol™! for Fe/Ca, Al/Ca and Mn/Ca following Barker et al. (2003).
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Table, 3, Mg/Ca ratios, contamination indicators (Fe/Ca, Al/Ca and Mn/Ca ratios) and Ca measured in C. wuellerstorfi,

(Deleted: .

AN ANAN

N N N N

Cibicidoides,spp., C. mundulus and U. peregrina from Tanzania core-top samples. (Deleted: 2
Core Species Mg/Ca Fe/Ca Al/Ca Mn/Ca Ca Note gz:l::ji
PE303-4c C. wuellerstorfi 1.19 <LOD 0.28 0.03 16.05
PE303-6a C. wuellerstorfi 1.72 0.14* 0.53* 0.20* 35.09
PE303-3 C. wuellerstorfi 1.21 0.13* 0.53* 0.02 68.73
PE303-22 C. wuellerstorfi 528 0.35% <LOD 0.10 3.99 ?

PE303-18b C. wuellerstorfi 2.73 0.25% 0.57* 0.04 14.43 ?

PE303-6a C. mundulus 1.86 1.09* 0.49* 0.10 20.56 e

PE303-3 C. mundulus 1.34 <LOD 0.23 0.02 15.84

PE303-18b C. mundulus 6.04** 0.98* 2.66* 0.01 5591 e

PE303-3 Cibicidoides,spp. 1.40 2.27* 0.34 0.01 17.27 e CDeleted: .
PE303-14a Cibicidoides,spp. 1.29 0.12* 0.27 0.03 75.62 (Deleted: .
PE304-9 Cibicidoidesyspp. 3.02 2.45* 0.35 0.03 30.96 e (Deleted: .
PE304-30c Cibicidoides,spp. 2.24 1.30* 0.21 0.05 22.22 e CDeleted: .
PE303-50 Cibicidoides,spp. 3.00 0.08 0.27 0.04 28.53 (Deleted: .
PE303-6a U. peregrina 1.17 0.02 0.91* 0.05 18.54 n

PE303-14a U. peregrina 1.10 0.15* 0.68* 0.009 17.61 e

PE303-6a U. peregrina 2.17 0.67* 1.09* 0.07 16.28 e

PE303-4c U. peregrina 1.58 0.07 0.71* 0.03 20.35

PE303-17a U. peregrina 2.99 1.66* 2.34* 0.06 41.28 e

PE304-9 U. peregrina 1.82 0.43* 1.42* 0.009 68.17 e

PE303-18b (1) U. peregrina 2.76 2.02%* 4.02* 0.02 79.35 e

PE303-18b (2) U. peregrina 2.52 1.55* 3.90* 0.02 74.32 e

PE304-25 U. peregrina 2.69 2.04* 3.61* 0.06 65.80 e

*above contamination threshold 0.1, 0.4 and 0.1 mmol mol;' for Fe/Ca, Al/Ca and Mn/Ca (Elderfield et al., 2010) (Formatted: Superscript

**clear outlier based on typical Mg/Ca range reported in previous studies

e = excluded due to high contamination, ? = ambiguous assessment of contamination

<LOD = below limit of detection

n = not excluded based on Elderfield et al.. 2006 suggesting not to exclude samples based on Al/Ca above 0.4 mmol mol' alone, both Mn/Ca and Fe/Ca <0.1 (Formmed: Superscript

mmol mol”!
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3.2. Elemental ratios of Uvigerina peregrina in core tops

In the core-top samples (Table 1) the Ca concentration in U. peregrina, range from 16.28 to 74 35 ppm (Table 3). The Mg/Ca

ratios vary between 1.10 and 2.99 mmol mol™! + 0.02 mmol mol™! in U. peregrina (9 samples), and between 4.77 and 5.22 +

0.05 mmol mol™ in G. ruber (3 samples; Fig, 7 and Table 3). The Fe/Ca ratios range from 0.02 to 2.04 mmol mol”! in U.

peregrina and from 0.24 to 0.38 mmol mol™! in G. ruber. The Al/Ca ratios are between 0.68 and 4.02 mmol mol™! in U. peregrina

and range from 0.92 to 1.31 mmol mol™! in G. ruber. The Mn/Ca ratios vary between 0.01 and 0.08 mmol mol™! jn U. peregrin

and 0.11 and 0.14 mol mol™ in G. ruber. There is a strong positive correlation (> = 0.87) between the Fe/Ca ratios and the

Mg/Ca ratios (Fig, 7a) and a positive correlation (° = 0.66) between the Al/Ca ratios and the Mg/Ca ratios (Fig,7b). There is

no correlation between the Mn/Ca ratios and the Mg/Ca ratios (Fig, 7c). Regarding contamination, all U. peregrina samples

are below the threshold for Mn/Ca ratios. All samples are above the threshold for Al/Ca ratios, some rather narrowly so. Two |
samples were below the threshold for Fe/Ca, one narrowly above and the remaining 6 samples partially well above the limit |

(Table 3).
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Figure, 7, The correlation between the Mg/Ca ratios and a. Fe/Ca ratios, b. Al/Ca ratios and ¢. Mn/Ca ratios in blue: Uvigerina

peregrina and black: G. ruber (control group). Horizontal lines show Fe/Ca, Al/Ca and Mn/Ca contamination thresholds (0.1,

0.4 and 0.1 mmol mol™). Values below the limit of detection are not plotted. Trendline in a. and b. withy” show linear correlation

of U.peregrina.
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3.3. Correlation between contamination and core-top depth

Fig, 8a-b shows Fe/Ca and Al/Ca ratios from U. peregrina and Cibicidoides spp. versus the retrieval depth of the samples. - .
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Figure,8, Correlation between water depth of sediment surface samples and contamination (a. Fe/Ca and b. Al/Ca) in Uvigerina

peregrina and Cibicidoides spp,

34. Mg/Ca — BWT calibration

Principally we used the thresholds of 0.1, 0.4 and 0.1 mmol mol™! of Fe/Ca, Al/Ca and Mn/Ca ratios following Elderfield et al.

(2010) and Barker et al. (2003) as well as correlations between Fe/Ca, Al/Ca and Mn/Ca ratios with Mg/Ca ratios following :,‘

Barker et al. (2003) to assess silicate and/or Mn-oxide contamination. All but two samples of U. peregrina (Table 3) were ;

excluded due to high Fe/Ca ratios (>0.1 mmol mol™') and a strong correlation with Mg/Ca (Fig, 7a). Some of the Mg/Ca ratios

of Cibicidoides spp._were included even though Fe/Ca ratios were >0.1 mmol mol”, since they show no correlation between ."

Mg/Ca ratios and Fe/Ca ratios{Table 3, Fig,6). The Mg/Ca ratios not included in core-top calibration are in Table 3,(annotated f

e)’

The Mg/Ca ratios of Cibicidoides,spp,, C. mundulus and C. wuellerstorfi (Table 3) were plotted versus BWT (temperature

profiles from positions close to our core-top transect from Birch et al., 2013; Fig,9). For C,spp., U. peregrina and C.ynundulus -
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discerning robust relationships between the Mg/Ca relationships and BTW is not straightforward. Based on the no-correlation

argument above, and ignoring contamination thresholds, tentative relationships are indicated for C, spp. and C. jnundulus. .-

These are, however, partially based on samples with signs of contamination being reflected in the Fe/Ca and/or the Al/Ca ratios.

Removing those samples entails an insufficient amount of data remaining to establish a relationship (see Fig, 9). For C.

wuellerstorfi there is little indication of strong contamination. Only some Al/Ca ratios are slightly above the contamination -

threshold. Establishing a straightforward relationship of Mg/Ca with BWT is hampered by one sample with unusually high

Mg/Ca values. We regard this sample as an outlier for an unknown reason. Fig, 9 shows the resulting relationship for C.

wuellerstorfi (n=4, see formula below) alongside the remaining samples for the other species. In Fig. 9 the linear correlation

(Deleted: ibicidoides
. (Deleted: ibicidoides

CDeleted: ibicidoides

(Deleted: gure

g CFormatted: Font: Not Italic

(Deleted: figure

(Deleted: T

(Deleted: ibicidoides

(Formatted: Font: Not Italic

for C.yvuellerstorfi,is:

(Deleted: ibicidoides

Mg/Ca = 0.19 + 0.02 * BWT + 1.07 + 0.03, ;2 = 0.87 v

~~~<])eleted? I

(Deleted:
CDeleted: r

N A A AN A A A A A A A A A AN N AN A A AN A




795

800

805

6.5

55
= 45
o
1S
©
E s
R
6 - -
s 25 -
LR ST C. wuellerstorfi
15 2 Y Mg/Ca = 0.19 BWT + 1.07
R?= 0.87
05
1 2 3 4 5 6 7 8 9 10 1

Bottom Water Temperature ("C)

B C. wuellerstorfi (u) & C. mundulus (u) Y C. spp. (u) AU. peregrina (u)

C. wuellerstorfi (c) C. mundulus (c) C. spp. (c) U. peregrina (c)

Figure, 9, Mg/Ca ratios of Cibicidoides spp., L. wuellerstorfi, L. mundulus and U. peregrina over bottom water temperature
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- eleted: .

on contamination thresholds (0.1 mmol mol"\ Fe/Ca, 0.4 mmol mol ", Al/Ca and 0.1 mmol mol ', Mn/Ca),and correlations with )

Mg/Ca. There are several data points where presence of contamination is ambiguous - see discussion. Black trendline represent

Mg/Ca-BWT linear correlation in C. wuellerstorfi (four samples with minor contamination), grey trendlines represent Mg/Ca-

BWT linear correlations in C._mundulus and Cibicidoides, spp. respectively (contaminated and uncontaminated samples

included).

4. DISCUSSION

4.1. Mg/Ca yatios in Cibicidoides: data quality and core top calibrations

All samples of Cibicidoides except for one have Mn/Ca ratios below the threshold for contamination (<0.1 mmol mol™) and
no correlation with Mg/Ca ratios, suggesting no or insignificant Mn-oxide coatings (Hasenfratz et al., 2017). Based on silicate

contamination indicated by Fe/Ca and Al/Ca ratios being significantly above the contamination threshold, six samples were

excluded (three Cibicidoides,spp., two C.mundulus and one C. yuellerstorfi samples) (Table 3). When plotted at the genus

level, Cibicidoides,show no correlation between Fe/Ca or Al/Ca ratios and Mg/Ca ratios (Fig,6a-b) supporting the notion of

no silicate contamination, amid this strategy being in line with previous approaches (e.g. Elderfield et al. 2006, Healey et al.,

2008). When plotted at a species level, however, there is a strong correlation (;°=0.94) between Fe/Ca and Mg/Ca ratios for C.

wuellerstorfi data (Appendix A Fig, A1) which suggests silicate contamination. The indicated contamination levels are small

in most cases with Fe/Ca ratios below 0.25 mmol mol™'. It is difficult to assess how much this small contamination has affected

the Mg/Ca data. If the increase in Mg/Ca ratios from silicate contamination is within the uncertainty of Mg/Ca ratio
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determinations (~0.03 mmol mol™) this can be neglected. We therefore used the Mg/Ca ratios of four C. yvuellerstorfi samples

with Fe/Ca below 0.25 mmol mol™' to establish a Mg/Ca BWT relationship (Table 3, Fig,9).

There are two anomalously high Mg/Ca ratios measured in C. ynundulus (6.04 mmol mol™) and C. yvuellerstorfi (5.28 mmol

mol!; Table 3) compared to Mg/Ca ratios in some studies (Elderfield et al., 2006; Rosenthal 1997) but within range of Mg/Ca

ratios in other reports (Lear 2002; Rosenthal 1997). The C. mundulus sample with a Mg/Ca ratio of 6.04 mmol mol"' shows a
broadly similar Fe/Ca ratio but a significantly higher Al/Ca ratio (2.66 mmol mol™') than other measurements from the genus

Cibicidoides (Al/Ca ratios ranging from 0.21 to 0.57 mmol mol™'; Table 3), It is uncertain whether the high Mg/Ca ratio is a
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result from silicate contamination or is due to another Mg bearing contaminant also high in Al. The Mn/Ca ratio in this sample

is low (0.01 mmol mol™') indicating no presence of Mn-oxide coatings.

The C. wuellerstorfi sample with a Mg/Ca ratio of 5.28 mmol mol"' does not have significantly higher Al/Ca, Fe/Ca or Mn/Ca

ratios compared to other samples of Cibicidoides spp. suggesting limited contamination. ,I'he low,Ca concentration (3.99 ppm) -
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couldsuggest the high Mg/Ca ratios are due to galcite dissolution from chemical cleaning. However, low Ca could also be due
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sample loss from crushing (using individual crushing), sample loss during transfer in chemical cleaning (using MilliQ to rinse

brush) and when rinsing samples during MilliQ and methanol rinses (not agitating samples when using vacuum) it is not

possible to eliminate sample loss entirely. This is one of the major limitations with the methodology and should be considered

a significant source ofuncertaintv.l
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: (Deleted: ibicidoides

discussion surrounding relatively unmixed NADW crossing the Davie Ridge into the Somali basin (van Aken et al., 2004). Our
core-top sample set is in the flow path of NADW, supporting the notion our high Mg/Ca ratios reflecting NADW specific water

properties. Firm conclusions are hampered by the limited sample size in our C. wuellerstorfi data set. If correct, however,
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Figure,10,Mg/Ca— BWT calibration of C. wuellerstorfi in black: this study with error bars showing standard deviation, purple: ;
S.E. Indian Ocean from Healey et al. (2008), grey: S.W. Indian Ocean from Elderfield et al. (2006) and blue: Somali basin

from Elderfield et al. (2006).

Previous studies have used both linear and exponential regressions to describe the temperature dependence of Mg/Ca ratios
(e.g. Healey et al., 2008; Lear et al., 2002, Martin and Lea, 2002; Elderfield et al., 2006) with some studies suggesting the latter
being preferable at low temperatures and over narrow temperature ranges (Healey et al., 2008; Stirpe et al., 2021). The small
sample size in our study hampers assessment of the better regression strategy. The generally good fit with the linear regression
in Healey et al. (2008) and the data ranges in Lear et al. (2002), support the notion of our Indian Mg/Ca calibration being

broadly correct.

Two out of three Fe/Ca and Al/Ca ratios for C. ynundulus are significantly above contamination thresholds (Table 3). In the

absence of a correlation with Mg/Ca ratios (Fig,6a-b) all three Mg/Ca ratios were tentatively plotted and compared to existing /

C.ynundulus core-top calibrations (Fig, 11). The estimated Mg/Ca ratios in the temperature range of 1-2°C is within the range

of Healey et al. (2008). One of the data points seems sufficiently cleaned whilst the second does not, based on low and high
Al/Ca and Fe/Ca ratios, respectively. Because both values lie within the range of data provided by Healey et al. (2008) this
suggests high estimates of Fe/Ca and Al/Ca ratios being a result of a non-Mg bearing contaminant (not silicate), supported by

absent correlations between Al/Ca or Fe/Ca with Mg/Ca (Fig, 6a-b). Alternatively, this could suggest increased Mg/Ca ratios

that may be interpreted as silicate contamination but are within the natural variation of Mg/Ca ratios in C. jnundulus.
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Figure,11,Mg/Ca — BWT calibration of C. mundulus in this study (black squares) compared to core-top calibrations by Healey

et al. (2008) (green rhombs) and Elderfield et al. (2006) (light blue triangles),,

The linear relationship of the three Mg/Ca ratios of C. ynundulus in Fig. 11 closely resembles the linear relationship derived

from data by Healey et al. (2008) from core-top estimates from the Atlantic, Pacific and Indian Ocean combined although the

reliability in our study is limited by only three datapoints and only one value at high temperatures. Our and Healey et al.’s

(2008) calibrations differ from the SW Indian Ocean calibration from Elderfield et al. (2006) with the reasons for this

discrepancy being unclear.

4.2. Mg/Ca ratios in Uvigerina peregrina

Our results for U. peregrina show that Mg/Ca ratios in nine samples of U. peregrina range from 1.10 to 2.99 + 0.02 mmol mol

! (Table 3) covering a depth range of 370-3323 m (Table 1). These Mg/Ca ratios are higher than values reported by Stirpe et

al. (2021) ranging from 0.68 to 1.50 mmol mol' covering a depth range of 663 to 4375 m. In our data set, 7 out of 9 samples

have Fe/Ca ratios above the contamination threshold (>0.1 mmol mol™') and correlate positively with Mg/Ca ratios (*=87, Fig,

7a) suggesting silicate contamination. Al/Ca ratios in all samples are above the contamination threshold (>0.4 mmol mol™') and

correlate with Mg/Ca ratios (>=0.66, Fig, 7b). These findings suggest silicate contamination being reflected in our high Mg/Ca

ratios. Mn/Ca ratios in all samples are below the contamination threshold (<0.1 mmol mol™) which supports the notion of Mn-

oxide coatings being absent (Fig, 7c).

To investigate if the high Mg/Ca ratios are indeed a result of silicate contamination these were plotted versus bottom water

temperatures and compared to previous studies (Fig, 12). Only two samples of U. peregrina are below the contamination

threshold of Fe/Ca ratios (<0.1 mmol mol™, Elderfield et al., 2010). These map onto the relationship of U. peregrina by

Elderfield et al. (2006). Most of the samples that were suggested to be silicate contaminated show, as expected, significantly

higher Mg/Ca ratios than previous estimates (Fig.,12), up to 1.5 mmol mol™! higher than in the relationship of Elderfield et al.

(2006). This supports the notion that Fe/Ca and Al/Ca ratios well above the contamination threshold indeed identify samples ‘

with contamination that bias the Mg/Ca ratios.
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spp.

Mg/Ca ratios measured in U. peregrina in a previous study (Yu et al., 2007) showed no significant difference between cleaning

method using weaker reductive cleaning reagents and oxidative cleaning only, in contrast to Mg/Ca ratios measured in C.

wuellerstorfi and C.gnundulus showing a significant difference (Yu et al., 2007). The clear difference in contamination, between

Cibicidoides spp. (Fig. 6) and U. peregrina (Fig.,7) despite using the same cleaning procedure, supports the findings in (Yu et

al., 2007), which suggest different rigour might be required for different species (please see section 4.6 on variable degree of i

contamination).
4.3. Sufficient cleaning of Mn-oxide coatings

Although the cleaning procedure, by Barker et al. (2003) has been widely used (e.g. Elderfield et al., 2006; Elderfield et al.,

2010, Elmore et al., 2015), the removal of Mn-Mg coatings js, inefficient in some cases, (Hasenfratz et al., 2017; Pena et al., i

2005). The Mn-oxide coatings which are found on the inner shells of foraminifera can cause increased Mg/Ca ratios and only
the reductive cleaning procedure satisfactorily removes this (Pena et al., 2005). Where Mn/Ca ratios are below 0.2 mmol mol

!, it entails a small increase in Mg/Ca ratios that is within the uncertainty of Mg/Ca ratio determination and therefore can be

considered insignificant (Hasenfratz et al., 2017). All but one core-top sample have Mn/Ca ratios below 0.2 mmol mol™! (Fig,

6 and 7, Table 3). This suggests the reductive cleaning step was not needed for samples analysed in this study, and therefore it

is assumed the ‘Mg cleaning procedure’ utilised in this study is more suitable than the ‘Cd cleaning procedure’.
4.4. Inefficient cleaning of silicate contaminants

The high Fe/Ca as well as the high Al/Ca ratios in most samples of all species used here (Table 3) indicate inefficient removal

of silicate contaminants, suggesting that the number of rinse/ultrasonication repetitions of the Barker et al. (2003) procedure is
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inadequate. Increasing the number of rinse/ultrasonication repeats further (from four to five) entails the risk of considerable

calcite dissolution which may lower the Mg/Ca ratios (Marr et al. 2013). There is probably a threshold at which tests are
thoroughly cleaned and tests dissolve. A stepwise leaching test series could be used to investigate the rigour needed to optimise
cleaning whilst avoiding sample loss in the process. Due to time limitations, however, this was not possible. If the methodology
needs to be adapted to specific foraminifera species this highly limits the comparability between studies investigating different

species from different core locations.

4.5. Species specific differences in silicate contamination

The range of Fe/Ca ratios in U. peregrina was wider,(0.02,to 2.04 mmol mol™') than in C. wuellerstorfi (0.13 to 0.35 mmol mol "

I: Table 3). This is consistent with Elmore et al. (supplementary material, 2015) reporting Fe/Ca ratios below 0.1 mmol mol!

in U, peregrina compared to Fe/Ca ratios,in C. gvuellerstorfi,below 0.04 mmol mol™'. Both ranges are below the contamination - -

threshold (0.1 mmol mol™!) in contrast to ranges reported in this study. Elmore et al. (2015) also used the procedure of Barker

et al. (2003). Samples containing G. ruber from gore NIOP 929, were included in the analysis of core-tops and used as a control

to monitor cleaning efficiency. On average (G. ruber contained Fe/Ca, Al/Ca and Mn/Ca ratios of 0.18, 0.60 and 0.15 mmol

mol™! (Appendix A Table A4). Both average Fe/Ca ratios and average Al/Ca ratios inG. ruber from NIOP929 analysed in runs

along with U. peregrina (0.31 and 1.09 mmol mol™') were higher than that of G. ruber that were analysed in runs alongside

Deleted: all but two samples of the Uvigerina peregrina and
six samples of Cibicidoides spp. (Table 2) suggest inefficient

removal of silicate contaminants, implying that the number of

rinse/ultrasonication repeats was insufficient for efficient
cleaning of samples despite following the Barker et al. (2003)
procedure.
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Cibicidoides spp. (0.13 and 0.26 mmol mol"; Appendix A Table A4). Since the same procedure was followed, the difference
could point to an issue in the repeatability of the cleaning procedure, i.e. build-up of gas bubbles in hot water bath during the

oxidative step, insufficient crushing prior to cleaning or different quantitics, of MilliQ water and methanol removed in between

rinses affecting efficiency of contaminants being removed in every rinse. Alternatively, the different contamination levels can

also result from different samples from core NIOP929 used due fo insufficient specimens of G. ruber, found within a single
)’

sample. ,

4.6. Variable initial degree of contamination

The degree of contamination of tests depends on factors including sediment composition, sedimentation rates, oxygen, core
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depth, water depth, and morphology (Barker et al., 2003; Ni et al., 2020; Pena et al., 2005). While foraminiferal tests that are

well preserved and show no to minor signs of contamination were selected for analysis, the condition of specimens selected

vary (qualitative observations of samples described in Appendix C). If U. peregrina, as an endobenthic species is subject to

more contact with surrounding sediment particles than C. wuellerstorfi this could explain higher contamination in U. peregrina.

Also, the surface of'tests of C. wuellerstorfi is relatively smooth compared to the irregular surface of U. peregrina tests, entailing

a larger surface area compared to C. wuellerstorfi which in turn increases the probability of contaminants sticking onto tests of

U. peregrina.

4.7. Different depositional environment

Barker et al. (2003) suggest samples from regions of higher clay content require more rigorous cleaning. This study benefits

from using core top samples from a relatively localised area (within a radius of 1°E and S — see Fig. 1)fin comparison to previous

studies based on more widely distributed samples (e.g. Elderfield et al., 2006). Despite the close proximity of our samples

different depositional environments likely exist in our core top sample set. To investigate the correlation between depositional

environment and silicate contamination, Fe/Ca ratios and Al/Ca ratios over depth were plotted (Fig. 8). There is an inverse

correlation between Fe/Ca ratios and Al/Ca ratios with depth in U. peregrina samples (Fig. 8) and samples at depths >2000 m

having significantly lower Fe/Ca ratios and Al/Ca ratios. Our core top transect is located close to the Rovuma River, implying

lithogenic material deposited near its mouth. The redistribution of these sediments may well have affected the upper parts more
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than the deeper parts of the continental slope in our study area (compare van der Lubbe et al. (2014), which is probably reflected

in the higher contamination level at shallower depths).

4.8. Relative impact of contamination

The Mg/Ca ratios are typically lower in benthic foraminifera compared to planktic foraminifera and therefore the relative impact

of contamination in benthic foraminifera is larger (de Vielliers et al., 2002). While contamination thresholds following previous

benthic foraminifera core-top studies have been used here, a lower contamination threshold for benthic foraminifera should be

used to minimise the relatively higher uncertainty for benthic Mg/Ca ratios (Hasenfratz et al., 2017). Different species of benthic

foraminifera show different temperature sensitivities, i.e. the relative change in calcite Mg/Ca ratios compared to changes in

temperature (Gussone et al., 2016). The impact of contamination on Mg/Ca-based temperature estimates varies with the

temperature sensitivity in different foraminifera species (U. peregrina > Cibicidoides spp.). Cibicidoides spp. has previously

been shown to have different temperature sensitivities at different temperature ranges (Elderfield et al., 2006). The temperature

sensitivity of Cibicidoides spp. including C. mundulus and C. wuellerstorfi is higher at temperatures above 3°C and therefore

the relative impact is stronger intemperatures above 3°C. |

4.9. Different contamination thresholds

Different studies have used different indicators and thresholds to monitor silicate contamination and Mn-oxide coatings. [Barker

et al. (2003) consider correlations between Mg/Ca ratios and Fe/Ca and/or Al/Ca ratios as indicators of silicate contamination.

Elderfield et al. (2010) have used contamination thresholds of 0.4, 0.1 and 0.1 mmol mol"' of Al/Ca, Fe/Ca and Mn/Ca ratios,

respectively, as indicators of contamination, put, also state,because of difficulties with the precision of Al concentrations, the

Mg/Ca ratios were not excluded based on high Al/Ca ratios alone. Yu and Elderfield (2008) used correlations between Al/Ca

and Mn/Ca ratios with Mg/Ca ratios to assess contamination. Capelli et al. (2005) have used Al/Ca ratios <1 mmol mol" and :

correlation with Mg/Ca ratios to identify silicate contamination. In contrast, Stirpe et al. (2021) have used more strict thresholds

of 0.0952, 0.0296 and 0.0189 pumol mol' of Al/Ca, Fe/Ca and Mn/Ca ratios, respectively. While the most common
contamination is based on correlations with Fe/Ca, Al/Ca and Mn/Ca, the outlined differences cause uncertainty when
comparing results between studies. When only using correlations between Fe/Ca, Al/Ca ratios and Mg/Ca ratios to assess
silicate contamination, no samples of Cibicidoides spp. in this study would have been tagged as contaminated. However, when

correlations are used in combination with the contamination thresholds, about half of the samples indicate silicate- or other

contamination. Also, when assessing correlations at species level, i.e. C. yuellerstorfi, there is a strong correlation between *

Fe/Ca and Mg/Ca ratios (Appendix A Fig. 1A, excluding Cibicidoides spp. and C. gnundulus which were analysed in the same \

run). The species difference could be due to morphological features of C. pvuellerstorfi that allow more silicate contaminants

to be trapped. On the other hand, if the lower contamination thresholds of Stirpe et al. (2021) are used, all Mg/Ca ratios of this
study are suggested to be contaminated with both silicate and Mn-oxide coatings. Correlation between Fe/Ca, Al/Ca and Mn/Ca
with Mg/Ca helps identify contaminants that also contain Mg (most notably silicate and Mn-oxide coatings) and are therefore
relevant for determining calcite Mg/Ca ratios. Excluding samples based on strict contamination thresholds for Fe, Al and Mn,
without considering correlations to Mg/Ca ratios risks excluding many samples that have minor contaminants which do not
affect Mg/Ca ratios. These measurements could still prove a reliable estimate of Mg/Ca ratios. Still, any presence of

contamination is a concern. Even if it does not produce, inaccurate Mg/Ca ratios (in the case that the contaminant does not
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slope in our study area, which is probably reflected in the
higher contamination level at shallower depths. §
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significantly lower in benthic species (Hasenfratz et al., 2017).

5. SUMMARY AND CONCLUSION

Designed to optimise the relationship between sample cleaning and sample loss during the procedure, in experiments 1-3
varying methanol and ultra-pure water rinses were used and clearly show a substantial effect on the level of silicate

contamination. These experiments showed that the best cleaning method for our study was that of Barker et al. (2003).

The core-top calibration for C. wuellerstorfi in this study, only including four samples, js broadly in line with published data,
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although there is only one data point in our study at the high temperature end.

Contamination is a general problem. Despite using an established method (Barker et al. 2003), in particular, U. peregrina

displayed high levels of remanent contamination. The U. peregrina Mg/Ca ratios also indicate that the contamination indicating

thresholds have generally been correct in identifying samples with silicate contamination. ,

There are several potential sources of error for Mg/Ca ratios including the carbonate ion effect, diagenetic effects, seawater
Mg/Ca variability, and vital effects. The main limitation in the use of Mg/Ca as a paleothermometer is a general lack of
understanding of benthic foraminiferal Mg incorporation and the relative impact of environmental factors, biogenic controls
and diagenetic effects. It is possible that species specific cleaning protocols are needed to improve comparability of data

between studies.
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Table A1 Samples analysed in Experiment 1-3

Mg/Ca ratios and contamination indicators

Sample ID  Core sample Size fraction Specimens Crushing method
(nm) containing

Experiment 1

la 929, Section 13, 58-58.5 cm 250-355 25 G. ruber Two glass slides

1b 929, Section 13, 58-58.5 cm 250-355 25 G. ruber Two glass slides

1b 929, Section 13, 58-58.5 cm 250-355 10 G. ruber Two glass slides

lc 929, Section 13, 57.5-58 cm 250-355 20 G. ruber Metal pin glass slide

1d 929, Section 13, 58-58.5 cm 250-355 10 G. ruber Metal pin glass mortar

le 929, Section 13, 57.5-58 cm 250-355 13 G. ruber Metal pin glass mortar

Experiment 2

2a 929, Section 13, 29-29.5 cm* 250-355 20 G. ruber Metal pin glass mortar

2b 929, Section 13, 29-29.5 cm* 250-355 20 G. ruber Metal pin glass mortar

2c 929, Section 13, 29.5-30 cm* 250-355 20 G. ruber 2-3 s in ultrasound

2d 929, Section 13, 57.5-58 cm* 250-355 20 G. ruber 2-3 s in ultrasound

2e 929, Section 13, 58-58.5 cm* 250-355 20 G. ruber Not crushed

2f 929, Section 13, 57.5-58 cm* 250-355 20 G. ruber Not crushed

2¢g 929, Section 13, 57.5-58 cm* 250-355 20 G. ruber Not crushed

2h 929, Section 13, 57.5-58 cm* 250-355 20 G. ruber Not crushed

Experiment 3

3a 929, Section 14, 12.5-13.5 cm* 250-355 20 G. ruber Metal pin glass mortar

3b 929, Section 14, 17-17.5 cm* 250-355 20 G. ruber Metal pin glass mortar

3c 929, Section 14, 105.5-106 cm 250-355 10 G. ruber Metal pin glass mortar

3d 929, Section 13, 105.5-106 cm 250-355 50 G. ruber Metal pin glass mortar

3e 929, Section 13, 105.5-106 cm 250-355 30 G. ruber Metal pin glass mortar

3f 929, Section 13, 105.5-106 cm 250-355 20 G. ruber Metal pin glass mortar

3g PE303-13B, CT, 0-1 cm 250 - >450 5 Gbicidoides,spp.  Metal pin glass mortar

3h PE303-174, CT, 0-1 cm 250 - 450 5 Gbicidoides,spp.  Not crushed

3i PE303-174, CT, 0-1 cm 250 - 450 10 Uvigerina,spp. Metal pin glass mortar

*used for comparison to previously measured Mg/Ca ratios by Saher et al. (2009)
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Table A2 Results from Experiment 1

(For d

Font: Not Bold

NEA AN

Sample Species Mg/Ca Fe/Ca Al/Ca Crushing Ca Specimens Normalised
ID (mmol/mol) (mmol/mol) (mmol/mol) technique® (ppm) Qaf (Fu. d: Superscript
(ppm/25 (Formatted: Superscript
specimens) (Formatted: Font: 10 pt
la G. ruber 35.23 <LOD <LOD plate 0.55 25 0.55
1b G. ruber 3.89 <LOD <LOD plate 7.50 25 7.50
Ie Goruber 5.8 <LOD <LOD platg 375 M0 937 ~(Formatted: Font colour: Text |
14 G. ruber 5.84 <LOD <LOD pin, 168 25 168 (Formatted: Font colour: Text 1
CFormatted: Superscript
le G. ruber 4.54 <LOD <LOD pin, 5.10 A0 12.745 : CFu. d: Font colour: Text 1
Fi tted: Font colour: Text 1
1t G. ruber 5.70 <LOD <LOD pin, 566 0 e C ormatted: Font colour: Tex
‘CFormatted: Font colour: Text 1
> Samples with specimens less than 25 have been normalised to account for the reduced sample in order to be able to compare effect of " CFu- d: Font colour: Text 1
crushing technique on Ca content even though different sample size have been used (due to limited specimens available). Where 10 specimens Vi CF'" d: Font colour: Text 1
have been analysed the Ca content have been multiplied with 2.5. (Fu. d: Superscript
2 plate = crushing specimens simultaneously between two glass plates, pin = crushing specimens individually using metal pin, }EFormatted: Font colour: Text 1
. [ Formatted: Font colour: Text 1
& (Formatted: Font colour: Text 1
Table A3, Results from Experiment 2;3 : EFormatted: Superscript
. Formatted: Font colour: Text 1
Sample ID Species Mg/Ca Fe/Ca Al/Ca Mn/Ca Ca Note | (Formatted: Superscript
(mmol/mol) (mmol/mol) (mmol/mol) (mmol/mol) (ppm) i (Formatted: Font: 9 pt, Not Bold
For d: Font: 9 pt, Not Bold
2a G. ruber 5.64 0.51 2.36 0.18 19.33 C
) (Formatted: Font: 9 pt, Not Bold
2 G. ruber 4.40 <LOD 3.80 0.15 7.92  (Formatted: Superscript
+( Formatted: Font: 9 pt, Not Bold
2¢ G. ruber 4.66 0.18 1.84 0.17 22.54 (
( Deleted: 2.
2d G. ruber 6.58 0.78 3.61 0.20 13.99 (Deleted: 1
2e G. ruber 4.71 0.27 1.67 0.15 30.16
2f G. ruber 5.49 <LOD 4.34 0.16 7.32
2g G. ruber 4.85 0.43 2.11 0.18 24.18
2h G. ruber 9.41 1.56 3.96 0.34 30.92
3a G. ruber 3.17 0.39 0.91 0.11 2.15
3b G. ruber 3.7 <LOD <LOD 0.13 21.15
3c G. ruber 3.99 1.08 0.96 0.17 27.48
3d G. ruber 3.59 <LOD 0.87 0.15 11.27
3e G. ruber 4.48 0.56 1.61 0.18 88.35
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3f
3g
3h

3i

G. ruber 3.78 0.39 5.93 0.14 31.66
Cibicidoides sppy 2.37 <LOD 3.36 0.17 35.39
Cibicidoides spp.. ... 2.54 1.08 0.91 0.04 4.32

Uvigerina spp. 2.75 <LOD <LOD 0.07 11.80

(Deleted: G. ruber

(Deleted: G. ruber

(Deleted: G. ruber

)
)
)

v

Table A4, Mg/Ca, Ca and contamination indicators (Fe/Ca, Al/Ca and Mn/Ca) of samples containing G. ruber analysed in the

same runs alongside core-top samples.

CDeleted: q

... [13]

(Deleted: 3

)

N N D N N N

Core Species Mg/Ca Fe/Ca Al/Ca Mn/Ca Ca Note* ( Formatted Table
NIOP929 G. ruber 3.70 0.14 0.36 0.17 17.82  Cibicidoidesyspp. (Deleted: X
NIOP929 G. ruber 3.56 0.10 0.35 0.19 25.60  Cibicidoidesyspp. (Deleted: i
NIOP929 G. ruber 3.17 0.09 031 0.12 2836  Cibicidoides sppy (Deleted: C. spp.
NIOP929 G. ruber 3.16 0.23 <LOD 0.17 10.60  Cibicidoides spp CDeleted: C. spp.
NIOP929 G. ruber 4.18 0.12 0.29 0.17 19.78  Cibicidoides sppy (Deleted: C. spp.
NIOP929 G. ruber 3.26 0.10 0.25 0.15 24.51 Cibicidoides spp (Deleted: C. spp.
NIOP929 G. ruber 522 0.38 1.31 0.11 2448 U peregrina
NIOP929 G. ruber 4.77 0.24 0.92 0.14 50.88  U. peregrina
NIOP929 G. ruber 5.1 0.30 1.04 0.12 39.95 U. peregrina
*Analysed in run alongside Cibicidoides,spp./U. peregrina (Deleted: i
0.4
0.35
0.3
g 025
©
E 02
E
«
8 0.15
(]
L 01
0.05
0
0 1 2 3 4 5
Mg/Ca (mmol/mol)
Figure, A1 Correlation between Fe/Ca ratios and Mg/Ca ratios in Cibicidoides wuellerestorfi,One datapoint is excluded where (Deleted: .
Fe is below limit of detection. ‘ (Deleted: .
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Appendix B

ICP-OES calibration curves and standards

Table B1 Concentration of standards used (Mg in ppb and Ca in ppm) in Mg/Ca analysis for calibration and for matrix effect.

Tube [Sample Labels (A1396.152 [Ca315.887 [Ca 317.933 [Ca 422673 |Mg 279.553 Mg 280.270 [Mg 285.213
ma/l W mgl U mal W mal  Wlug W ugl W ug W
1:1 |UoE benthos Blank 0000000 0000000 0000000 0000000 0.000000 0000000  0.000000
1:2 |UoE benthos Sti 138500 138500 138500 755000 755000  75.5000
1:3 |UoE benthos St2 165000 165000 165000 258000 258000 258000
1:4 |UoE benthos St3 138500 138500 138500  333.000  339.000  339.000
|1:5 |UoE benthos St4 | 138500 138500 138500  466.000  466.000  466.000
1:6 |UoE benthos St5 138500 138500 138500  677.000  677.000  677.000
1:7 |UoE benthos St6 138500 138500 138500  1379.00 137900  1379.00
1:8 |Standard 8
1:9 9 0500000 0.500000 0500000  0.500000
1:10 |Standard 10 250000 250000 250000 250000
1:11 |Standard 11 100000 100000 10.0000  10.0000
1:12 12 500000  50.0000  50.0000  50.0000

BE| | B
Intensity Fe 259.940 Intensity Al 308.215 Intensity Ba 493.408 :‘

400000 300000 6000000
200000 4000000
60.500

300000
200000

Concertration Concentration Concentration

Intensity Ba 455.403 Intensity Ti 336.122 Intensrty Sr 407.771

1]
7000000 700000 600000
400000 400000
6.050

Concentration Concentration Concentration
Intensity Mn 257.610 Intensity Al 396.152 Imensny Ca 315.887

700000 1200000 1000000
500000 500000
0

6.050 . 0.000 220.000
| _2Zc Concentration I ‘J Concentration I Concertration
Intensity Ca 317.933 Intensity Ca 422.673 Intensity Mg 279.553

5000000 1.97 500000

4000000 1.5E7 400000

2000000 T/ ZDDDDD
1] 0

220.000 U 000 1668.530
Concentration Concentration Concentration ~|

4000000

1]

400000

0

Figure,B1. Print screen of ICP Expert showing calibration curves for standards in Uvigerina peregrina analysis

Intensity Ca 315.887 Ca 317.933 Intensity Ca 422.673
190000 A
100000
0
315.838 315.900315.939 317.873 317.986 422605 422742
Wavelength (nm) Wavelength (nm) Wavelength (nm)
S: 163025 B: 2382 SBR: 67.449 S: 722955 B: 6210 SBR: 115.424 S: 2896823 B: 19065 SBR: 150.942
Intensity Mg 279.553 Intensity Mg 280.270 i Mg 285.213
40000 12000
30000
20000
279.508 279560 279598 280.280 280.316 . 285.220 285.259
Wavelength (nm) Wavelength (nm) Wavelength (nm)
S: 26932 B: 951 SBR: 27.326 S: 9842 B: 737 SBR: 12.347 S: 3552 B: 1127 SBR: 2.151
Wavelength: 279.517nm Intensity: 1937.5 (0.0) c/s All Replicates

Figure,B2. Print screen of ICP Expert showing intensity curves in Cibicidoides spp. analysis
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Appendix C

Qualitative observations of benthic foraminifera samples analysed

Table 1C Images and qualitative observations of 250-450 pm size fractions of core top samples containing benthic foraminifera

tests analysed.

- broken fragments present but most

tests intact

- mostly unstained/ minor

discoloration

- no sign of secondary calcification

or corrosion

- tests mostly intact

- mostly unstained/ minor

discoloration

- no sign of secondary calcification

or corrosion

PE303-3 PE303-4c PE303-6¢
- no debris or quartz - 50% quartz - 50% quartz
- clean - clean - clean

- tests mostly intact

- mostly unstained/minor

discoloration

- no sign of secondary calcification

or corrosion

PE303-14a

PE303-17a

PE303-18b
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- no debris or quartz
- broken tests present but most intact

- some signs of secondary
calcification and corrosion white no

discoloration

bide,
Sa e

o3¢ 4
o ;."-_‘-s
s gt b3 8

- no debris or quartz

- mixed condition, visible mud on

tests

- discoloration and corrosion

- debris and quartz present

- visible mud on tests

- broken fragments

- discoloration and corrosion present

- no sign of secondary calcification

PE303-22

PE303-50

PE304-9

- debris present, no quartz

- mixed condition, some
discoloration corrosion and

secondary calcification

- broken fragments

->50% quartz, no debris
- clean

- mixed condition, minor

discoloration and some visible mud
- some broken tests
- minor corrosion

- no sign of secondary calcification

- debris and quartz present
- visible mud

- broken fragments >50%
- discoloration

- corrosion

- no sign of secondary calcification
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PE304-25

PE304-30

- no quartz or debris

- most tests have visible mud
- broken fragments

- brown/orange discoloration

- no visible sign of corrosion or

secondary calcification

- no quartz or debris

- mixed condition, some visible dirt
- minor discoloration

- broken test fragments

- corrosion

- minor secondary calcification
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