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Abstract 

Evapotranspiration (ET) and gross primary production (GPP) are critical fluxes contributing to the energy, water, 

and carbon exchanges between the atmosphere and the land surface. Land surface models such as the Community 

Land Model v5 (CLM5) quantify these fluxes, contribute to a better understanding of climate change’s impact on 20 

ecosystems, and estimate the state of carbon budgets and water resources, and contribute to a better 

understanding of climate change’s impact on ecosystems. Past studies have shown the ability of CLM5 to model 

ET and GPP magnitudes well but emphasized systematic underestimations and lower variability than in the 

observations. 

Here, we evaluate the simulated ET and GPP from CLM5 at the grid scale (CLM5grid) and the plant functional 25 

type (PFT) scale (CLM5PFT) with observations from eddy covariance stations from the Integrated Carbon 

Observation System (ICOS) over Europe. For most PFTs, CLM5grid and CLM5PFT compared better to ICOS than 

publicly available reanalysis data and estimates obtained from remote sensing. CLM5PFT exhibited a low 

systematic error in simulating the ET of the ICOS measurements (average bias of -5.05%), implying that the 

PFT-specific ET matches the magnitude of the observations closely. However, CLM5PFT severely underestimates 30 

GPP, especially in deciduous forests (bias of -43.76%). Furthermore, the simulated ET and GPP distribution 

moments across PFTs in CLM5grid and CLM5PFT and their reanalyzed and remotely sensed counterparts indicate 

an underestimated spatiotemporal variability compared to the observations across Europe.Furthermore, the 

simulated ET and GPP distribution moments across PFTs in CLM5grid and CLM5PFT, reanalyses, and remote 

sensing data indicate an underestimated spatiotemporal variability compared to the observations across Europe. 35 

These results are essential insights for studies using further evaluations in CLM5 land surface models by pointing 

to the limitations of CLM5 in simulating the spatiotemporal variability of ET and GPP across PFTs. 
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 1. Introduction 

Ecosystem processes, such as evapotranspiration (ET) and gross primary production (GPP), play an important 40 

role in cycling water, carbon, and energy between ecosystems and the atmosphere. Changes in the magnitude and 

variability of these fluxes can indicate ecosystems’ inhibited performance due to changing environment 

environments (Kühn et al., 2021; Migliavacca et al., 2021). These changes can lead to short-term alterations and 

long-term trends in water resources and carbon pools in the atmosphere and the land surface. Thus, the accurate 

quantification of the variability of ecosystem processes is pivotal for developing climate change projections and 45 

formulating effective mitigation policies (Friedlingstein et al., 2023; Graf et al., 2023). 

Notably, an accurate, functional understanding of land surface processes is essential to identify threatened 

ecosystems in the present and the future and facilitate carbon budget calculations. Land surface models (LSMs) 

serve as deterministic and processed-based simulators of ecosystems, capturing energy, water, and carbon fluxes 

while considering their interactions and the heterogeneity of the land surface (Fisher and Koven, 2020). LSMs 50 

can complement point-scale observations from in-situ research infrastructures by providing spatiotemporally 

uniform and extensive high-resolution outputs. Their high-resolution process-based simulations contrast the often 

coarsely resolved remote sensing data. Hence, LSMs are frequently used tools for investigating and projecting the 

current understanding of ecosystem processes, such as GPP and ET, on various scales. However, there is 

uncertainty in the LSM structure, the parameters, the input data, and the initial conditions, which carry over to the 55 

simulated variables. Therefore, assessing how well the general simulated ET and GPP variability compares to the 

observations is crucial. Such evaluations deliver essential context on LSM biases and form a basis for analyses of 

more complex ecosystem responses. Recent studies already found discrepancies between LSM simulations of ET 

and GPP and observations collected in the field and from remote sensing. For instance, these discrepancies are 

evident in their magnitude and variability (De Pue et al., 2023; Boas et al., 2023; Cheng et al., 2021; Strebel et 60 

al., 2023) and their response to drought (Ukkola et al., 2016; Wu et al., 2020; Green et al., 2024). Therefore, 

assessing the accuracy of LSMs in representing observed GPP and ET fluxes is crucial to test and improve our 

current understanding of ecosystem process variability and identify the limitations of state-of-the-art LSMs. 

Current land surface models, e.g., the Joint UK Land Environment Simulator (JULES), the Community Land 

Model 5 (CLM5), or the Community Atmosphere Biosphere Land Exchange Modeel (CABLE), employ a tiling 65 

system within the grid cell to account for functional differences of distinct patches on the land surface. The 
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natural and crop vegetation is grouped into plant functional types (PFT), the entities for which ecosystem process 

calculations are resolved (Fisher and Koven, 2020; Bonan et al., 2002; Solomon and Shugart, 1993). Typically, 

PFTs are defined based on morphological and phenological characteristics of the vegetation (e.g., leaf type and 

leaf longevity) and climate (Bonan et al., 2002). However, the usefulness of this PFT definition, or at least its 70 

current coarsely resolved implementation, is a subject of debate (Caldararu et al., 2015; Van Bodegom et al., 

2012). The primary argument against it is that observed plant traits implemented as PFT-related parameters vary 

to some extent in space and time in response to a changing environment. This spatiotemporal dependence of PFT 

traits is only marginally represented in LSMs. On top of that, most research assessing LSMs only used a handful 

of observation sites and did not analyze aggregated values for groups of sites observing the same PFT. Such 75 

analyses would provide essential insights, as a recent study highlighted the differences between vegetation type 

concepts used in observation networks, e.g., the International Geosphere-Biosphere Programme (IGBP) 

classification, and PFTs used in LSMs and underlined the importance of improving these PFT concepts (Cranko 

Page et al., 2024). 

The phenology of ecosystem processes, i.e., their seasonal cycles and evolution through the year and the growing 80 

season length, have shifted in timing due to climate change. A recent study investigated which factors drive the 

changes in the mean annual dynamics of ecosystem processes in Europe (Rahmati et al., 2023), and many of 

these discovered feedbacks, for instance, the effect of increased atmospheric dryness on growing season length, 

are only implemented simplistically in LSMs. Furthermore, robust simulations of LSMs for impact assessments 

become even more critical as ecosystems experience more disturbances along with the changing climate. For 85 

example, projections show that droughts have recently become more frequent in Europe (Vautard et al., 2023; 

Rousi et al., 2022) and that these extreme events will become even more frequent and severe in the future 

(Lehner et al., 2017). While the combined effect of a higher occurrence of compound drought events is currently 

not fully understood, it is clear from observations that individual drought years, or droughts in general, have 

already had a profound impact on ecosystem processes in Europe (Graf et al., 2020; Van Der Woude et al., 2023; 90 

Poppe Terán et al., 2023). Given that the frequency and severity of extreme events affect GPP and ET’s statistical 

distributions, investigating how the characteristics of the simulated distributions compare with the observed can 

contextualize findings of modeled ecosystem drought responses in Europe. 

One predominantly used LSM is the Community Land Model version 5 (CLM5) (Lawrence et al., 2019, 2018). 

In the most recent version, CLM5 solves the biogeochemistry (BGC), i.e., the carbon and nitrogen cycles 95 
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between the atmosphere, vegetation, and soil. CLM5 has been widely employed for quantifying and examining 

ecosystems at various scales, including global (Xie et al., 2020; Sitch et al., 2015; Lawrence et al., 2019), 

regional (Cheng et al., 2021; Boas et al., 2023) and site-scale (Strebel et al., 2023; Umair et al., 2020; Song et al., 

2020; Fisher et al., 2019a) applications. Several studies have highlighted the ability of CLM5 to simulate 

ecosystem processes close to the observations (Wozniak et al., 2020; Lawrence et al., 2019; Cheng et al., 2021; 100 

Zhang et al., 2023; Boas et al., 2023). However, they have also emphasized an underestimated magnitude and 

variability in the simulations across different time scales and under various conditions. 

The present study assesses CLM5’s ability to capture ecosystem processes at a continental scale. To ensure 

comparability to point scale observations, we conducted high-resolution simulations at 0.0275° (approx. 3 km) 

resolution over the European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain 105 

(Giorgi et al., 2009), resulting in 1544 x 1592 grid cells. Notably, the output contained variables from the 

subgrid-scale, i.e., from within a 3 km grid cell, for PFTs present in the grid cell. We then compared the CLM5 

grid level (CLM5grid) and PFT level data (CLM5PFT) to observations from a continental network of sites: The 

Integrated Carbon Observation System (ICOS) provides the WARM-WINTER-2020 data (Warm Winter 2020 

Team and ICOS Ecosystem Thematic Centre, 2022), which includes Eddy Covariance measurements over a 110 

dense network of over 70 sites in Europe. It was named after and curated to , and was curated named after and to 

support research on the effect of the warm winter of the year 2020 on the terrestrial carbon fluxes. These ICOS 

data are regarded as the gold standard for calibrating and evaluating process-based models due to their ample 

spatial coverage as a network encompassing diverse land cover types. Thus, it offers an excellent opportunity to 

comprehensively assess simulated GPP and ET for specific PFT from our CLM5 setup over Europe. 115 

Additionally, we include remote sensing data from the Global Land Surface Satellite (GLASS, (Liang et al., 

2021)) and reanalyses from the European Center for Medium-range Weather Forecasts Reanalysis 5 - Land 

(ERA5L, Copernicus Climate Change Service (2019)) as well as from the Global Land Evaporation Amsterdam 

Model (GLEAM, Martens et al. (2017)) in our analyses to identify common patterns of ecosystem process 

variability between CLM5, in-situ observations, reanalysis, and remote sensing data. 120 

In summary, this study uses ICOS observations as ground truth data. It and compares them with grid and PFT 

level CLM5 data, and terrestrial surface fluxes from reanalyses, and remote sensing derivatives to: 
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1. Compare performance indices (root mean square error and percent bias) between the models and ICOS 

measurements on a per-site and PFT-group basis to assess the systematic error and accuracy of ET and 

GPP simulations. 125 

2. Investigate how the models represent the observed ET and GPP for different PFTs regarding their sub-

annual averaged phenologies, their standard deviation, and timing of important phenological events.y and 

standard deviations. 

3. Evaluate the simulated, PFT-level ET and GPP statistical distributions and their moments (mean, 

variance, skewness, and excess kurtosis) to contextualize assessments of factors, like droughts, which 130 

impact the shape of these distributions. 

4. Compare the inter-site differences between ET and GPP  time series differences of within PFT -groupsed 

stations to estimate how the observed intra-PFT variability is represented in the models. different PFT-

specific ET and GPP time series are in the models and the observations. 

Thus, these findings offer critical information for comparisons of GPP and ET from the evaluated models. 135 

Furthermore, this study also paves the way for a better-informed analysis of the drought response of ET and GPP 

from the models being assessed over Europe. We expect that: 

1. There is a lower systematic bias, and the simulation is closer to the observations by the PFT scale than 

the grid-scale CLM5 outputs, remote sensing, and reanalysis data. 

5.2. The remotely sensed and modeled data approximate critical events in the phenologies of ET and GPP 140 

within the standard deviation of the ICOS measurements for sites of one PFT. However, this ability 

varies between PFTs. 

6. The remotely sensed and modeled data provide reasonable approximations of the ICOS ET and GPP 

phenologies, but there are apparent differences in this ability between PFTs. 

7.3. The remotely sensed and modeled ET and GPP data distributions show a lower range among the 145 

moments of variability of ET and GPP values within and across the PFT groups than the ICOS 

measurements. 
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2. Methods and Data 

 2.1. Community Land Model version 5 150 

We use the CLM5 (Lawrence et al., 2018, 2019), which is forced offline with custom input data. The land surface 

of a region in CLM5 is first disaggregated into grid cells, which are uniformly distributed and simulated 

individually. These grid cells are tiled into land units (i.e., natural vegetation, crops, lakes, urban areas, and 

glaciers) with a relative area coverage within the grid cell. Importantly, plants in the naturally vegetated land 

units compete for water in a single soil column. The vegetation is grouped into PFTs (Lawrence and Chase, 155 

2007), which are distinguished through leaf habit (evergreen or deciduous), morphology (needle and broad 

leaves, grass, and shrubs), and the bioclimate of the grid cell location (boreal, temperate, and tropical). While 

competition for soil moisture includes interactions with among different PFTs, this is closer to natural conditions 

than separated soil columns and encourages evaluations on the PFT scale. Here, we use CLM5-BGC, which 

calculates vertical carbon and nitrogen pools and fluxes between the vegetation, soil, and atmosphere. In the 160 

following subsections, we briefly describe the essential processes in CLM5 that are particularly relevant to this 

study and, as well as the input data and leading features of the European CLM5 setup. 

2.1.1. Gross primary production and evapotranspiration 

The stomatal conductance of plants (gs) couples water exchange with carbon uptake between vegetation and the 

atmosphere. In CLM5, gs is calculated by the Medlyn stomatal conductance model (Medlyn et al., 2011): 165 

𝑔𝑠 = 𝑔0 + 1.6 (1 +
𝑔1

√𝐷
)
𝐴

𝑐𝑠
 (1) 

Where g0 is the Medlyn intercept and defaults to 100 𝜇mol m-2 s-1, and g1 is the Medlyn slope, a PFT-specific 

parameter. D is the vapor pressure deficit indicating atmospheric water demand, and cs is the CO2 partial pressure 

at the leaf surface relative to the total atmospheric pressure. A is the carbon assimilated through photosynthesis. 

𝐴 =
𝑐𝑠 − 𝑐𝑖
1.6𝑟𝑠

 (2) 

The calculation of A is adapted from Bonan et al. (2011) and is. It is based on the Farquhar model (Farquhar et 

al., 1980) and limited by the photosynthetic capacity given by the LUNA model (Ali et al., 2016). It requires 170 

knowledge of the gradient of CO2 concentration from the outside to the inside of the leaf and neglects CO2 
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storage at the leaf surface. cs and ci are the leaf surface and internal partial CO2 pressures, and rs is the stomatal 

resistance, which is the inverse of gs. Further, cs and ci are calculated. 

𝑐𝑠 = 𝑐𝑎 − 1.4𝑟𝑏𝐴 (3) 

𝑐𝑖 = 𝑐𝑎 − (1.4𝑟𝑏 + 1.6𝑟𝑠)𝐴 (4) 

The factor 1.4 refers to the diffusivity ratio between CO2 and H2O gases in the leaf boundary, and 1.6 is the same 

ratio in the stomata. The equations for A, gs, ci, and cs are computed iteratively until ci converges, using a hybrid 175 

algorithm with the secant method and Brent’s method (Lawrence et al., 2018). The photosynthesis is scaled to the 

canopy GPP by considering the effect of sunlit to shaded area ratios of the total leaf area. 

The water input from the atmosphere to the land surface can be snow accumulating on the ground, streamflow, 

lake water, intercepted by the vegetation canopy, or can infiltrate the ground. The water in the ground percolates 

through 20 soil layers and is stored, directly evaporated, or taken up by plant roots relative to their transpiration 180 

demand. Hydraulic stress in a plant is calculated in a hydraulic framework using Darcy’s law for transient porous 

media flow (Bonan et al., 2014). 

The transpiration flux T is calculated with the resulting rs from above. 

𝑇 =
𝑒𝑠 − 𝑒𝑖
𝑟𝑠

 (5) 

es is the H2O vapor pressure at the leaf surface, and ei is the saturation H2O vapor pressure resulting from the leaf 

temperature. If T cannot meet the atmospheric water demand because of a soil moisture shortage, CLM5-BGC 185 

introduces water stress and attenuates gs based on that transpiration deficit factor. Through decreased gs, water 

stress also regulates the photosynthesis, A. 

The total evapotranspiration is then determined by summing the transpiration and the Total evapotranspiration is 

then determined by summing the transpiration and evaporation from vegetation interception, surface water, the 

ground, and potentially snow. 190 

2.1.2. Setup of the European CLM5 

The European Coordinated Regional Climate Downscaling Experiment (CORDEX (, Giorgi et al., 2009) domain 

delimited the extent of this study, matching with the extent of regional atmospheric models. With a resolution of 
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3 km (0.0275°), our grid contains 1544 ⨉ 1592 grid cells, including the ocean. We used stand-alone CLM5 with 

the activated BGC module and stub models for ice, sea, and waves. 195 

The simulations were forced by the Consortium for Small-Scale Modeling (COSMO) Reanalysis 6 (Bollmeyer et 

al., 2015; Wahl et al., 2017), a 6 km resolution data set providing meteorological variables over the European 

CORDEX domain from 1995 to 2019. The main advantage of using this reanalysis is the high resolution and a 

better representation of seasonal precipitation intensities compared to a coarser resolved global reanalysis 

(Bollmeyer et al., 2015). Using this forcing in high-resolution LSM simulations should lead to a more accurate 200 

simulation of sub-surface and surface hydrological fluxes, especially in regions with a relatively heterogeneous 

land surface (Wahl et al., 2017; Prein et al., 2016). 

The static surface information was initialized for the year 2000 and was determined using input data from a 

standard repository (Lawrence et al., 2018). These data include land use information from (Hurtt et al., 2020), 

PFT distribution maps from (Lawrence and Chase, 2007), soil texture from (IGBP, 2000), and slope and 205 

elevation taken from (Earth Resources Observation And Science (EROS) Center, 2017). 

The CLM5-BGC needs initial conditions for the carbon pools. For that, a spin-up workflow is necessary to bring 

the carbon pools and fluxes of carbon to a steady state before starting with production simulations. The spin-up 

method consists of two steps. Firstly, an accelerated decomposition simulation step, where carbon pools are 

artificially minimized. Secondly, a conventional simulation step, growing the carbon pools to the desired 210 

equilibrium state. During both spin-up steps, the atmospheric forcing from 1995 to 2012 was cycled (i.e., a 

cycling period of 18 years). The progress towards a steady state is monitored by assessing the difference in total 

carbon fixed in the ecosystem between a selected year within the last 18-year cycling period and the same year in 

the previous cycling period. Ctot,y is the total ecosystem carbon (including vegetation and soil) in the year y, and 

Ctot,y-t is the complete ecosystem carbon in the year y-t. A grid cell’s carbon pools are in carbon equilibrium if the 215 

following is fulfilled. 

𝛥𝐶𝑡𝑜𝑡
𝑡

< 1𝑔𝐶𝑚2𝑦𝑒𝑎𝑟−1 (6) 

The following conditions define the final steady state on the continental scale. 

1. 97% of the grid cells (and the total area) are in equilibrium. 
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2. The change in continental ecosystem carbon across the continent is lower than 2 Tg C year-1 for the three 

preceding cycle periods. 220 

The soil organic matter carbon pools in high northern latitudes were the slowest to reach equilibrium, which was 

reached after just about 1500 simulation years. 

After the spin-up, we conducted a 24-year (1995 until 2018) transient simulation starting with the initial 

conditions established by the spin-up. We output the simulated variables from two model levels for the analyses. 

1. CLM5PFT: This is the model’s native resolution of vegetation-related states and fluxes calculation. Using 225 

output at this level (not the default configuration) allows for multiple time series per grid cell, each 

corresponding to a single PFT. This enables a selection of modeled data as needed. For instance, when 

comparing model data to ecosystem-level measurements, CLM5PFT relates to the simulated time series of 

the corresponding PFT, resulting in an adequate assessment of model functions. When comparing to in-

situ observations, we will refer to CLM5PFT when we subset the ICOS site location and the agreeing PFT 230 

from the CLM5 data. 

2. CLM5grid: The grid cell level output aggregates the PFT and the other tiles (i.e., croplands, urban areas, 

and lakes) that compose the grid cell area. Consequently, this data does not relate to a single functional 

type. Instead, it informs about the average state and fluxes in the grid cell area. In this study, CLM5grid 

designates CLM5 data extracted from the grid cell closest to the station’s location. 235 

 2.2. Evaluation data 

2.2.1. Station data 

As ground truth data in the comparisons, we used the ICOS research infrastructure, which has a station 

observation network spanning 14 European countries (ICOS RI, 2021). Each station has at least one eddy 

covariance measurement tower and incorporates a processing workflow following a standardized protocol. We 240 

use the curated data, the WARM-WINTER-2020 data set (Warm Winter 2020 Team and ICOS Ecosystem 

Thematic Centre, 2022), which consists of homogenized variable time series following the ONEFLUX data 

pipeline (Pastorello et al., 2020). The ICOS WARM-WINTER-2020 data has measurements of 73 stations 

totaling over 800 station-years (available years are station-dependent). corresponding to multiple land cover types 

(see Figure 1 for a map with the station locations and Table S1 for more information on the available years per 245 



 

11 

 

station). Note that the land cover type indicated by the ICOS site metadata and represented in the measurements 

refers to the predominant PFT in the footprint of the eddy covariance station. We omitted the stations over 

wetland and mixed forest land cover types to ensure a coherent analysis because no PFT counterpart is 

implemented in CLM5PFT. Also, shrub PFTs were not included in our analyses because there were insufficient 

shrubland sites in the ICOS data to support a robust evaluation. The analyses also excluded stations whose land 250 

cover type was not included in metadata sites (e.g., DEIMS-SDR https://deims.org), leaving a total of 42 stations 

for our analyses. Because the land cover types from the selected sites correspond well with PFTs in CLM5, we 

will also refer to them as PFTs. 

The processing workflow of the WARM-WINTER-2020 data extracts daily time series for GPP, partitioned from 

the net ecosystem exchange (NEE) using the night-time method and a dependence on a variable friction velocity 255 

threshold (in g C day-1, GPP_NT_VUT_REF ). We retained negative GPP values in these data, which stem from 

the uncertainty of the NEE measurements and partitioning method, to avoid introducing bias into the GPP 

distributions (Reichstein et al., 2012; Pastorello et al., 2020). For the ET evaluation, we also extracted the gap-

filled latent heat flux (W m-2, LE_F_MDS). Importantly, we verified our results by checking for inconsistencies 

in the analysis of ICOS NEE (NEE_VUT_REF), ecosystem respiration (RECO_NT_VUT_REF), and energy 260 

balance corrected latent heat flux (LE_CORR). 

The conversion of latent heat (W m-2) into ET (mm day-1) is achieved by multiplying with the factor 0.035, 

assuming a constant enthalpy of vaporization decoupled from temperature because variable enthalpy has a 

negligible effect on the overall outcome of the conversion. 

Lastly, we use the leaf area index (LAI) from the ICOS Archive final quality data set (ETC L2 Archive). LAI is 265 

measured by only sparsely available starting from 2017 and, thus, only has two years intersecting with our study 

period (2017 and 2018). Furthermore, the data within this intersection period is only available for a smaller 

number (in relation to the EC data above) at ENF and CRO sites. Therefore, we do not include the analysis in the 

main text but include these results only in the Supplementary Material for context of the main analyses of ET and 

ET. 270 

Formatted: Hyperlink

https://deims.org/


 

12 

 

2.2.2. Remote sensing and reanalysis data 

To consider the CLM5 in the context of additional complementary data products, we include GPP data from the 

Global Land Surface Satellite (GLASS, Liang et al. (2021)). The GLASS GPP product uses the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High-Resolution Radiometer (AVHRR) 

sensors and the revised Light Use Efficiency (LUE) model (Zheng et al., 2020) in 8-daily resolution in time and 275 

0.05° resolution in space. 

We also compare the CLM5 outputs with GLASS ET data, which applies a multi-model ensemble (e.g., MODIS-

ET, remote sensing Penman-Monteith ET) to remote sensing information to estimate 8-daily latent heat on a 

0.05° grid. We convert latent heat to ET, as described in Section 2.2.1. Similarly, MODIS-derived GLASS LAI 

data (Ma and Liang 2022) is used in this study to provide context to the ET and GPP analyses (same 0.05° grid 280 

and 8-daily resolution). 

Lastly, we use LAI and ET reanalysis data for evaluation, which fuse observations and models. Namely, they are 

the European Center for Medium-range Weather Forecasts Reanalysis 5 - Land product (ERA5L, Copernicus 

Climate Change Service (2019)), which has a spatial resolution of 0.1° and hourly temporal resolution, and the 

Global Land Evaporation Amsterdam Model (only ET, GLEAM version 3.5a, Martens et al. (2017)), which has a 285 

spatial resolution of 0.25° and daily temporal resolution. 

 2.3. Data processing 

First, the remote sensing and reanalysis data are bilinearly remapped to the 3 km European CORDEX grid and 

interpolated to 8-daily means for 1995 - 2018. The ICOS observation time series are interpolated to 8-daily 

means for each station whose data availability overlaps with our study period. Then, we extracted the CLM5grid, 290 

GLASS, ERA5L, and GLEAM data from the grid cell closest to the location of each selected ICOS station. 

Further, we select the time series in CLM5PFT that coincides with that grid cell and the station’s predominant 

PFT. Importantly, we focus only on the four predominant PFTs represented in the entire ICOS station network: 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 

(CRO), as outlined in Table 1. Finally, the periods where station data is absent or of bad quality (determined by 295 

the corresponding measurement or gap-filling quality flag in the ICOS data), is  are discarded from the 

simulations, to ensure we are comparing the same set of conditions. 
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Table 1: The predominant plant functional types (PFTs) in the Integrated Carbon Observation 

System (ICOS) WARM-WINTER-2020 observation dataset that correspond with the 300 

International Geosphere–Biosphere Programme (IGBP) land cover classifications, the number of 

corresponding sites, and the accordant PFTs in the European Community Land Model v5 

(CLM5) setup. 

ICOS IGBP PFT 

Number of 

Stations Corresponding CLM5 PFTs 

Evergreen needleleaf forest 

(ENF) 

18 Needleleaf evergreen tree – 

temperate 

Needleleaf evergreen tree - boreal 

Deciduous Broadleaf forest 

(DBF) 

8 Broadleaf deciduous tree – 

tropical 

Broadleaf deciduous tree – 

temperate 

Broadleaf deciduous tree – boreal 

Grasslands (GRA) 8 C3 arctic grass 

C3 grass 

C4 grass 

Croplands (CRO) 8 C3 Unmanaged Rainfed Crop 

C3 Unmanaged Irrigated Crop 

The ICOS observations were also interpolated to 8-daily means, encompassing a time scale with significant 

variability of ecosystem processes (De Pue et al., 2023), to match the coarsest time resolution of other data -sets 305 

(i.e., GLASS remote sensing) and thus to facilitate comparison of processes at the same scale. For a consistent 

comparison, the analyses only account for time steps where valid values are present for all data sources. We 

evaluate the data for each variable over each station and groups of stations with the same PFT. 
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 2.4. Analyses 

2.4.1. Yearly evolution and statistical distributions 310 

We calculate ET and GPP PFT-specific phenology (mean sub-annual dynamics), resulting in day-of-year (DOY) 

plots. This is done by averaging the same 8-daily time step across years for each site and calculating the mean 

and standard deviation of site-specific DOY belonging to one PFT. 

Further, we determined the statistical distributions as probability density functions resulting from the Gaussian 

kernel density estimate (Scott, 1992). Subsequently, the distribution moments (mean, variance, skewness, and 315 

excess kurtosis) are calculated. The distributions and their moments are based on all 8-daily values corresponding 

to one PFT for each data source. The uncertainties of the distribution moments are calculated based on Harding et 

al. (2014). 

2.4.2. Shift of phenological events 

The three analyzed phenological events of ET and GPP – the start of the growing season, the peak, and the end of 320 

the growing season – are determined for each PFT group and data source as the average DOY of the event among 

the stations and available years within that PFT group for each variable. The 8-daily time series of each variable 

was first smoothed with a 1 dimensional Gaussian filter,1-dimensional Gaussian filter to rule out potential errors 

due to small-scale variability and dampen the effect of potential outliers. More specifically, the peak timing is the 

mean DOY of the overall maxima of the smoothed averaged yearly evolution across stations for each PFT and 325 

data source. The start and the end of the growing season were determined by the mean DOY of the two infliction 

points (Li et al. 2023; Lian et al. 2020; Whitcraft et al, 2015) of the smoothed yearly averaged evolution across 

stations for each PFT and data source. The shift of these events is then simply the difference of the determined 

mean PFT-specific DOY of these events simply the difference of the determined mean PFT-specific DOY 

between the models and the observations. As a measure of uncertainty of the mean PFT-specific DOY, we also 330 

calculate the standard deviation of the DOY of the events across stations in each PFT group. 

2.4.32. Performance metrics 

The percent bias (PBIAS) measures systematic model error and is calculated as follows. 
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𝑃𝐵𝐼𝐴𝑆 =
∑ 𝑋𝑆,𝑖 −𝑋𝑂,𝑖
𝑛
𝑖=1

∑ 𝑋𝑂,𝑖
𝑛
𝑖=1

× 100 (7) 

Where n is the number of time steps, XsimS,i is the simulated value of the variable X at the time i, and XobsO,i is the 

observed value of the variable X at the time i. If the PBIAS for variable X is positive, the model overestimates; if 335 

negative, it underestimates the observed variable X. In our analysis, Xi is the interpolated 8-daily mean. 

Furthermore, we estimated the root mean square error (RMSE) to indicate model accuracy and the root mean 

square difference (RMSD) to indicate similarity. RMSE and RMSD are calculated the same. However, the term 

‘error’ assumes the truthfulness of the reference data. Hence, we use the RMSD when comparing data only 

between models. 340 

𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐷 = √∑ (𝑋𝑆,𝑖 − 𝑋𝑂,𝑖)
2𝑛

𝑖=1

𝑛
 (8) 

A RMSE close to zero indicates that the model approximates the observations nicely. Similarly, a low RMSD 

reveals a high similarity between the two analyzed series. We calculate these metrics on a per-station basis and a 

set of stations belonging to the same PFT. 

2.4.4 Modified Taylor diagrams 

The Taylor diagram (Taylor, 2001) depicts multiple model performance indices in a single diagram by making 345 

use of the relationship of the calculation terms of the standard deviation, correlation, and RMSE. Their 

relationship can be summarized in the following equation of error propagation:  

𝑅𝑀𝑆𝐸² = 𝜎𝑂² + 𝜎𝑆² − 2𝜎𝑜𝜎𝑆𝑟 (9) 

Where σO is the standard deviation of the observations, σS is the standard deviation of the simulation, and r is the 

Pearson correlation coefficient. The multi-variate diagram can be constructed due to the geometric relationship 

between these statistical indices through the law of cosines. Thereby, plotting the calculated Pearson correlation 350 

against the standard deviation of the models and the observation on a trigonometric polar plane, the RMSE 

manifests as the polar euclideanEuclidean distance from the reference observations. We calculate the standard 

deviation and the Pearson correlation on the PFT-grouped stacked time-seriestime series and plot these for e for 
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each data source on one Taylor diagram per PFT. We modify the default Taylor diagram by scaling each 

marker’s size by the absolute PBIAS for the corresponding source and PFT.  355 
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 3. Results 
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 3.1. Land surface representation 

 

Figure 1: The share of represented plant functional types (by color: Evergreen Needleleaf Forest 360 

(ENF, green), Deciduous Broadleaf Forest (DBF, orange), Grasslands (GRA, purple), and 

Croplands (CRO, pink)) in a) in the ICOS station network used in subsequent analyses and b)  in 

the corresponding grid cells in our European CLM5 setup. In c) is a map showing the locations 

of the ICOS stations, with the marker type indicating their PFT and the color of the marker 

indicating their hydro-climate (adapted from Jafari et al. (2018)) based on the mean annual 365 

precipitation from the Consortium for Small-Scale Modeling (COSMO) -Reanalysis 6. 
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Before evaluating the GPP and ET variables from CLM5 and how they are compared with observations, we first 

assess if the PFT composition of the entire ICOS station network is comparable to the PFT composition in the 

respective cells selected in CLM5grid. This is important, as GPP and ET magnitudes, variability, seasonality, 

drought responses, and trends strongly depend on the present vegetation type. In Figure 1 we observe that ENF, 370 

the PFT of almost half of the present ICOS stations, represents only around a quarter of the corresponding 

CLM5grid area. DBF also covers a smaller share of the area in those grid cells than in the ICOS station network. 

On the other hand, GRA and CRO are overrepresented in CLM5grid compared to the share of respective ICOS 

stations. Consequently, when comparing with the ICOS observations, the selected data from CLM5grid data are, 

on average, overrepresenting the functionality of GRA and CRO and underrepresenting ENF and DBF, which 375 

hampers the evaluation of CLM5grid with in-situ ET and GPP. Hence, we also included the respective CLM5PFT 

GPP and ET in the subsequent analysis, enabling an accurate assessment of the functionality and relationships 

between PFT in the model. Additionally, we assess the similarities and differences between the two model scales, 

CLMgrid and CLMPFT, and their approximation to the observations. 

 3.2. General model performance 380 

This section presents model performance indices correlation, RMSE and PBIAS, comparing each model’s ET and 

GPP estimates with measurements from the ICOS sites. We compared the RMSE and PBIAS on a per-site basis 

(Table S2 and Table S3), which yielded good results for most sites. The focus of this study, though, is the 

performance of PFT aggregations, combining data from sites that belong to the same PFT. 

Table 2: The evapotranspiration (ET) root mean square error (RMSE) indicates the general 385 

model approximation and the percent bias (PBIAS), demonstrating systematic bias to the 

observations. Each value corresponds to a group of stations representing the same plant 

functional type (PFT; Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 

Grasslands (GRA), and Croplands (CRO)). The amount of data points (N) for each PFT is also 

indicated. 390 

 PFT N CLM5grid CLM5PFT ERA5L GLASS GLEAM 

RMSE 

[mm day-1] 

ENF 6784 0.71 0.72 0.83 0.83 0.67 

DBF 2302 0.55 0.61 0.72 0.69 0.56 

GRA 3745 0.65 0.86 0.59 0.57 0.59 

CRO 4647 0.7 0.99 0.86 0.84 0.61 
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⌀ 4369.5 0.65 0.80 0.75 0.73 0.61 

PBIAS 

[%] 

ENF 6784 -21.24 -16.15 20.31 12.57 14.14 

DBF 2302 -9.96 -0.41 43.57 29.02 15.67 

GRA 3745 -18.62 -13.55 3.51 2.38 2.08 

CRO 4647 -4.67 9.91 44.18 26.26 6.74 

⌀ 4369.5 -13.62 -5.05 27.89 17.56 9.66 
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Figure 2: Modified Taylor diagrams with ICOS observatations of evapotranspiration as 

reference (black markers) and showing model performances (by color: CLM5 grid: red, CLM5PFT: 

yellow, GLASS: green, ERA5L: brown, GLEAM: purple). Each diagram shows these plots for 

one plant functional type: Evergreen Needleleaf Forest (ENF, circles), Deciduous Broadleaf 395 

Forest (DBF, triangles), Grasslands (GRA, squares), and Croplands (CRO, crosses). The 

azimuth angle indicates the Pearson correlation with the ICOS data, the radial distance is the 
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standard deviation, and the semicircles centered at the reference standard deviation show the 

root mean square error (RMSE). The size of each marker indicates the percent bias (PBIAS).   



 

24 

 

Figure 1 shows modified Taylor plots visualizing the performance indices of model ET against observations for 400 

each PFT. For more specific information, Supplementary Table S4 lists the number of ET 8-daily time-steps that 

went into the calculation ofcalculating these indices and their values. For ENF, all the models indicate a 

correlation of around 0.8 with the ICOS observations, and CLM5grid, CLM5PFT, and GLEAM have a similar 

variability thanto ICOS. In Table 2, we list the performance indices for ET and the number of 8-daily time-steps 

across the corresponding stations that went into their calculation. CLM5PFT has a higher absolute RMSE and a 405 

lowersmaller absolute PBIAS than CLM5grid for ET across PFTs, except in CRO. Notably, the systematic bias in 

CLM5 is generally negative, with the same exception. On the other hand, ERA5L, GLASS, and GLEAM exhibit 

a general positive systematic bias for ET. ERA5L and GLASS show more significant deviations from the ICOS 

ET observations at ENF and DBF than CLM5PFT and CLMgrid but perform similarlyand have smaller RMSE 

values at GRA and CRO. GLEAM has generally low RMSEs and performs best among the models simulating ET 410 

at ENF and CRO. The most considerable systematic ET biases are found for ERA5L at CRO and DBF sites, 

followed by GLASS for the same PFTs. CLM5PFT shows a substantially lower approximation of the observations 

than CLM5grid and other models at GRA and CRO sites, with the maximum RMSE and lowest correlation to 

ICOS among models. The low absolute PBIAS of CLM5PFT in reference to the observations is retained across all 

selected PFTs. The low absolute PBIAS of CLM5PFT across all PFT, and the lower correlation than the other 415 

model data at GRA and CRO points at potentially missing, and the lower correlation than the other model data at 

GRA and CRO points to potentially missing or simplistic representations of eco-hydrological processes or 

management. Besides, all models approximate the ICOS ET observations fairly well, with correlations mostly 

over 0.8, but with partly high systematic biases by ERA5L at DBF and CRO sites. 

Table 3: The gross primary production (GPP) root mean square error (RMSE) indicates the 420 

general model approximation and the percent bias (PBIAS), demonstrating systematic bias to 

the observations. Each value corresponds to a group of stations representing the same plant 

functional type (PFT: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 

Grasslands (GRA), and Croplands (CRO)). The amount of data points (N) for each PFT is also 

indicated. 425 

 PFT N CLM5grid CLM5PFT GLASS 

RMSE 

[g C day-

1] 

ENF 5976 2.25 2.44 1.75 

DBF 2473 3.71 3.35 2.81 

GRA 2838 3.14 3.01 2.63 
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CRO 3607 3.85 4.21 3.55 

⌀ 3723.5 3.24 3.25 2.69 

PBIAS 

[%] 

ENF 5976 -26 -7.7 -14.53 

DBF 2473 -38.88 -43.76 -24.51 

GRA 2838 -30.73 -25.5 -21.34 

CRO 3607 -14.99 -1.48 -6.29 

⌀ 3723.5 -27.65 -19.61 -16.67 
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 (RMSE)  The size of each marker indicates the percent bias (PBIAS).Figure 2: Modified Taylor 

diagrams with ICOS observatations of gross primary production as reference (black markers) 

and showing model performances (by color: CLM5grid: red, CLM5PFT: yellow, GLASS: green, 430 

ERA5L: brown, GLEAM: purple). Each diagram shows these plots for one plant functional 

type: Evergreen Needleleaf Forest (ENF, circles), Deciduous Broadleaf Forest (DBF, triangles), 
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Grasslands (GRA, squares), and Croplands (CRO, crosses). The azimuth angle indicates the 

pearsonPearson correlation with the ICOS data, the radial distance is the standard deviation, 

and the semicircles centered at the reference standard deviation show the root mean square 435 

error.  
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In Figure 3, we show modified Taylor diagrams with the GPP performance indices of the models against the 

ICOS observations for each of the selected PFT. Table 3 shows the performance indices for GPP.For 

more specific information, Supplementary Table S5 lists the number of GPP 8-daily time- steps that went 

into the calculation ofcalculating these indices and their values. CLM5PFT performed better than CLM5grid 440 

in approximating the ICOS GPP observations at DBF sites, showing a higher correlation and lower 

RMSE and GRA sites. Conversely, CLM5grid is closer to the observations for ENF and CRO PFTs. The 

GLASS data show the lowest GPP RMSEs and highest correlation values concerning ICOS 

measurements across all PFTs. All models approximated the ICOS GPP best (lowest RMSE) at ENF, and 

the worst performance was at CRO sites. Furthermore, all models exhibit a negative, systematic bias in 445 

simulating the observed GPP across all PFTs. Especially at DBF and GRA PFTs, CLM5grid, CLM5PFT, 

and GLASS show large systematic underestimations of the measurements. CLM5PFT has a notably 

smalllow PBIAS related to the ICOS data for ENF and CRO sites. Especially at CRO sites, all models 

showcase comparatively low correlation values (<0.7). While the correlation is high (>0.75) for all 

models at DBF and GRA sites, but especially for CLM5PFT and GLASS at DBF sites (0.93 and 0.92), the 450 

high PBIAS hints that modeled data do not incorporate important processes or management practices that 

cause to the high carbon uptake at DBF sites over the long term. Because of the slowly evolving carbon 

states onin  the terrestrial ecosystems, the initial conditions of the carbon pools (e.g., soil organic matter, 

carbon in plant organs in the vegetation) could be a cause for the difference in the magnitude of the GPP. 
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 3.3. PFT phenology and its variability 455 

3.3.1. ET 
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Figure 42: In the left column are the yearly evapotranspiration (ET) evolutions averaged across 

stations belonging to one plant functional type (rows: Evergreen Needleleaf Forest (ENF), 460 

Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)) and across the 

years (available years vary per station, see Supplementary Table S1). We differentiate the data 

source by color (ICOS observations: blueblack, CLM5grid: red, CLM5PFT: yellow, GLASS: green, 

ERA5L: brown, GLEAM: purple). The corresponding standard deviations across the sites and 

across the years are plotted in the right column to measure spread around this mean. Each row 465 

shows these plots for one plant functional type: Evergreen Needleleaf Forest (ENF), Deciduous 

Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). 
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Figure 5: Mean shifts in ET phenological events (the start of the growing season, peak, and the 

end of the growing season) between the Integrated Carbon Observation System (ICOS) 470 

observations (solid black line) and the models (by color: Community Land Model v5 (CLM5), 

CLM5grid: red, CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green, European 

Center for Medium-Range Weather Forecasts Reanalysis 5 Land (ERA5L): brown, Global Land 

Evaporation Amsterdam Model (GLEAM): purple), among sites belonging to one plant 

functional type: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 475 

Grasslands (GRA), and Croplands (CRO). On the x-axis is the day of the year of the event. 

Error bars in grey correspond to the standard deviation of the day of the event in the models 

across sites of one plant functional type, and the error bars in black correspond to the standard 

deviation across the respective observations.  
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 480 

This section describes the results of the investigation on the mean and the standard deviation of the yearly 

evolution of ET across PFTs and data sources (Figure 4 a, c, e, g). We will analyze the ET mean and standard 

deviation for each PFT sequentially. On average, the annual evolution of ET for CLM5grid and CLM5PFT 

compares well to the ICOS measurements, as already hinted by the good correlation values in the previous 

section. They also capture the observed seasonal transitions between low winter ET and high summer ET well. 485 

With the exception ofExcept for CRO sites, CLM5grid and CLM5PFT ET are slightly lower than the ICOS 

observations throughout the year, but especially in summer (mean PBIAS of -13.08 and -18.70%, respectively, 

see Supplementary Table S4). ERA5L and GLASS overestimate ET at sites of all PFTs, most predominantly in 

the ENF and DBF sites and during summer (mean PBIAS of +28.64 and +18.25%, respectively). The magnitude 

of variation across sites within each PFT (Figure 4 b, d, f, h) is captured well, generally showing smaller variation 490 

at DBF and CRO sites, and larger variation at ENF and GRA. Some specific aspects of this variation across sites 

are captured best by CLM5PFT: The bimodality of the intra-station variation at GRA sites across the year (Figure 

4 f) and the peak variability across stations at CRO sites in the second half of the year (Figure 4 h). This exhibits 

the ability of CLM5PFT to differentiate ET between stations and the PFTs better than CLM5grid and the other 

models. The GLASS ET variability across stations compares remarkably well to the observed across ENF at DBF 495 

sites (Figure 4b and d). 

Figure 5 reveals the shift in the timings of key phenological events based on ET (growing season start, summer 

peak, and growing season end) between each model and the ICOS observations. Generally, for ENF and DBF 

sites (Figure 5 a, b), all models show the earlier occurrence, and at CRO (Figure 5 d) they show a later occurrence 

of these phenological events than the measurements. CLM5PFT has the mean timing of the events within the 500 

standard deviation of the ICOS timing across all PFT, but shows. However, it shows a substantial variability, 

larger than the observed in the event timings across GRA sites. Similarly, GLASS and CLM5grid show close 

approximations to the observed timings, but simulate all these events significantly earlier at DBF sites and 

significantly later at CRO sites, with little variation in the timings across sites. The ERA5L and GLEAM data 

exhibit a much earlier growing season start (24 and 20 days earlier, respectively) and summer peak (16 and 12 505 

days earlier, respectively) than observed by ICOS at GRA sites. 
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However, the summer peak and the autumn decreasing period of ET at ENF sites from CLM5grid and CLM5PFT 

are simulated earlier than observed by ICOS (Figure 2 a). Furthermore, ET from CLM5grid and CLM5PFT 

underestimate the observations slightly throughout the year, including a lower summer peak and a lower 

minimum in winter. This underestimation results in a PBIAS of -21.2% for CLM5grid and -16.2% for CLM5PFT 510 

related to the ICOS observations. Oppositely, GLASS, ERA5L, and GLEAM ET values overestimated the 

measurements by ICOS in summer by a substantial margin. ERA5L and GLEAM overestimate the ET 

observations throughout the year. Meanwhile, GLASS ET was lower than ICOS during winter, totaling an overall 

PBIAS of +12.6%. CLM5PFT does not compare better to ICOS observations than CLM5grid (RMSEs of 0.71 and 

0.72 mm day-1). Still, CLM5PFT exhibits a lower summer peak and higher winter ET, equalling a more 515 

considerable underestimation of observations in summer and a minor underestimation of observations in winter. 

We also noted a lower standard deviation of CLM5grid and CLM5PFT across stations than in the ICOS 

measurements throughout the year (Figure 2 b). Interestingly, GLASS represents the ET variation across ENF 

sites better than CLM5, especially in summer. ERA5L, however, overestimated inter-site variability in the first 

half of the year, but this drops significantly around the 150th day of the year. 520 

The observed timings of the ET summer peak and transition periods at DBF sites from ICOS are captured better 

by CLM5PFT than CLM5grid (Figure 2 c), and the magnitude of the total simulated ET is close to the observations 

there (PBIAS of -0.4% on the PFT level and -10.0% on the grid level). However, on average, CLM5PFT ET 

approximates the station observations worse than CLM5grid (RMSE of 0.61 versus 0.55 mm day-1). Nevertheless, 

the average ET summer peak from CLM5PFT is very close to the ICOS data, while CLM5grid shows a smoother 525 

and lower peak. ET values from GLASS and ERA5L are more significant than the observations for most of the 

year. Meanwhile, GLEAM overestimates ICOS ET in spring, similar to ET from CLM5grid in summer. ET from 

the ICOS observations here at DBF sites show a reduced standard deviation during summer and a less 

pronounced seasonal cycle than at ENF sites (Figure 2 d). The annual evolution of ET standard deviations across 

DBF sites from CLM5grid and CLM5PFT is larger than the observations for the year’s first half. GLASS better 530 

captures this site variability. Generally, the models reproduce the magnitude of the standard deviation across 

DBF sites better than across ENF sites. 

While the timing of the ET summer peak and transition periods at GRA sites from CLM5grid and CLM5PFT 

represent ICOS observations well (Figure 2 e) CLM5 generally underestimates the ET observations (PBIAS of -

18.6% for grid level and -13.6% for PFT level values). Oppositely, GLASS, ERA5L, and GLEAM overestimate 535 
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the corresponding observations. Once again, CLM5PFT does not simulate ET closer to the observations than 

CLM5grid, exhibited by the RMSEs of 0.86 and 0.65 mm day-1. While the ET mean yearly evolution of CLM5grid 

and CLM5PFT is very similar, the PFT level annual standard deviation across sites indicates a much higher 

variance during the summer peak than the cell-level data and in-situ observations (Figure 2 f). The GLASS ET 

underestimates the in-situ observed standard deviation across sites throughout the year. Interestingly, CLM5PFT is 540 

the only model that captures the reduction of inter-site variability during the summer and the second inter-site 

variability peak in the year’s second half in the ICOS data. 

Finally, the ET summer peak at CRO sites from CLM5grid and CLM5PFT (Figure 2 g) is simulated slightly later, 

and the winter values are underestimated compared to ICOS measurements. Conversely, with the other analyzed 

PFT, CLM5grid is higher than the observations in summer at CRO sites, and CLM5PFT is even higher. Again, ET 545 

from GLEAM has a similar summer peak to CLM5grid. Furthermore, GLASS and ERA5L are again higher than 

the observations during most of the year. CLM5grid underestimates observations with a PBIAS of -4.7%, and 

CLM5PFT overestimates them with +9.9%. CLM5PFT performs worse than CLM5grid in approximating the 

observations, with a higher RMSE of 0.99 compared to 0.70 mm day-1. Moreover, the standard deviation across 

sites is more significant in CLM5PFT than in the observations, while for CLM5grid, it is lower than the observed 550 

(Figure 2 h). Interestingly, the variability across CRO sites in GLASS evolves through the year similarly to 

CLM5grid. 
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3.3.2. GPP 
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 555 

Figure 3: In the left column are the yearly Gross Primary Production (GPP) evolutions averaged 

across stations belonging to one plant functional type (rows: Evergreen Needleleaf Forest (ENF), 

Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)) and across the 

years (available years vary per station, see Supplentary Table S1). We differentiate the data 

source by color (Integrated Carbon Observation System (ICOS) observations: blueblack, 560 

CLM5grid: red, CLM5PFT: yellow, GLASS: greenCommunity Land Model v5 (CLM5), CLM5grid: 

red, CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green). The corresponding 

standard deviations across the sites and across the years are plotted in the right column to 
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measure the spread around this mean. Each row shows these plots for one plant functional type: 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and 565 

Croplands (CRO). 

 

Integrated Carbon Observation System ()Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 

Global Land Surface Satellite (GLASS): greenstandard deviation of the   
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The GPP values of all PFTs show a summer peak and a low period in winter (Figure 63). The negative values 570 

present in the ICOS measurements are caused by the processing of the measurements by ICOS and are, therefore, 

not represented by CLM5 or GLASS. Again, a general underestimation of observed GPP is shown across for all 

PFTs (Figure 6 a, c, e, g), particularly during the summer months from all models. CLM5PFT shows larger GPP 

than CLM5grid and, therefore, has a lower systematic bias (mean PBIAS across PFTs of  -19.61 and -27.65%. see 

Supplementary Table S5). GLASS GPP is closer to the ICOS GPP at ENF, DBF and GRA, and has the lowest 575 

mean PBIAS across PFTs of -16.67). The most substantial underestimations are at DBF during summer (Figure 6 

c), where CLM5grid and CLM5PFT have a PBIAS of -38.88 and -43.76%, and GLASS -24.52%. The GPP 

variability across sites is, similarly to ET, lowest at DBF sites. Notably, GLASS remote sensing GPP 

underestimates the variability among sites of one PFT substantially throughout the year at GRA and CRO sites 

(Figure f, h). The observed variability dynamics across the year, e.g. the bimodality at GRA sites (Figure 6 f) that 580 

was also visible for ET, is captured best by CLM5PFT. However, all models do not capture the behavior of CRO 

GPP inter-site variability (Figure 6 h). This supports the suspicion of the influence of management and missing 

processes in CRO in the models, possibly concerning the timings of planting, fertilizing, and harvesting the crops 

as cause of these mismatches. The overall negative systematic bias in the models points at potentially missing 

sensitivities or lower levels of, e.g., to atmospheric CO2 and VPD that have been recently found to increase the 585 

water-use efficiency and carbon assimilation (Poppe Terán et al. 2023; Friedlingstein et al. 2023). 

Shifts in phenological events between the observations and the models are already noticeable in Figure 6, but are 

quantified and visualized in detail in Figure 7. CLM5PFT and CLM5grid predominantly simulate the timing of these 

events within the standard deviation across ICOS stations for each PFT. In the GLASS GPP data, the events are 

more shifted from the measurements, most notably at DBF sites (16 days earlier growing season start and 11 days 590 

earlier summer peak) and at CRO sites (22 days belated peak and 45 days belated end of the growing season). 

Generally, also in both CLM5 scales the shifts to the ICOS observations were largest in CRO. Similar to the ET 

event timings, CLM5PFT shows the largest variation of these timings among the models, but especially at GRA 

sites, and also considerable differences in the timing of the growing season end of ENF sites. These findings 

confirm the ability of CLM5PFT to approximate PFT-specific variation of ecosystem processes, but the contrasting 595 

results of the model performance indices will be further reviewed in the Discussion section. 

CLM5grid underestimates the ICOS GPP at ENF sites throughout the year, and CLM5PFT underestimates them 

mostly in summer and autumn (Figure 3 a). The ET summer peak timing from CLM5PFT is earlier than that of 
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CLM5grid and the observations. Consequently, The autumn transition period starts earlier in CLM5PFT than in the 

other data sources. Notably, GPP from GLASS approximates the high summer values and the autumn transition 600 

period better than CLM5. During summer, CLM5PFT shows a more significant standard deviation of GPP across 

ENF sites than CLM5grid (Figure 3 b). While this site variability in CLM5PFT compares better with the ICOS 

observations, its seasonality is more amplified in the model. Hence, the range between low winter and very high 

summer site variability of GPP in CLM5PFT is more extensive than in the observations. GLASS and CLM5grid 

GPP values show a generally lower diversity across sites throughout the year than ICOS, especially in summer. 605 

These characteristics result in a PBIAS of -26.0% by CLM5grid and -7.7% by CLM5PFT. Further, the RMSEs are 

2.25 and 2.44 g C day-1, indicating a better approximation to the observations by CLM5grid than CLM5PFT. 

The most significant mismatch between ICOS GPP and the models at DBF sites is during summer: the average 

observed peak across sites is almost twice as prominent as the model peak (Figure 3 c). This results in a PBIAS 

of -38.9% for CLM5grid and -43.8% for CLM5PFT relating to ICOS data. While the GPP phenology of CLM5PFT 610 

captures the timing and the steepness of the ICOS reference in the transition period during spring, it peaks earlier 

and much lower than ICOS measurements, thereby substantially underestimating observations from spring to 

autumn. The timing of the GPP spring increase at DBF sites of GLASS is earlier than the observed one, and the 

transition is less steep. Further, the GLASS GPP summer peak is only slightly higher than in CLM5, therefore 

also underestimating ICOS observations strongly. CLM5PFT does somewhat better than CLM5grid in 615 

approximating ICOS GPP time series at DBF sites (RMSEs of 3.35 versus 3.71 g C day-1). Interestingly, the 

standard deviation across DBF sites of the observations and the models is relatively small compared to ENF, 

GRA, and CRO throughout the year (Figure 3 d). However, the emergence of the peak standard deviation in the 

measurements during summer and gradually lower values during autumn and spring is not well represented in the 

models. 620 

On average, ICOS GPP at GRA sites is underestimated by CLM5grid, CLM5PFT, and GLASS throughout the year 

(Figure 3 e). The yearly evolution of the ICOS GPP measurements has steeper slopes in spring and autumn and 

peaks higher and earlier in summer than CLM5grid and CLM5PFT. Furthermore, in the observations, the high 

values during summer are maintained high on a plateau with a slight negative slope until that slope becomes 

steeper in the transition period in autumn. At the same time, the models show a relatively pointed peak. The GRA 625 

GPP from CLM5grid and CLM5PFT perform similarly well in approximating the observations, with RMSEs of 3.14 

and 3.01 g C day-1 for cell and PFT scale, respectively. They underestimate the observations from ICOS, evident 
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in the PBIAS’s -30.7% and -25.5% for cell and PFT scale, respectively. There is a high standard deviation across 

GRA sites in ICOS, especially in spring and autumn (Figure 3 f), which is well represented only by CLM5PFT. 

The GRA inter-site GPP variability is lower in the GLASS data than in the ICOS observations throughout the 630 

year. 

The most striking difference between the average yearly GPP evolution at CRO sites from CLM5grid, CLM5PFT, 

and ICOS is the shifted peak (Figure 3 g). Specifically, the ICOS observations show the peak around 50 days 

earlier and around 2.5 g C day-1 higher than CLM5grid and 1.25 g C day-1 higher than CLM5PFT. The GPP slopes 

from ICOS in the spring and autumn transition periods are steeper than from CLM5grid and CLM5PFT, but 635 

CLM5grid and GLASS accurately estimate the observed mean winter GPP. CLM5grid underestimates the in-situ 

GPP observations with a PBIAS of -15.0%, while CLM5PFT underestimates them with a PBIAS of -1.5%. 

Regarding modeling the observations accurately, CLM5PFT performs slightly worse than CLM5grid (RMSEs of 

3.85 versus 4.21 g C day-1). The phenology of the standard deviation across CRO sites from ICOS increases 

towards the summer peak and is low during winter (Figure 3 h). CLM5grid and CLM5PFT, however, show a lower 640 

standard deviation across sites in summer. 
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 3.4. Statistical distributions 

3.4.1. ET 
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 645 

Figure : The probability density curves for all evapotranspiration (ET) values from stations 

belonging to the selected plant functional types are shown: Evergreen Needleleaf Forest (ENF), 

Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). The data source 

differs by color (Integrated Carbon Observation System (ICOS) observations: black, 

Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land Surface 650 

Satellite (GLASS): green, European Center for Medium-Range Weather Forecasts Reanalysis 5 

Land (ERA5L): brown, Global Land Evaporation Amsterdam Model (GLEAM): purple),. 

In this section, we describe the results of the statistical distributions of ET in the model and the observations for 

each PFT. Then, we give more details on the moments of these distributions and how the models compare to the 

observations. Generally, the models approximate well the shape of the distributions (Figure 8), with a pronounced 655 
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peak in occurrence of positive ET values close to 0 that represent low winter values across all PFTs and, 

moreover, the slowly decreasing frequency of values towards the high ET summer values, which is evidently 

more variable among the models. The variability of the summer peak magnitude (see previous section) among 

stations of the same PFT cause the ICOS and CLM5 ET distributions to have an only slightly pronounced second 

mode at the high summer ET values. On the other hand, the ERA5L and GLEAM ET distributions show a very 660 

pronounced second mode at the higher ET values for each PFT. This hints at the lower variability of the summer 

peak magnitude among these stations, which misrepresents the observed high variation in ICOS. 

The moments of these distributions give more insights on their specific characteristics. Further, differences in 

moments between the observations and the models can yield important information on potential 

misrepresentations (Figure 9). For example, a differing mean between ICOS and a model points at a general shift 665 

in the distribution, specifically its center of mass. Therefore, we confirm a shift of ET distributions of ERA5L, 

GLASS and GLEAM towards higher values for all PFTs in reference to ICOS. CLM5grid and CLM5PFT have 

lower means, except for CLM5PFT at CRO. The second moment, the variance, informs about the variability of 

values. Notably, GLEAM data underestimate and GLASS data overestimate the observed variability of ET at all 

PFTs. CLM5PFT has a broad range of variability across PFTs, which corresponds well with ICOS observations, 670 

while CLM5grid and the other models show a very similar level of variability independent of the PFT. All models 

agree with the observed positive sign of the skewness (indicating a longer right tail of the distribution) for all 

PFTs. And while all the models simulate a platykurtic (negative excess kurtosis, pronounced relative tailedness) 

characteristic of the distributions across PFTs, ICOS show leptokurtic (positive excess kurtosis, less pronounced 

tails and more pronounced peak) behavior at ENF and CRO sites. Furthermore, the variation of reach model’s 675 

skewnesses and kurtoses (y-axis ranges for each color in Figure 9 c and d) across the PFTs are considerably 

lower than the observed ranges (corresponding x-axis ranges). All together, these findings showcase the ability of 

CLM5PFT to model intra- and inter-PFT ET variance better than the other considered models on the one hand, but 

shortcomings of all the considered models to represent the variation of the extreme ends of the ET distributions 

across all PFTs. 680 

The ET probability density functions from ENF sites from CLM5grid and CLM5PFT (Figure 4 a) are generally 

shifted towards lower values compared to ICOS. Notably, the lack of high summer values >5 mm day-1 and 

overestimated probability of negative values is striking. Meanwhile, GLASS has a similar frequency of negative 

ET values as CLM5grid and CLM5PFT. Still, it performs better in representing high summer values to the cost of 
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under-representing the observed mid-ET value range of 1 - 3 mm day-1. ET at ENF sites from GLEAM 685 

approximates the lower range nicely. However, it exhibits a second mode in the mid-high values, similar to 

ERA5L, GLASS, and CLM5PFT, which is not present in the ICOS observations. 

Again, there is a higher tendency to bimodality in the probability density of ET at DBF sites from CLM5PFT, 

GLEAM, and ERA5L (Figure 4 b) than from CLM5gridand the ICOS observations, exhibiting a second peak in 

the mid-high range values. In general, the distribution of DBF ET is very well represented by CLM5 on the grid 690 

and PFT scale. 

The probability density curves of GRA ET (Figure 4 c) show that shallow values <0.5 mm day-1 that correspond 

to the low winter ET are more likely in CLM5grid and CLM5PFT than in the ICOS measurements. Additionally, the 

probability of higher values >2 mm day-1 from ICOS is underestimated by both CLM5 scales, and values >5 mm 

day-1 are not represented at all in CLM5 and GLASS. The tendency to bimodality of the ICOS ET distribution at 695 

GRA sites, showing a second peak at around 3 mm day-1, is represented less pronouncedly in CLM5PFT and more 

pronouncedly in GLEAM and ERA5L. 

Low ET values at CRO sites <0.5 mm day-1 and mid-range values from 2 to 4 mm day-1 have a higher frequency 

in CLM5grid, CLM5PFT, and GLASS than in-situ observations. On the other hand, modeled values from 0.5 to 2 

mm day-1 occur at a lower frequency than in ICOS (Figure 4 d). Again, GLEAM and ERA5L exhibit a second 700 

peak of the distribution between 2 to 3 g C day-1. 
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Figure 5: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the 705 

evapotranspiration (ET) distributions (visualized in Figure 8) from the models (color, y-axis, 

colors: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land 

Surface Satellite (GLASS): green, European Center for Medium-Range Weather Forecasts 

Reanalysis 5 Land (ERA5L): brown, Global Land Evaporation Amsterdam Model (GLEAM): 

purple), as opposed to the corresponding values from observations (x-axis) aggregated for each 710 

plant functional type (marker type): Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf 

Forest (DBF), Grasslands (GRA), Croplands (CRO). The error bars are the standard errors of 

the respective moment, depending on the sample size. 
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In Figure 5 we show the moments of the ET distributions for each data source per PFT compared to ICOS 715 

observations. Ideally, the simulated versus observed distribution moments for a given PFT would lie on the 1:1 

line. In that case, the ranking of the moments between PFTs was simulated well (e.g., ascending order of mean 

ET of PFTs). The uncertainties of the moments, measured by their standard error, are low and indicate that our 

results described below are robust. 

Generally, CLM5PFT has higher means across PFTs than CLM5grid (Figure 5 a, yellow versus red markers). 720 

Consequently, except for CRO, the CLM5PFT ET means across PFTs, the values are closer to the observed ones. 

The ET mean across CRO sites from CLM5grid approximated the in-situ data well. On the other hand, the 

CLM5PFT mean ET overestimated the ICOS observations. The ET means across DBF and CRO sites from 

CLM5grid, and CLM5PFT are close to the observed values, while the ones across ENF and GRA sites are off. This 

underestimation of the ICOS ET mean by CLM5PFT and CLM5grid by 0.2 mm day-1 also alters the observed mean 725 

ET ranking order between the PFT. GLASS, GLEAM, and ERA5L averages generally overestimate observations 

and show a similarly changed ranking as CLM5PFT and CLM5grid. However, compared to CLM5PFT and CLM5grid, 

the mean ET values at ENF and GRA sites from GLASS are closer to the observations, while DBF’s and CRO’s 

mean ET are overestimated. 

The ranking of CLM5grid variance between PFT is represented nicely, but its simulated range is lower than in 730 

observations, i.e., 1.1 - 1.6 for ICOS and 1.1 - 1.4 mm day-1 for CLM5grid (Figure 5 b). This range is more 

extensive for CLM5PFTbecause of the overvalued variances for CRO, DBF, and GRA, whose simulated variances 

are very close. The ET variances for each PFT from GLASS and ERA5L are higher than in the ICOS data, and 

their ranking order also differs. GLEAM underestimates the ET variance across all PFTs. 

There is a notable improvement in the approximation of the observed magnitude of CRO skewness when going 735 

from CLM5grid to CLM5PFT (Figure 5c). Conversely, CLM5PFT overestimates ET averages at GRA sites and 

underestimates at DBF and ENF sites at larger magnitudes compared to CLM5grid relative to the ICOS data. 

CLM5grid,GLEAM, and ERA5L distributions have a lower skewness than ICOS for all PFTs. Similar to the 

variance, here, the range of skewness in the models is also substantially lower among PFTs than in the ICOS 

measurements. 740 

The ET kurtoses across PFT from CLM5PFT are closer to the ICOS measurements than the ones from CLM5grid 

(Figure 5 d). However, the range of simulated ET kurtoses, like the variances and skewnesses across PFTs, is 
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lower in all the models than in ICOS. Furthermore, all models show a generally lower kurtosis for all the PFT-

specific ET distributions compared to ICOS. The ICOS observations show a leptokurtic ET distribution at CRO 

and ENF sites, while all models show platykurtic distributions for all PFTs. 745 

3.4.2. GPP 
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Figure 6: The probability density curves for all Gross Primary Production (GPP) values from 750 

stations belonging to the selected plant functional types are shown: Evergreen Needleleaf Forest 

(ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), Croplands (CRO). The data 

source differs by color (Integrated Carbon Observation System (ICOS) observations: blueblack, 

CLM5grid: red, CLM5PFT: yellow, GLASS: greenCommunity Land Model v5 (CLM5), CLM5grid: 

red, CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green). 755 

We continue to delineate the results of the same analyses for the GPP distributions and their moments (Figure 

10). The frequency peaks at the low GPP values, which correspond to the base winter GPP are overestimated by 

all models at ENF, DBF and GRA. This could partly be explained by the presence of negative GPP values in the 
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ICOS data, which is not represented by the modelsthe models do not represent. By definition, there is no negative 

GPP, but these. However, these negative values are given through the uncertainty range of the NEE partitioning 760 

method, and are retained in the analysis to preserve the partitioning distribution (Reichstein et al. 2012, Pastorello 

et al. 2020). This is probably related to the underestimation ofunderestimating the observed winter GPP in ENF 

and GRA sites seen in FigureFigure 6 a and e. Another striking finding is that the missing occurrence of the 

highest observed GPP values in the models at all PFTs, but most noticeable at DBF sites, where the upper half 

range of GPP values (>12 g C day-1) areis not represented in any model. The overrepresented mid-range GPP 765 

values and the partly pronounced second modes in the mid-range GPP values across PFTs are possibly caused by 

the low summer peaks and low variability across sites (see Figure 6).  

The lower means of GPP from the models for each PFT in Figure 11 a shows in reference to the ICOS 

measurements depict the a shift of the distribution towards lower values in reference to the ICOS measurements. 

Similarly, for all models across all PFTs, the underestimated GPP variance indicates a lower spread of the PFT 770 

distributions than in ICOS. While models agree on the positive skewness of the GPP distribution (skewed to the 

left), the largest skewness at CRO sites is not well represented by all the models. Finally, similar to the findings 

with ET kurtosis, the models fail to distinguish the distinct leptokurtic characteristics (less heavy tails) of the GPP 

distribution of CRO sites compared to the other PFTs, as seen in the observations. Across PFTs, and for all 

models, the ranges spanned by the intra-PFT distribution moments are smaller than the observed. Most strikingly, 775 

the GPP variance range across PFTs which is, among the models, , which is, among the models, the largest from 

CLM5PFT (between 8 g C day-1 and 12 g C day-1), is much smaller than in ICOS (11 g C day-1 to 27 g C day-1). 

This suggestsuggests that the models do not simulate GPP differently enough between the PFT groupings. Thus, 

model development and/orand parameter optimization studies that aimsaim to improve these representations 

should focus on enhancing the variability at DBF. 780 

In ENF sites, the GPP of both CLM5grid and CLM5PFT overestimate the measured likelihood of low positive 

values of 0 - 2 g C day-1 (Figure 6 a). Both CLM5 scales underestimate the occurrence of GPP values >8 g C day-

1 at ENF sites. Although CLM5PFT better represents the frequency of these observed high values, the 

exceptionally high observed values >12 g C day-1 are absent in the models. Notably, CLM5PFT shows a bimodal 

character that is also apparent in GLASS but not in CLM5grid and ICOS. 785 
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Low positive GPP values at DBF sites <1 g C day-1 occur more often in CLM5grid, CLM5PFT, and GLASS than in 

the ICOS network (Figure 6 b). CLM5PFT underestimates the observed likelihood of values from 2 to 3.5 g C day-

1, which are, in turn, overestimated by CLM5grid. Further, GPP distributions of CLM5grid and CLM5PFT show a 

second mode between 4 and 8 g C day-1, corresponding with the summer peak values. Another consequence of 

the much lower CLM5grid and CLM5PFT summer peak compared to ICOS is that the observed very high-value 790 

range from 12 to 22 g C day-1 is absent in the model data. 

As found before for ENF and DBF, also the GPP at GRA sites from CLM5grid and CLM5PFT distributions are 

narrower than the one from ICOS, indicating a lower diversity of GPP values (Figure 6 c). This narrower 

distribution results in approximately half of the observed GPP value range not represented in the models. 

Therefore, the GPP peaks from CLM5grid and CLM5PFT distributions, located at 2 g C day-1, are higher than 795 

observed by ICOS. However, the frequency of observed values between 4 and 7 g C day-1 is approximated nicely 

by both CLM5 scales and GLASS. The tendency to bimodality is evident in CLM5grid and GLASS and absent in 

CLM5PFT and the ICOS observations. 

In contrast to the other PFT, the GPP distribution peak at CRO sites from ICOS aligns with the modeled ones in 

the low positive values (Figure 6 d). The frequency of mid-high range values >3 and <10 g C day-1 is 800 

overestimated in CLM5grid, CLM5PFT, and GLASS compared to the local ICOS observations. Finally, very high 

values >12 g C day-1 still occur in ICOS measurements but not in CLM5grid, CLM5PFT, or GLASS. 
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 805 

Figure 7: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the gross primary 

production (GPP) distributions (visualized in Figure 10) from the models (color, y-axis, colors: 

Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land Surface 

Satellite (GLASS): green), as opposed to the corresponding values from observations (x-axis) 

aggregated for each plant functional type (marker type): Evergreen Needleleaf Forest (ENF), 810 

Deciduous Broadleaf Forest (DBF), Grasslands (GRA), Croplands (CRO). The error bars are the 

standard errors of the respective moment, depending on the sample size.  

Analog to the ET analyses, we show the moments of the ET probability density functions per PFT for CLM5PFT, 

CLM5grid, and GLASS compared to ICOS observations in Figure 7. Generally, the GPP distribution moments 
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show an underestimation of diversity in the model compared to the in-situ observations, exhibited by a smaller 815 

range of the PFT-related moments (Figure 7). In particular, the mean, variance, skewness, and kurtosis variation 

between the different PFTs is larger for ICOS data than for CLM5PFT, CLM5grid, and GLASS. The standard errors 

in calculations for the moments of GPP distributions are relatively small, so the confidence in these results is 

high. 

GPP means from CLM5grid are around 3.0 - 3.5 g C day-1, while the means of the observations range between 3.5 820 

and 5.0 g C day-1 (Figure 7 a). Although this observed range of mean GPP per PFT is more accurately modeled 

by CLM5PFT (2.8 to 3.8 g C day-1), it still underestimates the respective values from ICOS. Furthermore, the order 

between the GPP means from CLM5PFT differs from ICOS. For example, the mean GPP at DBF sites from 

CLM5PFT is the lowest among the PFTs but the second largest in the in-situ data. Notably, the GPP averages from 

GLASS exhibit a similar low range to CLM5grid but shifted to higher values. 825 

The GPP variances from CLM5grid and CLM5PFT show an underestimation of the observed variability (Figure 7 

b). Across DBF sites, the CLM5grid and CLM5PFT variances are much lower (7 and 9 g C day-1) than in the ICOS 

observations (27 g C day-1). However, ICOS GPP PFT-specific variances vary between 12 and 27 g C day-1. 

Although the observed range and ranking order of GPP variances across PFT are better represented by 

CLM5PFTthan CLM5gridthose ranges, magnitudes of variance are always lower than observed. The range of 830 

variance in GLASS is similar to that in CLM5PFT and CLM5grid, albeit at a higher variance magnitude. 

The skewnesses of the GPP distributions in ICOS are well approximated by CLM5grid and CLM5PFT at ENF, 

DBF, and GRA sites (Figure 7 c). However, at CRO sites, ICOS skewnesses are again underestimated by 

CLM5PFT and CLM5grid. Once more, the observed range of CLM5grid and CLM5PFT GPP skewnesses across PFTs 

is substantially lower than at the ICOS stations. The observed GPP skewness ascending order from ENF (lowest) 835 

to CRO (highest) is not represented well in the model data. 

GPP from ENF, DBF, and GRA sites from CLM5grid, CLM5PFT, and GLASS agree with ICOS observations on 

the platykurtic nature of their distributions in ENF, DBF, and GRA. However, CRO is leptokurtic according to 

the ICOS observations but platykurtic for CLM5PFT, CLM5grid, and GLASS. Like the other moments of the GPP 

distributions, the spread of ICOS observation’s kurtoses across PFTs is more significant than in CLM5PFT, 840 

CLM5grid, and GLASS. However, this is because of the remarkably different kurtosis of the CRO GPP to the 

other PFTs that show a very similar kurtosis of their distributions in ICOS around -0.6. 
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 3.5. The inter-site similarity of PFT groups 

To support the interpretations of our findings, we quantify the similarity of ET and GPP across sites of the same 

PFT and compare the differences ofbetween the models to the observations. Iin this section, we delineateanalyze 845 

the mean RMSD of each PFT per ET and GPP data sources. A low RMSD indicates that the stations 

corresponding to one PFT are similar, while a high RMSD hints at a greater diversity within the PFT. By 

comparing the mean RMSD per PFT for ET and GPP across data sources, we can evaluate how much diversity is 

captured in the data of a particular PFT in the observations and models. The standard deviation of the RMSD for 

each PFT gives information on the spread of the inter-site RMSDs within the PFT group around that mean. 850 
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Figure 8: The bars indicate the mean of the root mean square difference (RSMD) of 

evapotranspiration calculated for sites with the same plant functional type. The error bars are 855 

their standard deviation. Low values indicate high similarity between the sites, and high values 

show high dissimilarity. The color of the bars differentiates the data source  (Integrated Carbon 
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Observation System (ICOS): black, Community Land Model v5 (CLM5), CLM5 grid: red, 

CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green, European Center for Medium-

Range Weather Forecasts Reanalysis 5 Land (ERA5L): brown, Global Land Evaporation 860 

Amsterdam Model (GLEAM): purple),. 

Figure 812 shows that CLM5grid and GLEAM has have a lower difference in the ET time series between the 

corresponding sites for all PFT than ICOS. CLMPFT has a lower mean RMSD than CLM5grid among ENF and 

DBF sites. Both CLM5PFT and CLM5grid underestimate the observed diversity of ET at ENF and DBF sites. 

Interestingly, the variation of ERA5L and GLASS ET time series for ENF is higher than observed., and they also 865 

show the most significant variation of RMSD. Meanwhile, DBF’s mean RMSD of all models is lower than that of 

ICOS. CLM5PFT shows a higher diversity of ET between GRA sites and CRO sites than CLM5grid. The CLM5PFT 

surpasses the observed mean RMSD for the GRA PFT, highlighting the potential to simulate GRA sites variably. 

All other models underestimate it slightly (CLM5grid, ERA5L) or more pronouncedly (GLASS, GLEAM). 

Particularly at CRO sites, the ET RMSD of CLM5PFT is substantially higher than the other models and at a 870 

similar level as ICOS observations. In contrast, all other models show significantly lower mean RSMDs there. 

Generally, a higher ET RMSD mean in a PFT group comes with a higher spread (higher standard deviation) for 

all data sources.  The RSMD in ET between stations is lower for CLM5grid and GLEAM than for ICOS for all 

PFTs. 
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Figure 9: The bars indicate the mean of the root mean square difference (RSMD) of gross 

primary production calculated for sites with the same plant functional type. The error bars are 

their standard deviation. Low values indicate high similarity between the sites, and high values 880 

show high dissimilarity. The color of the bars differentiates the data source  (Integrated Carbon 
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Observation System: black, Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: 

yellow, Global Land Surface Satellite (GLASS): green). 

Figure 913 shows that for GPP, the models generally have a lower mean RSMD than ICOS across stations for all 

PFT, except for CLM5grid at DBF. CLM5PFT has a more diversely simulated ET across ENF, GRA, and CRO sites 885 

than CLM5grid. Interestingly, the observed magnitude of the RMSD is lowest for DBF and highest for CRO and 

has a more extensive range across PFTs than the models. For example, the RMSDs of ICOS data differ by 

approximately 1.3 g C day-1 between GRA and CRO, while CLMgrid, CLM5PFT, and GLASS indicate similar 

RSMDs for those PFTs. Especially CLM5grid shows a constant within-PFT variability of around 1.5 g C day-1 

independent of the PFT. Higher mean GPP RMSD values also come with a higher standard deviation. These 890 

results hint at a complex relationship of variability representation within the PFTs. The higher RMSE values of 

CLM5PFT in the general model performance analysis (Section 3.2) suggest that the variation across sites of one 

PFT seen here does not directly translate to a better model performance. Apart from the magnitude of the 

variability, its accurate and proportionate timing is pivotal for an enhanced model performance.  

   895 Formatted: Normal
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4. Discussion 

Our results show that CLM5grid and CLM5PFT approximate the ET observations from ICOS better than GLASS 

remote sensing and ERA5L reanalysis but worse than GLEAM reanalysis. Moreover, especially for CLM5PFT the 

systematic error in simulating ET is lower than all other evaluated data sets. For GPP, we found that CLM5grid 

and CLM5PFT performed worse than GLASS data, indicated by a larger PBIAS and larger RMSE. Surprisingly, 900 

CLM5PFT generally had a higher RMSE than CLMgrid but, at the same time, a lower PBIAS. Averaged ET and 

GPP phenologies were relatively well simulated but exhibited underestimations across all PFT, especially in 

DBF, compared to ICOS measurements. CLM5PFT better captured the PFT-specific mean and standard deviation 

of the ET and GPP annual dynamics than CLM5grid, the reanalyses, and remote sensing data. The GPP and ET 

distributions analysis showed underestimations of their observed variability for all models, CLM5grid, CLM5PFT, 905 

GLASS, ERA5L, and GLEAM. Lastly, we found that for most PFTs, the modeled and remotely sensed data was 

too similar between stations of the same PFT group compared to the ICOS observations. 

 4.1. Uncertainty 

4.1.1. Observations 

Notably, the EC measurements carry uncertainties that might affect the results of this study, especially related to 910 

the systematic errors in the simulations. For instance, EC measurements neglect the energy from large eddies. To 

check for possible inconsistencies, we evaluated the energy balance corrected ET (ETcorr) from the ICOS sites 

(Pastorello et al., 2020). This methodology assumes a constant Bowen ratio to close the energy imbalance. 

Simulated ET underestimates ETcorr to a greater degree than the non-corrected ICOS ET (Figure S1, Figure S2), 

therefore suggesting a higher systematic error than in the analysis of non-corrected ET. Besides that, we 915 

discovered the same patterns with the corrected ET, concluding that the energy balance error did not introduce 

significant bias to our results and the interpretations. Furthermore, GPP is not directly measured but partitioned 

from NEE. The NEE partitioning method has an underlying uncertainty stemming from potentially unfulfilled 

assumptions that propagate to the GPP and ER variables in the ICOS data. So, we also ensured that our results 

remained consistent by evaluating the non-partitioned NEE and the ER variables (Figure S3, Figure S4, Figure 920 

S5, Figure S6). We discovered a substantial underestimation and missing variability in NEE and ER across PFTs 

in CLM5, confirming the systematic underestimation in our analysis of GPP. While we believe that our analyses 

have followed meticulous approaches to ensure robust results by applying the ICOS quality flags and comparing 
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these additional variables, many studies still emphasized the biases arising from a shifting footprint with varying 

wind direction and wind speed and the energy balance correction method assuming a constant Bowen ratio (Jung 925 

et al., 2020; Eshonkulov et al., 2019; Chu et al., 2021). Therefore, we encourage the development and use of 

novel and more accurate energy balance closure methods (Zhang et al., 2024). Furthermore, dropping bad-quality 

gap-fill data from the ET and GPP time series might introduce a bias that underrepresents periods of low friction 

velocity and atmospheric inversion conditions. Lastly, based on the geographical distribution of the ICOS station 

network, the results might misrepresent Southern and Eastern Europe and semi-arid and arid hydro-climates 930 

(Figure 1, read alsoalso read Ohnemus et al. 2024). Those factors might have influenced the diversity of ET and 

GPP values and the ranges of their distributions.  

4.1.2. Forcing 

Importantly, discrepancies between the COSMO Reanalysis used to force the European CLM5 and the station 

observations might introduce deviation into our analyses that could hamper interpretations of our results 935 

regarding the model functionality. While the high-resolution forcing data already includes information from 

observations through data assimilation, particular locations and conditions might be less well represented than 

others, and a resulting bias in the meteorological variables would propagate to the simulation of ET and GPP. 

However, data assimilation approaches minimize the systematic error of the atmospheric model to the 

observations. Furthermore, the probability and potential influence of including a bias from the forcing of a single 940 

location is lowered by considering multiple sites in the performance and statistics of the PFTs. Nevertheless, we 

assessed the meteorological variables from the COSMO Reanalysis 6 (temperature, shortwave incoming 

radiation, precipitation, relative humidity) with the ICOS station data to scrutinize potential errors arising from 

the forcing. We used the same approach as for the GPP and ET evaluation (Figure S7 – Figure S14). We 

discovered that the forcing variables’ average yearly dynamics and distributions represent the ICOS observations 945 

well. More minor yet notable misrepresentations include underestimations of shortwave downward radiation and 

precipitation in summer and relative humidity over GRA and CRO sites throughout the year compared to the 

measurements. This could explain some of our analyses’ ET and GPP underestimations by CLM5. Notably, the 

mean and variance across the PFTs and their ranking are represented reasonably well for all forcing variables, as 

opposed to our results with GPP and ET. Furthermore, the skewness and excess kurtosis of the forcing 950 

temperature and shortwave downward radiation compare well to the ones from ICOS, indicating well-matching 

distributions between the COSMO Reanalysis 6 and the observations. However, in particular, the higher-degree 
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moments of the distribution are not well simulated for precipitation and relative humidity. These characteristics 

of the distributions affect the CLM5 simulations of GPP and ET and might have influenced our results. Further 

considerations, including ensemble simulations with perturbed forcings, are required to fully capture the 955 

uncertainty introduced into CLM5, but this is beyond the scope of this study. 

4.1.3. Static information and initial conditions 

The static surface information, including the soil texture, elevation, aspect, land unit, and PFT distributions, 

affect the simulation of ET and GPP in CLM5. The soil texture composition will define how water is stored and 

conducted in the soil, contributing to the evaporation from the soil, an essential ET component. Further, the soil 960 

texture will influence root water uptake if vegetation is present in the soil column, indirectly impacting plants’ 

transpiration, another critical ET component. Further, ET is regulated by the available energy, which is 

determined by how the canopy, the elevation, and the aspect of that location influence the incoming radiation. 

Especially the diversity between these input variables across the locations of the ICOS stations might have played 

an essential role in the simulation of the PFT-specific ET and GPP distributions. 965 

Lastly, particularly for CLM5grid, GLASS, GLEAM, and ERA5L, the distribution of PFTs across the domain and 

in the grid cells corresponding to the ICOS stations define the equations and parameters that will be used for the 

calculation of ET and GPP. Consequently, if the grid cells corresponding to ICOS stations are dominated by 

PFTs that do not comply with the stations’ footprints, the simulations of specific PFTs in the model are 

negatively affected. Importantly, this does not apply to the CLM5PFT because we could select the data that 970 

belongs to the adequate PFT. Therefore, interpretations of our results relating directly to vegetation functions 

implemented in CLM5 are here primarily focusing on the CLM5PFT data. 

The initial conditions of the carbon cycle, most notably the size of the soil and vegetation carbon pools, are 

another source of uncertainty. Essentially, our spin-up and production simulations were restricted to the years 

where the high-resolution forcing was available (1995 – 2018). The spin-up simulations, therefore, recycle 975 

atmospheric forcings for a substantial period, which we also used in the production simulations. Hence, the 

production simulations adopted the equilibrium state (incoming carbon equals outgoing carbon) required to 

conclude the spin-up. However, in natural conditions, there was no carbon equilibrium in the simulated years. 

Instead, the carbon cycle experiences dynamic changes, such as long-term trends resulting from changing 

environmental conditions. Many European ecosystems exhibited a net carbon uptake, thus acting as a carbon sink 980 
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(Pilli et al., 2017; Winkler et al., 2023), measured in ICOS accordingly. The negative long-term mean NEE 

indicates carbon sources, which is evident across all PFTs in the EC observations (Figure S4 a). On the other 

hand, the simulations show a NEE close to zero for all PFTs, directly showing the effect of the equilibrium state 

of the land surface in the model. The results of DBF, which is the most significant carbon sink in the ICOS data 

and simultaneously shows the largest GPP underestimations by CLM5, underline a potentially important role of 985 

the carbon equilibrium in our results. Future work will conduct a more comprehensive spin-up under conditions 

closer to a real-world carbon equilibrium (the 1950s or earlier) and a transition run before the production 

simulations to capture the dynamic trends of the land surface processes. Possibly, the bias in the EC 

measurements towards conditions with low friction velocity and atmospheric inversion might also cause 

overestimations of GPP and the resulting carbon sink in ICOS. 990 

 4.2. PFT-specific evaluation 

While CLM5PFT showed a smaller systematic error than CLMgrid for most PFT compared to the observations 

(lower absolute PBIAS), the ability to approximate the observation time series is worse (higher RMSE). A 

shifting sign in the bias of the CLM5PFT data explains these counterintuitive results. The presence of both positive 

and negative bias (in time and across stations) cancels out and yields an overall low PBIAS. In summary, we find 995 

in the evaluation that the ET time series of CLMPFT are not closer to observations than CLM5grid for any PFT, but 

CLM5PFT generally approximates the ET sum over time better than CLM5grid for ENF, DBF, and CRO. However, 

it is also clear that, on average, the phenology of CLM5PFT is closer to the observed than CLM5grid, for instance, 

for both ET and GPP at DBF and GRA sites. Furthermore, the timings of the phenological events in CLM5PFT are 

most often closer to the observed than in CLM5grid. Importantly, critical PFT-specific characteristics, like the 1000 

timing of DBF’s steep spring GPP increase, are only captured by CLM5PFT and the inter-site variability of ET and 

GPP throughout a standard year. This discrepancy between the evaluation metrics and the vegetation phenology 

suggests that CLM5PFT could better capture the PFT-specific variability that ICOS observes. However, this 

variability is modeled in a way that did not contribute to a low RMSE, for instance, shifted in time or space, so 

the averaged PFT-specific comparisons (the phenology and the distribution moments) compare better with ICOS 1005 

than CLM5grid. Further evidence for this explanation is that CLM5PFT generally captures more variability (higher 

ET and GPP standard deviation across sites throughout the year for ENF, GRA, and CRO, and higher variance 

for each PFT). This ability to capture more variability than the other models, which is closer to the observed 

variability, can potentially improve the represented variability in CLM5PFT if the suitable variation can be 
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modeled at the right time and location. This spatiotemporal discrepancy of simulated and observed GPP and ET 1010 

variability could potentially be solved with optimized PFT parameters (Baker et al., 2022; Birch et al., 2021; 

Cheng et al., 2021; Dagon et al., 2020; Deng et al., 2021; Fisher et al., 2019b). 

Several past studies also indicated the underestimation of ET and GPP in CLM5 compared to observations (Boas 

et al., 2023; Strebel et al., 2023; Cheng et al., 2021; Birch et al., 2021), which we confirm in this study. Parameter 

improvements could also alleviate these general underestimations of GPP and ET across PFTs, especially during 1015 

summer (Dagon et al., 2020). However, optimal parameters might vary from site to site (Lin et al., 2015) even if 

they have the same PFT. Thus, CLM5, and more generally, LSMs that implement plant traits as parameters on 

the PFT level, cannot capture this intrinsic PFT variability resulting from these traits. Albeit optimized 

parameters might still reduce the bias on the continental level, a more comprehensive approach to the 

spatiotemporal variability of plant traits might improve regional simulations drastically (Anderegg et al., 2022; 1020 

Van Bodegom et al., 2014; Kattge et al., 2011). 

Given the hydraulic role of vegetation leaves in controlling transpiration, there is a tight relationship between ET, 

GPP, and LAI. In CLM5-BGC, the assimilated carbon by GPP gets further partitioned to respiration and the 

carbon storage in the plant organs, i.e., leaves, roots, and stems. Furthermore, the leaf carbon then controls the 

development and state of the vegetation leaves and, thus, the LAI. On the other hand, LAI controls GPP by 1025 

determining the upscaling factors from leaf photosynthesis to the canopy, thereby driving canopy conductance. 

Unfortunately, no large-scale LAI in-situ measurements and no CLM5PFT simulated LAI are available, and 

comparisons between CLM5grid LAI and reanalysis or remote sensing LAI suffer from known biases in the latter 

and yield no further context on our evaluation based on ground truth information. We adhered to an LAI 

evaluation of CLM5 with sparse but systematic ICOS measurements, ERA5L reanalysis, and GLASS based on 1030 

MODIS (Supplementary Figure S15). Notably, the ICOS LAI measurements are only available for two years of 

the study period (2017 to 2018) and are limited to ENF and CRO sites. Additionally, LAI measurements' 

expensive and time-intensive nature restricts the time resolution to a few measurement points per year. As a 

result, the data points for comparison are few, and the uncertainties are larger (noticeable larger error bars in 

Supplementary Figure S15). Another caveat is the potential mismatch of the land surface representation between 1035 

the EC tower footprint (ET and GPP measurements) and the area covered by the LAI measurement campaigns. 

However, some key findings from this analysis are still robust. For example, all models overestimate LAI at ENF 

and CRO sites (Supplementary Figure 14 a), contrasting the results of GPP and ET. The variance in ENF sites is 
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much more significant in GLASS and ERA5L than in CLM5grid, which is closest to the observations. The higher-

order moments are more uncertain because of the small number of data points. The contrasting results, especially 1040 

between the LAI and GPP PFT-level averages, suggest that processes and parameters connecting the assimilated 

carbon to the leaf area, depending on the environmental conditions, must be revisited. However, we make an 

even stronger case for systematic, long-term, and high-resolution LAI in-situ measurements (for example using 

drones (Bates et al. 2021)), which would support a more robust and diverse evaluation of the simulations of this 

essential variable. 1045 

 4.3. Inter-site similarity of PFT groups 

For all models (CLM5grid, CLM5PFT, ERA5L, GLASS, GLEAM), the distributions of ET and GPP across PFTs 

are very similar, which is not the case for the observations. This is especially true for their variances (i.e. their 

spread around the mean) but also notable for the means, skewnesses, and kurtoses. We expected CLM5PFT to 

show more significant variability than CLM5grid and the other grid-scale models because the aggregated, mixed 1050 

PFT data of the grid cell would homogenize the variables and cancel out some of the variability. While CLM5PFT 

shows a more extensive range of variation of ET and GPP across PFTs than CLM5grid, ERA5L, GLASS, and 

GLEAM, it still vastly underestimates the observed range of variance by ICOS, especially for GPP (Figure 95, 

Figure 711). 

The mean RMSD across sites of the same PFT indicates that ET across sites can be as different in CLMPFT for 1055 

GRA and CRO as in the observations (Figure 12). However, the ET differences across sites with the same PFT 

were underestimated at ENF and DBF. GPP differences across sites with the same PFTs were underestimated for 

all PFTs (Figure 13). This suggests the missed variance could mainly stem from missed PFT internal inter-site 

differences or unresolved differences in site-specific abiotic conditions (e.g., soil depth and texture). Possibly, 

this could not be improved through optimization of PFT-specific parameters, as these sites would still share the 1060 

same set of parameters. An enhanced concept of functional types in vegetation, focusing on the spatiotemporal 

variability of observed plant traits, could better facilitate improvements that raise the simulated ET and GPP 

variance in space and time. 
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4.3. Inter-site similarity of PFT groups 

For all models (CLM5grid, CLM5PFT, ERA5L, GLASS, GLEAM), the distributions of ET and GPP across PFTs 1065 

are very similar, which is not the case for the observations. This is especially true for their variances (i.e., their 

spread around the mean) but also notable for the means, skewnesses, and kurtoses. We expected CLM5PFT to 

show more significant variability than CLM5grid and the other grid-scale models because the aggregated, mixed 

PFT data of the grid cell would homogenize the variables and cancel out some of the variability. While CLM5PFT 

shows a more extensive range of variation of ET and GPP across PFTs than CLM5grid, ERA5L, GLASS, and 1070 

GLEAM, it still vastly underestimates the observed range of variance by ICOS, especially for GPP (Figure 9, 

Figure 11). 

The mean RMSD across sites of the same PFT indicates that ET across sites can be as different in CLMPFT for 

GRA and CRO as in the observations (Figure 12). However, the ET differences across sites with the same PFT 

were underestimated at ENF and DBF. GPP differences across sites with the same PFTs were underestimated for 1075 

all PFTs (Figure 13). This suggests the missed variance could mainly stem from missed PFT internal inter-site 

differences or unresolved differences in site-specific abiotic conditions (e.g., soil depth and texture). Possibly, 

this could not be improved through optimization of PFT-specific parameters, as these sites would still share the 

same set of parameters. An enhanced concept of functional types in vegetation, focusing on the spatiotemporal 

variability of observed plant traits, could better facilitate improvements that raise the simulated ET and GPP 1080 

variance in space and time. 

 4.4. Data requirements 

As outlined above, beyond parameter optimizations, a comprehensive implementation of functional ecosystem 

diversity could significantly improve the LSM simulation outputs regarding multiple aspects of their 

distributions. This could introduce a state-of-the-art understanding of vegetation function into LSMs, which is 1085 

essential to evaluate different theories of plan trait evolution and their effect on current and future energy, water, 

and carbon cycles. 

In that light, we encourage sites to co-locate research infrastructures (Futter et al., 2023), like ICOS and the 

Integrated European Long-Term Ecosystem, critical zone, and socio-ecological Research Infrastructure (eLTER-

RI). Thereby, sites cover additional observation spheres like biodiversity (e.g., functional diversity of plants) and 1090 
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socio-ecology (through forest and crop management and driving land use change) and establish a strong base for 

studies to increase the understanding of the whole system (Ohnemus et al., 2024; Mirtl et al., 2018; Mirtl et al., 

2021; Baatz et al., 2018). Further, this would promote large-scale observations needed to introduce more trait 

variability into LSMs. Lastly, combining LSMs and these holistic observations by data assimilation, going 

beyond decoupled modeling efforts (Bloom et al., 2020) and resulting in an ecosystem reanalysis (Baatz et al., 1095 

2021), would provide essential, explicit and accuratespecific data on the carbon cycle, which are currently 

unavailable. 

4.5 Distribution moments and droughts 

Investigating the influence of drought on the analyses, or generally the ability of the models to simulate drought 

and the vegetation response, is complex due to the differences in drought response functionality. For instance, 1100 

plant water stress might occur due to different magnitudes of water deficit in the soil, and on different 

aggregation time scales and with on different aggregation time scales, and with a variable lag to the water deficit. 

A future study will investigate the PFT-scale drought responses from the model and how the drought propagates 

through the eco-hydrological sphere and compare it to the observations. However, drought frequency, duration 

and severity affects the shapes of the distribution of the precipitation, and eventually, severity affects the shapes 1105 

of the distribution of the precipitation and, eventually, the ecosystem processes. Thus, we discuss possible 

insights to to their drought responses briefly. 

Importantly, the skewness and excess kurtosis moments, which inform about the characteristics of the distribution 

tails (relativity between the tails and the general tailedness, respectively) of precipitation (Guo, 2022), and 

vegetation states and function (Kanavi et al., 2020; Liu et al., 2022; Cooley et al., 2022), are influenced by dry 1110 

conditions, depending on their frequency, duration and severity. We found a low variability in the skewness and 

excess kurtosis of the precipitation used to force our CLM5 simulations (Figure S10 c and d), specifically a 

significantly lower skewness and excess kurtosis at ENF and DBF sites. A lower positive skewness than the 

observations means that the distribution is less skewed towards lower values, and a lower positive excess kurtosis 

than the observations indicates generally larger tails. A possible interpretation of these differences in the 1115 

distribution moments is that the atmospheric forcings show more frequent, longer, and more severe extreme 

precipitation events, while the ICOS measurements are more concentrated around their mean. While the 

propagation of these extreme events could be complex and non-linear, we generally found the same observation 

(lower skewness and smaller absolute excess kurtosis) for the simulated distributions of ET and GPP for almost 
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all models and PFTs (Figures 9 c and d and 11 c and d), suggesting a more direct relationship. However, because 1120 

of the possible non-linearity and the influence of other factors, the detailed relationship between these findings 

and the ability of CLM5 to simulate ecosystem drought responses must be examined in future studies. In any 

case, the missing accuracy in representing higher distribution moments in the atmospheric forcings and in land 

surface models must be considered in studies using these to investigate drought.  
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5. Conclusions 1125 

We evaluated the simulated evapotranspiration (ET) and gross primary production (GPP) from a 3 km resolved 

Community Land Model v5 (CLM5) set up over the European CORDEX domain. We differentiate the model 

outputs between the grid scale (CLM5grid) and the plant functional type scale (CLM5PFT) and compare them with 

ICOS station data as ground truth data. Furthermore, we compare with ET and GPP from remote sensing derived 

data from the Global Land Surface Satellite (GLASS) and reanalysis products such as the European Centre for 1130 

Medium-Range Weather Forecast Reanalysis 5 - Land (ERA5L) and the Global Land Evaporation Amsterdam 

Model (GLEAM). CLM5grid and CLM5PFT exhibit promising skills in approximating the observations and often 

perform better than ERA5L, GLASS, and GLEAM. CLM5PFT showed a lower systematic bias (lower percent 

bias) but approximated the ICOS observations generally worse (larger root mean square error) than CLM5grid 

(Table Figures 2 and, Table 3 and Supplementary Tables S4 and S5). ET and GPP are systematically 1135 

underestimated for both model scales across all PFTs throughout the year. Especially during summer at DBF 

sites, GPP is substantially lower for CLM5PFT and CLM5grid than for ICOS observations (Figure 2, Figure 3). 

Essentially, CLM5PFT and, to a greater degree, CLM5grid, ERA5L, GLEAM, and GLASS show a lower 

spatiotemporal variability of ET and GPP than the measurements exhibited by a lower range of all the modeled 

ET and GPP distribution moments across PFTs than in ICOS. This smaller range and a lower root mean square 1140 

difference between sites of one PFT group suggests that CLM5grid, and more surprisingly, CLM5PFT, simulate 

GPP and ET more similarly across PFTs than the ICOS measurements. 

Further studies should investigate whether optimizing parameters in CLM5PFT with observation data increases the 

diversity of ET and GPP values or whether this is a structurally induced bias. This work provides essential 

insights for studies that aim to find optimized parameters and meaningful context for analyses of more specific 1145 

ET and GPP dynamics using the evaluated data. 
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Code availability 

A frozen version of the CLM5 version used here is stored here: https://doi.org/10.5281/zenodo.11091890. The 

case setup for the European 3 km simulation as well as a post-processing script is available under 1150 

https://doi.org/10.5281/zenodo.11091845. Analysis, processing and plotting scripts and are available at 

https://doi.org/10.5281/zenodo.1388547310.5281/zenodo.11091898, which requires the helper scripts in this 

additional repository: https://doi.org/10.5281/zenodo.1388546610.5281/zenodo.11091813.  
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System (ICOS, https://www.icos-cp.eu/data-products/2G60-ZHAK, and https://meta.icos-

cp.eu/collections/nBLHm8lrY2FHpiybxuS3po2B), the ERA5-Land reanalysis 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land), Global Land Surface Satellite (GLASS) 

data derived from remote sensing (http://www.glass.umd.edu/index.html) and reanalysis data from the Global 

Evaporation Amsterdam Model (GLEAM, https://www.gleam.eu/). Intermediary tabular data in parquet format 1160 

corresponding to the location of the ICOS stations are stored in https://doi.org/10.5281/zenodo.11091898 for each 
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domain, which were not used in this study, can be made available upon request (approx. 8 terabyte). 
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Supplement 

Table S1: A list of ICOS stations, their land cover, their coordinates, years of data availability 1545 

that overlap with our study period (1995 – 2018), the coordinates of the corresponding grid cell 

of the 3 km European Coordinated Regional Climate Downscaling Experiment (CORDEX)  grid 

used in our simulations, and their number of 8-daily data points available for our analyses for 

evapotranspiration (ET) and gross primary production (GPP). Note that stations that do not 

belong to the plant functional types (PFT) of evergreen needleleaf forest (ENF), deciduous 1550 

broadleaf forest (DBF), grasslands (GRA), and croplands (CRO) were omitted, and some 

included sites did not have data corresponding with the study period (1995 - 2018), thus having a 

count of 0 data points. See Section 2.2.1. The indicated PFT is the predominant PFT in the 

footprint of the ICOS eddy covariance towers. Stations, where the land cover was not directly 

indicated in the metadata sites were also left out in our analyses. 1555 

ID country PFT lat lon years lat 

(cell) 

lon 

(cell) 

N (ET) N 

(GPP) 

BE-Bra Belgium ENF 51.3

1 

4.52 1996 – 

2018 

51.29 4.51 503608 670 

BE-Dor Belgium GR

A 

50.3

1 

4.97 2011 – 

2018 

50.31 4.96 0 270 

BE-Lcr Belgium DBF 51.1

1 

3.85  51.10 3.85 0 0 

BE-Lon Belgium CR

O 

50.5

5 

4.75 2004 – 

2018 

50.57 4.76 440519 476 

CH-Cha Switzerland GR

A 

47.2

1 

8.41 2005 – 

2018 

47.21 8.43 386423 459 

CH-Dav Switzerland ENF 46.8

2 

9.86 1997 – 

2018 

46.80 9.84 546578 866 

CH-Fru Switzerland GR

A 

47.1

2 

8.54 2005 – 

2018 

47.11 8.53 260284 447 

CH-Oe2 Switzerland CR

O 

47.2

9 

7.73 2004 – 

2018 

47.28 7.72 0 592 

Inserted Cells

Inserted Cells
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CZ-BK1 Czech 

Republic 

ENF 49.5

0 

18.5

4 

2004 – 

2018 

49.50 18.54 140146 389 

CZ-Lnz Czech 

Republic 

DBF 48.6

8 

16.9

5 

2015 – 

2018 

48.67 16.95 0 145 

DE-Geb Germany CR

O 

51.1

0 

10.9

1 

2001 – 

2020 

51.10 10.93 797824 638 

DE-Gri Germany GR

A 

50.9

5 

13.5

1 

2001 – 

2018 

50.95 13.49 598673 492 

DE-Hai Germany DBF 51.0

8 

10.4

5 

2000 – 

2018 

51.07 10.45 754813 548 

DE-

HoH 

Germany DBF 52.0

9 

11.2

2 

2015 – 

2018 

52.09 11.23 178184 113 

DE-Kli Germany CR

O 

50.8

9 

13.5

2 

2004 – 

2018 

50.90 13.54 404481 450 

DE-

RuR 

Germany GR

A 

50.6

2 

6.30 2011 – 

2018 

50.62 6.28 321336 309 

DE-RuS Germany CR

O 

50.8

7 

6.45 2011 – 

2018 

50.86 6.44 232285 224 

DE-

RuW 

Germany ENF 50.5

0 

6.33 2012 – 

2018 

50.51 6.31 0 125 

DE-Tha Germany ENF 50.9

6 

13.5

7 

1996 – 

2018 

50.96 13.58 935101

2 

888 

DK-Gds Denmark ENF 56.0

7 

9.33  56.07 9.34 0 0 

DK-Sor Denmark DBF 55.4

9 

11.6

4 

1996 – 

2018 

55.48 11.65 379437 882 
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FI-Hyy Finland ENF 61.8

5 

24.2

9 

1996 – 

2018 

61.86 24.29 373435 812 

FI-Ken Finland ENF 67.9

9 

24.2

4 

2018 67.99 24.23 0 18 

FI-Let Finland ENF 60.6

4 

23.9

6 

2009 – 

2018 

60.63 23.96 344412 254 

FI-Var Finland ENF 67.7

5 

29.6

1 

2016 – 

2018 

67.76 29.63 119135 133 

FR-Aur France CR

O 

43.5

5 

1.11 2005 – 

2018 

43.54 1.12 389470 483 

FR-Bil France ENF 44.4

9 

-0.96 2014 – 

2020 

44.50 -0.98 188203 144 

FR-FBn France ENF 43.2

4 

5.68 2008 – 

2018 

43.25 5.69 0 358 

FR-Fon France DBF 48.4

8 

2.78 2005 – 

2018 

48.47 2.80 0 566 

FR-Gri France CR

O 

48.8

4 

1.95 2004 – 

2018 

48.86 1.95 397563 313 

FR-Hes France DBF 48.6

7 

7.06 2014 – 

2018 

48.67 7.05 224229 219 

FR-Lam France CR

O 

43.5

0 

1.24 2005 – 

2018 

43.51 1.25 439548 431 

FR-Tou France GR

A 

43.5

7 

1.37 2018 43.58 1.38 4546 28 

IT-BFt Italy DBF 45.2

0 

10.7

4 

 45.21 10.75 0 0 
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IT-MBo Italy GR

A 

46.0

1 

11.0

5 

2003 – 

2018 

46.00 11.04 554616 582 

IT-Ren Italy ENF 46.5

9 

11.4

3 

1999 – 

2018 

46.58 11.44 466531 525 

IT-SR2 Italy ENF 43.7

3 

10.2

9 

2013 – 

2018 

43.74 10.31 238255 214 

IT-Tor Italy GR

A 

45.8

4 

7.58 2008 – 

2018 

45.85 7.57 333481 251 

RU-Fy2 Russia ENF 56.4

5 

32.9

0 

2015 – 

2018 

56.46 32.89 146156 138 

SE-Htm Sweden ENF 56.1

0 

13.4

2 

2015 – 

2018 

56.10 13.42 171177 152 

SE-Nor Sweden ENF 60.0

9 

17.4

8 

2014 – 

2018 

60.09 17.50 216229 181 

SE-Svb Sweden ENF 64.2

6 

19.7

7 

2014 – 

2018 

64.26 19.77 138161 109 

 

 

Table S2: The root mean square error (RMSE) and percent bias (PBIAS) for model 

evapotranspiration (ET) in relation to the Integrated Carbon Observation System ( ICOS) 

observations. Stations from ICOS that did not belong to plant functional types (PFTs) of 1560 

evergreen needleleaf forest (ENF), broadleaf deciduous forest (DBF), croplands (CRO), or 

grasslands (GRA) or did not have overlapping periods were omitted. See Section 2.4.2. For the 

amount of data points per station used for the calculations, see Table S1. 

 ET RMSE [mm day-1] ET PBIAS [%] 

 CLM5grid CLM5PFT ERA5L GLASS GLEAM CLM5grid CLM5PFT ERA5L GLASS GLEAM 

BE-Bra 

0.540.5

3 

0.510.5

2 

1.121.

1 

1.11.1

2 

0.650.

65 

20.532

1.18 

22.423.

28 

103.3

102.7

4 

86.18

6.9 

53.955

3.51 
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BE-Lon 0.670.6

5 

0.990.9

9 

0.820.

92 

0.910.

83 

0.490.

48 

12.761

3.44 

24.312

4.31 

66.69

67.7 

43.88

44.85 

19.712

0.31 

CH-Cha 

0.80.78 

0.850.8

5 

0.590.

53 

0.540.

59 

0.560.

55 

-33.03-

32.31 

-21.19-

21.19 

-

13.73-

13.4 

-

10.68-

9.81 

-8.47-

8.37 

CH-Dav 

1.21.19 

0.950.9

4 

0.911.

35 

1.350.

91 

0.850.

84 

-51.08-

50.35 

-33.29-

32.89 

-

54.41-

54.06 

-

32.38-

31.86 

-27.66-

27.21 

CH-Fru 

0.620.6 

0.850.8

5 

0.520.

61 

0.620.

49 

0.620.

59 

-23.73-

23.14 

-8.69-

8.38 

-6.68-

6.73 

-5.21-

4.59 

7.176.

33 

CZ-BK1 0.480.4

7 

0.540.5

4 

0.760.

57 

0.570.

76 

0.520.

52 

-23.06-

23.38 

-26.04-

25.8 

29.54

28.72 

19.72

20.22 

25.782

4.72 

DE-Geb 0.510.5

1 

0.820.8

3 

0.70.8

6 

0.850.

71 

0.480.

48 

-7.61-

6.91 

-5.35-

5.24 

64.26

64.07 

40.08

40.18 

14.931

4.67 

DE-Gri 0.480.4

8 

0.770.7

7 

0.570.

53 

0.550.

56 

0.360.

36 2.451.4 

11.151

0.84 

33.24

32.03 

20.49

19.42 

9.148.

18 

DE-Hai 0.490.4

8 0.60.6 

0.730.

75 

0.760.

72 

0.520.

5 

2.641.2

3 8.997.5 

58.52

54.25 

46.64

2.96 

31.182

7.83 

DE-HoH 

0.690.6

9 

0.650.6

5 

0.60.5

8 

0.580.

6 

0.660.

65 

-28.06-

27.75 

-16.86-

16.19 

-1.62-

1.24 

-

10.44-

10.98 

-24.37-

24.17 

DE-Kli 0.690.6

4 10.99 

0.790.

7 

0.740.

74 

0.630.

58 

6.773.5

3 

19.041

6.23 

38.93

6.42 

27.72

4.16 

21.782

0.33 

DE-RuR 

0.390.4 

0.760.7

7 

0.60.5

3 

0.540.

6 

0.450.

45 

-17.86-

18.28 

5.375.1

4 

28.01

27.41 

9.899.

26 

17.221

6.76 
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DE-RuS 

0.780.7

9 

0.970.9

8 

0.680.

49 

0.550.

64 

0.680.

69 

-32.8-

35.1 

-31.45-

32.57 

7.94.9

6 

-

12.81-

15.5 

-24.98-

27.25 

DE-Tha 0.620.6

1 0.50.49 

0.720.

69 

0.710.

71 

0.480.

47 

0.590.0

3 

-0.52-

0.58 

39.68

39.24 

20.84

20.32 

13.921

3.76 

DK-Sor 

0.60.6 0.60.59 

0.570.

65 

0.660.

55 0.50.5 

-26.29-

25.3 

-14.98-

14.11 

42.64

40.06 

20.57

19.22 

2.182.

01 

FI-Hyy 

0.50.5 

0.510.5

2 

0.490.

41 

0.410.

49 

0.620.

63 

-35.58-

35.03 

-27.65-

26.83 

20.64

20.28 

11.27

11.59 

41.741

.51 

FI-Let 0.680.6

7 

0.650.6

2 

0.630.

78 

0.80.6

1 

0.730.

71 

-31.77-

32.63 

-21.53-

21.82 

51.02

48.73 

11.16

9.52 

40.213

8.69 

FI-Var 0.370.3

7 

0.490.4

8 

0.730.

46 

0.480.

69 

0.60.5

9 

-30.13-

34.03 

-9.59-

14.31 

67.09

65.47 

58.22

55.65 

84.398

5.29 

FR-Aur 0.850.8

1 

1.191.1

8 

1.11.0

3 

1.051.

08 

0.780.

75 

5.446.8

2 

45.084

7.61 

52.04

54.17 

37.13

9.04 

16.891

8.56 

FR-Bil 0.670.6

7 0.920.9 

1.460.

7 

0.721.

5 

0.670.

68 

-25.5-

25.39 

-28.35-

27.73 

24.98

23.93 

48.24

50.29 

24.472

4.77 

FR-Gri 0.770.7

6 1.011 

0.90.7

7 

0.850.

85 

0.580.

55 

-1.63-

7.41 

0.98-

2.62 

44.94

38.22 

30.06

22.79 

3.86-

1.57 

FR-Hes 0.580.5

8 

0.670.6

7 

0.830.

86 

0.860.

83 

0.720.

72 

0.190.9

2 

13.091

3.76 

51.71

52.3 

35.65

36.7 

36.793

6.96 

FR-Lam 0.860.8

5 

1.091.0

9 

0.970.

98 

1.010.

96 

0.790.

78 

-6.76-

8.52 

20.919.

85 

31.79

29.34 

17.15

15.93 

-1.53-

3.31 

FR-Tou 

0.690.7 0.890.9 

0.861.

05 

1.040.

87 

0.490.

5 

-36.01-

35.79 

-45.95-

45.8 

60.87

61.12 

30.99

31.2 

17.481

7.87 
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IT-MBo 0.550.5

3 0.840.8 

0.50.4

6 

0.490.

48 

0.720.

7 

-2.29-

2.52 

-17.01-

17.37 

8.998.

64 

6.246.

11 

16.681

5.84 

IT-Ren 

0.850.8

6 

0.810.8

2 

0.740.

71 

0.720.

76 

0.760.

75 

-23.81-

25.41 

-3.55-

5.21 

-9.57-

11.11 

-

15.41-

17.11 

2.18-

0.6 

IT-SR2 0.890.9

1 

1.531.5

6 

0.730.

76 

0.760.

71 

0.80.8

1 

-34.1-

33.93 

-60.81-

60.78 

28.98

28.67 

3.254.

92 

-23.83-

23.63 

IT-Tor 

0.911.0

3 

1.011.1

4 

0.60.8

7 

0.780.

65 

0.750.

84 

-45.19-

43.24 

-48.2-

46.1 

-

38.59-

35.9 

-

10.22-

11.77 

-28.59-

29.23 

RU-Fy2 

0.40.41 

0.510.5

1 

0.650.

69 

0.690.

65 

0.70.6

7 

-4.43-

3.69 

-16.31-

16.07 

52.09

52.22 

26.21

25.24 

54.795

2.85 

SE-Htm 0.450.4

5 

0.450.4

5 

1.190.

89 

0.881.

18 0.90.9 

-7.31-

7.53 

-3.36-

3.65 

72.78

72.62 

61.52

60.16 

79.057

7.51 

SE-Nor 0.360.3

6 

0.370.3

7 

0.660.

57 

0.580.

66 

0.590.

58 

-14.29-

15.2 

-4.12-

5.08 

47.24

6.5 

22.25

21.54 

46.444

5.74 

SE-Svb 0.450.4

6 0.640.6 

0.550.

33 

0.350.

52 

0.560.

56 

-18.82-

22.3 

-0.66-

4.25 

16.38

14.62 

16.81

4.77 

35.553

3.97 
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Table S3: The root mean square error (RMSE) and percent bias (PBIAS) for model gross 

primary production (GPP) in relation to the Integrated Carbon Observation System (ICOS) 

observations. Stations from ICOS that did not belong to the plant functional types (PFTs) of 

evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), croplands (CRO), or 

grasslands (GRA) or did not have overlapping periods were omitted. See Section 2.4.2. For the 1570 

amount of data points per station used for the calculations, see Table S1. 

 GPP RMSE [g C day-1] GPP PBIAS [%] 

 CLM5gri

d 

CLM5PF

T 

GLASS CLM5gri

d 

CLM5PF

T 

GLASS 

BE-Bra 

2.292.29 1.691.69 1.31.3 

-35.36-

35.31 0.580.58 4.74.7 

BE-Dor 

3.193.19 3.393.39 

2.742.7

4 

-41.69-

41.65 

-40.3-

40.27 

-35.11-

35.08 

BE-Lon 

4.314.31 4.314.31 

3.983.9

8 

-18.21-

18.12 -8.23-8.2 

-11.32-

11.27 

CH-Cha 

4.614.61 3.943.94 

4.294.2

9 

-50.9-

50.85 

-38.52-

38.48 

-47.17-

47.12 

CH-Dav 

2.42.4 2.132.13 

2.132.1

3 

-16.93-

16.6 

31.3730.

76 

-25.57-

25.06 

CH-Fru 

3.63.6 2.842.84 

2.622.6

2 

-40.1-

39.95 

-23.16-

23.07 

-23.97-

23.89 

CH-Oe2 

3.753.75 3.953.95 

3.533.5

3 

-10.8-

10.63 

-12.63-

12.43 

2.722.6

8 

CZ-BK1 

2.792.79 2.312.31 

1.951.9

5 

-37.05-

37.01 

-22.83-

22.8 

-20.65-

20.62 

CZ-Lnz 

4.644.64 3.443.44 2.92.9 

-62.06-

61.65 

-49.31-

48.99 

-28.91-

28.72 
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DE-Geb 

3.633.63 4.324.32 

2.982.9

8 

-35.96-

35.47 

-40.43-

39.88 

-1.84-

1.82 

DE-Gri 

2.612.61 2.682.68 

2.022.0

2 

-21.19-

21.13 

-11.94-

11.9 

-9.65-

9.62 

DE-Hai 

2.832.83 2.592.59 1.71.7 

-34.83-

34.4 

-42.5-

41.98 

-1.51-

1.49 

DE-HoH 

2.942.94 2.512.51 

3.043.0

4 

-30.53-

30.18 

-40.55-

40.09 

-27.82-

27.51 

DE-Kli 

3.53.5 3.663.66 

3.153.1

5 1.741.73 2.042.03 

-2.73-

2.71 

DE-RuR 

2.42.4 2.392.39 22 

-26.99-

26.97 

-10.45-

10.45 

-19.5-

19.49 

DE-RuS 

4.744.74 5.055.05 

4.344.3

4 

-43.49-

43.33 

-45.67-

45.5 

-34.68-

34.54 

DE-RuW 

2.632.63 2.612.61 

2.142.1

4 

-32.13-

32.06 

-27.64-

27.58 

-23.88-

23.83 

DE-Tha 

1.871.87 1.481.48 

1.291.2

9 

-28.99-

28.94 

-3.95-

3.95 

-19.27-

19.24 

DK-Sor 

4.394.39 4.074.07 

3.213.2

1 

-47.99-

47.92 

-49.66-

49.59 

-35.24-

35.2 

FI-Hyy 

1.31.3 1.291.29 

0.810.8

1 

-14.92-

14.86 

-0.32-

0.32 

-8.91-

8.87 

FI-Ken 

1.161.16 2.342.34 

0.720.7

2 -2.8-2.71 

54.753.0

3 

-14.37-

13.93 

FI-Let 2.052.05 2.022.02 1.531.5 -19.16- -4.72- -19.98-
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3 19.04 4.69 19.86 

FI-Var 

1.41.4 3.223.22 

0.890.8

9 

60.358.8

8 

159.3155

.55 

21.4820

.97 

FR-Aur 

3.283.28 4.054.05 

3.253.2

5 9.399.34 

68.5768.

22 

9.038.9

8 

FR-Bil 

1.751.75 2.232.23 

1.671.6

7 

-24.81-

24.81 

-24.43-

24.43 

-0.67-

0.67 

FR-FBn 

2.382.38 3.733.73 

1.821.8

2 

-48.88-

48.88 

-77.01-

77.01 

15.3215

.32 

FR-Fon 

3.13.1 2.872.87 

2.742.7

4 -27-26.88 

-36.28-

36.12 

-21.96-

21.86 

FR-Gri 

4.164.16 4.244.24 

3.733.7

3 

-18.71-

18.64 

-13.87-

13.82 

-15.53-

15.47 

FR-Hes 

3.73.7 3.243.24 

3.323.3

2 

-24.49-

24.24 

-36.28-

35.9 

-17.36-

17.18 

FR-Lam 

3.913.91 4.54.5 

3.953.9

5 

-4.09-

4.08 

44.844.7

4 

-8.88-

8.86 

FR-Tou 

3.443.44 2.532.53 

1.771.7

7 

-73.37-

73.37 

-47.07-

47.07 

-10.42-

10.42 

IT-MBo 

2.422.42 2.892.89 

1.841.8

4 -7.9-7.88 

-31.89-

31.82 

3.263.2

5 

IT-Ren 

1.531.53 2.322.32 

1.771.7

7 

11.6211.

56 

33.3233.

15 

-2.04-

2.03 

IT-SR2 

5.125.12 6.786.78 

4.074.0

7 

-67.17-

67.17 

-88.85-

88.85 

-53.94-

53.94 
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IT-Tor 

1.821.82 2.492.49 

1.661.6

6 

-0.74-

0.73 1.021.01 

1.171.1

6 

RU-Fy2 

2.632.63 2.842.84 

1.931.9

3 

-26.11-

26.01 

-22.3-

22.21 

-23.45-

23.36 

SE-Htm 

2.742.74 2.242.24 

1.951.9

5 

-38.04-

38.02 

-25.42-

25.41 

-26.84-

26.83 

SE-Nor 

1.591.59 1.371.37 

1.351.3

5 

-25.59-

25.47 -3.8-3.78 

-21.62-

21.52 

SE-Svb 

1.131.13 2.022.02 

1.221.2

2 5.645.6 

25.0724.

88 

-24.24-

24.05 
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Table S24: The evapotranspiration (ET) root mean square error (RMSE) indicates the general 

model approximations and the percent bias (PBIAS), demonstrating systematic bias of the 

models (Community Land Model v5 (CLM5) on grid-scale (CLM5grid), CLM5 on PFT scale 1575 

(CLM5PFT), from the European Center of Medium-Range Weather Forecasts Renalysis 5 Land 

(ERA5-Land), the Global Land Surface Satellite (GLASS), and the Global Land Evaporation 

Amsterdam Model (GLEAM)) to the observations. Each value corresponds to a group of stations 

representing the same plant functional type (PFT; Evergreen Needleleaf Forest (ENF), 

Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)). The amount of 1580 

data points (N) for each PFT is also indicated. 

 PFT N CLM5grid CLM5PFT ERA5L GLASS GLEAM 

RMSE 

[mm day-1] 

ENF 5038 0.71 0.72 0.84 0.83 0.67 

DBF 1663 0.56 0.62 0.73 0.70 0.56 

GRA 2859 0.65 0.85 0.60 0.57 0.59 

CRO 3690 0.72 1.00 0.88 0.86 0.63 

mean 3285 0.66 0.80 0.76 0.74 0.61 

PBIAS 

[%] 

ENF 5038 -20.57 -15.42 21.86 13.32 15.43 

DBF 1663 -9.90 -0.54 44.55 29.74 16.24 

GRA 2859 -18.62 -13.94 3.14 2.63 2.41 

CRO 3690 -3.24 11.20 44.99 27.30 7.58 

mean 3285 -13.08 -18.70 28.64 18.25 10.42 
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Table 3S5: The gross primary production (GPP) root mean square error (RMSE) indicates the 

general model approximation and the percent bias (PBIAS), demonstrating systematic bias of 1585 

the models (Community Land Model v5 (CLM5) on grid-scale (CLM5grid), CLM5 on PFT scale 

(CLM5PFT), from the European Center of Medium-Range Weather Forecasts Renalysis 5 Land 

(ERA5-Land), the Global Land Surface Satellite (GLASS), and the Global Land Evaporation 

Amsterdam Model (GLEAM)) to the observations. Each value corresponds to a group of stations 

representing the same plant functional type (PFT: Evergreen Needleleaf Forest (ENF), 1590 

Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)). The amount of 

data points (N) for each PFT is also indicated. 

 PFT N CLM5grid CLM5PFT GLASS 

RMSE 

[g C day-

1] 

ENF 5976 2.25 2.44 1.75 

DBF 2473 3.71 3.35 2.81 

GRA 2838 3.14 3.01 2.63 

CRO 3607 3.85 4.21 3.55 

mean 3723.5 3.24 3.25 2.69 

PBIAS 

[%] 

ENF 5976 -26.00 -7.7 -14.53 

DBF 2473 -38.88 -43.76 -24.51 

GRA 2838 -30.73 -25.5 -21.34 

CRO 3607 -14.99 -1.48 -6.29 

mean 3723.5 -27.65 -19.61 -16.67 
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Figure S1: In the left column are the yearly energy balance corrected evapotranspiration (ET -

corr) evolutions averaged across stations belonging to one PFT (rows). We differentiate the data 1595 

source by color (ICOS observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, 
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ERA5L: brown, GLEAM: purple). The probability density curves for all ET-corr values from 

stations belonging to the selected PFT are in the right column. Each row shows these plots for 

one PFT: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands 

(GRA), and Croplands (CRO). 1600 
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Figure S2: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the ET-corr 

distributions (visualized in Figure S1) from the models (color, y-axis), as opposed to the 

corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 1605 
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Croplands (CRO). The error bars are the standard errors of the respective moment, depending 

on the sample size. 

 

Figure S3: In the left column are the yearly net ecosystem exchange (NEE) evolutions averaged 

across stations belonging to one PFT (rows). We differentiate the data source by color (ICOS 1610 

observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, ERA5L: brown, GLEAM: 

purple). The probability density curves for all NEE values from stations belonging to the 

selected PFT are in the right column. Each row shows these plots for one PFT: Evergreen 
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Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 

(CRO). 1615 

 

Figure S4: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the NEE 

distributions (visualized in Figure S3) from the models (color, y-axis), as opposed to the 
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corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 1620 

Croplands (CRO). The error bars are the standard errors of the respective moment, depending 

on the sample size. 
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Figure S5: In the left column are the yearly ecosystem respiration (ER) evolutions averaged 

across stations belonging to one PFT (rows). We differentiate the data source by color (ICOS 1625 

observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, ERA5L: brown, GLEAM: 

purple). The probability density curves for all ER values from stations belonging to the selected 
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PFT are in the right column. Each row shows these plots for one PFT: Evergreen Needleleaf 

Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). 

 1630 

Figure S6: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the ER 

distributions (visualized in Figure S5) from the models (color, y-axis), as opposed to the 
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corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 

Croplands (CRO). The error bars are the standard errors of the respective moment, depending 1635 

on the sample size. 

 

Figure S7: In the left column are the yearly Temperature (Temp) evolutions averaged across 

stations belonging to one PFT (rows). We differentiate the data source by color (ICOS 

observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, ERA5L: brown, GLEAM: 1640 

purple). The probability density curves for all Temp values from stations belonging to the 
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selected PFT are in the right column. Each row shows these plots for one PFT: Evergreen 

Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 

(CRO). 
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 1645 

Figure S8: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the Temp 

distributions (visualized in Figure S7) from the models (color, y-axis), as opposed to the 

corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 
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Croplands (CRO). The error bars are the standard errors of the respective moment, depending 1650 

on the sample size. 

 

Figure S9: In the left column are the yearly Precipitation (Precip) evolutions averaged across 

stations belonging to one PFT (rows). We differentiate the data source by color (ICOS 

observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, ERA5L: brown, GLEAM: 1655 

purple). The probability density curves for all Precip values from stations belonging to the 

selected PFT are in the right column. Each row shows these plots for one PFT: Evergreen 
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Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 

(CRO). 

 1660 

Figure S10: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the Precip 

distributions (visualized in Figure S9) from the models (color, y-axis), as opposed to the 
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corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 

Croplands (CRO). The error bars are the standard errors of the respective moment, depending 1665 

on the sample size. 
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Figure S11: In the left column are the yearly shortwave downward radiation (SWdown) 

evolutions averaged across stations belonging to one PFT (rows). We differentiate the data 

source by color (ICOS observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, 1670 

ERA5L: brown, GLEAM: purple). The probability density curves for all SWdown values from 

stations belonging to the selected PFT are in the right column. Each row shows these plots for 
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one PFT: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands 

(GRA), and Croplands (CRO). 

 1675 

Figure S12: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the SWdown 

distributions (visualized in Figure S11) from the models (color, y-axis), as opposed to the 



 

116 

 

corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 

Croplands (CRO). The error bars are the standard errors of the respective moment, depending 1680 

on the sample size. 
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Figure S13: In the left column are the yearly relative humidity (RH) evolutions averaged across 

stations belonging to one PFT (rows). We differentiate the data source by color (ICOS 

observations: blue, CLM5grid: red, CLM5PFT: yellow, GLASS: green, ERA5L: brown, GLEAM: 1685 

purple). The probability density curves for all RH values from stations belonging to the selected 
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PFT are in the right column. Each row shows these plots for one PFT: Evergreen Needleleaf 

Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). 

 

Figure S14: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the RH 1690 

distributions (visualized in Figure S13) from the models (color, y-axis), as opposed to the 
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corresponding values from observations (x-axis) aggregated for each PFT (marker type): 

Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), 

Croplands (CRO). The error bars are the standard errors of the respective moment, depending 

on the sample size. 1695 
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Figure S15: The mean (a), variance (b), skewness (c), and excess kurtosis (d) of the leaf area 

index (LAI) distributions from the models (color, y-axis), as opposed to the corresponding values 

from observations (x-axis) aggregated for each plant functional type (marker type): Evergreen 1700 

Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), Croplands 

(CRO). The error bars are the standard errors of the respective moment, depending on the 

sample size. 

 


